JP2021023234A - Method for breeding algae strains highly accumulating oil under conditions of nitrogen source presence, highly oil-accumulating algae strains under conditions of nitrogen source presence, and oil and fat manufacturing method using the same - Google Patents

Method for breeding algae strains highly accumulating oil under conditions of nitrogen source presence, highly oil-accumulating algae strains under conditions of nitrogen source presence, and oil and fat manufacturing method using the same Download PDF

Info

Publication number
JP2021023234A
JP2021023234A JP2019145222A JP2019145222A JP2021023234A JP 2021023234 A JP2021023234 A JP 2021023234A JP 2019145222 A JP2019145222 A JP 2019145222A JP 2019145222 A JP2019145222 A JP 2019145222A JP 2021023234 A JP2021023234 A JP 2021023234A
Authority
JP
Japan
Prior art keywords
oil
strain
nitrogen source
algae
accumulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019145222A
Other languages
Japanese (ja)
Other versions
JP7402447B2 (en
Inventor
誠久 蓮沼
Yoshihisa Hasunuma
誠久 蓮沼
悠一 加藤
Yuichi Kato
悠一 加藤
智己 小山
Tomomi Koyama
智己 小山
近藤 昭彦
Akihiko Kondo
昭彦 近藤
佐藤 勝也
Katsuya Sato
勝也 佐藤
豊 大野
Yutaka Ono
豊 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
National Institutes for Quantum and Radiological Science and Technology
Original Assignee
Kobe University NUC
National Institutes for Quantum and Radiological Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, National Institutes for Quantum and Radiological Science and Technology filed Critical Kobe University NUC
Priority to JP2019145222A priority Critical patent/JP7402447B2/en
Publication of JP2021023234A publication Critical patent/JP2021023234A/en
Application granted granted Critical
Publication of JP7402447B2 publication Critical patent/JP7402447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide algae strains capable of highly accumulating fats and oils even in the presence of a nitrogen source.SOLUTION: The present invention for solving the above subject is a method for breeding algae strains highly accumulating oil, the method comprising: (A) irradiating algae belonging to the genus Chlamydomonas with an ion beam to introduce a random mutation; (B) culturing the mutant-introduced strain obtained by the step (A) under conditions of nitrogen source presence; and (C) separating a mutant strain having an oil and fat content of 30 wt.% or more from a mutant cell population. The invention also includes highly oil-accumulating algae strains under conditions of nitrogen source presence, in which the oil and fat content is 10 wt.% or more under conditions of nitrogen source presence, where a medium having nitrogen contained as a nutrient source and the concentration of the nitrogen of 1 mg-N/L to 270 mg-N/L is used.SELECTED DRAWING: None

Description

本発明は、窒素源存在条件下オイル高蓄積藻類株の育種方法、窒素源存在条件下オイル高蓄積藻類株及びそれを用いた油脂製造方法に関する。 The present invention relates to a method for breeding a highly oil-accumulating alga strain under a nitrogen source presence condition, an oil highly accumulating alga strain under a nitrogen source presence condition, and a method for producing oil and fat using the same.

藻類や水圏微生物を利用したバイオエネルギー生産のための基盤技術が注目されている。水圏には、脂質や糖類の蓄積能力が高く、多様性に富み、高い増殖能力をもった藻類が多い。藻類は優れた炭酸固定能を持ち、光合成能は陸上植物の数十倍とも言われている。このような藻類については、工業的培養が半世紀以上に渡って行われており、燃料、飼料、ファインケミカル、健康食品等の原料として高い需要がある。特に、今後化石燃料の枯渇化が懸念されることから、代替燃料の早期探索の必要性が高まり、バイオ燃料のソースとして藻類生産への関心がより高まっている。 Attention is being paid to basic technologies for bioenergy production using algae and aquatic microorganisms. In the hydrosphere, there are many algae that have a high ability to accumulate lipids and sugars, are rich in diversity, and have a high growth ability. Algae have excellent carbon dioxide fixation ability, and photosynthetic ability is said to be several tens of times that of land plants. Such algae have been industrially cultivated for more than half a century, and are in high demand as raw materials for fuels, feeds, fine chemicals, health foods, and the like. In particular, due to concerns about the depletion of fossil fuels in the future, the need for early search for alternative fuels has increased, and interest in algae production as a source of biofuels has increased.

藻類を用いた油脂の生産方法としては、生産効率の高い特定の海洋性緑藻クラミドモナス・スピーシーズ(Chlamydomonas species)株を用いた方法が知られている(特許文献1参照)。特許文献1に開示されているクラミドモナス・スピーシーズ株(JSC4)は、光独立栄養・海水塩濃度条件において高い増殖性と油脂含有率を両立する優れた藻株であり、バイオ燃料の材料として有望視されている。しかし、バイオ燃料のソースとしての藻類への要求はさらに高くなっているのが現状であり、より生産効率の高いクラミドモナス・スピーシーズ(Chlamydomonas species)株が求められている。 As a method for producing fats and oils using algae, a method using a specific marine green alga, Chlamydomonas species, which has high production efficiency, is known (see Patent Document 1). The Chlamydomonas species strain (JSC4) disclosed in Patent Document 1 is an excellent algae strain that achieves both high growth and fat content under photoautotrophic and seawater salt concentration conditions, and is considered to be a promising material for biofuels. Has been done. However, the current situation is that the demand for algae as a source of biofuel is further increasing, and there is a demand for Chlamydomonas species strains with higher production efficiency.

国際公開第2015/025553号International Publication No. 2015/025553

このような状況の中、本発明者らは、上記JSC4をはじめとする従来の海洋性緑藻クラミドモナス・スピーシーズ(Chlamydomonas species)株において、油脂が生産されて蓄積されるためには培地中の窒素源の枯渇が必要となる点、そして、このような窒素源枯渇条件では細胞の生育速度が低下してしまう点に着目した。そして、窒素源が存在する条件においても油脂を高蓄積することが可能な藻株を創出することができれば、油脂生産の効率をより高くすることができると考え、研究を進めた。そこで、本発明は、窒素源が存在する条件においても油脂を高蓄積することが可能な藻株を提供することを課題とする。 Under such circumstances, the present inventors have found that in the conventional marine green alga Chlamydomonas species strains such as JSC4, fats and oils are produced and accumulated as a nitrogen source in the medium. We focused on the fact that the depletion of green algae is required and that the growth rate of cells decreases under such nitrogen source depletion conditions. Then, if we could create an algae strain capable of highly accumulating fats and oils even in the presence of a nitrogen source, we thought that the efficiency of fats and oils production could be further increased, and proceeded with the research. Therefore, an object of the present invention is to provide an algae strain capable of highly accumulating fats and oils even in the presence of a nitrogen source.

本発明者らは、上記課題を解決するために、従来から知られているクラミドモナス・スピーシーズの特定の株(JSC4株)に由来する藻株に対して、イオンビーム照射によるランダムな突然変異誘発と、フローサイトメトリ―による高速スクリーニングを組合せた選抜育種を実施し、窒素源存在条件でも油脂蓄積速度が十分に速い株を創出し、本発明を完成するに至った。即ち、本発明の要旨は以下のとおりである。 In order to solve the above problems, the present inventors have performed random mutagenesis by ion beam irradiation on algae strains derived from a conventionally known specific strain of Chlamydomonas species (JSC4 strain). , We carried out selective breeding combined with high-speed screening by flow cytometry, and created a strain with a sufficiently high fat accumulation rate even under the presence of a nitrogen source, and completed the present invention. That is, the gist of the present invention is as follows.

[1](A)クラミドモナス属に属する藻類にイオンビームを照射してランダムな突然変異を導入する工程、
(B)上記(A)工程により得られた突然変異導入株を、窒素源存在条件で培養する工程、
(C)変異細胞集団から、窒素源存在条件で培養した場合の油脂含有率が10重量%以上である変異株を分離する工程
を含む、オイル高蓄積藻類株の育種方法。
[2]上記(B)工程における窒素源存在条件が、培地中に栄養源として含まれる窒素濃度を1mg−N/L〜270mg−N/Lに維持する条件である、[1]に記載のオイル高蓄積藻類株の育種方法。
[3]培地中に栄養源として含まれる窒素濃度が1mg−N/L〜270mg−N/Lに維持される窒素源存在条件で培養した場合の油脂含有率が10重量%以上である、窒素源存在条件下オイル高蓄積藻類株。
[4]培地中に栄養源として含まれる窒素濃度が1mg−N/L〜270mg−N/Lに維持される窒素源存在条件で培養した場合の油脂生産速度が、100(g/m/d)以上である、[3]に記載の窒素源存在条件下オイル高蓄積藻類株。
[5]上記藻類が、クラミドモナス・スピーシーズである、[3]又は[4]記載の窒素源存在条件下オイル高蓄積藻類株。
[6]上記クラミドモナス・スピーシーズが、クラミドモナス・スピーシーズKAC1801株(Chlamydomonas sp.KAC1801/受領番号:FERM ABP−22376)である、[5]に記載の窒素源存在条件下オイル高蓄積藻類株。
[7]窒素源存在条件下における油脂高蓄積能を有する、クラミドモナス・スピーシーズKAC1801株(Chlamydomonas sp.KAC1801/受領番号:FERM ABP−22376)。
[8][3]から[7]のいずれかに記載の窒素源存在条件下オイル高蓄積藻類株を用い、窒素源存在下で連続的に培養することを特徴とする、油脂生産培養方法。
[9][3]から[8]のいずれかに記載の窒素源存在条件下オイル高蓄積藻類株を窒素源含有培地中で培養し、培地中に栄養源として含まれる窒素濃度を1mg−N/L〜270mg−N/Lに維持することを特徴とする、[8]に記載の油脂生産培養方法。
[1] (A) A step of irradiating algae belonging to the genus Chlamydomonas with an ion beam to introduce a random mutation.
(B) A step of culturing the mutant-introduced strain obtained in the above step (A) under the presence of a nitrogen source.
(C) A method for breeding a highly oil-accumulating algae strain, which comprises a step of separating a mutant strain having an oil / fat content of 10% by weight or more when cultured in a nitrogen source presence condition from a mutant cell population.
[2] The condition for the presence of a nitrogen source in the step (B) above is a condition for maintaining the concentration of nitrogen contained in the medium as a nutrient source at 1 mg-N / L to 270 mg-N / L, according to [1]. Breeding method for oil-accumulating algae strains.
[3] Nitrogen having a fat content of 10% by weight or more when cultured under the condition of a nitrogen source in which the concentration of nitrogen contained as a nutrient source in the medium is maintained at 1 mg-N / L to 270 mg-N / L. Oil high accumulation algae strain under source presence conditions.
[4] The oil and fat production rate is 100 (g / m 3 /) when cultured under the condition of a nitrogen source in which the concentration of nitrogen contained as a nutrient source in the medium is maintained at 1 mg-N / L to 270 mg-N / L. d) The above-mentioned oil-accumulated algae strain under the nitrogen source presence condition according to [3].
[5] The oil-accumulating algae strain under the nitrogen source presence condition according to [3] or [4], wherein the algae are Chlamydomonas species.
[6] The oil-accumulating alga strain under the nitrogen source presence condition according to [5], wherein the Chlamydomonas species is Chlamydomonas species KAC1801 strain (Chlamydomonas sp. KAC1801 / Receipt number: FERM ABP-22376).
[7] Chlamydomonas Species KAC1801 strain (Chlamydomonas sp. KAC1801 / Receipt number: FERM ABP-22376), which has a high oil and fat storage capacity under the presence of a nitrogen source.
[8] A method for producing and culturing oils and fats, which comprises continuously culturing in the presence of a nitrogen source using the oil-accumulating alga strain under the condition of the presence of a nitrogen source according to any one of [3] to [7].
[9] The oil-accumulating algae strain according to any one of [3] to [8] is cultured in a nitrogen source-containing medium, and the nitrogen concentration contained in the medium as a nutrient source is 1 mg-N. The oil-fat production culture method according to [8], which is characterized by maintaining the content at / L to 270 mg-N / L.

本発明の窒素源存在条件下オイル高蓄積藻類株は、窒素源が存在する条件においても油脂を高蓄積することが可能であるため、十分に栄養源が補充されることで生育速度を低下させることなく油脂生産を継続させることができる。そのため、本発明の窒素源存在条件下オイル高蓄積藻類株によると、油脂生産の効率をより高くすることが可能である。さらに、窒素源枯渇条件では、栄養源の枯渇により細胞の状態が悪化し、日和見感染リスクが増大するところ、窒素源が存在する条件においても油脂を高蓄積することが可能な本発明の藻株においては、栄養源を枯渇させる必要がないため、上記リスクを低減することも可能である。 Since the oil-accumulating algae strain of the present invention can accumulate a large amount of fat and oil even in the presence of a nitrogen source, the growth rate is lowered by sufficiently supplementing the nutrient source. Oil and fat production can be continued without any problems. Therefore, according to the oil-accumulating algae strain under the nitrogen source presence condition of the present invention, it is possible to increase the efficiency of oil and fat production. Further, under nitrogen source depletion conditions, the cell condition deteriorates due to nutrient depletion and the risk of opportunistic infection increases. However, the algae strain of the present invention capable of highly accumulating fats and oils even under conditions where a nitrogen source is present. In, it is not necessary to deplete the nutrient source, so that the above risk can be reduced.

図1は、従来の藻株である親株(KOR1株)と本発明のオイル高蓄積変異株(KAC1710株、KAC1801株)の窒素源存在条件で培養した際の電子顕微鏡写真である。FIG. 1 is an electron micrograph of a parent strain (KOR1 strain), which is a conventional algae strain, and an oil-accumulating mutant strain (KAC1710 strain, KAC1801 strain) of the present invention when cultured under the presence of a nitrogen source. 図2は、親株(KOR1株)及び本発明のオイル高蓄積変異株(KAC1710株、KAC1801株)の、培養液上清中に含まれる硝酸ナトリウム濃度を示した図である。FIG. 2 is a diagram showing the concentrations of sodium nitrate contained in the culture broth supernatant of the parent strain (KOR1 strain) and the highly oil-accumulating mutant strains of the present invention (KAC1710 strain, KAC1801 strain). 図3は、親株(KOR1株)及び本発明のオイル高蓄積変異株(KAC1710株、KAC1801株)の培養液当たりのバイオマス量を示した図である。FIG. 3 is a diagram showing the amount of biomass per culture solution of the parent strain (KOR1 strain) and the highly oil-accumulating mutant strains of the present invention (KAC1710 strain, KAC1801 strain). 図4は、親株(KOR1株)及び本発明のオイル高蓄積変異株(KAC1710株、KAC1801株)の油脂含有量(%)を示した図である。FIG. 4 is a diagram showing the oil and fat content (%) of the parent strain (KOR1 strain) and the highly oil-accumulating mutant strains of the present invention (KAC1710 strain, KAC1801 strain). 図5は、親株(KOR1株)及び本発明のオイル高蓄積変異株(KAC1710株、KAC1801株)の培養液当たりの油脂生産量(mg/L)を示した図である。FIG. 5 is a diagram showing the amount of oil and fat produced (mg / L) per culture solution of the parent strain (KOR1 strain) and the highly oil-accumulating mutant strains of the present invention (KAC1710 strain, KAC1801 strain). 図6は、親株(KOR1株)及び本発明のオイル高蓄積変異株(KAC1710株、KAC1801株)の各培養期間における油脂生産速度(mg/L/day)を示した図である。FIG. 6 is a diagram showing the fat production rate (mg / L / day) of the parent strain (KOR1 strain) and the highly oil-accumulating mutant strain of the present invention (KAC1710 strain, KAC1801 strain) in each culture period.

以下、本発明の藻類のオイル高蓄積変異株について詳細に説明する。なお、本明細書における分子生物学的実験は、特に明記しない限り、当業者に公知の一般的実験書に記載の方法又はそれに準じた方法により行うことができる。また、本明細書中で使用される用語は、特に言及しない限り、当該技術分野で通常用いられる意味で解釈される。 Hereinafter, the algae oil-accumulating mutant strain of the present invention will be described in detail. Unless otherwise specified, the molecular biology experiment in the present specification can be carried out by the method described in a general experiment document known to those skilled in the art or a method similar thereto. In addition, the terms used herein are to be interpreted in the meaning commonly used in the art unless otherwise specified.

<窒素源存在条件下オイル高蓄積藻類株>
本発明の窒素源存在条件下オイル高蓄積藻類株は、窒素源存在条件で培養を行っても、十分な油脂蓄積速度を示し、高い油脂生産効率を示す株である。
<Oil high accumulation algae strain under nitrogen source presence condition>
The oil-accumulating algae strain under the nitrogen source presence condition of the present invention is a strain showing a sufficient oil / fat accumulation rate and a high oil / fat production efficiency even when cultured under the nitrogen source presence condition.

ここで、本発明において窒素源存在条件とは、藻株を培養する際の培地中に栄養源として含まれる窒素濃度が、0mg−N/L以下とならないように維持される条件をいい、培地中に栄養源として含まれる窒素濃度は1mg−N/L〜270mg−N/Lに維持されることが好ましく、1mg−N/L〜130mg−N/Lに維持されることがより好ましく、1mg−N/L〜60mg−N/Lに維持されることがさらに好ましい。培地中に栄養源として含まれる窒素濃度を上記数値範囲に維持するための方法は特に限定されないが、藻株の培養において適切なタイミングで新しい培地を補充することによる方法が考えられる。上記培地中の窒素源としては、アンモニウム塩、硝酸塩等の無機窒素源、尿素、アミノ酸、ペプトン等の有機窒素源が挙げられる。具体的には、硝酸ナトリウム、塩化アンモニウム等が好ましい窒素源として挙げられる。例えば、窒素源として硝酸ナトリウムを含む培地を用いる場合、窒素源存在条件とは、硝酸ナトリウム濃度が、0mg/L以下とならないように維持される条件をいい、1mg/L〜1600mg/Lであることが好ましく、1mg/L〜800mg/Lであることがより好ましく、1mg/L〜350mg/Lであることがさらに好ましい。 Here, in the present invention, the nitrogen source presence condition refers to a condition in which the concentration of nitrogen contained as a nutrient source in the medium when culturing the algae strain is maintained so as not to be 0 mg-N / L or less. The concentration of nitrogen contained therein as a nutrient source is preferably maintained at 1 mg-N / L to 270 mg-N / L, more preferably maintained at 1 mg-N / L to 130 mg-N / L, and 1 mg. It is more preferably maintained at −N / L to 60 mg—N / L. The method for maintaining the concentration of nitrogen contained as a nutrient source in the medium within the above numerical range is not particularly limited, but a method by supplementing a new medium at an appropriate timing in culturing the algae strain can be considered. Examples of the nitrogen source in the medium include inorganic nitrogen sources such as ammonium salts and nitrates, and organic nitrogen sources such as urea, amino acids and peptone. Specifically, sodium nitrate, ammonium chloride and the like are mentioned as preferable nitrogen sources. For example, when a medium containing sodium nitrate is used as the nitrogen source, the nitrogen source presence condition means a condition in which the sodium nitrate concentration is maintained so as not to be 0 mg / L or less, and is 1 mg / L to 1600 mg / L. It is preferably 1 mg / L to 800 mg / L, and even more preferably 1 mg / L to 350 mg / L.

[藻類]
藻類とは、水中生活をする同化色素を有する植物の総称であり、ミドリムシ植物、黄色植物(珪藻類を含む)、黄褐色植物、藍藻植物、褐藻植物、緑藻植物(車軸藻類を含む)及び紅藻植物が含まれる。油脂成分を高い効率で産生するという観点から、本発明においては、緑藻植物に属するクラミドモナス(Chlamydomonas)属の藻類が好ましい。
[Algae]
Algae is a general term for plants with anabolic pigments that live in water, and is a green algae plant, a yellow plant (including diatomaceae), a yellowish brown plant, an indigo plant, a brown algae plant, a green algae plant (including axle algae), and red Includes algae plants. From the viewpoint of producing fat and oil components with high efficiency, in the present invention, algae of the genus Chlamydomonas belonging to the green algae plant are preferable.

クラミドモナスは、緑藻綱クラミドモナス目(若しくはオオヒゲマワリ目)に属する単細胞の鞭毛虫からなる属である。クラミドモナスの多くは淡水産であるが、海水中に生育するものもある。本発明において好ましいクラミドモナス属の藻類は、海産、汽水産及び海水塩を含む培地で生育可能なものであり、海生のものである。 Chlamydomonas is a genus consisting of unicellular flagellates belonging to the order Chlamydomonas (or Chlamydomonas). Most of Chlamydomonas are freshwater, but some grow in seawater. The preferred algae of the genus Chlamydomonas in the present invention are marine, marine, and can grow in media containing seawater and salt.

[窒素源存在条件下オイル高蓄積藻類株]
本発明における窒素源存在条件下オイル高蓄積藻類株は、従来の藻類に対してイオンビーム照射によるランダムな突然変異誘発と、フローサイトメトリ―による高速スクリーニングを組合せた選抜育種を実施して得られた株である。このような、親株として使用できる従来の藻類としては、上述したとおり、緑藻植物に属するクラミドモナス(Chlamydomonas)属の藻類が好ましく、クラミドモナスの中でも、特に油脂成分を高い効率で産生するクラミドモナス・スピーシーズJSC4株(Chlamydomonas sp. JSC4:本明細書中、単に「JSC4株」ともいう)やJSC4株に由来する株が好ましい。
[Oil high accumulation algae strain under conditions of nitrogen source presence]
The oil-accumulating algae strain under the presence of a nitrogen source in the present invention was obtained by performing selective breeding of conventional algae by combining random mutagenesis by ion beam irradiation and high-speed screening by flow cytometry. It is a stock. As the conventional algae that can be used as such a parent strain, as described above, the algae belonging to the genus Chlamydomonas belonging to the green algae plant are preferable, and among the chlamydomonas, the Chlamydomonas Species JSC4 strain that produces fat and oil components with high efficiency is particularly preferable. (Chlamydomonas sp. JSC4: also simply referred to as "JSC4 strain" in the present specification) and strains derived from JSC4 strain are preferable.

(クラミドモナス・スピーシーズJSC4株)
ここで、クラミドモナス・スピーシーズJSC4株は以下の手順により得られた株である。即ち、台湾中西部の海岸で採取した汽水試料から、常法により1細胞だけを単離し、無菌化した。これを、HSM寒天培地を用いて、20℃、8〜15μmol photons/m/s、12時間明期12時間暗期の光条件で培養し、2週間に1度植え継ぐことで藻株を確立し、形態観察その他よりクラミドモナス属の緑藻と同定して、JSC4株と名づけられた。このJSC4株は、2014年3月5日付で独立行政法人製品評価技術基盤機構特許生物寄託センター(千葉県木更津市かずさ鎌足2−5−8)にプタベスト条約の規定下で受託番号FERM BP−22266として、国際寄託されている。クラミドモナス・スピーシーズJSC4株の藻類学的性質は以下の通りである。
(Chlamydomonas Species JSC4 strain)
Here, the Chlamydomonas species JSC4 strain is a strain obtained by the following procedure. That is, only one cell was isolated and sterilized by a conventional method from a brackish water sample collected on the coast of the Midwestern part of Taiwan. This is cultured on HSM agar medium at 20 ° C., 8 to 15 μmol feet / m 2 / s, 12 hours light period and 12 hours dark period under light conditions, and the algae strain is subcultured once every two weeks. It was established and identified as a green alga of the genus Chlamydomonas by morphological observation and others, and was named JSC4 strain. This JSC4 strain was issued to the Patent Organism Depositary Center (Kazusakamatari 2-5-8, Kisarazu City, Chiba Prefecture) on March 5, 2014, under the provisions of the Putabest Convention, with the accession number FERM BP- It has been deposited internationally as 22266. The phycological properties of the Chlamydomonas species JSC4 strain are as follows.

形態的性質
(1)栄養型細胞は、楕円形であり、大きさは、約10μmである。栄養型細胞において、細胞長の約等倍の鞭毛を2本有する。栄養型細胞は、運動性を有する。
(2)栄養型細胞は外囲を細胞壁に囲まれ、内部に核、葉緑体が一個存在し、その他、ミトコンドリア、ゴルジ体、液胞、デンプン粒、油滴等が認められる。葉緑体内の基底部にピレノイドを有する。
生殖様式
(1)内生胞子は栄養細胞内に二〜八個形成され、細胞内に均等に分布する。内生胞子はその細胞内に核、葉緑体を一個有する。
(2)二分裂による増殖も行う。
生理学・生化学性状
(1)培養液:海産や汽水産及び海水塩を含む培養液中で生育できる。
(2)光合成能:光合成による光独立栄養生育ができる。
(3)含有色素:クロロフィルa、クロロフィルb、及び他のカロテノイド類
(4)同化貯蔵物質:デンプン、油脂
(5)生育温度域:15℃〜35℃(至適温度25℃)
(6)生育pH域:pH6.0〜10.0(至適pHは7.0)
本発明のオイル高蓄積変異株は、屋外のような昼夜のある条件でも油脂蓄積速度が速く、昼夜条件における油脂生産速度が150g/m/日以上である。
Morphological properties (1) The vegetative cells are elliptical and have a size of about 10 μm. In vegetative cells, it has two flagella that are about the same size as the cell length. The vegetative cells have motility.
(2) The vegetative cells are surrounded by a cell wall, and one nucleus and one chloroplast are present inside, and mitochondria, Golgi apparatus, vacuoles, starch granules, oil droplets, etc. are observed. It has a pyrenoid at the base of the chloroplast.
Reproductive mode (1) Two to eight endospores are formed in vegetative cells and are evenly distributed in the cells. Endogenous spores have one nucleus and one chloroplast in their cells.
(2) Proliferation by dichotomy is also performed.
Physiology / biochemical properties (1) Culture solution: Can grow in culture solutions containing marine products, steam products, and sea salt.
(2) Photosynthetic ability: Photoautotrophic growth by photosynthesis is possible.
(3) Containing pigments: chlorophyll a, chlorophyll b, and other carotenoids (4) Anabolic storage substances: starch, fats and oils (5) Growth temperature range: 15 ° C to 35 ° C (optimal temperature 25 ° C)
(6) Growth pH range: pH 6.0 to 10.0 (optimal pH is 7.0)
The highly oil-accumulating mutant strain of the present invention has a high oil-and-fat accumulation rate even under day and night conditions such as outdoors, and an oil-and-fat production rate of 150 g / m 3 / day or more under day and night conditions.

(本発明の窒素源存在条件下オイル高蓄積藻類株の取得)
(1)突然変異の導入
窒素源存在条件下におけるオイル高蓄積藻類株(KAC)の育種は、従来の藻株を親株として実施することができ、親株は特に限定されないが、より効率的にオイル高蓄積藻類変異株が得られるという観点から、上述のクラミドモナス・スピーシーズJSC4株(Chlamydomonas sp. JSC4)や、このJSC4株からさらに選別された株を親株とすることが好ましい。突然変異の導入は、細胞集団に対して、イオンビームを照射することで実施することができる。イオンビームは細胞核を通過するときに、DNA二本鎖をランダムに切断する。細胞は自らが持つ修復機能によりDNA鎖をつなぎ直すが、その際にDNA欠失など様々な突然変異が発生するとされる。照射するイオンビームとしては、突然変異を導入可能なものであれば特に限定されないが、例えば、炭素(C)、ヘリウム(He)、ネオン(Ne)あるいはアルゴン(Ar)等が挙げられ、藻類への変異導入の効率の観点から、125+が好ましい。クラミドモナス属に属する藻類に125+イオンビームを照射する場合、線量の範囲は、10〜250Gyが好ましく、20〜75Gyがより好ましい。イオンビーム照射後は、数日間の回復培養後、得られた細胞集団を変異体ライブラリとし、後述するスクリーニングを行うことができる。なお、上記回復培養は、適切な光強度の昼白色蛍光灯等の条件下で3日間以上静置することにより行われる。
(Acquisition of oil-accumulating algae strain under the presence of nitrogen source of the present invention)
(1) Introduction of mutation The breeding of the oil-accumulating algae strain (KAC) under the condition of the presence of a nitrogen source can be carried out using the conventional algae strain as the parent strain, and the parent strain is not particularly limited, but the oil is more efficient. From the viewpoint of obtaining a highly accumulating algae mutant strain, it is preferable to use the above-mentioned Chlamydomonas species JSC4 strain (Chlamydomonas sp. JSC4) or a strain further selected from the JSC4 strain as the parent strain. Mutation can be introduced by irradiating a cell population with an ion beam. The ion beam randomly cleaves the DNA double strand as it passes through the cell nucleus. It is said that cells reconnect DNA strands by their own repair function, and at that time, various mutations such as DNA deletion occur. The ion beam to be irradiated is not particularly limited as long as it can introduce a mutation, and examples thereof include carbon (C), helium (He), neon (Ne), argon (Ar), and the like, and to algae. From the viewpoint of efficiency of mutagenesis, 12 C 5+ is preferable. When algae belonging to the genus Chlamydomonas are irradiated with a 12 C5 + ion beam, the dose range is preferably 10 to 250 Gy, more preferably 20 to 75 Gy. After irradiation with an ion beam, after recovery culture for several days, the obtained cell population can be used as a mutant library for screening described later. The recovery culture is carried out by allowing the cells to stand for 3 days or more under conditions such as a neutral white fluorescent lamp having an appropriate light intensity.

(2)スクリーニング
窒素源存在条件下におけるオイル高蓄積藻類株の一次スクリーニングは蛍光活性セルソーター(fluorescence activated cell sorter,FACS)を用いて行うことができる。窒素源存在条件で培養した細胞の細胞内油滴を蛍光色素BODIPY、ナイルレッド等で染色し、蛍光強度の強い細胞をFACSにて分取する。個々の細胞のBODIPY蛍光、ナイルレッド蛍光等の細胞内油滴の染色に由来する蛍光及びクロロフィルの自家蛍光(細胞サイズの指標として利用)の強度をFACSで解析し、クロロフィル自家蛍光あたりのBODIPY蛍光、ナイルレッド蛍光等の細胞内油滴の染色に由来する蛍光が高い細胞(上位1.5〜0.5%)を分取することができる。また、上記のような窒素源存在条件での培養とFACSによる分取を複数回繰り返し実施することで、標的とする細胞を濃縮することも可能である。
(2) Screening The primary screening of oil-accumulating algae strains under the presence of a nitrogen source can be performed using a fluorescently activated cell sorter (FACS). Intracellular oil droplets of cells cultured under the presence of a nitrogen source are stained with fluorescent dyes BODIPY, Nile Red, etc., and cells with strong fluorescence intensity are separated by FACS. The intensity of fluorescence derived from staining of intracellular oil droplets such as BODIPY fluorescence and Nile Red fluorescence of individual cells and autofluorescence of chlorophyll (used as an index of cell size) was analyzed by FACS, and BODIPY fluorescence per chlorophyll autofluorescence was analyzed. , Nile red fluorescence and other cells with high fluorescence derived from staining of intracellular oil droplets (top 1.5 to 0.5%) can be sorted. It is also possible to concentrate the target cells by repeating the culture under the above-mentioned nitrogen source presence condition and the fractionation by FACS a plurality of times.

培養時の光条件は、蛍光灯により調整することができ、点灯時の光量子束密度としては、日光の光に近い条件として、通常50μmol photons/m・秒 〜 2,000μmol photons/m・秒の範囲であり、60μmol photons/m・秒 〜 1,000μmol photons/m・秒の範囲であることが好ましく、80μmol photons/m・秒 〜 500μmol photons/m・秒の範囲であることがより好ましい。 The light conditions during culturing can be adjusted with a fluorescent lamp, and the photon flux density during lighting is usually 50 μmol photons / m 2 · sec to 2,000 μmol photos / m 2 ·, as conditions close to sunlight. in the range of seconds, in the range of 60μmol photons / m 2 · sec ~ 1,000μmol photons / m 2 · sec is preferably in the range of 80μmol photons / m 2 · sec ~ 500μmol photons / m 2 · sec Is more preferable.

分取後の細胞は寒天培地に播種し、光強度50μmol photons/m・秒程度の昼白色蛍光灯下でコロニーを形成するまで静置培養する。一次スクリーニングで得られた候補株については、マイクロウェルプレートで培養し、細胞から油脂を抽出してガスクロマトグラフィー質量分析(gas chromatography−mass spectrometry,GC−MS)で解析することで、窒素源存在条件におけるオイル高蓄積藻類株の二次スクリーニングを実施する。二次スクリーニングにおいては、後述する方法に従ってバイオマス量の測定、油脂の測定を行い、油脂含有率を算定し、最終的に窒素源存在条件での培養によってオイルを高蓄積する変異株を選定することができる。 After sorting, the cells are seeded on an agar medium and statically cultured under a neutral white fluorescent lamp having a light intensity of about 50 μmol photons / m for 2 seconds until colonies are formed. Candidate strains obtained by primary screening are cultured on a microwell plate, and fats and oils are extracted from cells and analyzed by gas chromatography-mass spectrometry, GC-MS. Perform secondary screening for highly oil-accumulating algae strains under conditions. In the secondary screening, the amount of biomass and fats and oils are measured according to the method described later, the fats and oils content is calculated, and finally, a mutant strain that highly accumulates oil by culturing in the presence of a nitrogen source is selected. Can be done.

(本発明の窒素源存在条件下オイル高蓄積藻類株の特徴)
(1)培養
変異育種により獲得した各オイル高蓄積藻類株は、1%〜5%CO条件、好ましくは1.5%〜2.5%CO条件、より好ましくは2%CO条件で、15℃〜40℃、好ましくは20℃〜35℃、より好ましくは25℃〜30℃の条件で、フラスコ等の培養器中、後述する培地に懸濁し、光合成が可能な光条件下で、2〜7日間、好ましくは3〜5日間、より好ましくは4日間程度の前培養を行い、順調に生育し、細胞数が十分となったところで、拡大培養を行い、10〜20日間、好ましくは12〜16日間、より好ましくは14日間程度、上記の窒素源存在条件にて本培養を行う。窒素源存在条件とは、上述の通りであり、藻株を培養する際の培地中に栄養源として含まれる窒素濃度が、0mg−N/L以下とならないように維持される条件をいい、培地中の窒素濃度は1mg−N/L〜270mg−N/Lに維持されることが好ましく、1mg−N/L〜130mg−N/Lに維持されることがより好ましく、1mg−N/L〜60mg−N/Lに維持されることがさらに好ましい。培地中に栄養源として含まれる窒素濃度を上記数値範囲に維持するための方法は特に限定されないが、藻株の培養において適切なタイミングで新しい培地を補充することによる方法が考えられる。上記培地中の窒素源としては、アンモニウム塩、硝酸塩等の無機窒素源、尿素、アミノ酸、ペプトン等の有機窒素源が挙げられる。具体的には、硝酸ナトリウム、塩化アンモニウム等が好ましい窒素源として挙げられる。例えば、窒素源として硝酸ナトリウムを含む培地を用いる場合、窒素源存在条件とは、硝酸ナトリウム濃度が、0mg/L以下とならないように維持される条件をいい、1mg/L〜1600mg/Lであることが好ましく、1mg/L〜800mg/Lであることがより好ましく、1mg/L〜350mg/Lであることがさらに好ましい。
(Characteristics of oil-accumulating algae strain under the presence of nitrogen source of the present invention)
(1) Culture Each oil-accumulating alga strain obtained by culturing is under 1% to 5% CO 2 conditions, preferably 1.5% to 2.5% CO 2 conditions, and more preferably 2% CO 2 conditions. , 15 ° C to 40 ° C, preferably 20 ° C to 35 ° C, more preferably 25 ° C to 30 ° C, suspended in a medium described later in an incubator such as a flask, and under light conditions capable of photosynthesis. Pre-culture is performed for 2 to 7 days, preferably 3 to 5 days, more preferably about 4 days, and when the cells have grown satisfactorily and the number of cells is sufficient, expanded culture is performed, preferably 10 to 20 days. The main culture is carried out under the above-mentioned nitrogen source presence conditions for 12 to 16 days, more preferably about 14 days. The nitrogen source presence condition is as described above, and refers to a condition in which the concentration of nitrogen contained as a nutrient source in the medium for culturing the algae strain is maintained so as not to be 0 mg-N / L or less. The nitrogen concentration in the medium is preferably maintained at 1 mg-N / L to 270 mg-N / L, more preferably maintained at 1 mg-N / L to 130 mg-N / L, and 1 mg-N / L to 1 mg-N / L. It is more preferably maintained at 60 mg-N / L. The method for maintaining the concentration of nitrogen contained as a nutrient source in the medium within the above numerical range is not particularly limited, but a method by supplementing a new medium at an appropriate timing in culturing the algae strain can be considered. Examples of the nitrogen source in the medium include inorganic nitrogen sources such as ammonium salts and nitrates, and organic nitrogen sources such as urea, amino acids and peptone. Specifically, sodium nitrate, ammonium chloride and the like are mentioned as preferable nitrogen sources. For example, when a medium containing sodium nitrate is used as the nitrogen source, the nitrogen source presence condition means a condition in which the sodium nitrate concentration is maintained so as not to be 0 mg / L or less, and is 1 mg / L to 1600 mg / L. It is preferably 1 mg / L to 800 mg / L, and even more preferably 1 mg / L to 350 mg / L.

光条件については、最終的に回収できる油脂量が多くなる条件が好ましく、光合成可能な条件で継続培養してもよいし、100〜250μmol photons/m・秒程度の昼白色蛍光灯による12h明期、及び12h暗期等の昼夜周期条件で培養してもよい。なお、本発明のオイル高蓄積藻類株としては、屋外での培養を想定した昼夜周期条件でも十分量の油脂蓄積が得られる株であることが好ましい。 As for the light conditions, it is preferable that the amount of fats and oils that can be finally recovered is large, and continuous culture may be performed under conditions that allow photosynthesis, or 12 hours of light with a neutral white fluorescent lamp of about 100 to 250 μmol photos / m 2 seconds. It may be cultured under day and night cycle conditions such as a period and a dark period of 12 hours. The oil-accumulating algae strain of the present invention is preferably a strain that can obtain a sufficient amount of oil-and-fat accumulation even under day and night periodic conditions assuming outdoor culture.

本発明に用いる培養方法としては、静置培養法を用いることも可能であるが、藻類の藻体生産性と油脂成分の生産性を考えると、振盪培養法又は深部通気撹拌培養法による培養が好ましい。振盪培養は、往復振盪であっても、回転振盪であってもよい。 As the culturing method used in the present invention, a static culturing method can be used, but considering the algae body productivity and the productivity of fat and oil components of algae, culturing by shaking culturing method or deep aeration stirring culturing method is performed. preferable. The shaking culture may be reciprocating shaking or rotary shaking.

上記培養に用いられる培地としては、クラミドモナス属に属する藻類が生育する可能な培地であれば特に制限はないが、海水塩を含む培地が、海水、濃縮海水、又は人工海水を含むものが油脂産生能を向上させることから好ましい。例えば、基礎培地としては、Modified Bold 12N(MB12N)培地、TAP培地、HSM培地、BG−11培地、BBM培地等が挙げられ、高効率で油脂成分を産生できることから、MB12N培地がより好ましい。さらに、これらの基礎培地に0.5〜5重量%、好ましくは2〜5重量%、より好ましくは2〜3重量%のsea salt(海水塩)を添加したものを用いることができる。なお、藻類の大量培養を想定した場合には、利便性のある海水を培地のベースとして用いることもできる。 The medium used for the above culture is not particularly limited as long as it is a medium in which algae belonging to the genus Chlamydomonas can grow, but a medium containing seawater salt containing seawater, concentrated seawater, or artificial seawater produces fats and oils. It is preferable because it improves the ability. For example, examples of the basal medium include Modified Bold 12N (MB12N) medium, TAP medium, HSM medium, BG-11 medium, BBM medium, and the like, and MB12N medium is more preferable because it can produce fat and oil components with high efficiency. Further, those obtained by adding 0.5 to 5% by weight, preferably 2 to 5% by weight, more preferably 2 to 3% by weight of sea salt (sea salt) to these basal media can be used. When a large-scale culture of algae is assumed, convenient seawater can be used as the base of the medium.

本発明で使用が可能なsea salt(海水塩)は、公知慣用の海水塩を挙げることができる。本発明で用いられる海水塩は、海水を蒸発乾固させて得られたものであっても、海水や海水の濃縮液を用いてもよいが、培地中に含まれる濃度を調整するためには、海水の固形分である海水塩を用いる方がより好ましい。 Examples of sea salt (sea salt) that can be used in the present invention include known and commonly used sea salt. The seawater salt used in the present invention may be obtained by evaporating and drying seawater, or seawater or a concentrated solution of seawater may be used, but in order to adjust the concentration contained in the medium, , It is more preferable to use seawater salt which is a solid content of seawater.

本発明において、培地中に含まれる窒素源濃度は、培地中に含まれる硝酸塩の濃度を波長220nmにおける光学密度(OD220)を指標として測定する方法、イオンセンサー、発色試薬による吸光度測定等の方法により測定することができる。 In the present invention, the concentration of the nitrogen source contained in the medium is a method of measuring the concentration of nitrate contained in the medium using the optical density (OD 220) at a wavelength of 220 nm as an index, a method of measuring absorbance with an ion sensor, a coloring reagent, or the like. Can be measured by.

(2)バイオマス量
本発明において、バイオマス量は、細胞の乾燥重量を指標として算出することができる。バイオマス量の測定は、当業者に公知の方法により行うことができ、その方法は限定されないが、例えば以下のように行うことができる。即ち、上記培養によって得られたオイル高蓄積藻類株の細胞を秤量済みマイクロチューブに必要量回収し、蒸留水で洗浄してから終夜凍結乾燥する。乾燥後、再度マイクロチューブの重量を測定し、空のマイクロチューブ重量を減算することで回収した乾燥藻体の乾燥重量(mg)を求める。さらにこれを測定に使用した培養液量で除算することで培養液中に含まれるバイオマス量(g/L)を算出することができる。秤量後、乾燥藻体は後述する油脂、色素類の測定に用いる。本発明のオイル高蓄積藻類株のバイオマス量は、窒素源存在条件での培養によっても、十分な量となる。
(2) Amount of biomass In the present invention, the amount of biomass can be calculated using the dry weight of cells as an index. The amount of biomass can be measured by a method known to those skilled in the art, and the method is not limited, but can be measured, for example, as follows. That is, the cells of the oil-accumulating algae strain obtained by the above culture are collected in a required amount in a weighed microtube, washed with distilled water, and then freeze-dried overnight. After drying, the weight of the microtube is measured again, and the dry weight (mg) of the recovered dried algae is obtained by subtracting the weight of the empty microtube. Further, the amount of biomass (g / L) contained in the culture solution can be calculated by dividing this by the amount of the culture solution used for the measurement. After weighing, the dried algae are used for measuring fats and oils and pigments described later. The amount of biomass of the oil-accumulating algae strain of the present invention is sufficient even when cultured in the presence of a nitrogen source.

(3)油脂
本発明のオイル高蓄積藻類株は、油脂含有率が高いことが特徴であり、窒素源存在条件における油脂含有率が通常10重量%以上であり、15重量%以上であることが好ましく、20重量%以上であることがより好ましく、25重量%以上であることがさらに好ましい。また、本発明のオイル高蓄積藻類株は、油脂生産速度が速いことも特徴であり、窒素源存在条件における油脂生産速度が100g/m/日以上であり、150g/m/日以上であることが好ましく、200g/m/日以上であることがより好ましく、250g/m/日以上であることがさらに好ましく、300g/m/日以上であることが特に好ましい。
(3) Oils and fats The oil-accumulating algae strain of the present invention is characterized by a high oil-and-fat content, and the oil-and-fat content is usually 10% by weight or more and 15% by weight or more in the presence of a nitrogen source. It is more preferably 20% by weight or more, and even more preferably 25% by weight or more. The oil-accumulating algae strain of the present invention is also characterized by a high oil-fat production rate, and the oil-fat production rate in the presence of a nitrogen source is 100 g / m 3 / day or more, and 150 g / m 3 / day or more. It is preferably 200 g / m 3 / day or more, more preferably 250 g / m 3 / day or more, and particularly preferably 300 g / m 3 / day or more.

本発明において、油脂の測定は、当業者に公知の方法により行うことができ、その方法は限定されないが、例えば以下のように行うことができる。なお、油脂の測定には、上記バイオマスの測定実験で準備した乾燥藻体を用いる。この乾燥藻体を破砕専用マイクロチューブに秤量して測定に供する。0.5mm径ガラスビーズをマイクロチューブに加えてマルチビーズショッカー装置により細胞を破砕する。細胞中の油脂を、脂肪酸メチル化キット(ナカライ社製等)を用いてメチル化し、それによって生成した脂肪酸メチルエステルをガスクロマトグラフ質量分析(gas chromatography−mass spectrometry,GC−MS)により定量し、乾燥藻体当たりの油脂含有率(重量%)、培養液当たりの油脂(オイル)生産量(mg/L)を算出することができる。なお、培養液当たりの油脂(オイル)生産量(mg/L)は、油脂含有率とバイオマス量の乗算によって算出される。また、オイル高蓄積藻類株を経時的に採取し、乾燥藻体当たりの油脂含有率(重量%)、培養液当たりの油脂(オイル)生産量(mg/L)の経時的な増減を確認することができる。さらに、単位培養液(L)から1日に得られる油脂量を測定することで、油脂(オイル)生産速度(mg/L/day(日)を算出することができる。なお、油脂生産速度は、培養期間日数で油脂生産量(lipid production,mg/L)を除算することにより算出することができる。 In the present invention, the fat and oil can be measured by a method known to those skilled in the art, and the method is not limited, but can be performed as follows, for example. For the measurement of fats and oils, dried algae prepared in the above biomass measurement experiment are used. The dried algae are weighed in a microtube dedicated to crushing and used for measurement. 0.5 mm diameter glass beads are added to the microtube and the cells are disrupted by a multi-bead shocker device. Fatty acid in cells is methylated using a fatty acid methylation kit (manufactured by Nakarai Co., Ltd., etc.), and the fatty acid methyl ester produced thereby is quantified by gas chromatograph mass spectrometry (gas chromatography-mass spectrum, GC-MS) and dried. The fat content (% by weight) per algae and the fat (oil) production per culture solution (mg / L) can be calculated. The amount of fat (oil) produced per culture solution (mg / L) is calculated by multiplying the fat content by the amount of biomass. In addition, oil-accumulating algae strains are collected over time, and changes in fat content (% by weight) per dry alga and fat (oil) production per culture solution (mg / L) over time are confirmed. be able to. Further, by measuring the amount of fats and oils obtained from the unit culture solution (L) per day, the fats and oils (oil) production rate (mg / L / day (days)) can be calculated. , Can be calculated by dividing the amount of oil and fat production (lipid production, mg / L) by the number of days of culture.

なお、本発明において、「窒素源存在条件における油脂生産速度」とは、窒素源として硝酸ナトリウムを含む培地を用いる場合、本培養の硝酸ナトリウム濃度が1mg/L〜1600mg/Lの範囲内である当該期間において達成した油脂生産速度をいう。また、「窒素源存在条件における油脂含有率」とは、窒素源として硝酸ナトリウムを含む培地を用いる場合、本培養の硝酸ナトリウム濃度が1mg/L〜1600mg/Lの範囲内である当該日において達成した乾燥藻体当たりの油脂含有率をいう。 In the present invention, the "fat production rate in the presence of a nitrogen source" means that the sodium nitrate concentration of the main culture is in the range of 1 mg / L to 1600 mg / L when a medium containing sodium nitrate is used as the nitrogen source. The oil and fat production rate achieved during the period. Further, the "fat and oil content under the nitrogen source presence condition" is achieved on the day when the sodium nitrate concentration of the main culture is in the range of 1 mg / L to 1600 mg / L when a medium containing sodium nitrate is used as the nitrogen source. It refers to the oil and fat content per dried algae.

本発明のオイル高蓄積藻類株が蓄積する油脂としては、パルミチン酸、リノール酸、ステアリン酸、リノレン酸、オレイン酸等の脂肪酸によって構成されるトリグリセリドが挙げられ、燃焼効率が高く、バイオディーゼル燃料等として、有用である。 Examples of fats and oils accumulated by the oil-accumulating algae strain of the present invention include triglycerides composed of fatty acids such as palmitic acid, linoleic acid, stearic acid, linolenic acid, and oleic acid, which have high combustion efficiency, biodiesel fuel, and the like. As useful as.

本発明のオイル高蓄積藻類株としては、窒素源存在条件における油脂生産速度が、培養開始後3日目以降、200g/m/日以上、同条件における油脂含有率が10重量%以上であるクラミドモナス・スピーシーズKOR1株の変異株が好ましく、具体的には、KAC1710株、KAC1801株がより好ましく、このようなオイル高蓄積変異株としては、独立行政法人製品評価技術基盤機構にプタベスト条約の規定下で寄託申請を行い、受領番号FERM ABP−22376として受領されたKAC1801株がさらに好ましい。 In the oil-accumulating algae strain of the present invention, the fat-and-fat production rate in the presence of a nitrogen source is 200 g / m 3 / day or more after the third day after the start of cultivation, and the fat-and-fat content is 10% by weight or more under the same conditions. Variant strains of Cramidmonas Species KOR1 strain are preferable, specifically, KAC1710 strain and KAC1801 strain are more preferable. The KAC1801 strain received as receipt number FERM ABP-22376 after making a deposit application at is more preferred.

<オイル高蓄積藻類株を用いた油脂の製造方法>
本発明は、上述の本発明の窒素源存在条件下オイル高蓄積藻類株を用いた油脂の製造方法も含む。本発明の油脂の製造方法は、本発明の窒素源存在条件下オイル高蓄積藻類株を窒素源存在条件で連続的に培養する工程、及び生産された油脂を回収する工程を含むことを特徴とする。
<Manufacturing method of oils and fats using highly oil-accumulating algae strains>
The present invention also includes the above-mentioned method for producing fats and oils using the highly oil-accumulating alga strain under the nitrogen source presence condition of the present invention. The method for producing fats and oils of the present invention is characterized by including a step of continuously culturing a highly oil-accumulating alga strain under the conditions of presence of a nitrogen source of the present invention and a step of recovering the produced fats and oils. To do.

(本発明の窒素源存在条件下オイル高蓄積藻類株を窒素源存在条件で連続的に培養する工程)
本工程については、上述の本発明のオイル高蓄積藻類株の特徴の項の培養の説明も参照されたい。具体的には、例えば、寒天培地からKAC1710株、KAC1801株等を適量取り、上述の窒素源存在条件にて3日間の前々培養を実施する。OD750が0.04程度となるように継代し、さらに上述の窒素源存在条件にて3日間の前培養を実施する。OD750が0.04程度となるように継代し、上述の窒素源存在条件にてさらに14日間程度の本培養を実施する。上記本培養の際、例えば、培養開始から5日目、7日目、9日目等に藻体を部分的に収穫すると共に、窒素を含む新しい培地を補充することができる。このように窒素を含む新しい培地を補充し、適切なタイミングで継代を行うことで、本発明の窒素源存在条件下オイル高蓄積藻類株を、細胞の状態を良好に保ちながら、連続的に培養をすることができ、最終的に従来株と比較して、効率よく、より多くの油脂を生産することが可能である。
(Step of continuously culturing the oil-accumulating alga strain under the nitrogen source presence condition of the present invention)
For this step, also refer to the description of culturing in the section of characteristics of the oil-accumulating algae strain of the present invention described above. Specifically, for example, KAC1710 strain, KAC1801 strain and the like are taken from an agar medium in appropriate amounts, and pre-culture is carried out for 3 days under the above-mentioned nitrogen source presence conditions. Subculture is performed so that the OD 750 becomes about 0.04, and pre-culture is carried out for 3 days under the above-mentioned nitrogen source presence conditions. Subculture so that the OD 750 is about 0.04, and carry out the main culture for another 14 days under the above-mentioned nitrogen source presence conditions. At the time of the main culture, for example, the algae can be partially harvested on the 5th, 7th, 9th days and the like from the start of the culture, and a new medium containing nitrogen can be replenished. By replenishing a new medium containing nitrogen in this way and subculturing at an appropriate timing, the oil-rich algae strain of the present invention under the nitrogen source presence condition can be continuously subjected to a good cell condition. It can be cultivated, and finally it is possible to efficiently produce more fats and oils as compared with the conventional strain.

(培養条件)
2段式フラスコを使用
培地:MB12N+2% sea salt
CO:2%CO
光:250μmol photons/m/s 昼白色蛍光灯
温度:30℃
撹拌:100rpm
(Culture conditions)
Uses a two-stage flask Medium: MB12N + 2% sea salt
CO 2 : 2% CO 2
Light: 250 μmol photons / m 2 / s Neutral white fluorescent lamp Temperature: 30 ° C
Stirring: 100 rpm

(生産された油脂を回収する工程)
上記培養工程で得られたオイル高蓄積藻類株から油脂成分を抽出する方法としては、通常の油脂の抽出方法を用いることができ、特に、Folch法やBligh−Dyer法に代表されるクロロホルム/メタノール系等の有機溶媒による一般的な抽出方法を用いることが可能であるが、これらに限らない。
(Process of collecting produced fats and oils)
As a method for extracting the fat and oil component from the oil-accumulating algae strain obtained in the above culture step, a normal fat and oil extraction method can be used, and in particular, chloroform / methanol represented by the solvent method and the Bligh-Dyer method. It is possible, but not limited to, a general extraction method using an organic solvent such as a system.

<窒素源存在条件下におけるオイル高蓄積藻類株の育種方法>
本発明は、オイル高蓄積藻類株の育種方法も含む。即ち、本発明のオイル高蓄積藻類株の育種方法は、(A)クラミドモナス属に属する藻類にイオンビームを照射してランダムな突然変異を導入する工程、(B)上記(A)工程により得られた突然変異導入株を、窒素源存在条件で培養する工程、(C)変異細胞集団から油脂含有率が30重量%以上である変異株を分離する工程を含むことを特徴とする。本発明においては、上記で得られた変異株に、さらに上記(A)、(B)及び(C)工程を繰り返し変異株を分離してもよい。本発明の方法によると、窒素源存在条件で培養しても油脂含有率が高く、油脂の生産効率の高い有用なクラミドモナス属に属する藻類株を得ることができる。
<Breeding method for highly oil-accumulating algae strains under conditions of nitrogen source presence>
The present invention also includes a method for breeding a highly oil-accumulating algae strain. That is, the method for breeding a highly oil-accumulating algae strain of the present invention is obtained by (A) a step of irradiating algae belonging to the genus Chlamydomonas with an ion beam to introduce a random mutation, and (B) the above-mentioned (A). It is characterized by including a step of culturing the mutant-introduced strain in the presence of a nitrogen source, and (C) a step of separating the mutant strain having a fat content of 30% by weight or more from the mutant cell population. In the present invention, the mutant strain obtained above may be further separated from the mutant strain by repeating the above steps (A), (B) and (C). According to the method of the present invention, a useful algae strain belonging to the genus Chlamydomonas, which has a high fat content and high fat production efficiency even when cultured in the presence of a nitrogen source, can be obtained.

((A)クラミドモナス属に属する藻類にイオンビームを照射してランダムな突然変異を導入する工程)
本工程においては、クラミドモナス属に属する藻類の細胞集団に対して、イオンビームを照射する。照射するイオンビームとしては、突然変異を導入可能なものであれば特に限定されないが、例えば、炭素(C)、ヘリウム(He)、ネオン(Ne)あるいはアルゴン(Ar)等が挙げられ、藻類への変異導入の効率の観点から、125+が好ましい。クラミドモナス属に属する藻類に125+イオンビームを照射する場合、線量の範囲は、10〜250Gyが好ましく、20〜75Gyがより好ましい。イオンビーム照射後は、数日間の回復培養後、得られた細胞集団を変異体ライブラリとし、後述するスクリーニングを行うことができる。なお、上記回復培養は、例えば、適切な光強度の昼白色蛍光灯等の条件下で3日間以上静置することにより行われる。
((A) A step of irradiating algae belonging to the genus Chlamydomonas with an ion beam to introduce a random mutation)
In this step, the cell population of algae belonging to the genus Chlamydomonas is irradiated with an ion beam. The ion beam to be irradiated is not particularly limited as long as it can introduce a mutation, and examples thereof include carbon (C), helium (He), neon (Ne), argon (Ar), and the like, and to algae. From the viewpoint of efficiency of mutagenesis, 12 C 5+ is preferable. When algae belonging to the genus Chlamydomonas are irradiated with a 12 C5 + ion beam, the dose range is preferably 10 to 250 Gy, more preferably 20 to 75 Gy. After irradiation with an ion beam, after recovery culture for several days, the obtained cell population can be used as a mutant library for screening described later. The recovery culture is carried out, for example, by allowing it to stand for 3 days or more under conditions such as a neutral white fluorescent lamp having an appropriate light intensity.

((B)上記(A)工程により得られた突然変異導入株を、窒素源存在条件で培養する工程)
本工程においては、上記(A)工程において得られた突然変異導入株を、上述した窒素源存在条件にて培養する。具体的な培養の方法については、上述の本発明のオイル高蓄積藻類株の特徴の項の培養の説明を参照されたい。
((B) A step of culturing the mutant-introduced strain obtained in the above step (A) under the presence of a nitrogen source)
In this step, the mutant-introduced strain obtained in the above step (A) is cultured under the above-mentioned nitrogen source presence conditions. For a specific culturing method, refer to the above-mentioned description of culturing in the section on characteristics of oil-accumulating algae strains of the present invention.

((C)変異細胞集団から油脂含有率の高い変異株を分離する工程)
本工程においては、上記(A)工程で得られた変異細胞集団から、(B)工程の培養によっても油脂含有率を高く維持できる変異株を分離する。このとき、油脂含有率が、好ましくは20重量%以上、より好ましくは30重量%以上である変異株を分離する。具体的な分離方法としては、オイル高蓄積藻類株を蛍光活性セルソーター(fluorescence activated cell sorter,FACS)を用いて分離することができる。目的とする条件、例えば窒素源存在条件で培養した変異細胞集団の細胞内油滴を蛍光色素BODIPY、ナイルレッド等で染色し、蛍光強度の強い細胞をFACSにて分取する。個々の細胞のBODIPY蛍光、ナイルレッド蛍光等の細胞内油滴の染色に由来する蛍光及びクロロフィルの自家蛍光(細胞サイズの指標として利用)の強度をFACSで解析し、クロロフィル自家蛍光あたりのBODIPY蛍光、ナイルレッド蛍光等の細胞内油滴の染色に由来する蛍光が高い細胞(上位1〜0.5%)を分取することができる。また、上記のような条件での培養とFACSによる分取を複数回繰り返し実施することで、目的とする細胞を濃縮することも可能である。
((C) Step of separating a mutant strain having a high fat content from a mutant cell population)
In this step, a mutant strain that can maintain a high fat content even by culturing in step (B) is isolated from the mutant cell population obtained in step (A) above. At this time, the mutant strain having an oil / fat content of preferably 20% by weight or more, more preferably 30% by weight or more is separated. As a specific separation method, a highly oil-accumulating algae strain can be separated using a fluorescently activated cell sorter (FACS). Intracellular oil droplets of a mutant cell population cultured under target conditions, for example, conditions in which a nitrogen source is present, are stained with fluorescent dyes BODIPY, Nile Red, etc., and cells having strong fluorescence intensity are separated by FACS. The intensity of fluorescence derived from staining of intracellular oil droplets such as BODIPY fluorescence and Nile Red fluorescence of individual cells and autofluorescence of chlorophyll (used as an index of cell size) was analyzed by FACS, and BODIPY fluorescence per chlorophyll autofluorescence was analyzed. , Nile red fluorescence and other cells with high fluorescence derived from staining of intracellular oil droplets (top 1 to 0.5%) can be sorted. It is also possible to concentrate the target cells by repeating the culture under the above conditions and the fractionation by FACS a plurality of times.

ここで、本発明において設定される培養条件のうち、窒素源存在条件とは、上述の通りであるが、具体的には、藻株を培養する際の培地中の硝酸ナトリウム濃度が、0mg/L以下とならない条件をいい、培地中の硝酸ナトリウム濃度は1mg/L〜1600mg/Lであることが好ましく、1mg/L〜800mg/Lであることがより好ましく、1mg/L〜350mg/Lであることがさらに好ましい。 Here, among the culture conditions set in the present invention, the nitrogen source presence condition is as described above. Specifically, the sodium nitrate concentration in the medium when culturing the algae strain is 0 mg /. It refers to a condition that does not become L or less, and the sodium nitrate concentration in the medium is preferably 1 mg / L to 1600 mg / L, more preferably 1 mg / L to 800 mg / L, and 1 mg / L to 350 mg / L. It is more preferable to have.

培養時の光条件は、蛍光灯により調整することができ、点灯時の光量子束密度としては、日光の光に近い条件として、通常50μmol photons/m・秒 〜 2,000μmol photons/m・秒の範囲であり、60μmol photons/m・秒 〜 1,000μmol photons/m・秒の範囲であることが好ましく、80μmol photons/m・秒 〜 500μmol photons/m・秒の範囲であることがより好ましい。 The light conditions during culturing can be adjusted with a fluorescent lamp, and the photon flux density during lighting is usually 50 μmol photons / m 2 · sec to 2,000 μmol photos / m 2 ·, as conditions close to sunlight. in the range of seconds, in the range of 60μmol photons / m 2 · sec ~ 1,000μmol photons / m 2 · sec is preferably in the range of 80μmol photons / m 2 · sec ~ 500μmol photons / m 2 · sec Is more preferable.

なお、分離後の細胞は寒天培地に播種し、光強度50μmol photons/m・秒程度の昼白色蛍光灯下でコロニーを形成するまで静置培養する。一次スクリーニングで得られた候補株については、マイクロウェルプレートで培養し、細胞から油脂を抽出してガスクロマトグラフィー質量分析(gas chromatography−mass spectrometry,GC−MS)で解析することで、窒素源存在条件におけるオイル高蓄積藻類株の二次スクリーニングを実施する。この工程において、油脂含有率が30重量%以上である変異株を分離することができる。二次スクリーニングにおいては、後述する方法に従ってバイオマス量の測定、油脂の測定を行い、油脂含有率を算定し、最終的に窒素源存在条件での培養によってオイルを高蓄積する変異株を選定することができる。 The separated cells are seeded on an agar medium and statically cultured under a neutral white fluorescent lamp having a light intensity of about 50 μmol photons / m for 2 seconds until colonies are formed. Candidate strains obtained by primary screening are cultured on a microwell plate, and fats and oils are extracted from cells and analyzed by gas chromatography-mass spectrometry, GC-MS. Perform secondary screening for highly oil-accumulating algae strains under conditions. In this step, mutant strains having a fat content of 30% by weight or more can be separated. In the secondary screening, the amount of biomass and fats and oils are measured according to the method described later, the fats and oils content is calculated, and finally, a mutant strain that highly accumulates oil by culturing in the presence of a nitrogen source is selected. Can be done.

以下の実施例にて本発明を具体的に説明するが、本発明は実施例によって限定されるものではない。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the examples.

1.オイル高蓄積藻類株の変異育種
(1)突然変異の導入
窒素源存在条件下におけるオイル高蓄積藻類株(KAC)の育種は、クラミドモナス・スピーシーズJSC4株に由来するKOR1株(Chlamydomonas sp. KOR1)を親株として二段階の変異育種により実施した。突然変異の導入は国立研究開発法人量子科学技術研究開発機構高崎量子応用研究所のイオン照射研究施設(TIARA: Takasaki Ion accelerators for Advanced Radiation Application)にて親株にイオンビームを照射することで実施した。
1. 1. Mutation breeding of oil-rich algae strains (1) Introduction of mutations For breeding of oil-rich algae strains (KAC) under the presence of a nitrogen source, KOR1 strain (Chlamydomonas sp. KOR1) derived from Chlamydomonas species JSC4 strain was used. It was carried out by two-step mutation breeding as a parent strain. The mutation was introduced by irradiating the parent strain with an ion beam at the ion irradiation research facility (TIARA: Takasaki Ion accelerators for Advanced Radiation Application) of the Takasaki Quantum Applied Research Institute, National Research and Development Corporation.

具体的には、寒天培地から藻体を適量取り、下記条件にて3日間の前培養を実施した。波長750nmにおける光学密度(OD750)が0.04となるように継代し、下記条件にてさらに2日間の本培養を実施した。培養後、OD750が0.5となるようにTAP培地で希釈し、希釈液100μLをTAP寒天培地に塗布した。AVFサイトクロンにて加速したイオンビーム(125+、220MeV)を線量50Gyで寒天培地上の藻細胞に照射した。重イオンビームの照射後、光強度50μmol photons/m/sの昼白色蛍光灯下で3日間以上静置することで回復培養を実施した。これをKOR1の変異体ライブラリとして以下の実験に使用した。 Specifically, an appropriate amount of algae was taken from the agar medium and pre-cultured for 3 days under the following conditions. Subculture was performed so that the optical density (OD 750 ) at a wavelength of 750 nm was 0.04, and the main culture was carried out for another 2 days under the following conditions. After culturing, the mixture was diluted with TAP medium so that OD 750 was 0.5, and 100 μL of the diluted solution was applied to TAP agar medium. Algae cells on an agar medium were irradiated with an ion beam ( 12 C 5+, 220 MeV) accelerated by AVF cytocron at a dose of 50 Gy. After irradiation with the heavy ion beam, recovery culture was carried out by allowing the cells to stand for 3 days or more under a neutral white fluorescent lamp having a light intensity of 50 μmol photons / m 2 / s. This was used in the following experiments as a mutant library of KOR1.

(培養条件)
2段式フラスコを使用
培地:70mL TAP
CO:2%CO
光:100μmol photons/m/s蛍光灯
温度:30℃
撹拌:100rpm
(Culture conditions)
Uses a two-stage flask Medium: 70 mL TAP
CO 2 : 2% CO 2
Light: 100 μmol photons / m 2 / s Fluorescent lamp Temperature: 30 ° C
Stirring: 100 rpm

(2)一次スクリーニング
窒素源存在条件におけるオイル高蓄積藻類株の一次スクリーニングは蛍光活性セルソーター(fluorescence activated cell sorter,FACS)を用いて実施した。窒素源存在条件で培養した細胞の細胞内油滴を蛍光色素BODIPYで染色し、蛍光強度の強い細胞をFACSにて分取した。
(2) Primary screening The primary screening of oil-accumulating algae strains in the presence of a nitrogen source was carried out using a fluorescently activated cell sorter (FACS). Intracellular oil droplets of cells cultured in the presence of a nitrogen source were stained with the fluorescent dye BODIPY, and cells with strong fluorescence intensity were separated by FACS.

上記で準備した変異体ライブラリの寒天培地から藻体を適量取り、下記条件にて3日間の前培養を実施した。OD750が0.04となるように継代し、下記条件にてさらに7日間の本培養を実施した。培養後の細胞を回収し、5×10cells/mLとなるようにPBSに懸濁した。これに蛍光色素BODIPYを50μMとなるように添加して暗所に5分間置いて細胞内油滴を蛍光染色した。個々の細胞のBODIPY及びクロロフィルの自家蛍光(細胞サイズの指標として標準化に利用)の強度をFACS(SONY社製 SH800)で解析し、クロロフィル自家蛍光あたりのBODIPY蛍光が高い細胞(上位1.5〜0.5%)を分取した。蛍光の検出に使用したフィルターセットを下記に示す。分取後の細胞は下記培養条件にて、培地をTAP培地に変更して細胞が十分増殖するまで回復培養した。増殖した細胞を適量継代して前培養を実施し、上記の手順による分取操作を計5回繰り返した(寒天培地から播種→前培養→本培養→FACSで分取→回復培養→前培養→・・・)。5回目の分取操作の後、細胞をTAP寒天培地に播種し、光強度50μmol photons/m/sの昼白色蛍光灯下でコロニーを形成するまで静置培養した。 An appropriate amount of algae was taken from the agar medium of the mutant library prepared above, and pre-culture was carried out for 3 days under the following conditions. Subculture was performed so that the OD 750 was 0.04, and the main culture was carried out for another 7 days under the following conditions. After culturing, the cells were collected and suspended in PBS at 5 × 10 6 cells / mL. The fluorescent dye BODIPY was added to this so as to have a concentration of 50 μM, and the cells were placed in a dark place for 5 minutes to fluorescently stain intracellular oil droplets. The intensity of BODIPY and chlorophyll autofluorescence (used for standardization as an index of cell size) of individual cells was analyzed by FACS (SH800 manufactured by SONY), and cells with high BODIPY fluorescence per chlorophyll autofluorescence (top 1.5 to 0.5%) was separated. The filter set used to detect fluorescence is shown below. The cells after sorting were recovered and cultured under the following culture conditions by changing the medium to TAP medium and until the cells proliferated sufficiently. Preculture was performed by subculturing an appropriate amount of proliferated cells, and the pre-culture operation according to the above procedure was repeated a total of 5 times (seed from agar medium → pre-culture → main culture → pre-culture by FACS → recovery culture → pre-culture. → ...). After the fifth preparative operation, the cells were seeded on TAP agar medium and statically cultured under a neutral white fluorescent lamp having a light intensity of 50 μmol photons / m 2 / s until colonies were formed.

(培養条件)
2段式フラスコを使用
培地:70mL MB12N+2%sea salt
CO:2%CO
光:100 μmol photons/m/s 蛍光灯
温度:30℃
撹拌:100rpm
(Culture conditions)
Uses a two-stage flask Medium: 70 mL MB12N + 2% sea salt
CO 2 : 2% CO 2
Light: 100 μmol photons / m 2 / s Fluorescent lamp Temperature: 30 ° C
Stirring: 100 rpm

(FACS解析条件)
BODIPY蛍光:励起:488nmレーザー
蛍光:PEフィルター(570nm〜630nm)
クロロフィル蛍光:励起:488nmレーザー
蛍光:PerCP−Cy5.5フィルター(690nm〜750nm)
(FACS analysis conditions)
BODIPY fluorescence: excitation: 488 nm laser
Fluorescence: PE filter (570nm-630nm)
Chlorophyll fluorescence: excitation: 488 nm laser
Fluorescence: PerCP-Cy5.5 filter (690nm-750nm)

(3)二次スクリーニング
マイクロウェルプレートで候補株を培養し、細胞から油脂を抽出してガスクロマトグラフィー質量分析(gas chromatography−mass spectrometry,GC−MS)で解析することで、窒素源存在条件におけるオイル高蓄積藻類株の二次スクリーニングを実施した。
(3) Secondary screening By culturing the candidate strain on a microwell plate, extracting fats and oils from the cells, and analyzing them by gas chromatography-mass spectrometry (GC-MS), the conditions under the presence of a nitrogen source are obtained. Secondary screening of oil-accumulating algae strains was performed.

一次スクリーニングで獲得した候補変異株の藻体を寒天培地から適量取り、下記条件にて3日間の前培養を実施した。OD750が0.1となるように継代し、下記条件にてさらに3日間の本培養を実施した。培養後、各ウェルから2mLの培養液を回収し、後述する「バイオマスの測定」、及び「油脂の測定」の手順に従い油脂含有率を測定した。最終的に窒素源存在条件での培養によってオイルを高蓄積する変異株としてKAC1710を取得した。 An appropriate amount of the algae of the candidate mutant strain obtained in the primary screening was taken from the agar medium, and pre-culture was carried out for 3 days under the following conditions. Subculture was performed so that the OD 750 was 0.1, and the main culture was carried out for another 3 days under the following conditions. After culturing, 2 mL of the culture solution was collected from each well, and the fat content was measured according to the procedures of "biomass measurement" and "fat measurement" described later. Finally, KAC1710 was obtained as a mutant strain that highly accumulates oil by culturing in the presence of a nitrogen source.

(培養条件)
12ウェルプレートを使用
培地:2.5mL MB12N+2%sea salt
CO:2%CO
光:100μmol photons/m/s 白色LED
温度:30℃
撹拌:100rpm
(Culture conditions)
Use 12-well plate Medium: 2.5 mL MB12N + 2% sea salt
CO 2 : 2% CO 2
Light: 100 μmol photons / m 2 / s white LED
Temperature: 30 ° C
Stirring: 100 rpm

上記(1)〜(3)の工程をKAC1710株を親株として実施し、最終的に窒素源存在条件での培養によってオイルを高蓄積する変異株としてKAC1801を取得した。 The above steps (1) to (3) were carried out using the KAC1710 strain as the parent strain, and finally KAC1801 was obtained as a mutant strain that highly accumulates oil by culturing in the presence of a nitrogen source.

2.オイル高蓄積藻類株の評価
(1)オイル高蓄積藻類株の評価に向けた培養
変異育種により獲得した各オイル高蓄積藻類株KACは、本項に示す共通の培養条件にて培養し、下記の方法により評価した。
2. 2. Evaluation of oil-accumulated algae strains (1) Culture for evaluation of oil-accumulated algae strains Each oil-accumulated algae strain KAC obtained by mutated breeding is cultured under the common culture conditions shown in this section, and is described below. Evaluated by method.

寒天培地から藻体を適量取り、下記条件にて3日間の前々培養を実施した。OD750が0.04となるように継代し、さらに下記条件にて3日間の前培養を実施した。OD750が0.04となるように継代し、下記条件にてさらに14日間の本培養を実施した。 An appropriate amount of algae was taken from the agar medium and cultured for 3 days before and after under the following conditions. Subculture was performed so that the OD 750 was 0.04, and preculture was further carried out for 3 days under the following conditions. Subculture was performed so that the OD 750 was 0.04, and the main culture was carried out for another 14 days under the following conditions.

(培養条件)
2段式フラスコを使用
培地:MB12N+2% sea salt
CO:2%CO
光:250μmol photons/m/s 昼白色蛍光灯
温度:30℃
撹拌:100rpm
(Culture conditions)
Uses a two-stage flask Medium: MB12N + 2% sea salt
CO 2 : 2% CO 2
Light: 250 μmol photons / m 2 / s Neutral white fluorescent lamp Temperature: 30 ° C
Stirring: 100 rpm

(2)電子顕微鏡解析
細胞における油滴の観察には、化学固定法と樹脂包埋超薄切片法を組み合わせた電子顕微鏡解析を利用した。解析には上記手順(1)で準備した本培養4日目のKOR1、KAC1710、KAC1801細胞を用いた。培養後の細胞を固定液(2%パラホルムアルデヒド、2%グルタルアルデヒド、50mMカコジル酸バッファーpH=7.4)に懸濁し、4℃に終夜置くことで固定した。各細胞の電子顕微鏡写真を図1に示す。なお、本培養4日目の培地中には窒素が残存しており、窒素栄養環境は充足している状態である。
(2) Electron microscopic analysis For the observation of oil droplets in cells, electron microscopic analysis combining a chemical fixation method and a resin-embedded ultrathin section method was used. For the analysis, KOR1, KAC1710, and KAC1801 cells prepared in the above procedure (1) on the 4th day of the main culture were used. The cultured cells were suspended in a fixative (2% paraformaldehyde, 2% glutaraldehyde, 50 mM cacodylic acid buffer pH = 7.4) and fixed at 4 ° C. overnight. An electron micrograph of each cell is shown in FIG. Nitrogen remains in the medium on the 4th day of the main culture, and the nitrogen nutritional environment is satisfied.

図1に示すとおり、本培養4日目、培地中に窒素源が十分残存している条件においては、親株であるKOR1では油滴がほとんど見られないのに対して、KAC1710では油滴の出現が確認できた。また、KAC1801ではKAC1710よりも多くの油滴の蓄積が見られた。 As shown in FIG. 1, on the 4th day of the main culture, under the condition that a sufficient nitrogen source remained in the medium, almost no oil droplets were observed in the parent strain KOR1, whereas oil droplets appeared in KAC1710. Was confirmed. In addition, more oil droplets were accumulated in KAC1801 than in KAC1710.

(3)窒素源の測定
上記オイル高蓄積藻類株の評価に向けた培養実験で使用したMB12N+2%sea salt培地に含まれる窒素源は硝酸ナトリウム(NaNO)のみであり、MB6N+2%sea salt培地の2倍の硝酸ナトリウムを含む。硝酸ナトリウムは波長220nmの光をよく吸収するため、培地中に含まれる硝酸ナトリウム量の測定では波長220nmにおける光学密度(OD220)を指標とした。遠心分離操作によって細胞を除去することで培養液上清を準備した。培養液上清を蒸留水で適度に希釈し、OD220を測定した。濃度既知の硝酸ナトリウムを含むMB12N培地を用いて検量線を作成し、これをもとに培養液上清中に含まれる硝酸ナトリウム濃度を算出した。
(3) Measurement of nitrogen source Sodium nitrate (NaNO 3 ) is the only nitrogen source contained in the MB12N + 2% sea salt medium used in the culture experiment for the evaluation of the oil-accumulated algae strain, and the MB6N + 2% sea salt medium. Contains twice as much sodium nitrate. Since sodium nitrate absorbs light having a wavelength of 220 nm well, the optical density (OD 220 ) at a wavelength of 220 nm was used as an index in measuring the amount of sodium nitrate contained in the medium. The culture supernatant was prepared by removing the cells by centrifugation. The culture broth supernatant was appropriately diluted with distilled water, and OD 220 was measured. A calibration curve was prepared using MB12N medium containing sodium nitrate having a known concentration, and the concentration of sodium nitrate contained in the culture medium supernatant was calculated based on the calibration curve.

図2に示すとおり、培養液上清中に含まれる硝酸ナトリウムは、KOR1では培養6日目までに完全に消費された。また、KAC1710では培養8日目までに完全に消費された。一方、KAC1801では、培養8日目ごろまでは培養液上清中の硝酸ナトリウム濃度が減少したものの、それ以降少なくとも13日目までは一定の濃度レベルの硝酸ナトリウムが維持されていた。 As shown in FIG. 2, the sodium nitrate contained in the culture broth supernatant was completely consumed in KOR1 by the 6th day of culturing. In addition, KAC1710 was completely consumed by the 8th day of culture. On the other hand, in KAC1801, although the sodium nitrate concentration in the culture broth supernatant decreased until about the 8th day of the culture, a constant concentration level of sodium nitrate was maintained until at least the 13th day thereafter.

(4)バイオマスの測定
バイオマス量は細胞の乾燥重量を指標とした。上記オイル高蓄積藻類株の評価に向けた培養実験にて培養した細胞を秤量済みマイクロチューブに必要量回収し、蒸留水で1回洗浄してから終夜凍結乾燥した。乾燥後、再度マイクロチューブの重量を測定し、空のマイクロチューブ重量を減算することで回収した細胞の乾燥重量(mg)を求めた。さらにこれを測定に使用した培養液量で除算することで培養液中に含まれるバイオマス量(g/L)を求めた。結果を図3に示す。なお、秤量後、乾燥藻体は後述する油脂の測定に用いた。
(4) Measurement of biomass The amount of biomass was indexed by the dry weight of cells. The required amount of cells cultured in the culture experiment for evaluation of the above oil-accumulated algae strain was collected in a weighed microtube, washed once with distilled water, and then freeze-dried overnight. After drying, the weight of the microtube was measured again, and the dry weight (mg) of the recovered cells was determined by subtracting the weight of the empty microtube. Further, the amount of biomass (g / L) contained in the culture solution was obtained by dividing this by the amount of the culture solution used for the measurement. The results are shown in FIG. After weighing, the dried algae were used for the measurement of fats and oils described later.

図3に示すとおり、バイオマス量は、親株であるKOR1が他の2株よりもやや多い状態で推移した。硝酸ナトリウムが枯渇した培養6日目までは親株であるKOR1と同程度で推移した。KAC1710とKAC1801とでは有意な差は見られなかった。 As shown in FIG. 3, the amount of biomass changed in a state where the parent strain KOR1 was slightly larger than the other two strains. Until the 6th day of culturing when sodium nitrate was depleted, it remained at the same level as the parent strain KOR1. No significant difference was found between KAC1710 and KAC1801.

(5)油脂の測定
油脂の測定には上記バイオマスの測定実験で準備した乾燥藻体を用いた。約3mgの乾燥藻体を破砕専用マイクロチューブに秤量して測定に供した。0.5mm径ガラスビーズをマイクロチューブに加えてマルチビーズショッカー装置により細胞を破砕した。細胞中の油脂を脂肪酸メチル化キット(ナカライ社製)を用いてメチル化し、それによって生成した脂肪酸メチルエステルをガスクロマトグラフ質量分析(gas chromatography−mass spectrometry,GC−MS)により定量した。Day3〜day6までの、各株の乾燥藻体当たりの油脂含有率の結果を図4に示す。また、培養液当たりの油脂(オイル)生産量(mg/L)、及び各培養期間における油脂(オイル)生産速度(mg/L/day(日))をそれぞれ図5及び6に示す。
(5) Measurement of fats and oils The dried algae prepared in the above biomass measurement experiment were used for the measurement of fats and oils. Approximately 3 mg of dried algae was weighed in a microtube dedicated to crushing and used for measurement. 0.5 mm diameter glass beads were added to the microtube and the cells were disrupted by a multi-bead shocker device. Fatty acid in cells was methylated using a fatty acid methylation kit (manufactured by Nakarai Co., Ltd.), and the fatty acid methyl ester produced thereby was quantified by gas chromatograph mass spectrometry (GC-MS). The results of the oil and fat content per dried algae of each strain from Day 3 to Day 6 are shown in FIG. In addition, the amount of fat (oil) produced per culture solution (mg / L) and the rate of fat (oil) production (mg / L / day (day)) in each culture period are shown in FIGS. 5 and 6, respectively.

図4に示すとおり、乾燥藻体における油脂含有率は、親株であるKOR1では、day4までは10%未満と非常に低い値であり、窒素源の枯渇が始まるday5、完全に窒素源が枯渇するday6になると10〜15%前後まで上昇した。それに対してKAC1710とKAC1801においては、day3ですでに10%を超えており、day4においては、すでにKOR1で最も高い含有率となるday6での値を超えていた。その後day5、day6と油脂含有率は顕著に増加した。特にKAC1801においては、day5、day6での油脂含有率の伸びは著しかった。また、図5に示すとおり、親株であるKOR1に比べて、KAC1710とKAC1801の培養液当たりの油脂生産量が顕著に高いことが示された。さらに、図6に示すとおり、day3〜day5の培養期間における油脂生産速度については、KAC1801が、他の2株と比較して顕著に高い値となった。即ち、KAC1801を使用して油脂を生産する場合には、本実験におけるday3〜day5の培養条件を維持することが好ましいことと解釈される。 As shown in FIG. 4, the oil and fat content in the dried algae is a very low value of less than 10% up to day4 in the parent strain KOR1, and the nitrogen source is completely depleted on day5 when the nitrogen source starts to be depleted. When it became day6, it increased to around 10 to 15%. On the other hand, in KAC1710 and KAC1801, the value in day3 already exceeded 10%, and in day4, the value in day6, which was the highest content rate in KOR1, was already exceeded. After that, the fat and oil contents increased remarkably with day5 and day6. In particular, in KAC1801, the increase in the fat content rate on day5 and day6 was remarkable. Further, as shown in FIG. 5, it was shown that the amount of fats and oils produced per culture solution of KAC1710 and KAC1801 was remarkably higher than that of the parent strain KOR1. Further, as shown in FIG. 6, the fat production rate during the culture period of day 3 to day 5 was significantly higher in KAC1801 than in the other two strains. That is, when producing fats and oils using KAC1801, it is interpreted that it is preferable to maintain the culture conditions of day 3 to day 5 in this experiment.

3.半連続培養による油脂生産培養方法
本発明の窒素充足条件下オイル高蓄積藻類株を用いて、効率的に油脂を生産する方法について検討する。即ち、寒天培地からKOR1株及びKAC1801株を適量取り、下記条件にて3日間の前々培養を実施する。OD750が0.04となるように継代し、さらに下記条件にて3日間の前培養を実施する。OD750が0.04となるように継代し、下記条件にてさらに14日間の本培養を実施する。14日間の本培養の際、5日目、7日目、9日目に藻体を部分的に収穫すると共に、窒素を含む新しい培地を補充する。上述の方法により、バイオマス及び硝酸ナトリウム濃度の経時変化を確認することができる。
3. 3. Oil production and culture method by semi-continuous culture A method for efficiently producing oil and fat using the oil-accumulating algae strain under nitrogen-sufficient conditions of the present invention will be investigated. That is, an appropriate amount of the KOR1 strain and the KAC1801 strain are taken from the agar medium, and the pre-culture is carried out for 3 days under the following conditions. Subculture is performed so that the OD 750 becomes 0.04, and preculture is carried out for 3 days under the following conditions. Subculture so that the OD 750 becomes 0.04, and carry out the main culture for another 14 days under the following conditions. During the 14-day main culture, the algae are partially harvested on the 5th, 7th, and 9th days, and a new medium containing nitrogen is replenished. By the above-mentioned method, the change with time of the biomass and sodium nitrate concentration can be confirmed.

(培養条件)
2段式フラスコを使用した。
培地:MB12N+2% sea salt
CO:2%CO
光:250μmol photons/m/s 昼白色蛍光灯
温度:30℃
撹拌:100rpm
(Culture conditions)
A two-stage flask was used.
Medium: MB12N + 2% sea salt
CO 2 : 2% CO 2
Light: 250 μmol photons / m 2 / s Neutral white fluorescent lamp Temperature: 30 ° C
Stirring: 100 rpm

本発明の窒素源存在条件下オイル高蓄積藻類株を用いると、窒素源含有培地を補充しながら培養を連続的に行うことで、細胞の状態を良好に保ちながら、より多くの油脂を効率的に生産することが期待できる。 When the oil-accumulating algae strain under the nitrogen source presence condition of the present invention is used, more fats and oils can be efficiently produced while maintaining good cell condition by continuously culturing while supplementing the nitrogen source-containing medium. Can be expected to be produced.

本発明のオイル高蓄積藻類株は、窒素源が存在する条件においても油脂を高蓄積することが可能であるため、栄養源が補充されることで生育速度を低下させることなく油脂生産を実施することができる。そのため、本発明の窒素源存在条件下オイル高蓄積藻類株によると、油脂生産の効率をより高くすることが可能である。さらに、窒素源枯渇条件では、栄養源の枯渇により細胞の状態が悪化し、日和見感染リスクが増大するところ、窒素源が存在する条件においても油脂を高蓄積することが可能な本発明の藻株においては、栄養源を枯渇させる必要がないため、上記リスクを低減することも可能である。 Since the highly oil-accumulating algae strain of the present invention can accumulate a large amount of oil and fat even in the presence of a nitrogen source, the oil and fat production is carried out without lowering the growth rate by supplementing the nutrient source. be able to. Therefore, according to the oil-accumulating algae strain under the nitrogen source presence condition of the present invention, it is possible to increase the efficiency of oil and fat production. Further, under nitrogen source depletion conditions, the cell condition deteriorates due to nutrient depletion and the risk of opportunistic infection increases. However, the algae strain of the present invention capable of highly accumulating fats and oils even under conditions where a nitrogen source is present. In, it is not necessary to deplete the nutrient source, so that the above risk can be reduced.

Claims (9)

(A)クラミドモナス属に属する藻類にイオンビームを照射してランダムな突然変異を導入する工程、
(B)上記(A)工程により得られた突然変異導入株を、窒素源存在条件で培養する工程、
(C)変異細胞集団から、窒素源存在条件で培養した場合の油脂含有率が10重量%以上である変異株を分離する工程
を含む、オイル高蓄積藻類株の育種方法。
(A) A step of irradiating algae belonging to the genus Chlamydomonas with an ion beam to introduce a random mutation.
(B) A step of culturing the mutant-introduced strain obtained in the above step (A) under the presence of a nitrogen source.
(C) A method for breeding a highly oil-accumulating algae strain, which comprises a step of separating a mutant strain having an oil / fat content of 10% by weight or more when cultured in a nitrogen source presence condition from a mutant cell population.
上記(B)工程における窒素源存在条件が、培地中に栄養源として含まれる窒素濃度を1mg−N/L〜270mg−N/Lに維持する条件である、請求項1に記載のオイル高蓄積藻類株の育種方法。 The high oil accumulation according to claim 1, wherein the nitrogen source presence condition in the step (B) is a condition for maintaining the nitrogen concentration contained in the medium as a nutrient source at 1 mg-N / L to 270 mg-N / L. Breeding method for algae strains. 培地中に栄養源として含まれる窒素濃度が1mg−N/L〜270mg−N/Lに維持される窒素源存在条件で培養した場合の油脂含有率が10重量%以上である、窒素源存在条件下オイル高蓄積藻類株。 Nitrogen source existence condition that the fat content is 10% by weight or more when culturing under the nitrogen source existence condition in which the nitrogen concentration contained as a nutrient source in the medium is maintained at 1 mg-N / L to 270 mg-N / L. Lower oil high accumulation algae strain. 培地中に栄養源として含まれる窒素濃度が1mg−N/L〜270mg−N/Lに維持される窒素源存在条件で培養した場合の油脂生産速度が、100(g/m/d)以上である、請求項3に記載の窒素源存在条件下オイル高蓄積藻類株。 The fat production rate when culturing in the presence of a nitrogen source in which the concentration of nitrogen contained as a nutrient source in the medium is maintained at 1 mg-N / L to 270 mg-N / L is 100 (g / m 3 / d) or more. The oil-accumulated alga strain under the nitrogen source presence condition according to claim 3. 上記藻類が、クラミドモナス・スピーシーズである、請求項3又は4に記載の窒素源存在条件下オイル高蓄積藻類株。 The oil-accumulating algae strain under the nitrogen source presence condition according to claim 3 or 4, wherein the algae are Chlamydomonas species. 上記クラミドモナス・スピーシーズが、クラミドモナス・スピーシーズKAC1801株(Chlamydomonas sp.KAC1801/受領番号:FERM ABP−22376)である、請求項5に記載の窒素源存在条件下オイル高蓄積藻類株。 The oil-accumulating algae strain according to claim 5, wherein the Chlamydomonas species is Chlamydomonas species KAC1801 strain (Chlamydomonas sp. KAC1801 / Receipt number: FERM ABP-22376). 窒素源存在条件下における油脂高蓄積能を有する、クラミドモナス・スピーシーズKAC1801株(Chlamydomonas sp.KAC1801/受領番号:FERM ABP−22376)。 Chlamydomonas Species KAC1801 strain (Chlamydomonas sp. KAC1801 / Receipt number: FERM ABP-22376), which has a high oil and fat storage capacity under the presence of a nitrogen source. 請求項3から7のいずれか1項に記載の窒素源存在条件下オイル高蓄積藻類株を用い、窒素源存在下で連続的に培養することを特徴とする、油脂生産培養方法。 A method for producing and culturing oils and fats, which comprises continuously culturing in the presence of a nitrogen source using the oil-accumulating alga strain under the condition of the presence of a nitrogen source according to any one of claims 3 to 7. 請求項3から7のいずれか1項に記載の窒素源存在条件下オイル高蓄積藻類株を窒素源含有培地中で培養し、培地中に栄養源として含まれる窒素濃度を1mg−N/L〜270mg−N/Lに維持することを特徴とする、請求項8に記載の油脂生産培養方法。 The oil-accumulating algae strain according to any one of claims 3 to 7 is cultured in a nitrogen source-containing medium, and the concentration of nitrogen contained in the medium as a nutrient source is 1 mg-N / L to 1. The oil-fat production culture method according to claim 8, wherein the amount is maintained at 270 mg-N / L.
JP2019145222A 2019-08-07 2019-08-07 Breeding method of algae strain with high oil accumulation in the presence of nitrogen source, algae strain with high oil accumulation in the presence of nitrogen source and method for producing fats and oils using the same Active JP7402447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019145222A JP7402447B2 (en) 2019-08-07 2019-08-07 Breeding method of algae strain with high oil accumulation in the presence of nitrogen source, algae strain with high oil accumulation in the presence of nitrogen source and method for producing fats and oils using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019145222A JP7402447B2 (en) 2019-08-07 2019-08-07 Breeding method of algae strain with high oil accumulation in the presence of nitrogen source, algae strain with high oil accumulation in the presence of nitrogen source and method for producing fats and oils using the same

Publications (2)

Publication Number Publication Date
JP2021023234A true JP2021023234A (en) 2021-02-22
JP7402447B2 JP7402447B2 (en) 2023-12-21

Family

ID=74661946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019145222A Active JP7402447B2 (en) 2019-08-07 2019-08-07 Breeding method of algae strain with high oil accumulation in the presence of nitrogen source, algae strain with high oil accumulation in the presence of nitrogen source and method for producing fats and oils using the same

Country Status (1)

Country Link
JP (1) JP7402447B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114317517A (en) * 2021-12-31 2022-04-12 西安建筑科技大学 Mutagenesis and screening method for improving yield of microalgae grease
CN114467759A (en) * 2022-03-30 2022-05-13 山东东方海洋科技股份有限公司 Method for promoting rapid development of gametophytes of Chelidonium majus
DE112022004625T5 (en) 2021-09-27 2024-08-29 Hitachi Astemo, Ltd. Vehicle control device and vehicle control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025553A1 (en) * 2013-08-23 2015-02-26 国立大学法人神戸大学 Method for generating oil/fat component, method for producing higher unsaturated fatty acid, and chlamydomonas species strain jsc4
JP2016140359A (en) * 2015-02-03 2016-08-08 台灣中油股▲ふん▼有限公司 Novel chlamydomonas and application of the same
JP2017136000A (en) * 2016-02-02 2017-08-10 国立研究開発法人理化学研究所 Method for separating high-oil producing body botryococcus using radiation
JP2017184699A (en) * 2016-04-08 2017-10-12 株式会社ユーグレナ Manufacturing method of high-fat-containing euglena

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025553A1 (en) * 2013-08-23 2015-02-26 国立大学法人神戸大学 Method for generating oil/fat component, method for producing higher unsaturated fatty acid, and chlamydomonas species strain jsc4
JP2016140359A (en) * 2015-02-03 2016-08-08 台灣中油股▲ふん▼有限公司 Novel chlamydomonas and application of the same
JP2017136000A (en) * 2016-02-02 2017-08-10 国立研究開発法人理化学研究所 Method for separating high-oil producing body botryococcus using radiation
JP2017184699A (en) * 2016-04-08 2017-10-12 株式会社ユーグレナ Manufacturing method of high-fat-containing euglena

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112022004625T5 (en) 2021-09-27 2024-08-29 Hitachi Astemo, Ltd. Vehicle control device and vehicle control system
CN114317517A (en) * 2021-12-31 2022-04-12 西安建筑科技大学 Mutagenesis and screening method for improving yield of microalgae grease
CN114467759A (en) * 2022-03-30 2022-05-13 山东东方海洋科技股份有限公司 Method for promoting rapid development of gametophytes of Chelidonium majus
CN114467759B (en) * 2022-03-30 2023-07-14 山东东方海洋科技股份有限公司 Method for promoting rapid development of gametophyte of She Qieshi alga

Also Published As

Publication number Publication date
JP7402447B2 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
KR102102241B1 (en) Euglena spp. microalgae, polysaccharide manufacturing method, and organic compound manufacturing method
JP5608640B2 (en) Microalgae belonging to the genus Navikura, a method for producing oil by culturing the microalgae, a dry alga body of the microalgae, and a carbon dioxide fixing method comprising a step of culturing the microalgae
US20100255541A1 (en) Advanced Algal Photosynthesis-Driven Bioremediation Coupled with Renewable Biomass and Bioenergy Production
JP7402447B2 (en) Breeding method of algae strain with high oil accumulation in the presence of nitrogen source, algae strain with high oil accumulation in the presence of nitrogen source and method for producing fats and oils using the same
Lim et al. Isolation of high-lipid Tetraselmis suecica strains following repeated UV-C mutagenesis, facs, and high-throughput growth selection
JP2015015918A (en) Novel microalgae
WO2016013671A1 (en) Algae for producing long-chain fatty acids, and method for producing long-chain fatty acids using same
Hwang et al. Effects of LED-controlled spatially-averaged light intensity and wavelength on Neochloris oleoabundans growth and lipid composition
CN107118968B (en) Chlorella sorokiniana synthesized starch defect mutant strain and application thereof
US10214756B2 (en) Method for generating oil/fat component from chlamydomonas algae
Zhou et al. Characterization of green microalgae and cyanobacteria isolated from the great salt plains
JP5481876B2 (en) Microalgae belonging to the genus Seddesmus, a method for producing an oil having a step of culturing the microalgae, and an oil collected from the microalgae
JP2021073996A (en) Method for selecting high-carotenoid-accumulation strain, high-carotenoid-accumulation mutant and method for producing carotenoid using the same
Elsayed Production of biofuels from microalgae
JP7486725B2 (en) Method for breeding useful algae strains that accumulate high amounts of oil, mutant strains of algae that accumulate high amounts of oil, and method for producing fats and oils using the same
Ardelean et al. Random mutagenesis in photosynthetic microorganisms further selected with respect to increased lipid content
JP6712893B2 (en) Method for producing Euglena with high fat content
US20150010986A1 (en) Ettlia sp. Strain Having Superior Carbon Dioxide Fixation Ability and Lipid Producing Ability and Use Thereof
Nugroho et al. Isolation and characterization of Botryococcus braunii from a freshwater environment in Tenggarong, Kutai Kartanegara, Indonesia
EP2633026A2 (en) Novel strains of microalgae of the botryococcus genus, and method for cultivating said microalgae in a mixotrophic mode
JP2017184698A (en) Euglena with high content of oil and fat
ARDELEAN et al. Indoor cultivation of selected oil-containing consortia of photosynthetic microorganisms for further biodiesel production; preliminary financial evaluation.
KR101692695B1 (en) Thraustochytriidae sp. mutant strain GA containing high content of polyunsaturated fatty acid and uses thereof
Ungwiwatkul et al. Study on the Potential for Biodiesel Production of Microalgal Consortia from Brackish Water Environment in Rayong Province, Thailand
CN107354147B (en) Scenedesmus acutus synthesized starch defect mutant strain and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231130

R150 Certificate of patent or registration of utility model

Ref document number: 7402447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150