JP2016140359A - Novel chlamydomonas and application of the same - Google Patents

Novel chlamydomonas and application of the same Download PDF

Info

Publication number
JP2016140359A
JP2016140359A JP2016017953A JP2016017953A JP2016140359A JP 2016140359 A JP2016140359 A JP 2016140359A JP 2016017953 A JP2016017953 A JP 2016017953A JP 2016017953 A JP2016017953 A JP 2016017953A JP 2016140359 A JP2016140359 A JP 2016140359A
Authority
JP
Japan
Prior art keywords
chlamydomonas
cpc1215
culture
algae
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016017953A
Other languages
Japanese (ja)
Other versions
JP6152438B2 (en
Inventor
高艾玲
Ai-Ling Kao
▲ト▼茂園
Mao Yuan Tu
蔡承佳
Zheng-Chia Tsai
陳勁中
Chin-Chung Chen
蔡昌廷
Chang-Ting Tsai
蘇宜欣
Yi-Shin Su
陳瑞惠
Jui Hui Chen
鄭新耀
Hsin Yao Cheng
陳寶東
bao-dong Chen
呉榮宗
Jung-Chung Wu
張嘉修
Jo-Shu Chang
陳俊延
Chun-Yen Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CPC Corp Taiwan
Original Assignee
CPC Corp Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CPC Corp Taiwan filed Critical CPC Corp Taiwan
Publication of JP2016140359A publication Critical patent/JP2016140359A/en
Application granted granted Critical
Publication of JP6152438B2 publication Critical patent/JP6152438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Fodder In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel chlamydomonas and application thereof.SOLUTION: Improved oil-productive chlamydomonas CPC1215 has characteristics such that it can be cultured by seawater, has high oil content, low adhesiveness and gravity settlement, and can be cultured outdoor. The present invention provides a method for synthesizing oil, includes a production method of biodiesel, and includes a food product and livestock feed of the above-described chlamydomonas.SELECTED DRAWING: Figure 10

Description

本発明は、海水を利用して培養でき、高い含油量、低い粘着性、重力沈下、屋外で培養可能等の特性を有し、エネルギー生産に応用される技術に関し、より詳しくは、油脂を生産する新規クラミドモナス(Novel Chlamydomonas orbicular)に関する。   The present invention relates to a technology that can be cultured using seawater, has high oil content, low tackiness, gravity subsidence, and can be cultured outdoors, and is applied to energy production. It relates to a novel Chlamydomonas orbular.

石油価格の高騰、環境汚染及び温室効果等の課題に対して、次世代のバイオ燃料として『微細藻類(microalgae)』が世界で注目を集めている。微細藻類は多様で培養しやすいという特性があるため、商業上の利用性が極めて高く、製薬、健康食品、農業用の肥料、漁業の養殖用の飼料、化粧品等に限らず、バイオディーゼル等のバイオ燃料及び生化学製品の生産にも利用されている。   As a next-generation biofuel, “microalgae” has been attracting attention around the world against issues such as rising oil prices, environmental pollution, and the greenhouse effect. Because microalgae are diverse and easy to cultivate, they have extremely high commercial availability, and are not limited to pharmaceuticals, health foods, agricultural fertilizers, fish farming feeds, cosmetics, biodiesel, etc. It is also used to produce biofuels and biochemical products.

科学者が海洋及び湖沼から微細藻類を分離させた結果、その油脂の構成が一般的な植物性の油脂に相似し、C16、C18系脂肪酸が主となっている。高等な植物種子の脂肪酸の含有量は乾燥重量の僅か15%〜20%前後しかなく、微細藻類では脂肪酸の含有量が窒素の欠乏時には細胞の乾燥重量の70〜80%に達する。
微細藻類のバイオディーゼルの単位当たりの生産量は他の産油植物よりも約10〜20倍高く、優良なバイオディーゼル原料であり、第三世代のバイオ燃料(biofuels)といえる。研究では、微細藻類を直接利用してバイオディーゼルを生産した場合、現在の交通燃料の50%が代替可能であり、これはアメリカの現在の総農作地の僅か3%程度を使用すれば十分である。微細藻類の生長においては、二酸化炭素を炭素源として光合成を行うため、昨今厳しさを増す温室効果問題も同時に解決できる。微細藻類を利用して生産されたバイオディーゼル(Biodiesel)は無毒であり、環境保護に適い、且つ耕地を占有しない等の長所を有し、また、二酸化炭素及び硫酸化物の排出を減少させることもできる。
欧州連合(EU)は2020年までに、全ての燃料の10%をバイオ燃料とすることを目標として定め、航空燃料及びディーゼルも10%のバイオ燃料を加えることを求められている。故に、近い将来、バイオディーゼルには大きな需要が生まれることが予想され、このため、バイオディーゼル材料の探求と開発が世界各国で危急の議題となっている。2007年Nature誌に『Algae bloom again』と題されたコラムが掲載され、再生エネルギー分野において藻類によるバイオエネルギーの重要性が掲示され、これは環境保護の角度、エネルギーの角度、及び国家の経済等のどの角度から見ても藻類は国家のエネルギー政策にとって決して欠くことのできない役割を担っていることを間接的に説明している。どのように高い経済効果を実現し、環境保護も両立させ、異なる藻体の炭素分離効率及び付加価値を高めるかが、近年先進各国が研究開発に力を入れている課題である。
As a result of scientists separating microalgae from the ocean and lakes, the structure of the oil and fat resembles general vegetable oil and fat, and C16 and C18 fatty acids are mainly used. The fatty acid content of higher plant seeds is only about 15% to 20% of the dry weight, and in microalgae, the fatty acid content reaches 70-80% of the dry weight of the cells when nitrogen is deficient.
The production volume of microalgae biodiesel per unit is about 10 to 20 times higher than that of other oil-producing plants, and is an excellent biodiesel raw material, which can be said to be a third generation biofuel. Research has shown that when biodiesel is produced using microalgae directly, 50% of the current transportation fuel can be substituted, and it is sufficient to use only about 3% of the current total agricultural land in the United States. is there. In the growth of microalgae, photosynthesis is performed using carbon dioxide as a carbon source, so that it is possible to simultaneously solve the increasingly severe greenhouse effect problem. Biodiesel produced using microalgae is non-toxic, has the advantages of being environmentally friendly and not occupying arable land, and can also reduce emissions of carbon dioxide and sulfate. it can.
The European Union (EU) has set a goal of 10% of all fuels as biofuels by 2020, and aviation fuel and diesel are also required to add 10% of biofuels. Therefore, it is expected that there will be a great demand for biodiesel in the near future, and therefore the search and development of biodiesel materials has become an urgent agenda in various countries around the world. A column titled “Algae bloom again” was published in Nature magazine in 2007, and the importance of bioenergy by algae was posted in the field of renewable energy, including environmental protection angle, energy angle, national economy, etc. It indirectly explains that algae plays an indispensable role in the national energy policy from any angle. How to achieve high economic effects, achieve both environmental protection, and increase the carbon separation efficiency and added value of different algal bodies is an issue that advanced countries have been focusing on research and development in recent years.

また、1キログラム(乾燥重量)の独立栄養微細藻類が約1.8キログラムの二酸化炭素を吸収してバイオマスに変化させるため、微細藻類の成長時には同時に温室効果ガスである二酸化炭素の大気中への排出量が減少する。また、微細藻類の培養に必要な窒素及び燐は生活廃水或いは養殖の廃水から取得でき、養殖時に廃水が浄化されるため、廃水の処理効果も達成できる。
微細藻類によるバイオ燃料の最大のボトルネックは、生産コストが高過ぎ、化石燃料よりもずっと高く、アメリカ合衆国エネルギー省が2012年に行った微細藻類による藻オイルの販売価格の分析では、1ガロン約9.28米ドルであり、同時期の化石燃料のディーゼルの販売価格は1ガロン3.61米ドルであった。
アメリカ合衆国エネルギー省は2013年8月に藻類によるバイオ燃料の開発に2億2千万米ドルを投資すると発表しており、2019年には微細藻類によるバイオ燃料のコストが半減し、大規模な商業化を達成させ、微細藻類による藻オイルの販売価格が1ガロン2.27米ドルまで低下し、コストが削減されると予測している。即ち、遺伝子組み換え方式により藻類の生産効率を高め、生物化学技術の発展により、人工的に突然変異を誘導して藻の改良を行い、微細藻類の生長密度を高め、養殖環境に対する耐性を高め、極めて高い商業的価値を有するスーパー微細藻類を創出することを目指している。
In addition, 1 kilogram (dry weight) of autotrophic microalgae absorbs about 1.8 kilograms of carbon dioxide and transforms it into biomass. Therefore, when microalgae grow, carbon dioxide, a greenhouse gas, is released into the atmosphere. Emissions are reduced. In addition, nitrogen and phosphorus necessary for culturing microalgae can be obtained from domestic wastewater or aquaculture wastewater, and since the wastewater is purified at the time of cultivation, the treatment effect of wastewater can also be achieved.
The largest bottleneck of biofuels from microalgae is too expensive to produce, much higher than fossil fuels, and the US Department of Energy's 2012 analysis of the sales price of microalgae algae oil is about 9 gallons. The price of diesel for fossil fuels was US $ 3.61 per gallon.
The United States Department of Energy announced in August 2013 that it will invest USD 220 million in the development of algae-based biofuels. In 2019, the cost of microalgae-based biofuels will be halved, resulting in large-scale commercialization. The sales price of algae oil from microalgae is expected to drop to US $ 2.27 per gallon, which will reduce costs. In other words, we improve the production efficiency of algae by genetic recombination method, improve the algae by artificially inducing mutation by the development of biochemical technology, increase the growth density of microalgae, increase the resistance to aquaculture environment, It aims to create super microalgae with extremely high commercial value.

人工的に突然変異を誘導することは種の進化における重要なメカニズムであり、自然環境ではその発生確率が約百万分の一から十万分の一に過ぎず、よって人工的に突然変異を誘発する。その方式は、放射線、紫外線、アルキル化剤(alkylating agent)、ニトロソ(nitroso)化合物等があり、ここでは紫外線による突然変異を例にする。
紫外線を照射してDNA分子にピリミジン二量体を形成させ、染色体の遺伝子が正確に対になって配置されるのを阻害させ、微細藻類の遺伝子に突然変異を引き起こさせるか死亡させる。通常では、この方式により無数の突然変異株を獲得し、続いて形質スクリーニングを行い、産油能力の優れた微細藻類を獲得し、微細藻類の油脂含有量のスクリーニングを行って、優良な産油能力を有する微細藻類を大規模に選別する。
Inducing mutations artificially is an important mechanism in species evolution, and in the natural environment its probability of occurrence is only about 1 / 100,000 / 100,000, so artificial mutations Trigger. Examples of the method include radiation, ultraviolet rays, alkylating agents, nitroso compounds, and the like. Here, mutation by ultraviolet rays is taken as an example.
Irradiation with UV light causes pyrimidine dimers to form in DNA molecules, inhibits chromosomal genes from being placed in exact pairs, and causes mutations or death in microalgae genes. Normally, in this method, a myriad of mutant strains are obtained, followed by trait screening, obtaining microalgae with excellent oil production capacity, screening for the oil content of microalgae, and obtaining excellent oil production capacity. Select the microalgae you have on a large scale.

クラミドモナス属(Chlamydomonas)(Chlamydomonas)は、緑藻植物門(Chlorophyta)/緑藻類(Chlorophyceae)の1つの属(genus)であり、鞭毛を有する単細胞生物であり、直径約10マイクロメートルである。クラミドモナス及び藍藻類は微細藻類界の真核藻類及び原核藻類で最も代表的なモデル生物であり、ショウジョウバエが遺伝学の学術研究に貢献しているのと同じく、クラミドモナスも1945年から分子生物学及び遺伝子工学の研究材料として長く用いられ、核酸及びタンパク質等の生物の分子の機能、形態構造の特徴、機能性及び規則性の研究に使用されている。
クラミドモナスは学術研究において重要な研究材料であり、Chlamydomonas reinhardtii 137Cが最もよく使用される藻類(algae species)である。クラミドモナスはバイオ燃料関連の研究において、1952年にFrenkelがクラミドモナス及び他の緑藻が特定の状況下で水素を発生させることを発見し、それから研究が始まった。
しかしながら、水素を発生させるメカニズムが解明されておらず、効率を制御するのが難しく、さらなる研究でこのボトルネックを突破することが期待されている。
Chlamydomonas (Chlamydomonas) is a genus of Chlorophyta / Chlorophyceae, a unicellular organism with flagella, about 10 micrometers in diameter. Chlamydomonas and cyanobacteria are the most representative model organisms of the eukaryotic and prokaryotic algae of the microalgae world. Just as Drosophila has contributed to academic research in genetics, Chlamydomonas It has long been used as a research material for genetic engineering, and has been used to study the functions, morphological characteristics, functionality and regularity of biological molecules such as nucleic acids and proteins.
Chlamydomonas is an important research material in academic research, and Chlamydomonas reinhardtii 137C is the most commonly used algae (algae species). Chlamydomonas began research in biofuels in 1952 when Frenkel discovered that Chlamydomonas and other green algae generate hydrogen under certain circumstances.
However, the mechanism for generating hydrogen has not been elucidated, it is difficult to control the efficiency, and further research is expected to break through this bottleneck.

クラミドモナス(Chlamydomonas)C.reinhardtii 137Cは油脂の生産に関する研究のモデル藻類であり、クラミドモナスは遺伝物質を有する細胞核、葉緑体、ミトコンドリアの3つの染色体遺伝子の解読がすでに完了しており、オープンなデータベースが構築されて研究者に提供されている。前述の3つの系統の形質転換工具が更に発展し、油脂生産の研究では、遺伝子組み換え技術を利用してモデルクラミドモナスに対して改造を加えるものに集中しており、クラミドモナスC.reinhardtii 137Cに対して突然変異或いは産油に関わる遺伝子の改造を人工的に誘導し、産油形質の改変の研究が進んでいる。
以前の研究では、発見されたクラミドモナスの大部分が淡水環境で生長しており、且つその油脂含有量は低く(10〜15%)、他の油脂を生産する微細藻類( >30%)と比べると、大規模な養殖には適していない。商業生産で最もよく油脂生産に使用される藻類はクロレラ(Chlorella vulgalis)であり、産油率は約50〜100mg/L/dであり、淡水環境で生長するが、クロレラの淡水での培養には大量の飲用水が必要であり、水資源の奪い合いの問題があるため、多くの科学者は、海水或いは塩水で培養できる藻類の探求を始めている。このため、海水で養殖でき、且つ高い脂肪含有量及び高いバイオマスの生産量を有する微細藻類が、バイオ燃料を生産するための有望な藻類となっている。
本発明の油脂を生産する新規クラミドモナスも同様に、海水で培養でき、高い含油量、低い粘着性、重力沈下、屋外で培養可能等の特性を有し、エネルギー生産技術に応用され、且つ飲用水を消費しないという長所を有する。
Chlamydomonas C.I. Reinhardtii 137C is a model algae for research on oil and fat production, and Chlamydomonas has already completed the decoding of three chromosomal genes of the cell nucleus, chloroplast, and mitochondria with genetic material, and an open database has been constructed and researchers Has been provided to. The above three strains of transformation tools have been further developed, and research on oil production has focused on the modification of model Chlamydomonas using genetic recombination technology. Reinhardtii 137C is artificially induced to mutate or remodel genes related to oil production, and research on the modification of oil production traits is progressing.
In previous studies, most of the found Chlamydomonas grows in freshwater environments, and its fat content is low (10-15%), compared to other microalgae that produce other fats (> 30%) It is not suitable for large-scale aquaculture. The algae that is most commonly used for oil production in commercial production is Chlorella vulgaris and has an oil production rate of about 50 to 100 mg / L / d. It grows in a freshwater environment. Many scientists have begun exploring algae that can be cultivated in seawater or saltwater, due to the need for large amounts of drinking water and the problem of competing for water resources. For this reason, microalgae that can be cultivated in seawater and have high fat content and high biomass production have become promising algae for producing biofuels.
Similarly, the novel Chlamydomonas that produces the fats and oils of the present invention can be cultured in seawater, has high oil content, low tackiness, gravity subsidence, outdoor culturing characteristics, etc., applied to energy production technology, and drinking water Has the advantage of not consuming.

参考資料:Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: 294−306;Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends in biotechnology 26: 126−131;Fu Z, Yang F, An Y, Xue Y (2009) Characteristics of nitrite and nitrate in situ denitrification in landfill bioreactors. Bioresour Technol 100: 3015−3021;Grossman AR (2000) Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Current opinion in plant biology 3: 132−137;Haag AL (2007) Algae bloom again. Nature 447: 520−521;Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low−cost photobioreactor. Biotechnology and bioengineering 102: 100−112;Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li−Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC biotechnology 11: 7;Spolaore P, Joannis−Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. Journal of bioscience and bioengineering 101: 87−96;Wang B, Li Y, Wu N, Lan CQ (2008) CO(2) bio−mitigation using microalgae. Applied microbiology and biotechnology 79: 707−718。   Reference: Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: 294-306; Chisti Y (2008) Biodiesel microalgae beats bioethanol. Trends in biotechnology 26: 126-131; Fu Z, Yang F, An Y, Xue Y (2009) Characteristic of nitricate in situ and indirectivity. Bioresource Technology 100: 3015-3021; Grossman AR (2000) Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Current opinion in plant biology 3: 132-137; Haag AL (2007) Algae bloom against. Nature 447: 520-521; Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low- cost photobioactor. Biotechnology and bioengineering 102: 100-112; Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beilly A, Beisson F, Trison G, Tris. model green alga Chlamydomonas reinhardtii: charactorization, variant between common laboratories and relations with whip research. BMC biotechnology 11: 7; Spoleore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. Journal of bioscience and bioengineering 101: 87-96; Wang B, Li Y, Wu N, Lan CQ (2008) CO (2) bio-mitigating using microalgae. Applied microbiology and biotechnology 79: 707-718.

本発明は、このような従来の問題に鑑みてなされたものである。上記課題解決のため、本発明は、改良した微細藻類を提供することを主目的とする。   The present invention has been made in view of such conventional problems. In order to solve the above problems, the main object of the present invention is to provide an improved microalgae.

窒素が欠乏する条件の下、高い脂質含有量、海水及び淡水で培養可能、重力沈下、低い粘着性等の特性を有し、バイオディーゼルの生産、二酸化炭素の捕捉、食品及び飼料の生産に広く応用される。   Nitrogen-deficient conditions, high lipid content, cultivated in seawater and fresh water, gravity subsidence, low stickiness, etc., widely used in biodiesel production, carbon dioxide capture, food and feed production Applied.

本発明は大量の油脂が累積される原生藻類Chlamydomonas orbicularis CPC1は、台湾中部の河川の河口から選別された藻類であり、実験室の環境で培養した場合、油脂の含有量が乾燥重量の43%に達し、屋外で50リットルの光バイオリアクタで培養した場合、平均油脂含有量は20‐30%になる。
屋外で培養する場合、制御不能な要因、例えば、光量が一定ではない、温度が高過ぎる、汚染等の問題のために、油脂の累積量が減少し、生長速度が遅くなり、油脂生産量が減少した。このため、紫外線により突然変異を誘発する方法により藻類の改良が行われた。
本発明は主に紫外線を放射することでCPC1藻類に対して突然変異を発生させ、大量の選別方式により、油脂生産量を増加させる突然変異藻類を探し出す。紫外線の放射により生物体のDNAに突然変異を起こさせ、DNAの断裂或いはチミン二量体(thymine dimer)を形成させ、DNAが正常な機能を維持できなくすることで、遺伝子を改変させ、生物体の代謝経路及び生理的特性に影響を与える。突然変異を起こした藻類の数量が膨大であり、高速且つ精確に藻体の油脂を分析するため、本発明ではNile red蛍光技術により油脂の分析を行う。Nile redは脂質を検知させる蛍光染色試薬であり、中性脂質(neutral lipid)に結合された後、530nmの光を励起させ、580nmの蛍光を放射させる。
Nile redは、ガスクロマトグラフィー(gas chromatography)を使用して藻体の油脂の分析を行うのに比べ精確性が低いが、その長所として、迅速に操作でき、低コストで、事前処理時間が短く、必要なサンプルの体積も小さくてよいため、大規模な選別及び分析に適合する。
The present invention is a protozoal alga Chlamydomonas orbicularis CPC1 in which a large amount of fats and oils are accumulated, is an algae selected from a river estuary in central Taiwan. When cultured in a laboratory environment, the fat content is 43% of the dry weight. And when cultivated outdoors in a 50 liter photobioreactor, the average fat content is 20-30%.
When cultivating outdoors, due to uncontrollable factors such as light intensity is not constant, temperature is too high, contamination, etc., the cumulative amount of fat decreases, the growth rate decreases, and the amount of fat produced Diminished. For this reason, algae was improved by a method of inducing mutation by ultraviolet rays.
The present invention seeks mutant algae that generate mutations in CPC1 algae mainly by radiating ultraviolet rays and increase fat production by a large selection method. Mutations in the DNA of organisms by the radiation of ultraviolet rays, DNA breaks or thymine dimers are formed, and DNA is unable to maintain its normal function, altering genes, Affects the body's metabolic pathways and physiological properties. In order to analyze the fats and oils of algal bodies at high speed and accurately, the present invention analyzes fats and oils by the Nile red fluorescence technique. Nile red is a fluorescent staining reagent that detects lipid, and after binding to neutral lipid, it excites 530 nm light and emits 580 nm fluorescence.
Nile red is less accurate than gas chromatographic analysis of algal fats and oils, but it has the advantage that it can be operated quickly, is low cost, and has a short pretreatment time. Since the required sample volume is small, it is suitable for large-scale sorting and analysis.

上述した課題を解決し、目的を達成するための、本発明に係る微生物の生物培養物はクラミドモナス(Chlamydomonas orbicularis)CPC1215であり、中華民国の財団法人新竹食品工業発展研究所に寄託され、受託番号はBCRC 980035である。   In order to solve the above-mentioned problems and achieve the object, the biological culture of the microorganism according to the present invention is Chlamydomonas orbicularis CPC1215, deposited with the Hsinchu Food Industry Development Research Institute in the Republic of China, and the accession number Is BCRC 980035.

前述のクラミドモナスCPC1215は、そのrbc Lの配列及び本発明で提供する配列(SEQ ID NO:6)の相似度が90%以上に達し、油脂含有量が30%以上に達し、産油率が100mg/L/day以上に達するものを指す。   The above-mentioned Chlamydomonas CPC1215 has a similarity of 90% or more in the sequence of rbc L and the sequence provided in the present invention (SEQ ID NO: 6), a fat content of 30% or more, and an oil production rate of 100 mg / Points that reach L / day or higher.

また、本発明の油脂の合成方法は、前述の培養物の油脂を含み、生物培養物の窒素飢餓処理を施し、且つ温度範囲が25〜35℃に指定されて生物培養物が培養されることを含む。   In addition, the method for synthesizing fats and oils of the present invention includes the fats and oils of the aforementioned culture, subjecting the biological culture to nitrogen starvation, and culturing the biological culture with a temperature range of 25 to 35 ° C. including.

前述の生物培養物の養殖培養基には淡水或いは塩度1〜3%の海水が配置されて使用され、バイオマス1.5g/L以上の生産量を獲得する。例えば、使用1Lの光リアクタで養殖を行い、Bold’s Basal Medium(BBM) の培養液が採用されると共に人工の海塩が添加されて培養を行い、2%のCO2に曝気され、光源はTL5蛍光灯で光強度は150μmol/m2/sであり、その油脂含有量は最高で51.8%に達し、油脂の生産率は9日で121.8mg/L/dayに達する。35℃の高温で誘導した場合、油脂の生産量は140.8mg/L/dayに達する。また、CPC1215は新鮮な海水或いは人工海水を使用して養殖でき、沈下速度が速く、粘着性が低いという特性を有し、大量に養殖でき、藻類を養殖することで二酸化炭素を削減させ、エネルギー生産等に応用される。   Fresh water or seawater with a salinity of 1 to 3% is disposed and used for the culture medium of the above-described biological culture to obtain a production amount of 1.5 g / L or more of biomass. For example, the culture is carried out in a 1 L photoreactor, Bold's Basal Medium (BBM) culture solution is employed, artificial sea salt is added, the culture is performed, aerated to 2% CO2, the light source is With a TL5 fluorescent lamp, the light intensity is 150 μmol / m 2 / s, the fat content reaches 51.8% at the maximum, and the fat production rate reaches 121.8 mg / L / day in 9 days. When induced at a high temperature of 35 ° C., the production of fats and oils reaches 140.8 mg / L / day. In addition, CPC1215 can be cultivated using fresh seawater or artificial seawater, has the characteristics of fast subsidence and low stickiness, can be cultivated in large quantities, and algae is cultivated to reduce carbon dioxide, Applied to production etc.

さらに、本発明は、前述の培養物のバイオディーゼルを含むバイオディーゼルの合成方法を提供する。   Furthermore, the present invention provides a method for synthesizing biodiesel, including biodiesel of the aforementioned culture.

なお、本発明は、前述の培養物を含む食品である。   In addition, this invention is a foodstuff containing the above-mentioned culture.

また、本発明は、前述の培養物を含む飼料である。   Moreover, this invention is a feed containing the above-mentioned culture.

本発明のクラミドモナスCPC1215は野生のCPC1が大量に養殖可能であり、容易に収集できて自然沈下され、産油率が高いという特徴を有するため、商業化が有望である。   The Chlamydomonas CPC1215 of the present invention is promising for commercialization because wild CPC1 can be cultivated in large quantities, can be easily collected, is naturally submerged, and has a high oil production rate.

本発明の分離株(isolates)を示す濾過工程図である。It is a filtration process figure which shows the isolate (isolates) of this invention. CPC1人工水産養殖がCPC1のバイオマスに対する影響図である。It is an influence figure with respect to the biomass of CPC1 artificial aquaculture. 藻類の濃度(OD680)及びNile red蛍光強度を示すリニア関係図である。It is a linear relationship figure which shows the density | concentration (OD680) of algae and Nile red fluorescence intensity. CPC1及び変異藻類種のNile red蛍光強度を示す比較図(250mlフォトバイオリアクタ培養)である。It is a comparison figure (250 ml photobioreactor culture) which shows Nile red fluorescence intensity of CPC1 and a mutant algae species. CPC1215変異藻類種及び野生のCPC1の成長率を示す比較図である。It is a comparison figure which shows the growth rate of CPC1215 mutant algae species and wild CPC1. CPC1215変異藻類種及び野生のCPC1の油脂蓄積能力を示す比較図である。It is a comparison figure which shows the fats and oils accumulation ability of CPC1215 mutant algae species and wild CPC1. CPC1215変異藻類種が高温培養での成長率を示す比較図である。It is a comparison figure in which CPC1215 mutant algae species shows the growth rate in high temperature culture. CPC1215変異藻類種が高温培養での油脂蓄積能力を示す比較図である。It is a comparison figure in which CPC1215 mutant algae species shows fats and oils accumulation ability in high temperature culture. CPC1215変異藻類種外表形及びNile redの染色顕微鏡での観察結果である。It is an observation result with the staining microscope of CPC1215 mutant algae extra-species and Nile red. CPC1215変異藻類種の接着力が低い観察結果である。It is an observation result that the adhesive force of CPC1215 mutant algae species is low. CPC1215変異藻類種野生のCPC1の沈下速度が速い観察結果である。It is an observation result that the settlement rate of CPC1215 mutant algae species wild CPC1 is fast.

本発明における好適な実施の形態について、添付図面を参照して説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention.

(第1実施形態)
本発明は微生物の生物培養物であり、生物培養物はクラミドモナス(Chlamydomonas orbicularis)CPC1215であり、中華民国の財団法人食品工業発展研究所に保管され、受託番号はBCRC 980035である。好ましくは、クラミドモナスCPC1215は、そのrbc Lの配列及び本発明で提供する配列(SEQ ID NO:6)の相似度が90%以上に達するものを指す。前述のクラミドモナスCPC1215は油脂含有量が30%以上に達し、産油率が100mg/L/day以上に達する。
本発明は油脂の合成方法を提供し、クラミドモナス(Chlamydomonas orbicularis)CPC1215を使用して油脂を生産することを含む。好ましくは、前述の方法は、クラミドモナスに窒素飢餓処理を施し、温度範囲が25〜35℃に指定されて培養され、且つ養殖培養基には淡水或いは塩度1〜3%の海水が配置されて使用され、バイオマス1.5g/L以上の生産量を獲得することを含む。
(First embodiment)
The present invention is a biological culture of microorganisms, the biological culture is Chlamydomonas orbicularis CPC1215, which is stored in the Food Industry Development Institute of the Republic of China, and the accession number is BCRC 980035. Preferably, Chlamydomonas CPC1215 refers to those in which the rbc L sequence and the sequence provided by the present invention (SEQ ID NO: 6) reach 90% or more. The aforementioned Chlamydomonas CPC1215 has a fat content of 30% or more and an oil production rate of 100 mg / L / day or more.
The present invention provides a method for synthesizing fats and oils, including producing fats and oils using Chlamydomonas orbicularis CPC1215. Preferably, the above-mentioned method is used in which Chlamydomonas is subjected to nitrogen starvation treatment, cultured at a temperature range of 25 to 35 ° C., and fresh water or seawater having a salinity of 1 to 3% is placed in the culture medium. And obtaining a production amount of 1.5 g / L or more of biomass.

また、本発明はバイオディーゼルの生産方法を提供し、クラミドモナス(Chlamydomonas orbicularis)CPC1215を使用してバイオディーゼルを生産する。   The present invention also provides a method for producing biodiesel, which is produced using Chlamydomonas orbicularis CPC1215.

さらに、本発明は、クラミドモナス(Chlamydomonas orbicularis)CPC1215を含む食品或いは飼料を提供する。   Furthermore, the present invention provides a food or feed comprising Chlamydomonas orbicularis CPC1215.

このほか、下述の具体的な実施形態により、本発明の実際の応用範囲を証明するが、但し、本発明の範囲はいかなる形式にも制限されない。   In addition, the actual application scope of the present invention is proved by the specific embodiments described below, however, the scope of the present invention is not limited to any form.

高い油脂含有量を有する本土の微細藻類Chlamydomonas orbicularis CPC1を選別する。
本発明の海水環境から獲得された藻類に対する純化分離工程は、図1に示すように、サンプルの採集工程(S11)と、事前培養工程(S12)と、単一の藻菌類(algal strain)の選別工程(S13)と、液体による培養工程(S14)と、培養基の種類及び培養条件の最適化工程(S15)と、及び藻株(algal strain)の生理条件の分析工程(S16)とを含む。分離純化方法には階段希釈 (serial dilution) 方式が採用され、藻株の純化後に18S rRNA及びrbc L遺伝子配列を利用して藻類の鑑定を行う。
18S DNAのPCR増幅プライマーの正方向はCCA TGC ATG TCT AAG TAT AAA CTG CT(SEQ ID NO:1)であり、反対方向はTAG GTG GGA GGG TTT AAT GAA CTT(SEQ ID NO:2)であり、取得された配列のGenBank中での配列アラインメントの比較結果はSEQ ID NO:5に示し、登録番号KF383269である。
rbc LのPCR増幅プライマーの正方向はGTT CAA AGC CGG TGT AAA AGA C(SEQ ID NO:3)であり、反対方向はCAT AGC TGA ATA CCA CCA GAA GCA(SEQ ID NO:4)であり、取得された配列のGenBank中での配列アラインメントの比較結果はSEQ ID NO:6に示し、2種類の遺伝子をGenBankのデータベースの配列アラインメントと総合した結果、Chlamydomonas orbicularis SAG 11‐19に最も相似し、且つ外形はChlamydomonasに符合し、Chlamydomonas orbicularis CPC1と命名される。
The mainland microalga Chlamydomonas orbicularis CPC1 with high fat content is selected.
As shown in FIG. 1, the purification and separation process for algae obtained from the seawater environment of the present invention includes a sample collection process (S11), a pre-culture process (S12), and a single algal strain (algal strain). A screening step (S13), a liquid culture step (S14), a culture medium type and culture condition optimization step (S15), and an algal strain physiological condition analysis step (S16). . As a separation and purification method, a serial dilution method is adopted, and after algae strains are purified, algae are identified using 18S rRNA and rbc L gene sequences.
The forward direction of the PCR amplification primer of 18S DNA is CCA TGC ATG TCT AAG TAT AAA CTG CT (SEQ ID NO: 1), and the opposite direction is TAG GTG GGA GGG TTT AAT GAA CTT (SEQ ID NO: 2) The comparison result of the sequence alignment of the obtained sequence in GenBank is shown in SEQ ID NO: 5 and is the registration number KF383269.
The forward direction of the PCR amplification primer of rbc L is GTT CAA AGC CGG TGT AAA AGA C (SEQ ID NO: 3) and the opposite direction is CAT AGC TGA ATA CCA CCA GAA GCA (SEQ ID NO: 4) The result of comparing the sequence alignment in GenBank of SEQ ID NO: 6 is shown in SEQ ID NO: 6, and the two genes were combined with the sequence alignment of the GenBank database, and as a result, most similar to Chlamydomonas orbicularis SAG 11-19, and The outline matches Chlamydomonas and is named Chlamydomonas orbiralis CPC1.

CPC1は淡水及び海水を使用して培養される。
本研究では、先ず淡水及び海水 (塩度3〜3.5%) を利用してBBM 培養基に配置すると共に2%のCO2をCPC1に曝気させて培養を行い、塩度のバイオマス及び油脂の累積に対する影響を調べる。
図2に示すように、海水環境で培養されるCPC1の生長日数は11日であり、バイオマスは最高1.42g/Lに達し、淡水環境で培養された後の生長日数は14日前後であり、バイオマスは海水に比べて良好であり、2.32g/Lに達する。表1に示す油脂累積に関しては、海水によりCPC1に対して培養を行って得られた含油率及び産油率が、どちらも淡水での養殖よりも高く、最高43.39%及び64mg/L/dに達する。また、人工海水、天然海水、及び新鮮な海水(貯蔵時間が1週間より短い)で共にCPC1の培養に成功し、養殖量は50Lである。
CPC1 is cultured using fresh water and seawater.
In this study, fresh water and seawater (salinity of 3 to 3.5%) were first placed in the BBM culture medium, and 2% CO2 was aerated on CPC1 and cultured to accumulate the biomass of salinity and fats and oils. Investigate the impact on
As shown in FIG. 2, the growth days of CPC1 cultured in a seawater environment is 11 days, the biomass reaches a maximum of 1.42 g / L, and the growth days after being cultured in a freshwater environment is around 14 days. Biomass is better than seawater, reaching 2.32 g / L. Regarding the accumulation of fats and oils shown in Table 1, the oil content and oil production rate obtained by culturing CPC1 with seawater are both higher than those in freshwater culture, with a maximum of 43.39% and 64 mg / L / d. To reach. In addition, CPC1 has been successfully cultured in artificial seawater, natural seawater, and fresh seawater (storage time is shorter than one week), and the culture volume is 50 L.

CPC1の紫外線による突然変異技術。
CPC1がBG‐11固体培養基を経て、藻を選別してBBM培養液に入れ換えて事前培養を行い、対数期(exponential phase)の後、5mLの藻液を無菌の培養容器に移し、紫外線による突然変異を行う。
本特許では6Wの短波長(254 nm)の紫外線ランプが使用され、光源と藻液との距離は12.5センチメートルであり、照射時間は2分間である。紫外線光の照射が完了した後、藻液(algae liquid)への光を24時間遮り、その後に藻液を1000倍に希釈させてBG‐11の固体培養基に塗布する。
Mutation technology by ultraviolet rays of CPC1.
CPC1 passes through BG-11 solid culture medium, selects algae, replaces with BBM culture medium, performs preculture, and after exponential phase, transfers 5 mL of algae liquid to a sterile culture container and Make a mutation.
In this patent, a 6 W short wavelength (254 nm) ultraviolet lamp is used, the distance between the light source and the algal fluid is 12.5 centimeters, and the irradiation time is 2 minutes. After the irradiation with ultraviolet light is completed, light on the alga liquid is blocked for 24 hours, and then the algal liquid is diluted 1000 times and applied to the solid culture medium of BG-11.

Nile red(ナイルレッド)蛍光染色技術による藻体の油脂を検知する。
CPC1藻液を7日間から12日間培養し、油脂が累積されるのを待った後、20%のエタノールで希釈してOD680の濃度で固定させ、総体積が1mLとなってから1μLのNile red染色試薬を加え(0.1mg/mLがアセトンに配合される)、室温で100rpmで10分間均等に混合させる。染色過程では、全行程アルミ箔によりサンプルを被覆させて、光線が照射されて染色試薬が活性を失わないようにする。染色の完成後、サンプルを蛍光分光計専用の石英管に移動させ、蛍光分光計により励起波長(excitation wavelength:530nm;emission wavelength:580nm)の検知を行う。
図3ではCPC1藻液を異なる濃度に希釈させた後、Nile red染色試薬により検知された蛍光結果、藻体の濃度及び蛍光強度が線形関係を呈し、そのR平方値(R square)は0.9998であり、高い線形関係を有することを示す。Nile red蛍光は高感度の検知技術であり、本発明では、OD680が0.2より高い場合、細胞の濃度が高過ぎ、蛍光数値が不安定になり、精確に計測できないことが分かり、評価実験では全てOD680=0.06〜0.1の範囲でNile red蛍光測定を行う。
Oils and fats of algal bodies are detected by Nile red fluorescent staining technology.
CPC1 algae solution is cultured for 7 to 12 days, and after waiting for oil and fat to accumulate, it is diluted with 20% ethanol and fixed at a concentration of OD680. After the total volume reaches 1 mL, 1 μL of Nile red staining Add reagent (0.1 mg / mL in acetone) and mix evenly for 10 minutes at 100 rpm at room temperature. In the staining process, the sample is covered with an aluminum foil in the entire process so that the staining reagent does not lose its activity when irradiated with light. After completion of the staining, the sample is moved to a quartz tube dedicated for the fluorescence spectrometer, and the excitation wavelength (excitation wavelength: 530 nm) is detected by the fluorescence spectrometer.
In FIG. 3, after the CPC1 algae liquid is diluted to different concentrations, the fluorescence results detected by the Nile red staining reagent show a linear relationship between the alga body concentration and the fluorescence intensity, and the R square value (R square) is 0. 9998, indicating a high linear relationship. Nile red fluorescence is a highly sensitive detection technology. In the present invention, when OD680 is higher than 0.2, the cell concentration is too high, the fluorescence value becomes unstable, and it is impossible to measure accurately. Then, Nile red fluorescence measurement is performed in the range of OD680 = 0.06 to 0.1.

微細藻類の脂肪酸の組成成分、含油率及び産油率の分析方法。
微細藻類の脂肪酸の組成の分析は、先ず乾燥藻粉(dried algae powder)を取得し、0.5Nの水酸化カリウム(KOH)のメタノール(methanol)溶液を加え、超音波破砕機により藻細胞を破砕し、完全に破砕された藻液に対して鹸化反応(saponification)を行った後、メタノールを添加させてエステル化反応を行い、完全に反応した産物(FAME)に対してガスクロマトグラフにより油脂の総量及び組成の分析を行い、藻体の油脂含有量を推計し、重量のパーセンテージで含油率を表示する。
含油率(%)及びバイオマス生産量(g/L/day)の相乗により、算出された産油率は毎日1リットル当たりの培養液で生産される油脂の重量となる。検量線の設定は脂肪酸メチル標準品(C14:0、C16:0、C16:1、C18:0、C18:1、C18:2、C20:5及びC22:6等を含む)にn‐hexaneを混合させ、ガスクロマトグラフにより各脂肪酸メチルの滞留時間の分析を行うことで、藻オイルの組成の鑑定を行う。
Analysis method of fatty acid composition component, oil content and oil production rate of microalgae.
To analyze the fatty acid composition of microalgae, first obtain dried algae powder, add 0.5N potassium hydroxide (KOH) in methanol, and remove the algal cells using an ultrasonic crusher. The saponification reaction (saponification) is performed on the crushed algal liquid after crushing, and then the esterification reaction is performed by adding methanol. The total amount and composition are analyzed, the fat content of the algal bodies is estimated, and the oil content is displayed as a percentage by weight.
Due to the synergy between the oil content (%) and the biomass production (g / L / day), the calculated oil production rate becomes the weight of fats and oils produced in the culture solution per liter every day. The calibration curve is set to n-hexane for methyl fatty acid standards (including C14: 0, C16: 0, C16: 1, C18: 0, C18: 1, C18: 2, C20: 5, C22: 6, etc.). The composition of the algal oil is identified by mixing and analyzing the residence time of each fatty acid methyl by gas chromatography.

CPC1215突然変異藻類の選別フローチャート及び産油率の測定。
紫外線により突然変異を起こした藻類を先ず5mLのBBMでガラス試験管の中で培養を行い、室温で60rpmで回転させ、10‐14日培養を行った後、Nile red蛍光技術により油脂含有量の検知を行い、蛍光強度が原生種より高い突然変異藻類を16株選別し、第二階段の測定に進む。
250mLの光バイオリアクタで培養を行い、BBMに2%の人工海塩を加えて培養液とし、7日間培養を行った後、ガスクロマトグラフにより油脂含有量の分析を行い、含油量が野生のCPC1より高いと確認された後、1Lの光バイオリアクタに拡大させて測定を行い、培養液は同様にBBMに2%の海塩を加えたものである。
Selection flow chart of CPC1215 mutant algae and measurement of oil production rate.
Algae mutated by ultraviolet rays are first cultured in 5 mL of BBM in a glass test tube, rotated at 60 rpm at room temperature, and cultured for 10-14 days. Detection is performed, 16 mutant algae having higher fluorescence intensity than the native species are selected, and the measurement proceeds to the second step.
Culturing in a 250 mL optical bioreactor, adding 2% artificial sea salt to BBM to make a culture solution, culturing for 7 days, and then analyzing the fat content by gas chromatography, the oil content is wild CPC1 After being confirmed to be higher, the measurement was performed by expanding to a 1 L photobioreactor, and the culture solution was also BBM with 2% sea salt added.

250mLの光バイオリアクタで培養を行い、Nile red染色試薬により含油量が高い突然変異株(mutant)を5株選別させた後(図4参照)、GCによりFAMEの含有量の検知を行い、油脂含有量が最も高い3株の藻類 (CPC1215/1218/1266)を選別させ、1Lの光バイオリアクタで生長培養を行い、油脂の蓄積試験結果は下述のようになる。
図5は生長速度の比較結果を図示する。CPC1215の生長速度が最も速く、対数期に入った後、バイオマス(biomass)が野生(CPC1)及び他の突然変異の藻類よりも明らかに高くなる。静止期も同様の状況になり、14日目には2.44g/Lに達し、CPC1が2.24g/Lで8.9%に増加する。また、CPC1218及びCPC1266は静止期のバイオマスも野生(CPC1)より高くなり、14日目にはそれぞれ2.41及び2.38g/Lになる。CPC1215の好ましい油脂蓄積能力の部分は、油脂蓄積の速度及び総量が共に野生のCPC1より高い点である(図6参照)。9日目での差異が最も顕著であり、CPC1215の含油率は46.5%に達し、野生のCPC1の含油率38.5%に比べて20.8%高くなる。14日目の含油率は50%を突破して、51.8%に達する。以上の結果から分かるように、CPC1215の生長速度及び油脂含有量は、共に野生のCPC1よりも向上する。
After culturing in a 250 mL photobioreactor and selecting 5 mutant mutants with high oil content using the Nile red staining reagent (see FIG. 4), the FAME content is detected by GC. Three strains of algae (CPC1215 / 1218/1266) with the highest content are selected and grown in a 1 L photobioreactor, and the fat accumulation test results are as follows.
FIG. 5 illustrates the comparison result of the growth speed. The growth rate of CPC1215 is the fastest and after entering the log phase, the biomass is clearly higher than the wild (CPC1) and other mutant algae. The same situation occurs in the stationary phase, reaching 2.44 g / L on the 14th day and increasing CPC1 to 8.9% at 2.24 g / L. In addition, CPC1218 and CPC1266 also have higher stationary biomass than wild (CPC1), and on day 14 are 2.41 and 2.38 g / L, respectively. The portion of CPC 1215 that has a preferred fat accumulation capacity is that the fat accumulation rate and total amount are both higher than wild CPC1 (see FIG. 6). The difference on day 9 is most noticeable, with the oil content of CPC1215 reaching 46.5%, 20.8% higher than the oil content of wild CPC1 of 38.5%. The oil content on day 14 exceeds 50% and reaches 51.8%. As can be seen from the above results, the growth rate and fat content of CPC1215 are both improved as compared to wild CPC1.

表2はCPC1215の産油率(lipid productivity) の計算結果であり、CPC1215の産油率は野生(CPC1) 及び他の突然変異株(CPC1218/1266)よりも明らかに高く、培養7日目の産油率は118.8mg/L/dayにもなり、野生のCPC1よりも35.3%高くなる。9日目には最高の産油率を達成させ、121.8mg/L/dayとなり、野生のCPC1の93.2mg/L/dayよりも30.8%高くなる。
CPC1215は財団法人食品工業発展研究所に保管され、受託番号はBCRC980035である。本発明で使用されるCPC1215は共に前述の保管されている藻類と同じである。
Table 2 shows the calculation results of the oil production rate of CPC1215. The oil production rate of CPC1215 is clearly higher than that of the wild (CPC1) and other mutant strains (CPC1218 / 1266), and the oil production rate on the 7th day of culture. Becomes 118.8 mg / L / day, 35.3% higher than wild CPC1. On the 9th day, the highest oil production rate is achieved, reaching 121.8 mg / L / day, 30.8% higher than 93.2 mg / L / day for wild CPC1.
The CPC 1215 is stored in the Food Industry Development Laboratory, and the accession number is BCRC980035. Both CPC1215 used in the present invention are the same as the above-mentioned stored algae.

CPC1215を高温で培養し油脂の累積を増加させる。
培養温度を本来の25℃から35℃まで上昇させ、Bold’s Basal Medium(BBM) 培養基を使用する。培養体積は1Lであり、1.0%の海水塩度で、炭素源には2%の二酸化炭素が使用され、開始時の藻の量は0.305g/Lである。結果は図7に示すように、CPC1215突然変異藻類の生長速度は高温により抑制されず、11日間の操作期間に、室温及び高温で培養すると、藻体の濃度はそれぞれ2.46g/L及び2.51g/Lに達する。
油脂の蓄積能力については、図8によると、35℃で培養されるCPC1215は油脂の蓄積速度及び油脂含有量がどちらも高く、7日目での差異が最も顕著になり、高温で培養されたNo.215の含油量は42.5%になり、室温で培養されたもの(38.4%)と比べて10.7%高くなり、原生種の35.2%に比べて20.7%高くなる。11日目の含油量は51.0%に達し。産油率の結果は表3に示すように、高温で培養された油脂の生産速度が明確に高く、7日間培養すると産油率が140.8mg/L/dayになる。
CPC1215 is cultured at high temperature to increase the accumulation of fats and oils.
The culture temperature is increased from the original 25 ° C. to 35 ° C. and the Bold's Basal Medium (BBM) culture medium is used. The culture volume is 1 L, 1.0% seawater salinity, 2% carbon dioxide is used as the carbon source, and the starting algae amount is 0.305 g / L. As shown in FIG. 7, the growth rate of CPC1215 mutant algae is not suppressed by high temperature, and when cultured at room temperature and high temperature for 11 days of operation, the concentration of algal bodies is 2.46 g / L and 2 respectively. Reaching 51 g / L.
According to FIG. 8, the CPC1215 cultured at 35 ° C. has a high fat accumulation rate and fat content, and the difference on day 7 is most noticeable, and the fat and oil accumulation capacity was cultured at a high temperature. No. The oil content of 215 is 42.5%, 10.7% higher than that cultured at room temperature (38.4%) and 20.7% higher than 35.2% of the native species . The oil content on the 11th day reached 51.0%. As shown in Table 3, the production rate of fats and oils cultured at high temperature is clearly high, and the oil production rate becomes 140.8 mg / L / day when cultured for 7 days.

CPC1215の低い粘着性及び速い沈下特性。
CPC1215の培養過程では低い粘着性を示し、例えば、外形を顕微鏡で観察すると(図9参照)、突然変異株CPC1215の細胞形状が野生のCPC1と比較して円く、且つNile redで染色した場合、突然変異株CPC1215の染色された油滴が明瞭で数量も多い。藻体を取った際には、突然変異株CPC1215の培養容器上の藻体の残留が少なく(図10参照)、3回以上の実験の結果、突然変異株CPC1215の容器への粘着性が低いことが分かった。
CPC1215は図11に示すように、野生に比べて沈下しやすく、室温で5分間静置した後、CPC1215は野生に比べて沈下速度が速かった。以上の観察及び試験を総合すると、CPC1215は野生のCPC1に比べて大量に養殖でき、容易に収集可能で、自然に沈下し、産油率も高いという特徴を有し、Chlamydomonas orbicularis CPC1215は商業化が有望である。
CPC1215's low tack and fast settlement characteristics.
CPC1215 shows low adhesion in the culture process. For example, when the outer shape is observed with a microscope (see FIG. 9), the cell shape of the mutant CPC1215 is round compared to wild CPC1 and stained with Nile red. The stained oil droplets of mutant strain CPC1215 are clear and large in quantity. When the algae was removed, the algal bodies remained on the culture container of the mutant strain CPC1215 (see FIG. 10), and as a result of three or more experiments, the adhesiveness of the mutant strain CPC1215 to the container was low. I understood that.
As shown in FIG. 11, CPC1215 was more likely to sink than in the wild, and after standing at room temperature for 5 minutes, CPC1215 had a faster settlement rate than in the wild. When the above observations and tests are combined, CPC1215 can be cultivated in large quantities compared to wild CPC1, easily collected, subsided naturally, and has a high oil production rate. Chlamydomonas orbicularis CPC1215 has been commercialized. Promising.

本明細書に開示された実施形態は、本発明を限定するものではなく、説明するためのものであり、このような実施形態によって本発明の思想と範囲が限定されるものではない。本発明の範囲は特許請求の範囲により解釈すべきであり、それと同等の範囲内にある全ての技術は、本発明の権利範囲に含まれるものと解釈すべきである。   The embodiments disclosed herein are for the purpose of explaining, not limiting the present invention, and the spirit and scope of the present invention are not limited by such embodiments. The scope of the present invention should be construed according to the claims, and all technologies within the equivalent scope should be construed as being included in the scope of the present invention.

Claims (10)

クラミドモナス(Chlamydomonas orbicularis)CPC1215であって、
前記クラミドモナスCPC1215は、受託番号BCRC980035として中華民国の財団法人新竹食品工業発展研究所に寄託されていることを特徴とする、
微生物の生物培養物。
Chlamydomonas orbicularis CPC1215,
The Chlamydomonas CPC1215 is deposited with the Hsinchu Food Industry Research Institute in the Republic of China as the accession number BCRC980035,
A biological culture of microorganisms.
前記クラミドモナスCPC1215は、そのrbc Lの配列及び配列(SEQ ID NO:6)の相似度が90%以上に達することを特徴とする、請求項1に記載の微生物の生物培養物。   The microbial biological culture according to claim 1, wherein the Chlamydomonas CPC1215 has a rbc L sequence (SEQ ID NO: 6) similarity of 90% or more. 前記クラミドモナスCPC1215は油脂含有量が30%以上に達し、産油率が100mg/L/day以上に達することを特徴とする、請求項2に記載の微生物の生物培養物。   The microbial biological culture according to claim 2, wherein the Chlamydomonas CPC1215 has a fat content of 30% or more and an oil production rate of 100 mg / L / day or more. 請求項1の微生物の生物培養物を使用して油脂を生産することを含むことを特徴とする油脂の合成方法。   A method for synthesizing fats and oils, comprising producing fats and oils using the biological culture of microorganisms according to claim 1. 前記生物培養物の窒素飢餓処理を含むことを特徴とする、請求項4に記載の油脂の合成方法。   The method for synthesizing fats and oils according to claim 4, comprising a nitrogen starvation treatment of the biological culture. 温度範囲が25〜35℃に指定されて前記生物培養物が培養されることを特徴とする、請求項4に記載の油脂の合成方法。   The method for synthesizing fats and oils according to claim 4, wherein the biological culture is cultured in a temperature range of 25 to 35 ° C. 前記生物培養物の養殖培養基には淡水或いは塩度1〜3% の海水が配置されて使用され、バイオマス1.5g/L以上の生産量を獲得することを特徴とする、請求項4に記載の油脂の合成方法。   The fresh culture medium or seawater with a salinity of 1 to 3% is used for the culture medium of the biological culture to obtain a production amount of 1.5 g / L or more of biomass. Of oil and fat. 請求項1の微生物の生物培養物を使用してバイオディーゼルを生産することを含むことを特徴とするバイオディーゼルの生産方法。   A method for producing biodiesel, comprising producing biodiesel using the microbial biological culture of claim 1. 請求項1の微生物の生物培養物に基づくものを含むことを特徴とする食品。   A food comprising the microorganism-based biological culture of claim 1. 請求項1の微生物の生物培養物に基づくものを含むことを特徴とする飼料。   A feed comprising the microorganism-based culture of claim 1.
JP2016017953A 2015-02-03 2016-02-02 New Chlamydomonas and its application Active JP6152438B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104103521A TWI551682B (en) 2015-02-03 2015-02-03 Novel chlamydomonas orbicular and thereof
TW104103521 2015-02-03

Publications (2)

Publication Number Publication Date
JP2016140359A true JP2016140359A (en) 2016-08-08
JP6152438B2 JP6152438B2 (en) 2017-06-21

Family

ID=56568006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017953A Active JP6152438B2 (en) 2015-02-03 2016-02-02 New Chlamydomonas and its application

Country Status (2)

Country Link
JP (1) JP6152438B2 (en)
TW (1) TWI551682B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021023234A (en) * 2019-08-07 2021-02-22 国立大学法人神戸大学 Method for breeding algae strains highly accumulating oil under conditions of nitrogen source presence, highly oil-accumulating algae strains under conditions of nitrogen source presence, and oil and fat manufacturing method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196885A (en) * 1998-01-14 1999-07-27 Tokyo Electric Power Co Inc:The Marine micro-alga producing ethanol
JP2000050861A (en) * 1998-08-07 2000-02-22 Mitsubishi Heavy Ind Ltd Marine microalga with high proliferation rate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196885A (en) * 1998-01-14 1999-07-27 Tokyo Electric Power Co Inc:The Marine micro-alga producing ethanol
JP2000050861A (en) * 1998-08-07 2000-02-22 Mitsubishi Heavy Ind Ltd Marine microalga with high proliferation rate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIORESOURCE TECHNOLOGY, 2014, VOL.152, P.247-252, JPN6016048257, ISSN: 0003549738 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021023234A (en) * 2019-08-07 2021-02-22 国立大学法人神戸大学 Method for breeding algae strains highly accumulating oil under conditions of nitrogen source presence, highly oil-accumulating algae strains under conditions of nitrogen source presence, and oil and fat manufacturing method using the same
JP7402447B2 (en) 2019-08-07 2023-12-21 国立大学法人神戸大学 Breeding method of algae strain with high oil accumulation in the presence of nitrogen source, algae strain with high oil accumulation in the presence of nitrogen source and method for producing fats and oils using the same

Also Published As

Publication number Publication date
TWI551682B (en) 2016-10-01
JP6152438B2 (en) 2017-06-21
TW201629207A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
Mutanda et al. Biotechnological applications of microalgal oleaginous compounds: current trends on microalgal bioprocessing of products
Jayakumar et al. Effects of light intensity and nutrients on the lipid content of marine microalga (diatom) Amphiprora sp. for promising biodiesel production
Larkum et al. Selection, breeding and engineering of microalgae for bioenergy and biofuel production
Dragone et al. Third generation biofuels from microalgae
Darzins et al. Current status and potential for algal biofuels production
Chen et al. Enhancing microalgal oil/lipid production from Chlorella sorokiniana CY1 using deep-sea water supplemented cultivation medium
Gilmour Microalgae for biofuel production
Takouridis et al. The selective breeding of the freshwater microalga Chlamydomonas reinhardtii for growth in salinity
Gumbi et al. Isolation, identification and high-throughput screening of neutral lipid producing indigenous microalgae from South African aquatic habitats
Dahlin et al. Down-selection and outdoor evaluation of novel, halotolerant algal strains for winter cultivation
Abdulsamad et al. Cost effective cultivation and biomass production of green microalga Desmodesmus subspicatus MB. 23 in NPK fertilizer medium
Fields et al. Annual productivity and lipid composition of native microalgae (Chlorophyta) at a pilot production facility in Southern California
Rendón-Castrillón et al. Evaluation of the operational conditions in the production and morphology of Chlorella sp.
Wang et al. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities
JP6152438B2 (en) New Chlamydomonas and its application
Neofotis et al. Microalgae strain isolation, screening, and identification for biofuels and high-value products
Haldar et al. Microalgae as a potential source of biofuels and its current advances
Ardelean et al. Random mutagenesis in photosynthetic microorganisms further selected with respect to increased lipid content
Ramkrishnan et al. Sequestration of CO 2 by halotolerant algae
Kumar et al. Green algae biomass cultivation, harvesting and genetic modifications for enhanced cellular lipids
Dritsas et al. Microalgae from the Ionian Sea (Greece): Isolation, molecular identification and biochemical features of biotechnological interest
Slocombe et al. Screening and Improvement of marine microalgae for oil production
Reith et al. Microalgal mass cultures for Co-production of fine chemicals and biofuels & water purification
Abdelkader et al. Potential biodiesel production from mixed phytoplankton cultures collected off the Lebanese coast
Bortoleto et al. Biodiesel from Microalgae: Third Generation Biofuel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R150 Certificate of patent or registration of utility model

Ref document number: 6152438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250