WO2016013671A1 - Algae for producing long-chain fatty acids, and method for producing long-chain fatty acids using same - Google Patents

Algae for producing long-chain fatty acids, and method for producing long-chain fatty acids using same Download PDF

Info

Publication number
WO2016013671A1
WO2016013671A1 PCT/JP2015/071156 JP2015071156W WO2016013671A1 WO 2016013671 A1 WO2016013671 A1 WO 2016013671A1 JP 2015071156 W JP2015071156 W JP 2015071156W WO 2016013671 A1 WO2016013671 A1 WO 2016013671A1
Authority
WO
WIPO (PCT)
Prior art keywords
cysteine
medium
strain
chain fatty
algae
Prior art date
Application number
PCT/JP2015/071156
Other languages
French (fr)
Japanese (ja)
Inventor
河野 重行
誠和 山▲崎▼
修平 大田
絵梨香 鴻▲巣▼
毅 竹下
知子 阿部
裕介 風間
Original Assignee
国立大学法人東京大学
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 国立研究開発法人理化学研究所 filed Critical 国立大学法人東京大学
Priority to JP2016536002A priority Critical patent/JP6721807B2/en
Publication of WO2016013671A1 publication Critical patent/WO2016013671A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats

Definitions

  • the present invention relates to a Chlorellaceae alga capable of controlling the intracellular content of long-chain fatty acids by the medium composition and a method for producing long-chain fatty acids using the algae.
  • Long chain fatty acids obtained by hydrolysis of fats and oils derived from animals and plants are industrially important raw materials, and are used for various applications such as foods, chemical products such as cosmetics or dyes, or biofuels such as biodiesel. Has been.
  • Long-chain fatty acids generally have different chemical properties depending on the number of carbon atoms and the degree of saturation.
  • erucic acid an unsaturated fatty acid having 22 carbon atoms
  • It is a high long chain fatty acid (Non-Patent Documents 1 to 4).
  • Non-Patent Documents 1 to 4 For example, in addition to being used as a surfactant and a lubricant, it is added to oil paints as a polymerization agent. In addition, it can be converted to behenic acid by hydrogenation, and it is also used as a raw material for food as a shortening.
  • docosanol a derivative of erucic acid
  • FDA US Food and Drug Administration
  • octylododecyl erucate is added to cosmetics and hairdressing products.
  • Erucic acid is abundant in rapeseed seeds and is industrially refined from rapeseed oil.
  • canola seeds which are low erucic acid-containing rapeseed varieties, occupy most of the rapeseed planting area, and the raw material supply of erucic acid is decreasing.
  • oils and fats derived from plant seeds usually contain a large amount of long-chain fatty acids other than erucic acid, and for industrial use, fatty acids other than erucic acid must be separated. Therefore, in order to produce erucic acid efficiently and in large quantities, plant species and varieties having a uniform fatty acid composition and a high yield of erucic acid are required at the raw material stage. However, the plant species and varieties having such properties are very limited, and it is difficult to obtain a yield equal to or higher than that of rapeseed with less labor and cost.
  • hydrocarbon-producing algae has attracted attention in order to solve the above problems.
  • Hydrocarbon-producing algae are microalgae having the ability to biosynthesize long-chain aliphatic hydrocarbons in the process of assimilating nutrient sources.
  • Many hydrocarbon-producing algae can be cultured in large quantities in a culture pond or the like without requiring special fertilization or temperature control.
  • the long-chain fatty acid produced is derived from atmospheric carbon dioxide immobilized by photosynthesis, it has the advantage that it can lead to reduction of greenhouse gases and prevention of global warming.
  • since it does not compete with edible vegetable oils and fats a stable raw material supply is possible.
  • hydrocarbon-producing algae generally have a problem that the amount of long-chain fatty acids accumulated in the cell is small and the yield is low.
  • An object of the present invention is to develop and provide a biological material having a high content of a specific long chain fatty acid and high biomass production efficiency. Another object is to develop and provide a method for producing a specific long-chain fatty acid easily, stably and in large quantities using the raw material organism.
  • Chlorellaceae algae which are a group of hydrocarbon-producing algae. Chlorellaceae algae have high biomass production efficiency because they are easy to culture and have a fast growth rate. Furthermore, it has the property of accumulating neutral lipids when cultured under sulfur source deficient conditions (Mizuno, Y., et al., 2013, Bioresour. Technol., 129: 150-155. Doi: 10.1016 / j. biortech. 2012.11.030). Although the details of this accumulation mechanism have not been clarified, the present inventors assumed a relationship with the metabolism of sulfate ion (SO 4 2 ⁇ ).
  • mutant strains that are unable to biosynthesize their metabolite cysteine (cysteine-requiring mutant strain) by losing the metabolic pathway of sulfate ions are always deficient in sulfur sources in normal growth media that do not contain cysteine. It was predicted that lipids would accumulate in the cells without becoming a sulfur source deficient condition. Therefore, we used Parachlorella kessleri to carry out mutagenesis treatment using heavy ion beam as a mutagen to create a cysteine-requiring mutant.
  • Pk 3A7 strain (or Srp1 strain; hereinafter referred to as 3A7 strain) and Pk YY7 strain (or Srp2 strain; hereinafter referred to as YY7 strain) which are cysteine-requiring mutants are as follows:
  • lipids accumulated in the cells under non-cysteine conditions.
  • strain 3A7 was found to accumulate erucic acid in excess of 60% of the total lipid content
  • YY7 strain accumulated oleic acid in excess of 60% of the total lipid content, and up to about 16% of nervonic acid.
  • Candidate strain selection step of selecting a non-strain as a candidate strain a confirmation culture step of culturing the candidate strain again on a plate of cysteine-added medium and a plate of cysteine-free medium, and a candidate strain that does not grow on a plate of cysteine-free medium
  • the mutagen is an alkylating agent or radiation.
  • the cysteine-requiring mutant of the Chlorellaceae algae of the present invention can switch growth and intracellular accumulation of starch and intracellular accumulation of long-chain fatty acids depending on the presence or absence of cysteine in the medium. Utilizing this property, long-chain fatty acids can be efficiently produced using the mutant strain.
  • the growth and intracellular accumulation of long-chain fatty acids in cysteine-requiring mutant strains of Chlorellaceae algae are controlled by exchanging media with different compositions for cysteine. It is possible to easily and efficiently produce chain fatty acids with few steps.
  • the growth curves of P. kessleri wild strain (WT) and 3A7 strain in Cys medium (sulfur (S) low concentration cysteine (cys) -added medium) are shown.
  • the growth curves of a wild strain (WT) of P. kessleri and a 3A7 strain in a TAP medium (a medium containing no S-containing cys) are shown.
  • the relationship between the culture time and the dry weight of cells when P. kessleri wild strain (WT) and 3A7 strain were cultured in TAP medium and STAP medium (medium without S-deficient cys) is shown.
  • Total per cell when P. kessleri wild strain (WT) and 3A7 strain were cultured in TAP medium, STAP medium, TAP + cys medium (medium supplemented with S containing cys) and Cys medium (medium supplemented with S low concentration cys) for 10 days The amount of lipid is shown.
  • composition ratio of the lipid (long-chain fatty acid) accumulated in the cells of the wild strain (WT) of P.7kessleri and the 3A7 strain is shown.
  • the main culture was performed for 8 days in the medium shown on the horizontal axis of the figure.
  • Fatty acids were identified using gas chromatography mass spectrometry (GC-MS).
  • GC-MS gas chromatography mass spectrometry
  • the composition ratio of the lipid (long-chain fatty acid) accumulated in the cells of the wild strain (WT) of P.7kessleri and the 3A7 strain is shown.
  • the main culture was carried out for 10 days in the medium shown on the horizontal axis of the figure.
  • the fatty acid was identified using GC-MS.
  • ⁇ kessleri wild strains (a, b), 3A7 strains (c, d) and YY7 strains (e, f) were pre-cultured in Cys medium (medium supplemented with S low concentration cys), then transferred to TAP medium.
  • Cys medium medium supplemented with S low concentration cys
  • the composition ratio (%) (a, c, e) of lipid (long chain fatty acid) accumulated in the cells when cultured and the amount of each lipid per cell are shown.
  • the horizontal axis represents the number of days that have elapsed since the start of main culture.
  • summary The 1st aspect of this invention is a cysteine requirement mutant of Chlorellaceae algae.
  • the mutant strain of the present invention increases intracellular long-chain fatty acid accumulation by culturing in the absence of cysteine. Therefore, long-chain fatty acids can be produced easily and efficiently using the mutant strain of the present invention.
  • 1-2. Structure The Chlorellaceae alga cysteine-requiring mutant of the present invention is composed of an auxotrophic mutant having an abnormality in the cysteine metabolism system of Chlorellaceae algae.
  • Chlorellaceae algae is a green algal plant belonging to the Trebouxiophyceae Chlorellales. They are immobile unicellular organisms (including colonies), and many species live floating in water.
  • the Chlorellaceae algae include, for example, Chlorella algae, Parachlorella algae, and the like. Specific examples of Chlorella algae include C. pyrenoidosa (C. pyrenoidosa), C. sorokiniana (C. solokiniana), C. lobophora (C. robophora), C. vulgaris (C. bulgaris).
  • P. ⁇ kessleri is mentioned as a specific example of Parachlorella algae.
  • Chlorellaceae are hydrocarbon-producing algae that can biosynthesize long-chain fatty acids in a pathway that assimilates starch biosynthesized by photosynthesis. It also has the property of accumulating long chain fatty acids in cells under sulfate ion (SO 4 2 ⁇ ) deficiency conditions.
  • Chlorellaceae algae preferred cysteine-requiring mutant of the present invention is not particularly limited as long as it is a species having the above properties, but is easy to culture, has a short doubling time, can be cultured in large quantities, and Species with high biomass production efficiency are preferred.
  • a preferred example is P.lerkessleri.
  • a cysteine-requiring mutant is an auxotrophic mutant having an abnormality in the cysteine metabolic system as described above.
  • a wild strain of Chlorellaceae, a photoautotrophic organism biosynthesizes L-cysteine (2-Amino-3-mercaptopropanoic acid) (referred to as “cysteine” in this specification) via the sulfate ion metabolic pathway it can.
  • the cysteine-requiring mutant strain of the present invention corresponds to a mutant strain lacking the ability to biosynthesize cysteine due to a defect in a metabolic pathway from sulfate ion to cysteine. Any mutant strain that cannot grow on a cysteine-free medium may be used, and it does not matter which of the metabolic pathways is abnormal.
  • cys mutant refers to a cysteine-requiring mutant of Chlorellaceae algae.
  • the cys mutant strain is characterized in that it cannot grow on a medium not containing cysteine but can grow on a medium containing cysteine.
  • Specific examples of the cys mutant include a cysteine-requiring mutant of P. kessleri, 3A7 strain indicated by international accession number FERM BP-22268, or YY7 strain indicated by international accession number FERM BP-22288. P.
  • kessleri 3A7 stock with international deposit number FERM BP-22268 was issued on April 8, 2014 by the Patent Biological Depositary Center of the National Institute of Technology and Evaluation (2 Kazusa Kamashizu, Kisarazu City, Chiba Prefecture 292-0818, Japan) Stocks deposited domestically in Room -5-8 (120) were deposited at the center, an international depositary organization, on July 14, 2015.
  • P. kessleri YY7 stock with international deposit number FERM BP-22288 was issued on July 14, 2015 by the International Depositary Agency, National Institute of Technology and Evaluation, Patent Biological Depositary Center (Chiba, Japan 292-0818, Japan). It is deposited in Kazusa-Kamazu 2-5-8 120, Kisarazu City.
  • “Long-chain fatty acid” (long-chain aliphatic hydrocarbon or higher fatty acid) usually means a fat-soluble fatty acid represented by the general formula R-COOH.
  • the long-chain fatty acid means a fatty acid having 10 to 30 carbon atoms, in which R represents an alkyl group having 9 ⁇ C ⁇ 29 in the general formula.
  • R represents an alkyl group having 9 ⁇ C ⁇ 29 in the general formula.
  • it is a fatty acid having 20 to 30 carbon atoms and showing an alkyl group of 19 ⁇ C ⁇ 29.
  • the shape of the carbon chain of the long chain fatty acid is not limited. It may be linear or branched.
  • the long-chain fatty acid includes both a saturated fatty acid having no double bond in the carbon chain and an unsaturated fatty acid having one or more double bonds.
  • Specific examples of long-chain fatty acids that are the subject of the present invention include C10: 0 (10 carbon atoms; 0 double bonds, the same shall apply hereinafter) capric acid (decanoic acid) and C12: 0 (carbon) for saturated fatty acids.
  • Number 12 Number of double bonds: 0, lauric acid (dodecanoic acid) of C14: 0, myristic acid (tetradecanoic acid) of C14: 0, pentadecylic acid (pentadecanoic acid) of C15: 0, palmitic acid of C16: 0 (hexadecane) Acid), C17: 0 heptadecanoic acid (margaric acid), C18: 0 stearic acid (octadecanoic acid), C20: 0 arachidic acid (icosanoic acid), C22: 0 behenic acid (docosanoic acid), C24: 0 Lignoceric acid (tetracosanoic acid), C26: 0 serotic acid (hexacosanoic acid), C28: 0 montanic acid (octaconic acid), and C30: 0 melicic acid (triacontanoic acid).
  • C16 1 palmitoleic acid (hexadecenoic acid), C18: 1 oleic acid (octadecenoic acid), C18: 2 linoleic acid (octadecadienoic acid), C18: 3 linolenic acid (Octadecatrienoic acid), C20: 1 gadoleic acid (icosaenoic acid), C20: 4 arachidonic acid (icosatetraenoic acid), C20: 5 eicosapentaenoic acid (EPA), C22: 1 erucic acid (docosaenoic acid) C22: 5 docosapentaenoic acid (DPA), C22: 6 docosahexaenoic acid (DHA), C24: 1 nervonic acid (tetracosaenoic acid), and the like.
  • EPA eicosapentaenoic acid
  • DPA docosapentaenoic
  • the cys mutant of the present invention has the property of biosynthesizes the long-chain fatty acid and accumulates it in a large amount in the cell by culturing under nutrient stress conditions.
  • nutrient stress refers to sulfur stress or cysteine stress.
  • sulfur source deficiency stress, low concentration sulfur stress, low concentration cysteine stress, and cysteine deficiency stress are applicable.
  • C22 is added as a long chain fatty acid by culturing in a cysteine-free medium that imparts cysteine-deficient stress, preferably a sulfur-containing cysteine-free medium such as a TAP medium described later.
  • 1 erucic acid can be accumulated at a content of 60% or more of the total lipid content in the cell. Further, in the case of the P. kessleri YY7 strain, by culturing in a cysteine-free medium that imparts cysteine-deficient stress, preferably a sulfur-containing cysteine-free medium such as a TAP medium described later, the total amount of intracellular lipids It is possible to accumulate C18: 1 oleic acid at a content of 60% or more, and C24: 1 nervonic acid at a maximum of about 16%. 1-3.
  • Chlorellaceae algae cysteine-requiring mutant of the present invention may be isolated from nature, but may be isolated from nature. It can also be artificially produced by subjecting algae to a sudden induction treatment and then culturing in a medium with and without cysteine added.
  • the type of Chlorellaceae that are suddenly induced is not particularly limited, but a species that is easy to culture, has a short doubling time, and has high biomass production efficiency is preferable.
  • examples of such species include C. pyrenoidosa (2.90-3.64 g / L / day), C. sorokiniana (0.23-1.473g / L / day), P.Pkessleri (1.29 g / L / day), and the like. It is done.
  • examples of such species include C. vulgaris (0.3 g / L / day), P. kessleri (0.48 to 0.59 g / L / day), and the like. Therefore, P. kessleri is a particularly preferable species as the chlorellaceae for producing cysteine-requiring mutants of the present invention. It is preferable to use cells collected from the medium during the logarithmic growth phase as the chlorellaceae used for the sudden induction treatment.
  • Chlorellaceae algae are cultured in accordance with the general culture method for freshwater chlorella (or freshwater microalgae) in principle (see: Preservation of Microorganisms, 1977, edited by Yoshio Sonei, Tokyo University Press). Just do it.
  • a known mutagen may be used as the mutagen for the sudden induction treatment.
  • a mutagen and radiation are mentioned.
  • Sudden induction by a mutagenic agent can be achieved by contacting a chlorellaceae algae with a mutagen agent solution for a predetermined time.
  • a mutagenic agent an alkylating agent such as ethyl methanesulfonate (EMS) or N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) can be used.
  • EMS ethyl methanesulfonate
  • MNNG N-methyl-N′-nitro-N-nitrosoguanidine
  • concentration and contact time of the mutagenic agent may be appropriately determined in consideration of the type of mutagenic agent, the type of Chlorellaceae algae, the survival rate, and the like. For specific methods, see the methods described in Green, GreenMR and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Good.
  • Sudden induction by radiation can be achieved by irradiating Chlorellaceae algae with radiation for a predetermined time.
  • radiation include alpha rays, beta rays, gamma rays, X rays, ultraviolet rays, and heavy ion beams (for example, 12 C, 14 N, 20 Ne, 40 Ar, and 56 Fe).
  • LET Linear Energy Transfer
  • LET refers to the energy (keV / mm) that is lost (given to the target) on average per unit length along the range when radiation passes through a substance. LET varies depending on the radiation quality.
  • the LET of gamma rays and X-rays is as low as 0.2 to 2 keV / mm, and the LET of heavy ion beams is as high as 23 to 4000.
  • a low LET radiation quality requires a larger amount of absorbed dose, but on the other hand, the higher the absorbed dose, the lower the survival rate. Therefore, sudden induction by radiation may be determined as appropriate in accordance with the radiation quality.
  • DNA single strand breaks and point mutations can be induced with a semi-lethal dose.
  • suitable mutations can be induced in the dose range that has no effect on the fertility and survival rate, or at a very low dose range (Ota et al., 2013, Bioresour. Technol. 149: 432-438).
  • the cells after the sudden induction treatment are washed and then applied to a plate of cysteine-added medium, and under appropriate growth conditions (for example, the same conditions as described in the preculture step in the long-chain fatty acid production method of the second aspect described later) (Under conditions).
  • Colonies may be formed to a size of 2 mm to 5 mm in diameter.
  • transfer the colonies to a plate of cysteine-free medium such as TAP medium using a cellulose filter or sterilized cloth to take a replica, or pick up from cells derived from the same colony with a spatula or platinum ear etc. and add cysteine And transplanted into the co-located compartment on the plate of non-supplemented medium.
  • the strain grows on the cysteine-added plate to reconstitute colonies, but the strain that does not grow on the cysteine-free plate and cannot form colonies is selected as a candidate strain.
  • Candidate strains are taken from the grown plate of the stain-containing medium and re-implanted into the in-situ compartment on the plate with and without cysteine added medium. Thereafter, it is reconfirmed that it does not grow only on the cysteine-free medium plate.
  • the Chlorellaceae algae obtained by the above method is used as the Chlorellaceae alga cysteine-requiring mutant of the present invention. If it is necessary to identify the long-chain fatty acids that cys mutants biosynthesize and accumulate, after culturing the cys mutants under nutrient stress conditions such as TAP medium, the intracellular long-chain fatty acids can be identified by known methods. Good.
  • the method for identifying and quantifying long chain fatty acids is not particularly limited.
  • mass spectrometry or NMR can be used.
  • Mass spectrometry includes high performance liquid chromatography mass spectrometry (LC-MS), high performance liquid chromatography tandem mass spectrometry (LC-MS / MS), gas chromatography mass spectrometry (GC-MS), and gas chromatography tandem mass spectrometry.
  • Methods GC-MS / MS
  • CE-MS capillary electrophoresis mass spectrometry
  • ICP-MS ICP mass spectrometry Any of these analysis methods are known in the art and may be performed according to these methods.
  • a cys mutant having a uniform fatty acid composition and a high content of the desired long-chain fatty acid it can be immediately selected from the group of cys mutants in the database.
  • the P. kessleri 3A7 strain can be used as a cys mutant having a high erucic acid content
  • the P. kessleri YY7 strain can be used as a cys mutant having a high oleic acid or nervonic acid content.
  • the cys mutant of the present invention is easy to culture, and biosynthesizes a large amount of long-chain fatty acids under nutrient stress conditions and accumulates in the cells. Therefore, by using the cys mutant of the present invention, it is possible to easily and inexpensively produce long chain fatty acids.
  • a target cys mutant of the present invention can be produced relatively easily without requiring a great deal of trial and error using the auxotrophy of cysteine as an index.
  • summary The 2nd aspect of this invention is a long-chain-fatty-acid production method.
  • the production method of the present invention produces long-chain fatty acids using the Chlorellaceae algal cysteine-requiring mutant described in the first aspect. According to the production method of the present invention, a long-chain fatty acid can be provided easily, inexpensively and stably. 2-2.
  • the long-chain fatty acid production method of the present invention includes a pre-culture step and a stress application step as essential steps, and an extraction step as a selection step.
  • a pre-culture step is an essential process in this production method in which the chlorellaceae algaline cysteine-requiring mutant strain described in the first aspect is cultured in a cysteine-added medium.
  • the pre-culture process is aimed at the growth of cys mutants and the accumulation of intracellular starch.
  • cyste-added medium refers to a growth medium for Chlorellaceae algae containing cysteine.
  • examples of such a growth medium include a cysteine medium in which cysteine is added to a low-concentration sulfur medium (in this specification, often referred to as “Cys medium”) and a medium in which cysteine is added to a basal growth medium.
  • composition of the Cys medium examples include NH 4 Cl 40 mg, CaCl 2 ⁇ 2H 2 O 5.1 mg, MgCl 2 ⁇ 6H 2 O 25.3 mg, K 2 HPO 4 11.9 mg, KH 2 PO 4 6.03 mg, Hutner's trace elements 0.1 mL , Acetic acid 0.1 mL, Tris (hydroxymethyl) aminomethane 242 mg, Distilled water 99.8 mL (pH 6.5-6.8) (where Hutner's trace elements: Na 2 EDTA ⁇ 2H 2 O 5g, ZnSO 4 ⁇ 7H 2 O 2.2g, H 3 BO 3 1.14g, MnCl 2 ⁇ 4H 2 O 506mg, FeSO 4 ⁇ 7H 2 O 499mg, CoCl 2 ⁇ 6H 2 O 161mg, CuSO 4 ⁇ 5H 2 O 157mg, (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O 110 mg, distilled water 100 mL), and cysteine
  • the composition of the basic growth medium is not particularly limited as long as it is a medium in which wild-type Chlorellaceae can grow.
  • TAP medium containing only sulfuric acid (S) as a sulfur source (NH 4 Cl 40 mg, CaCl 2 ⁇ 2H 2 O 5.1 mg, MgSO 4 ⁇ 7H 2 O 10 mg, K 2 HPO 4 11.9 mg, KH 2 PO 4 6.03 mg , Hutner's trace elements (described above) 0.1 mL, Acetic acid 0.1 mL, Tris (hydroxymethyl) aminomethane 242 mg, Distilled water 99.8 mL) (pH 6.5 to 6.8).
  • the amount of cysteine added may be 500 ng / mL to 100 ⁇ g / mL. Preferably, it is 1 ⁇ g / mL.
  • the culture temperature may be any temperature at which the cys mutant can grow. Usually, it is in the range of 15 to 35 ° C., preferably 18 to 30 ° C., more preferably 20 to 28 ° C., same as wild type Chlorellaceae.
  • the photon flux density at the time of exposure may be in the range of 5 to 150 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 , preferably 25 to 100 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 .
  • the photon flux density is a value obtained by dividing the total number of photons contained in the surface irradiated with light for 1 second by the light receiving area.
  • the exposure may be continuous irradiation or intermittent irradiation having a light and dark period. In the case of intermittent irradiation, the light-dark period is not particularly limited.
  • the light period is 8 hours: the dark period is 16 hours (referred to as “8hr: 16 hr”, the same shall apply hereinafter) to 16 hr: 8 hours.
  • the range of 10hr: 14hr to 14hr: 10hr is preferable. Usually, it may be performed at 12hr: 12hr.
  • Light of 600 to 750 nm and light of 400 to 500 nm are effective for photosynthesis of Chlorellaceae algae. Accordingly, the light source is not particularly limited as long as it can emit these wavelength spectrum lights contributing to photosynthesis. In addition to sunlight, fluorescent lamps, mercury lamps, metal halide lights, and the like can be given.
  • a light source that emits monochromatic light having a spectrum peak at a specific wavelength
  • a specific wavelength such as an LED (Light Emitting Diode)
  • a plurality of types of LEDs having a spectrum peak in the range of the wavelength spectrum may be combined. You may use as a light source of this process.
  • the culture period of this step is performed until the cys mutant inoculated in the cysteine-added medium reaches the logarithmic growth phase to the stationary phase.
  • the logarithmic growth phase is preferably a late logarithmic growth phase in which a high cell growth rate is maintained and a large number of cells can be collected.
  • the stationary phase is a period from the extremely slow increase in growth rate to 0, and the early stationary phase in which the appearance rate of dead cells and debilitated cells is relatively low is preferable.
  • the specific culture period varies depending on the cys mutant, medium, culture temperature, etc. For example, in the case of P. kessleri 3A7 strain, it is 2-14 days under conditions of 18-25 ° C. in Cys medium. Preferably 6 to 12 days.
  • the medium may be agitated as necessary throughout the pre-culture period, or regularly or irregularly.
  • Any stirring means may be used.
  • a stirring device such as a stirring rod may be used, or the culture medium may be stirred by reversing, rotating, or vibrating the culture tank.
  • Stress application process is an essential process in the production method in which cells of the cys mutant obtained in the pre-culture process are cultured in a nutrient stress application medium. The purpose of this process is to biosynthesize long-chain fatty acids in the cells and then accumulate them by transferring cys mutants that have grown in the pre-culture process and accumulated starch in the cells under nutrient stress conditions. And
  • the nutrient stress corresponds to sulfur source deficiency stress, low-concentration cysteine stress, and cysteine deficiency stress.
  • Sulfur source deficiency stress can be imparted by culturing cys mutants in the absence of a sulfur source (S) such as sulfate ion (SO 4 2 ⁇ ).
  • S sulfur source
  • low concentration cysteine stress can be imparted by culturing the cys mutant in a medium having a cysteine concentration lower than that required for growth and / or proliferation of the cys mutant.
  • Cysteine deficiency stress can be imparted by culturing the cys mutant in the absence of cysteine.
  • preferable nutritional stress is low-concentration cysteine stress or cysteine deficiency stress, and more preferable nutritional stress is cysteine deficiency stress.
  • “Nutritional stress imparting medium” refers to a medium that imparts nutritional stress to the cys mutant.
  • a sulfur source deficient medium S deficient medium
  • a ZnSO 4 and FeSO 4 of Hutner's trace elements in TAP medium each substituted with ZnCl 2 and FeCl 2, STAP medium Takeshita et al which completely removed the sulfate ions from the medium., 2014, Bioresour Technol. 158: 127-34.
  • the nutritional stress is a low concentration cysteine stress
  • a low concentration cysteine medium low Cys medium
  • a Cys medium having a cysteine concentration of 0.001 to 0.01 ⁇ g / mL or less is applicable. If the nutrient stress is cysteine deficiency stress, a cysteine-free medium, for example, a TAP medium containing only the above-mentioned sulfate ion as a sulfur source is applicable.
  • the cells may be planted in a nutrient stressed medium.
  • Cell recovery can be achieved by centrifuging or filtering the culture solution by a conventional method to remove the medium.
  • a method of recovering the cell slurry after centrifuging the culture solution for an appropriate time with a centrifuge and a method of removing the culture solution using an appropriate filter having a pore size smaller than the cell size of the culture solution can be mentioned.
  • the collected cells may be washed once or more with a buffer or physiological saline having an osmotic pressure comparable to that of water or a medium as necessary.
  • the culture conditions in this step may be performed according to the pre-culture step with respect to the culture temperature, light and dark period, and the like.
  • the medium can be stirred and carbon dioxide added.
  • the culture period is 10 to 30 days, preferably 5 to 15 days.
  • the P. kessleri 3A7 strain and the YY7 strain it is 14 to 28 days under conditions of 20 to 28 ° C. in a TAP medium.
  • erucic acid is biosynthesized intracellularly by this process
  • oleic acid and nervonic acid are biosynthesized and accumulated in large quantities.
  • the "extraction process” is an extraction process for extracting long-chain fatty acids from the cells of the cys mutant strain after the stress application process. This step is a selection step and may be performed as necessary. The purpose of this step is to extract and recover long-chain fatty acids that are biosynthesized by cys mutants in the stressing step and accumulated in the cells.
  • cys mutant cells are first recovered from the culture solution after the stressing step.
  • the recovery method may be the same as the method described in the stress applying step. Thereafter, if necessary, the cells may be washed once or more with water or a buffer or physiological saline having an osmotic pressure comparable to that of the medium.
  • the long-chain fatty acid extraction method used in this step can be any method known in the art for extracting hydrocarbons from hydrocarbon-producing algae such as Chlorellaceae algae.
  • Chlorellaceae algae usually have a strong cell wall. Therefore, in order to efficiently extract long-chain fatty acids from cells, it is preferable to treat the recovered cys mutants by physical methods and / or chemical methods.
  • Examples of physical methods include an extraction method using a crushing method, an ultrasonic method, or a combination thereof.
  • the “crushing method” is a method in which a physical pressure is applied to cells to crush the cell wall and extract long-chain fatty acids in the cells.
  • the crushing method for example, first, the collected cells are physically ground using a bead mill or a grind mill to obtain a crushed liquid. Specific conditions and methods may be referred to the mill instruction manual. Thereafter, the protein in the crushing solution is denatured and removed as necessary, and the crushing solution is centrifuged as it is or after adding an organic solvent or the like, and then an oil phase (organic solvent phase) containing a long-chain fatty acid is recovered.
  • the organic solvent used may be a low-polar or non-polar water-immiscible medium, such as an aliphatic or alicyclic hydrocarbon having 6 to 10 carbon atoms such as n-hexane or n-heptane, or benzene.
  • An aromatic hydrocarbon having 6 to 10 carbon atoms is preferable, and hexane or n-heptane is more preferable.
  • the “ultrasonic method” is a method in which cell walls are crushed by ultrasonic waves to extract long-chain fatty acids in the cells.
  • the ultrasonic method for example, first, the collected cells are suspended in an appropriate solution such as water or a buffer, and then the cells are crushed at an appropriate oscillation frequency and output using an ultrasonic crusher (sonicator).
  • an ultrasonic crusher sonicator
  • Specific conditions and methods may be referred to the instruction manual for the ultrasonic crushing apparatus. Then, the protein in a crushing liquid is denatured and removed as needed, and the method of collect
  • Examples of the chemical method include an enzyme method.
  • the “enzymatic method” is a method in which a cell wall is lysed by an enzyme to extract intracellular long-chain fatty acids.
  • an enzyme for example, a cocktail of Cellulase R-10, Hemicellulase, Lysozyme, ⁇ -Mannosidase, and ⁇ -Mannosidase may be used.
  • cells are first treated under the optimum conditions for the enzyme used. Thereafter, if necessary, the protein in the enzyme treatment solution is denatured and removed, and the long chain fatty acid is recovered from the remaining solution in the same manner as the extraction method by crushing.
  • the method for recovering or purifying the long-chain fatty acid dissolved in the organic solvent may be any method known in the art and is not particularly limited. For example, a method of saponification with an esterification or alkali or the like and fractionating may be mentioned. Further, the invention disclosed in JP-A-8-9981 can be used. 2-3. Effect According to the method for producing a long-chain fatty acid of the present invention, it is possible to produce by simply changing the cell culture medium without requiring the vegetable oil / fat hydrolysis step performed by the conventional method. Since long-chain fatty acids can be efficiently produced with few steps, production costs can be reduced, and long-chain fatty acids can be provided at low cost.
  • the amount of starch accumulated in cells and the amount of accumulated long-chain fatty acids are in a trade-off relationship, the amount of long-chain fatty acids accumulated in the cells can be adjusted by adjusting the culture period in the medium for accumulating each. Can be controlled.
  • the method for producing long-chain fatty acids of the present invention uses chlorellaceae algae as a raw material, it is not affected by the planting amount or production amount of a plant for fats and oils, and does not cause any competition problems with edible vegetable oil. Can be secured stably.
  • Example 1 Isolation of cysteine-requiring mutant of Chlorellaceae algae> (the purpose) Chlorellaceae algae are subjected to mutagenesis to isolate cysteine-requiring mutants.
  • Method A. Cultivation of Chlorellaceae Algae
  • P. kessleri is a freshwater unicellular green algae with a diameter of 5 to 10 ⁇ m, and belongs to a slightly larger class as Chlorellaceae. Wild strains grow easily on TAP medium and are extremely easy to culture. Moreover, since the oil content is relatively higher than other chlorellaceae and the growth rate is fast, the biomass production efficiency is also high. Therefore, a wild strain (WT) of P.
  • kessleri was used as a Chlorellaceae for isolation of cysteine-requiring mutants.
  • P. kessleri wild strain N-2152 strain obtained from National Institute for Environmental Studies (Tsukuba; Japan) is inoculated into 40 mL of TAP medium, and the light intensity is 150 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 , 12hr: 12hr Light and dark periods were given, and static culture was performed at 23 ° C. for 1 to 2 weeks. This culture solution was seeded in 100 mL of TAP medium and cultured again for 5 days under the same conditions.
  • Mutagenesis treatment Divide 200 mL of the culture solution into 8 tubes (Rikaken) and irradiate the culture solution with RIBF (RI-Beam Factory) (RIKEN; Wako; Japan) to P. kessleri. Mutation induction treatment was performed.
  • RIBF RI-Beam Factory
  • RIKEN Wako; Japan
  • RIKEN Wako; Japan
  • Mutation induction treatment was performed.
  • Strains after irradiation with heavy ions were applied to 500 Cys-1.5% agar media (Cys plates), and the cells were cultured at 23 ° C. for 14 days until a colony was formed at a light / dark period of 12 hr: 12 hr. C.
  • the 3A7 strain which is a cysteine-requiring mutant strain of P. kessleri obtained in Example 1, is examined for basic properties such as growth curve, cell dry weight and total lipid amount.
  • Method A. Growth curve P. kessleri 3A7 strain is inoculated into 100mL of TAP medium and Cys medium respectively, light intensity is 150 ⁇ mol ⁇ m -2 ⁇ s -1 , 12hr: 12hr light / dark period is given, and static culture at 23 ° C for 10 days did.
  • P. kessleri strain 3A7 is cultured in two types of media: TAP medium (medium without sulfur-containing cysteine) and STAP medium (medium without sulfur-deficient cysteine). The change in dry weight was examined.
  • TAP medium In addition, culturing in 4 types of media: TAP medium, STAP medium, TAP + cys medium (sulfur-containing cysteine-added medium) and Cys medium (low-concentration sulfur cysteine-added medium). Examined. The culture was performed at a light intensity of 150 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 , a light / dark period of 12 hr: 12 hr, and statically cultured at 23 ° C. for 10 days. For verification of changes in dry weight, after 2 days, 4 days, 7 days and 10 days of culture, and for verification of changes in total lipid content, a portion of the culture solution after 3 days, 5 days, 7 days and 10 days of culture. Were collected.
  • the dry weight was measured as follows. 4 mL of the cell suspension was collected, and the supernatant was removed by centrifugation to obtain a cell pellet. The obtained cell pellet was resuspended in 1 mL of ethanol, placed in a pre-weighed aluminum petri dish, and dried at 105 ° C. for 3 hours. The difference in weight before and after drying was determined and defined as the dry weight.
  • P. kessleri wild strain (WT: N-2152 strain) was used under the same conditions.
  • the total lipid amount was measured as follows. 10 mL of the cell suspension was collected, and the supernatant was removed by centrifugation to obtain a cell pellet. The obtained cell pellet was suspended in the order of 1.5 mL methanol and 5 mL MTBE, and the cells were disrupted by ultrasonic waves for 60 seconds. After crushing, the mixture was shaken at 150 rpm for 2 hours with a shaker (DOUBLE : SHAKER NR-30: Taitec), and 1.5 mL of water was added to separate it into an aqueous layer and an oil layer. The upper oil layer was collected in a pre-weighed aluminum petri dish and dried overnight in a fume hood. The difference in weight before and after drying was determined as the dry weight. As a positive control, P. kessleri wild strain (WT: N-2152 strain) was used under the same conditions.
  • WT N-2152 strain
  • the 3A7 strain grew to the same extent as the wild strain on the Cys medium containing cysteine (FIG. 1A). On the other hand, in the TAP medium containing sulfur but not containing cysteine, the wild strain grew normally, but the 3A7 strain could hardly grow, confirming that it was a cysteine-requiring mutant (FIG. 1B).
  • B. The results of the culture time and dry weight of P. kessleri are shown in FIG. 2, and the amount of lipid accumulation per cell of P. kessleri cultured in each medium is shown in FIG.
  • FIG. 3 shows that in the case of the 3A7 strain, the amount of lipid accumulation per cell is remarkably increased when cultured in a cysteine-free medium such as TAP medium or STAP medium. In contrast, in the complete medium (TAP + cys medium and Cys medium) supplemented with cysteine, the amount of lipid accumulation per cell was low. On the other hand, in the case of the wild strain, the lipid accumulation amount per cell was high only when cultured in the STAP medium lacking sulfur.
  • a sulfur-deficient cysteine-free medium such as STAP medium is suitable in terms of the amount of lipid accumulation per cell, but the total lipid amount does not increase because the biomass is significantly reduced. Therefore, when the 3A7 strain of P. kessleri, a cysteine-requiring mutant of the present invention, is cultured in a cysteine-free medium such as TAP medium, the amount of lipid accumulation per cell and the amount of biomass and total lipid are high. It was found that the lipid production efficiency was the best because it could be maintained at the value.
  • Example 3 Composition ratio of intracellular lipid in P. kessleri 3A7 strain> (the purpose) P.
  • kessleri strain 3A7 identifies lipids that accumulate in cells and identifies changes in composition ratio due to medium.
  • Method P. kessleri strain 3A7 was cultivated in 100 mL of Cys medium at a light intensity of 150 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 , 12 hr: 12 hr, and incubated at 23 ° C. for 10 days (pre-culture step) . After culturing, the slurry was collected by centrifugation at 700 g for 10 minutes (LOW SPEED CENTRIFUGE LC-121: TOMY).
  • the slurry was transplanted to 100 mL of TAP medium, STAP medium, TAP + cys medium, and Cys medium, respectively, which were used as main culture.
  • the light intensity was 150 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1
  • a 12 hr: 12 hr light / dark period was given, and the cells were left to stand at 23 ° C. for 10 days (stress application step).
  • FIG. 4 shows the composition ratio of intracellular lipid of P.
  • the wild type of P. kessleri contained about 40% erucic acid on the 10th day of culture in the STAP medium lacking the sulfur source, but contained only about 10% in the TAP medium.
  • the sulfur source is contained in various forms in the medium, and it is not easy to control the content of erucic acid by the sulfur source-deficient medium.
  • Example 4 Composition ratio of intracellular lipid in P. kessleri YY7 strain> (the purpose) We will identify the lipids that P. kessleri strain YY7 accumulates in the cells, and verify the difference in lipid composition ratio from wild-type and other mutants. (Method) The basic operation is in accordance with the third embodiment. First, P.
  • kessleri wild strain, 3A7 strain, and YY7 strain were each 100 mL of Cys medium, light intensity was set to 150 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 , and 12 hr: 12 hr of light and dark period was given, and 10 ° C. at 23 ° C.
  • the culture was allowed to stand for 1 day (preculture process). After culturing, the slurry was collected by centrifugation at 700 g for 10 minutes (LOW SPEED CENTRIFUGE LC-121: TOMY). After washing once with sterilized water, the slurry of each strain was transplanted into 100 mL of TAP medium, which was used as main culture.
  • the light intensity was set to 150 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 , a 12 hr: 12 hr light / dark period was given, and the cells were statically cultured at 23 ° C. for 10 days (stress application step).
  • a (wild strain), c (3A7 strain), and e (YY7 strain) show changes in the intracellular lipid composition ratio over time after the start of the main culture. Further, b (wild strain), d (3A7 strain), and f (YY7 strain) indicate changes over time in the amount of each lipid accumulated in the cells.
  • C18: 1 oleic acid and C24: 1 nervonic acid could be stably obtained during the main culture period.
  • the amount of oleic acid accumulated was found to be about 65% of the total intracellular lipid amount, and the amount of nervonic acid accumulated was about 16%.
  • the 3A7 strain and the YY7 strain are both P. skessleri, and both accumulate oleic acid in the cells in the main culture, but the 3A7 strain does not accumulate nervonic acid at all, and the YY7 strain does not contain erucic acid. It became clear that it did not accumulate at all. This result suggests that even if the cysteine-requiring mutant strains of the present invention are derived from the same species, different long-chain fatty acids can be produced depending on the strain species.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 A long-chain fatty acid raw material derived from organisms that accumulate large amounts of fatty acids and permit a stable supply was developed, and a method for producing specific long-chain fatty acids easily, inexpensively, and in large quantities using the same is provided. Provided is a cysteine-requiring variant of Chlorella algae that accumulates large amounts of long-chain fatty acids intracellularly when cultured in a nutrient stress medium containing cysteine or the like.

Description

長鎖脂肪酸生産藻類及びそれを用いた長鎖脂肪酸生産方法Long chain fatty acid producing algae and method for producing long chain fatty acid using the same
 本発明は、培地組成によって長鎖脂肪酸の細胞内含有量を制御可能なクロレラ科藻類及びそれを用いた長鎖脂肪酸の生産方法に関する。 The present invention relates to a Chlorellaceae alga capable of controlling the intracellular content of long-chain fatty acids by the medium composition and a method for producing long-chain fatty acids using the algae.
 動植物由来の油脂を加水分解して得られる長鎖脂肪酸は、工業上重要な原料であり、食品、又は化粧品若しくは染料等の化成品、あるいはバイオディーゼルのようなバイオ燃料等、様々な用途に利用されている。 Long chain fatty acids obtained by hydrolysis of fats and oils derived from animals and plants are industrially important raw materials, and are used for various applications such as foods, chemical products such as cosmetics or dyes, or biofuels such as biodiesel. Has been.
 長鎖脂肪酸は、一般に炭素数と飽和度によって化学的性質が異なる。例えば、炭素数22の不飽和脂肪酸であるエルカ酸は、摂取に伴う人体への影響から食用への制限はあるが、付加価値の高い様々な誘導体の出発原料として利用されており、需要度が高い長鎖脂肪酸である(非特許文献1~4)。例えば、界面活性剤、潤滑剤として利用される他、重合剤として油彩絵具に添加されている。また、水素付加によってベヘン酸に変換可能で、ショートニングとして食品の原材料にも利用されている。さらに、エルカ酸の誘導体であるドコサノールは、ヘルペスウイルスによって生じる口内炎を抑制する作用が報告されており(非特許文献5及び6)、米国食品医薬品局(FDA)に認可されている。その他、エルカ酸オクチロドデシルは、化粧品や整髪料に添加されている。エルカ酸は、ナタネ種子に多く含まれており、工業的にはナタネ油から精製されている。ところが、近年は低エルカ酸含有ナタネ品種であるキャノーラ種がナタネの作付面積の大半を占めるようになり、エルカ酸の原料供給量が低下している。 Long-chain fatty acids generally have different chemical properties depending on the number of carbon atoms and the degree of saturation. For example, erucic acid, an unsaturated fatty acid having 22 carbon atoms, is used as a starting material for various high-value-added derivatives, although there are restrictions on food consumption due to the effects on the human body due to ingestion. It is a high long chain fatty acid (Non-Patent Documents 1 to 4). For example, in addition to being used as a surfactant and a lubricant, it is added to oil paints as a polymerization agent. In addition, it can be converted to behenic acid by hydrogenation, and it is also used as a raw material for food as a shortening. Furthermore, docosanol, a derivative of erucic acid, has been reported to suppress stomatitis caused by herpes virus (Non-Patent Documents 5 and 6) and has been approved by the US Food and Drug Administration (FDA). In addition, octylododecyl erucate is added to cosmetics and hairdressing products. Erucic acid is abundant in rapeseed seeds and is industrially refined from rapeseed oil. However, in recent years, canola seeds, which are low erucic acid-containing rapeseed varieties, occupy most of the rapeseed planting area, and the raw material supply of erucic acid is decreasing.
 そこで、ナタネに代わるエルカ酸の原料開発が急務となっている。しかし、植物種子等に由来する油脂には、通常、エルカ酸以外の長鎖脂肪酸が多量に含まれており、工業利用に際しては、エルカ酸以外の脂肪酸を分離しなければならない。したがって、エルカ酸を効率的に、また大量に生産するためには、原料の段階で脂肪酸組成が均質で、かつエルカ酸収量が高い植物種や品種が必要となる。ところが、そのような性質を有する植物種や品種は、非常に限定的であり、ナタネと同程度以下の労力とコストで同等以上の収量を得ることは難しい。さらに、エルカ酸蓄積量が多い新たな品種の開発にも、多大な時間と労力を要する。加えて、ナタネをはじめとする原料植物は、栽培可能な環境や耕作地が限定されている。一方で耕作地の拡大は、栽培管理の負担増大や環境破壊という問題を伴う。 Therefore, there is an urgent need to develop a raw material for erucic acid to replace rapeseed. However, oils and fats derived from plant seeds usually contain a large amount of long-chain fatty acids other than erucic acid, and for industrial use, fatty acids other than erucic acid must be separated. Therefore, in order to produce erucic acid efficiently and in large quantities, plant species and varieties having a uniform fatty acid composition and a high yield of erucic acid are required at the raw material stage. However, the plant species and varieties having such properties are very limited, and it is difficult to obtain a yield equal to or higher than that of rapeseed with less labor and cost. Furthermore, development of new varieties with a large amount of erucic acid accumulation requires a great deal of time and effort. In addition, raw materials such as rapeseed have limited cultivatable environments and cultivated land. On the other hand, expansion of cultivated land is accompanied by problems such as an increase in cultivation management burden and environmental destruction.
 上記問題を解決するために、近年、炭化水素産生藻類が注目されている。炭化水素産生藻類とは、栄養源を資化する過程で長鎖脂肪族炭化水素を生合成する能力を有する微細藻類である。炭化水素産生藻類の多くは、特段の施肥や温度管理を要することなく培養池等で大量培養が可能である。また、生産される長鎖脂肪酸は、光合成によって固定化された大気中の二酸化炭素に由来することから、温室効果ガスの削減や地球温暖化の防止にも繋がり得るという利点を有する。さらに食用植物油脂と競合することがないため、安定的な原料供給が可能である。 In recent years, hydrocarbon-producing algae has attracted attention in order to solve the above problems. Hydrocarbon-producing algae are microalgae having the ability to biosynthesize long-chain aliphatic hydrocarbons in the process of assimilating nutrient sources. Many hydrocarbon-producing algae can be cultured in large quantities in a culture pond or the like without requiring special fertilization or temperature control. In addition, since the long-chain fatty acid produced is derived from atmospheric carbon dioxide immobilized by photosynthesis, it has the advantage that it can lead to reduction of greenhouse gases and prevention of global warming. Furthermore, since it does not compete with edible vegetable oils and fats, a stable raw material supply is possible.
 しかし、炭化水素産生藻類は、一般に長鎖脂肪酸の細胞内蓄積量が少なく、収量が低いという問題がある。また、Botryococcus braunii(ボツリオコッカス・ブラウニー)のようにテルペン系炭化水素を細胞内に大量に蓄積する藻類は、増殖に時間を要し、バイオマス生産効率が低いという問題がある。 However, hydrocarbon-producing algae generally have a problem that the amount of long-chain fatty acids accumulated in the cell is small and the yield is low. In addition, algae that accumulate a large amount of terpene hydrocarbons in cells, such as Botryococcus braunii, have a problem that it takes time to grow and the biomass production efficiency is low.
 本発明の課題は、特定の長鎖脂肪酸の含有量が高く、かつバイオマス生産効率が高い生物由来の原料を開発し、提供することである。また、その原料生物を用いて、特定の長鎖脂肪酸を容易に、安定的に、かつ大量に生産する方法を開発し、提供することである。 An object of the present invention is to develop and provide a biological material having a high content of a specific long chain fatty acid and high biomass production efficiency. Another object is to develop and provide a method for producing a specific long-chain fatty acid easily, stably and in large quantities using the raw material organism.
 上記課題を解決するために、本発明者らは、炭化水素産生藻類の一群であるクロレラ科藻類に着目した。クロレラ科藻類は、培養が容易で、増殖速度も速いことからバイオマス生産効率が高い。さらに、硫黄源欠乏条件下で培養すると、中性脂質を蓄積するという性質を有する(Mizuno, Y., et al., 2013, Bioresour. Technol., 129: 150-155. doi:10.1016/j.biortech. 2012.11.030)。この蓄積機構の詳細については明らかにされていないが、本発明者らは、硫酸イオン(SO4 2-)の代謝との関連性を仮定した。つまり、硫酸イオンの代謝経路を欠損することによって、その代謝産物であるシステインを生合成できなくなった変異株(システイン要求性変異株)は、システインを含まない通常の生育培地では常時、硫黄源欠乏状態と同じ状態となり、硫黄源欠乏条件にすることなく細胞内に脂質を蓄積するのではないかと予測した。そこで、Parachlorella kessleri(パラクロレラ・ケスレリ)を用いて、重イオンビームを変異原として突然変異誘発処理を行い、システイン要求性変異株を作出した。その結果、システイン要求性変異株であるPk 3A7株(又はSrp1株;以下本明細書では3A7株と表記する)及びPk YY7株(又はSrp2株;以下本明細書ではYY7株と表記する)は、予測通りシステイン非添加条件下で細胞内に脂質を蓄積した。特に3A7株はエルカ酸を総脂質量の60%以上も、またYY7株はオレイン酸を総脂質量の60%以上、及びネルボン酸を最大で約16%も蓄積することが明らかとなった。一方、システインを添加した培地では、両株共に野生型と同様に増殖し、細胞内にデンプンを蓄積した。これらの結果から、クロレラ科藻類のシステイン変異株は、システイン添加培地では増殖とデンプン蓄積を行い、システイン非添加の通常生育培地では構成的に長鎖脂肪酸を細胞内に蓄積する、という新たな知見を得た。これは、培地交換によって細胞増殖と長鎖脂肪酸の細胞内蓄積を容易にスイッチできることを意味する。本発明は、当該知見に基づくもので、以下を提供する。
(1)システイン非存在下で長鎖脂肪酸の生産を増加するクロレラ科(Chlorellaceae)藻類のシステイン要求性変異株。
(2)クロレラ科藻類がクロレラ属(Chlorella)藻類又はパラクロレラ属(Parachlorella)藻類である、(1)に記載の変異株。
(3)パラクロレラ属藻類が国際受託番号FERM BP-22268及びFERM BP-22288で示されるP. kessleriである、(2)に記載の変異株。
(4)クロレラ科藻類を変異原で処理する突然変異誘発工程、突然変異誘発工程後のクロレラ科藻類をシステイン添加培地のプレートに塗布し、コロニー形成するまで培養するコロニー形成工程、プレート状に形成された単一コロニー由来のクロレラ科藻類をシステイン添加培地のプレートとシステイン非添加培地のプレート上でそれぞれ培養するシステインストレス培養工程、システイン添加培地のプレートで増殖し、システイン非添加培地のプレートでは増殖しない株を候補株として選択する候補株選択工程、前記候補株をシステイン添加培地のプレートとシステイン非添加培地のプレート上で再度培養する確認培養工程、及びシステイン非添加培地のプレートで増殖しない候補株をシステイン要求性変異株として選択するシステイン要求性変異株選択工程を含む長鎖脂肪酸生産性クロレラ科藻類の作出方法。
(5)変異原がアルキル化剤又は放射線である、(4)に記載の作出方法。
(6)放射線が重イオンビームである、(5)に記載の作出方法。
(7)(1)~(3)のいずれかに記載のシステイン要求性変異株をシステイン添加培地で15~35℃にて対数増殖期~静止期まで培養する前培養工程、及び前培養工程で得られた細胞を栄養ストレス付与培地で10日~30日間培養するストレス付与工程を含む長鎖脂肪酸生産方法。
(8)ストレス付与工程後の細胞から長鎖脂肪酸を物理的方法及び/又は化学的方法により抽出する抽出工程をさらに含む、(7)に記載の生産方法。
(9)栄養ストレス付与培地がシステイン非添加培地である、(7)又は(8)に記載の生産方法。
(10)(3)に記載の国際受託番号FERM BP-22268で示されるP. kessleriの変異株を用いてエルカ酸を生産する、(7)~(9)のいずれかに記載の生産方法。
(11)(3)に記載の国際受託番号FERM BP-22288で示されるP. kessleriの変異株を用いてオレイン酸及びネルボン酸を生産する、(7)~(9)のいずれかに記載の生産方法。
In order to solve the above-mentioned problems, the present inventors have focused on Chlorellaceae algae which are a group of hydrocarbon-producing algae. Chlorellaceae algae have high biomass production efficiency because they are easy to culture and have a fast growth rate. Furthermore, it has the property of accumulating neutral lipids when cultured under sulfur source deficient conditions (Mizuno, Y., et al., 2013, Bioresour. Technol., 129: 150-155. Doi: 10.1016 / j. biortech. 2012.11.030). Although the details of this accumulation mechanism have not been clarified, the present inventors assumed a relationship with the metabolism of sulfate ion (SO 4 2− ). In other words, mutant strains that are unable to biosynthesize their metabolite cysteine (cysteine-requiring mutant strain) by losing the metabolic pathway of sulfate ions are always deficient in sulfur sources in normal growth media that do not contain cysteine. It was predicted that lipids would accumulate in the cells without becoming a sulfur source deficient condition. Therefore, we used Parachlorella kessleri to carry out mutagenesis treatment using heavy ion beam as a mutagen to create a cysteine-requiring mutant. As a result, Pk 3A7 strain (or Srp1 strain; hereinafter referred to as 3A7 strain) and Pk YY7 strain (or Srp2 strain; hereinafter referred to as YY7 strain) which are cysteine-requiring mutants are as follows: As expected, lipids accumulated in the cells under non-cysteine conditions. In particular, strain 3A7 was found to accumulate erucic acid in excess of 60% of the total lipid content, and YY7 strain accumulated oleic acid in excess of 60% of the total lipid content, and up to about 16% of nervonic acid. On the other hand, in the medium supplemented with cysteine, both strains grew in the same manner as the wild type and accumulated starch in the cells. Based on these results, the new knowledge that cysteine mutants of Chlorellaceae algae grow and accumulate starch in cysteine-added medium and constitutively accumulate long-chain fatty acids in cells in cysteine-free medium. Got. This means that cell growth and intracellular accumulation of long chain fatty acids can be easily switched by medium exchange. This invention is based on the said knowledge and provides the following.
(1) A cysteine-requiring mutant of the Chlorellaceae algae that increases the production of long-chain fatty acids in the absence of cysteine.
(2) The mutant strain according to (1), wherein the Chlorella family algae is a Chlorella algae or a Parachlorella algae.
(3) The mutant strain according to (2), wherein the Parachlorella algae is P. kessleri represented by international accession numbers FERM BP-22268 and FERM BP-22288.
(4) Mutagenesis process in which chlorellaceae algae are treated with mutagen, chlorellae algae after mutagenesis process are applied to a plate of cysteine-added medium, and colony formation process in which the cells are cultured until colonies are formed. Cultivated chlorellaceae from single colonies grown on cysteine-added medium plate and cysteine-free medium plate, respectively, grown on cysteine-added medium plate, and grown on cysteine-free medium plate Candidate strain selection step of selecting a non-strain as a candidate strain, a confirmation culture step of culturing the candidate strain again on a plate of cysteine-added medium and a plate of cysteine-free medium, and a candidate strain that does not grow on a plate of cysteine-free medium Select cysteine as a cysteine-requiring mutant Long chain fatty method producing productivity Chlorella family algae including sexual mutant selection process.
(5) The production method according to (4), wherein the mutagen is an alkylating agent or radiation.
(6) The production method according to (5), wherein the radiation is a heavy ion beam.
(7) In a pre-culture step and a pre-culture step of culturing the cysteine-requiring mutant strain according to any one of (1) to (3) from a logarithmic growth phase to a stationary phase at 15 to 35 ° C. in a cysteine-added medium. A method for producing a long chain fatty acid comprising a stress applying step of culturing the obtained cells in a nutrient stress applying medium for 10 to 30 days.
(8) The production method according to (7), further comprising an extraction step of extracting long-chain fatty acids from the cells after the stress application step by a physical method and / or a chemical method.
(9) The production method according to (7) or (8), wherein the nutrient stress imparting medium is a cysteine-free medium.
(10) The production method according to any one of (7) to (9), wherein erucic acid is produced using a mutant of P. kessleri represented by the international accession number FERM BP-22268 described in (3).
(11) The oleic acid and nervonic acid are produced using a mutant of P. kessleri represented by the international accession number FERM BP-22288 described in (3), according to any one of (7) to (9) Production method.
 本明細書は本願の優先権の基礎となる日本国特許出願番号2014-152376号の開示内容を包含する。 This specification includes the disclosure of Japanese Patent Application No. 2014-152376, which is the basis of the priority of the present application.
 本発明のクロレラ科藻類のシステイン要求性変異株は、培地中のシステインの有無により増殖及びデンプンの細胞内蓄積と、長鎖脂肪酸の細胞内蓄積をスイッチできる。この性質を利用して、当該変異株を用いて長鎖脂肪酸を効率的に生産することができる。 The cysteine-requiring mutant of the Chlorellaceae algae of the present invention can switch growth and intracellular accumulation of starch and intracellular accumulation of long-chain fatty acids depending on the presence or absence of cysteine in the medium. Utilizing this property, long-chain fatty acids can be efficiently produced using the mutant strain.
 本発明の長鎖脂肪酸生産方法によれば、システインに関して異なる組成の培地に交換することで、クロレラ科藻類のシステイン要求性変異株における増殖と長鎖脂肪酸の細胞内蓄積を制御し、目的の長鎖脂肪酸を少ない工程で容易かつ効率的に生産することができる。 According to the method for producing long-chain fatty acids of the present invention, the growth and intracellular accumulation of long-chain fatty acids in cysteine-requiring mutant strains of Chlorellaceae algae are controlled by exchanging media with different compositions for cysteine. It is possible to easily and efficiently produce chain fatty acids with few steps.
P. kessleriの野生株(WT)と3A7株のCys培地(硫黄(S)低濃度システイン(cys)添加培地)での成長曲線を示す。培養条件は、明:暗=12hr:12hr、光強度(光量子束密度)が150μmol・m-2・s-1である。The growth curves of P. kessleri wild strain (WT) and 3A7 strain in Cys medium (sulfur (S) low concentration cysteine (cys) -added medium) are shown. The culture conditions are light: dark = 12 hr: 12 hr, and light intensity (photon flux density) is 150 μmol · m −2 · s −1 . P. kessleriの野生株(WT)と3A7株のTAP培地(S含有cys非添加培地)での成長曲線を示す。培養条件は、明:暗=12hr:12hr、光強度が150μmol・m-2・s-1である。The growth curves of a wild strain (WT) of P. kessleri and a 3A7 strain in a TAP medium (a medium containing no S-containing cys) are shown. The culture conditions are light: dark = 12 hr: 12 hr, and light intensity is 150 μmol · m −2 · s −1 . P. kessleriの野生株(WT)と3A7株をTAP培地、及びSTAP培地(S欠乏cys非添加培地)で培養したときの培養時間と細胞の乾燥重量の関係を示す。The relationship between the culture time and the dry weight of cells when P. kessleri wild strain (WT) and 3A7 strain were cultured in TAP medium and STAP medium (medium without S-deficient cys) is shown. P. kessleriの野生株(WT)及び3A7株をTAP培地、STAP培地、TAP+cys培地(S含有cys添加培地)及びCys培地(S低濃度cys添加培地)で10日間培養したときの細胞あたりの総脂質量を示す。Total per cell when P. kessleri wild strain (WT) and 3A7 strain were cultured in TAP medium, STAP medium, TAP + cys medium (medium supplemented with S containing cys) and Cys medium (medium supplemented with S low concentration cys) for 10 days The amount of lipid is shown. P. kessleriの野生株(WT)と3A7株の細胞内に蓄積された脂質(長鎖脂肪酸)の組成比を示す。図の横軸に示した培地で本培養を8日間行った。脂肪酸の同定は、ガスクロマトグラフ質量分析法(GC-MS)を用いて行った。The composition ratio of the lipid (long-chain fatty acid) accumulated in the cells of the wild strain (WT) of P.7kessleri and the 3A7 strain is shown. The main culture was performed for 8 days in the medium shown on the horizontal axis of the figure. Fatty acids were identified using gas chromatography mass spectrometry (GC-MS). P. kessleriの野生株(WT)と3A7株の細胞内に蓄積された脂質(長鎖脂肪酸)の組成比を示す。図の横軸に示した培地で本培養を10日間行った。脂肪酸の同定は、GC-MSを用いて行った。The composition ratio of the lipid (long-chain fatty acid) accumulated in the cells of the wild strain (WT) of P.7kessleri and the 3A7 strain is shown. The main culture was carried out for 10 days in the medium shown on the horizontal axis of the figure. The fatty acid was identified using GC-MS. P. kessleriの野生株(a、b)、3A7株(c、d)及びYY7株(e、f)をCys培地(S低濃度cys添加培地)で前培養した後、TAP培地に移して本培養したときの細胞内に蓄積された脂質(長鎖脂肪酸)の組成比(%)(a、c、e)及び細胞あたりの各脂質量を示す。横軸は、本培養を開始後の経過日数を示す。P. 培養 kessleri wild strains (a, b), 3A7 strains (c, d) and YY7 strains (e, f) were pre-cultured in Cys medium (medium supplemented with S low concentration cys), then transferred to TAP medium. The composition ratio (%) (a, c, e) of lipid (long chain fatty acid) accumulated in the cells when cultured and the amount of each lipid per cell are shown. The horizontal axis represents the number of days that have elapsed since the start of main culture.
1.クロレラ科藻類システイン要求性変異株
1-1.概要
 本発明の第1の態様は、クロレラ科藻類のシステイン要求性変異株である。本発明の変異株は、システイン非存在下で培養することで細胞内の長鎖脂肪酸蓄積量を増加する。それ故、本発明の変異株を用いて、長鎖脂肪酸を容易かつ効率的に生産することができる。
1-2.構成
 本発明のクロレラ科藻類システイン要求性変異株は、クロレラ科藻類のシステイン代謝系に異常を有する栄養要求性変異株で構成される。
1. 1. Chlorella family algae cysteine-requiring mutant 1-1. Outline | summary The 1st aspect of this invention is a cysteine requirement mutant of Chlorellaceae algae. The mutant strain of the present invention increases intracellular long-chain fatty acid accumulation by culturing in the absence of cysteine. Therefore, long-chain fatty acids can be produced easily and efficiently using the mutant strain of the present invention.
1-2. Structure The Chlorellaceae alga cysteine-requiring mutant of the present invention is composed of an auxotrophic mutant having an abnormality in the cysteine metabolism system of Chlorellaceae algae.
 「クロレラ科(Chlorellaceae)藻類」とは、トレボウキシア藻綱(Trebouxiophyceae)クロレラ目(Chlorellales)に属する緑藻植物である。不動性の単細胞生物(群体を含む)であり、多くの種は、水中で浮遊生活を送っている。クロレラ科藻類には、例えば、クロレラ属(Chlorella)藻類、及びパラクロレラ属(Parachlorella)藻類等が含まれる。クロレラ属藻類の具体例としては、C. pyrenoidosa(C.ピレノイドーサ)、C. sorokiniana(C.ソロキニアナ)、C. lobophora(C.ロボフォラ)、C. vulgaris(C.ブルガリス)が挙げられる。また、パラクロレラ属藻類の具体例としては、P. kessleriが挙げられる。 "Chlorellaceae algae" is a green algal plant belonging to the Trebouxiophyceae Chlorellales. They are immobile unicellular organisms (including colonies), and many species live floating in water. The Chlorellaceae algae include, for example, Chlorella algae, Parachlorella algae, and the like. Specific examples of Chlorella algae include C. pyrenoidosa (C. pyrenoidosa), C. sorokiniana (C. solokiniana), C. lobophora (C. robophora), C. vulgaris (C. bulgaris). Moreover, P. レ kessleri is mentioned as a specific example of Parachlorella algae.
 クロレラ科藻類は、炭化水素産生藻類で、光合成により生合成されたデンプンを資化する経路において、長鎖脂肪酸を生合成することができる。また、硫酸イオン(SO4 2-)欠乏条件下で細胞内に長鎖脂肪酸を蓄積する性質を有する。 Chlorellaceae are hydrocarbon-producing algae that can biosynthesize long-chain fatty acids in a pathway that assimilates starch biosynthesized by photosynthesis. It also has the property of accumulating long chain fatty acids in cells under sulfate ion (SO 4 2− ) deficiency conditions.
 本発明のクロレラ科藻類システイン要求性変異株として好ましいクロレラ科藻類は、上記性質を有する種であれば、特に限定はしないが、培養が容易で、倍加時間が短く、大量培養が可能で、またバイオマス生産効率の高い種が好ましい。好ましい例として、P. kessleriが挙げられる。 Chlorellaceae algae preferred cysteine-requiring mutant of the present invention is not particularly limited as long as it is a species having the above properties, but is easy to culture, has a short doubling time, can be cultured in large quantities, and Species with high biomass production efficiency are preferred. A preferred example is P.lerkessleri.
 「システイン要求性変異株」とは、上述のようにシステイン代謝系に異常を有する栄養要求性変異株である。光合成独立栄養生物であるクロレラ科藻類の野生株は、硫酸イオン代謝経路を介してL-システイン(2-Amino-3-mercaptopropanoic acid)(本明細書では、「システイン」と表記する)を生合成できる。本発明のシステイン要求性変異株は、硫酸イオンからシステインに至る代謝経路での欠損によりシステインの生合成能を欠失した変異株が該当する。システイン非添加培地で生育できない変異株であればよく、前記代謝経路のいずれの経路に異常を生じているかは問わない。 “A cysteine-requiring mutant” is an auxotrophic mutant having an abnormality in the cysteine metabolic system as described above. A wild strain of Chlorellaceae, a photoautotrophic organism, biosynthesizes L-cysteine (2-Amino-3-mercaptopropanoic acid) (referred to as “cysteine” in this specification) via the sulfate ion metabolic pathway it can. The cysteine-requiring mutant strain of the present invention corresponds to a mutant strain lacking the ability to biosynthesize cysteine due to a defect in a metabolic pathway from sulfate ion to cysteine. Any mutant strain that cannot grow on a cysteine-free medium may be used, and it does not matter which of the metabolic pathways is abnormal.
 本明細書において「クロレラ科藻類システイン要求性変異株」(本明細書では、しばしば「cys変異株」と表記する)とは、クロレラ科藻類のシステイン要求性変異株をいう。cys変異株は、システイン非添加培地では生育できないが、システインを含む培地では、生育可能であることを特徴とする。cys変異株の具体例として、P. kessleriのシステイン要求性変異株であり、国際受託番号FERM BP-22268で示される3A7株、又は国際受託番号FERM BP-22288で示されるYY7株が挙げられる。国際受託番号FERM BP-22268のP. kessleri 3A7株は、2014年4月8日付で、独立行政法人製品評価技術基盤機構 特許生物寄託センター(〒292-0818日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に国内寄託された株を2015年7月14日付で、国際寄託機関である同センターに寄託されている。また、国際受託番号FERM BP-22288のP. kessleri YY7株は、2015年7月14日付で、国際寄託機関である独立行政法人製品評価技術基盤機構 特許生物寄託センター(〒292-0818日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託されている。 In the present specification, the term “Chlorellaceae algal cysteine-requiring mutant” (herein often referred to as “cys mutant”) refers to a cysteine-requiring mutant of Chlorellaceae algae. The cys mutant strain is characterized in that it cannot grow on a medium not containing cysteine but can grow on a medium containing cysteine. Specific examples of the cys mutant include a cysteine-requiring mutant of P. kessleri, 3A7 strain indicated by international accession number FERM BP-22268, or YY7 strain indicated by international accession number FERM BP-22288. P. kessleri 3A7 stock with international deposit number FERM BP-22268 was issued on April 8, 2014 by the Patent Biological Depositary Center of the National Institute of Technology and Evaluation (2 Kazusa Kamashizu, Kisarazu City, Chiba Prefecture 292-0818, Japan) Stocks deposited domestically in Room -5-8 (120) were deposited at the center, an international depositary organization, on July 14, 2015. In addition, P. kessleri YY7 stock with international deposit number FERM BP-22288 was issued on July 14, 2015 by the International Depositary Agency, National Institute of Technology and Evaluation, Patent Biological Depositary Center (Chiba, Japan 292-0818, Japan). It is deposited in Kazusa-Kamazu 2-5-8 120, Kisarazu City.
 「長鎖脂肪酸」(長鎖脂肪族炭化水素、又は高級脂肪酸)とは、通常、一般式R-COOHで示される脂溶性の脂肪酸をいう。本明細書における長鎖脂肪酸は、特に前記一般式においてRが9≦C≦29のアルキル基を示す炭素数10~30の脂肪酸を意味する。好ましくは19≦C≦29のアルキル基を示す炭素数20~30の脂肪酸である。本明細書において、長鎖脂肪酸の炭素鎖の形状は問わない。直鎖状であっても、分枝鎖状であってもよい。また、本明細書において長鎖脂肪酸は、炭素鎖に二重結合のない飽和脂肪酸、及び二重結合を1つ以上含む不飽和脂肪酸のいずれも包含する。本発明の対象となる長鎖脂肪酸の具体例としては、飽和脂肪酸であればC10:0(炭素数10;二重結合数0、以下同様)のカプリン酸(デカン酸)、C12:0(炭素数12;二重結合数0、以下同様)のラウリン酸(ドデカン酸)、C14:0のミリスチン酸(テトラデカン酸)、C15:0のペンタデシル酸(ペンタデカン酸)、C16:0のパルミチン酸(ヘキサデカン酸)、C17:0のヘプタデカン酸(マルガリン酸)、C18:0のステアリン酸(オクタデカン酸)、C20:0のアラキジン酸(イコサン酸)、C22:0のベヘン酸(ドコサン酸)、C24:0のリグノセリン酸(テトラコサン酸)、C26:0のセロチン酸(ヘキサコサン酸)、C28:0のモンタン酸(オクタコ酸)、C30:0のメリッシン酸(トリアコンタン酸)が挙げられる。また、不飽和脂肪酸であれば、C16:1のパルミトレイン酸(ヘキサデセン酸)、C18:1のオレイン酸(オクタデセン酸)、C18:2のリノール酸(オクタデカジエン酸)、C18:3のリノレン酸(オクタデカトリエン酸)、C20:1のガドレイン酸(イコサエン酸)、C20:4のアラキドン酸(イコサテトラエン酸)、C20:5のエイコサペンタエン酸(EPA)、C22:1のエルカ酸(ドコサエン酸)、C22:5のドコサペンタエン酸(DPA)、C22:6のドコサヘキサエン酸(DHA)、C24:1のネルボン酸(テトラコサエン酸)等が挙げられる。 “Long-chain fatty acid” (long-chain aliphatic hydrocarbon or higher fatty acid) usually means a fat-soluble fatty acid represented by the general formula R-COOH. In the present specification, the long-chain fatty acid means a fatty acid having 10 to 30 carbon atoms, in which R represents an alkyl group having 9 ≦ C ≦ 29 in the general formula. Preferably, it is a fatty acid having 20 to 30 carbon atoms and showing an alkyl group of 19 ≦ C ≦ 29. In this specification, the shape of the carbon chain of the long chain fatty acid is not limited. It may be linear or branched. In the present specification, the long-chain fatty acid includes both a saturated fatty acid having no double bond in the carbon chain and an unsaturated fatty acid having one or more double bonds. Specific examples of long-chain fatty acids that are the subject of the present invention include C10: 0 (10 carbon atoms; 0 double bonds, the same shall apply hereinafter) capric acid (decanoic acid) and C12: 0 (carbon) for saturated fatty acids. Number 12: Number of double bonds: 0, lauric acid (dodecanoic acid) of C14: 0, myristic acid (tetradecanoic acid) of C14: 0, pentadecylic acid (pentadecanoic acid) of C15: 0, palmitic acid of C16: 0 (hexadecane) Acid), C17: 0 heptadecanoic acid (margaric acid), C18: 0 stearic acid (octadecanoic acid), C20: 0 arachidic acid (icosanoic acid), C22: 0 behenic acid (docosanoic acid), C24: 0 Lignoceric acid (tetracosanoic acid), C26: 0 serotic acid (hexacosanoic acid), C28: 0 montanic acid (octaconic acid), and C30: 0 melicic acid (triacontanoic acid). For unsaturated fatty acids, C16: 1 palmitoleic acid (hexadecenoic acid), C18: 1 oleic acid (octadecenoic acid), C18: 2 linoleic acid (octadecadienoic acid), C18: 3 linolenic acid (Octadecatrienoic acid), C20: 1 gadoleic acid (icosaenoic acid), C20: 4 arachidonic acid (icosatetraenoic acid), C20: 5 eicosapentaenoic acid (EPA), C22: 1 erucic acid (docosaenoic acid) C22: 5 docosapentaenoic acid (DPA), C22: 6 docosahexaenoic acid (DHA), C24: 1 nervonic acid (tetracosaenoic acid), and the like.
 本発明のcys変異株は、栄養ストレス条件下で培養することにより、前記長鎖脂肪酸を生合成し、細胞内に多量に蓄積する性質を有する。本明細書において「栄養ストレス」とは、硫黄ストレス又はシステインストレスをいう。具体的には、硫黄源欠乏ストレス、低濃度硫黄ストレス、低濃度システインストレス、及びシステイン欠乏ストレスが該当する。例えば、前記P. kessleri 3A7株であれば、システイン欠乏ストレスを付与するシステイン非添加培地、好ましくは後述するTAP培地のように硫黄含有システイン非添加培地、で培養することにより、長鎖脂肪酸としてC22:1のエルカ酸を細胞内における総脂質量の60%以上の含有率で蓄積することができる。また、前記P. kessleri YY7株であれば、システイン欠乏ストレスを付与するシステイン非添加培地、好ましくは後述するTAP培地のように硫黄含有システイン非添加培地、で培養することにより、細胞内総脂質量における含有率60%以上でC18:1のオレイン酸を、また最大約16%でC24:1のネルボン酸を蓄積することができる。
1-3.クロレラ科藻類システイン要求性変異株の作出
 本発明のクロレラ科藻類システイン要求性変異株は、自然突然変異によりシステイン要求性となったクロレラ科藻類変異株を自然界から単離してもよいが、クロレラ科藻類に突然誘発処理を施した後、システイン添加及び非添加培地での培養により人為的に作出することもできる。
The cys mutant of the present invention has the property of biosynthesizes the long-chain fatty acid and accumulates it in a large amount in the cell by culturing under nutrient stress conditions. As used herein, “nutrient stress” refers to sulfur stress or cysteine stress. Specifically, sulfur source deficiency stress, low concentration sulfur stress, low concentration cysteine stress, and cysteine deficiency stress are applicable. For example, in the case of the P. kessleri 3A7 strain, C22 is added as a long chain fatty acid by culturing in a cysteine-free medium that imparts cysteine-deficient stress, preferably a sulfur-containing cysteine-free medium such as a TAP medium described later. : 1 erucic acid can be accumulated at a content of 60% or more of the total lipid content in the cell. Further, in the case of the P. kessleri YY7 strain, by culturing in a cysteine-free medium that imparts cysteine-deficient stress, preferably a sulfur-containing cysteine-free medium such as a TAP medium described later, the total amount of intracellular lipids It is possible to accumulate C18: 1 oleic acid at a content of 60% or more, and C24: 1 nervonic acid at a maximum of about 16%.
1-3. Creation of Chlorellaceae Algae Cysteine-Required Mutant The Chlorellaceae algae cysteine-requiring mutant of the present invention may be isolated from nature, but may be isolated from nature. It can also be artificially produced by subjecting algae to a sudden induction treatment and then culturing in a medium with and without cysteine added.
 システイン要求性変異株を人為的に作出する場合、突然誘発処理を施すクロレラ科藻類の種類は、特に限定はしないが、培養が容易で、倍加時間が短く、バイオマス生産効率の高い種が好ましい。例えば、1日当たりの1L中の細胞増加重量(g/L/day)が0.1g以上、好ましくは1g以上の種である。このような種として、例えば、C. pyrenoidosa(2.90~3.64 g/L/day)、C. sorokiniana(0.23~1.47 g/L/day)、P. kessleri(1.29 g/L/day)等が挙げられる。また、長鎖脂肪酸の生産量が高い種ほど好ましい。例えば、1日当たりの1L中の長鎖脂肪酸生産量(g/L/day)が0.05g以上、好ましくは0.1g以上の種である。このような種としては、例えば、C. vulgaris(0.3 g/L/day)、P. kessleri(0.48~0.59 g/L/day)等が挙げられる。したがって、P. kessleriは、本発明のシステイン要求性変異株作出用クロレラ科藻類として特に好ましい種である。突然誘発処理に用いるクロレラ科藻類は、対数増殖期に培地から回収した細胞を用いるのが好ましい。クロレラ科藻類の培養は、原則として淡水性クロレラ属(又は淡水性微細藻類)の一般的な培養方法(参照:微生物の保存法, 1977, 根井外喜男編, 東京大学出版会)に準じて行えばよい。 When artificially producing a cysteine-requiring mutant strain, the type of Chlorellaceae that are suddenly induced is not particularly limited, but a species that is easy to culture, has a short doubling time, and has high biomass production efficiency is preferable. For example, a seed having an increased cell weight per day (g / L / day) of 0.1 g or more, preferably 1 g or more. Examples of such species include C. pyrenoidosa (2.90-3.64 g / L / day), C. sorokiniana (0.23-1.473g / L / day), P.Pkessleri (1.29 g / L / day), and the like. It is done. In addition, the higher the production amount of long-chain fatty acids, the more preferable. For example, a seed having a long-chain fatty acid production amount (g / L / day) in 1 L per day of 0.05 g or more, preferably 0.1 g or more. Examples of such species include C. vulgaris (0.3 g / L / day), P. kessleri (0.48 to 0.59 g / L / day), and the like. Therefore, P. kessleri is a particularly preferable species as the chlorellaceae for producing cysteine-requiring mutants of the present invention. It is preferable to use cells collected from the medium during the logarithmic growth phase as the chlorellaceae used for the sudden induction treatment. Chlorellaceae algae are cultured in accordance with the general culture method for freshwater chlorella (or freshwater microalgae) in principle (see: Preservation of Microorganisms, 1977, edited by Yoshio Sonei, Tokyo University Press). Just do it.
 突然誘発処理の変異原には、公知の変異原を用いればよい。例えば、突然変異誘発剤や放射線が挙げられる。 A known mutagen may be used as the mutagen for the sudden induction treatment. For example, a mutagen and radiation are mentioned.
 突然変異誘発剤による突然誘発は、クロレラ科藻類を突然変異誘発剤の溶液に所定の時間接触することで達成できる。突然変異誘発剤には、メタンスルホン酸エチル(EMS)、N-メチル-N’-ニトロ-N-ニトロソグアニジン(MNNG)等のアルキル化剤を用いることができる。突然変異誘発剤の濃度や接触時間は、突然変異誘発剤の種類、クロレラ科藻類の種類、生存率等を勘案して適宜定めればよい。具体的な方法については、例えば、Green, M.R. and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New Yorkに記載の方法を参照すればよい。 Sudden induction by a mutagenic agent can be achieved by contacting a chlorellaceae algae with a mutagen agent solution for a predetermined time. As the mutagenic agent, an alkylating agent such as ethyl methanesulfonate (EMS) or N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) can be used. The concentration and contact time of the mutagenic agent may be appropriately determined in consideration of the type of mutagenic agent, the type of Chlorellaceae algae, the survival rate, and the like. For specific methods, see the methods described in Green, GreenMR and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Good.
 放射線による突然誘発は、クロレラ科藻類を放射線で所定の時間照射することで達成できる。放射線には、アルファ線、ベータ線、ガンマ線、X線、紫外線の他、重イオンビーム(例えば、12C、14N、20Ne、40Ar、56Fe)等が挙げられる。一般に放射線は、LET(Linear Energy Transfer;線エネルギー付与)が大きいほど変異率が高い。LETとは、放射線が物質中を通過する際、飛程に沿って単位長さあたりに平均して失う(対象に与える)エネルギー(keV/mm)をいう。LETは、線質によって異なる。例えば、ガンマ線やX線のLETは、低く0.2~2 keV/mmであり、重イオンビームのLETは高く、23~4000である。適当な変異率を得るためには、低LETの線質ほど多くの吸収線量を必要とするが、反面、吸収線量が高くなると生存率は低下する。したがって、放射線による突然誘発は、放射線の線質に応じて吸収線量を適宜定めればよい。ガンマ線やX線の場合、半致死線量でDNA一本鎖切断や点突然変異等を誘発することができる。また、重イオンビームの場合、稔性、及び生存率への影響がない、又は極めて低い線量域で好適な突然変異を誘発することができる(Ota et al., 2013, Bioresour. Technol. 149: 432-438)。 Sudden induction by radiation can be achieved by irradiating Chlorellaceae algae with radiation for a predetermined time. Examples of radiation include alpha rays, beta rays, gamma rays, X rays, ultraviolet rays, and heavy ion beams (for example, 12 C, 14 N, 20 Ne, 40 Ar, and 56 Fe). Generally, radiation has a higher mutation rate as LET (Linear Energy Transfer) increases. LET refers to the energy (keV / mm) that is lost (given to the target) on average per unit length along the range when radiation passes through a substance. LET varies depending on the radiation quality. For example, the LET of gamma rays and X-rays is as low as 0.2 to 2 keV / mm, and the LET of heavy ion beams is as high as 23 to 4000. In order to obtain an appropriate mutation rate, a low LET radiation quality requires a larger amount of absorbed dose, but on the other hand, the higher the absorbed dose, the lower the survival rate. Therefore, sudden induction by radiation may be determined as appropriate in accordance with the radiation quality. In the case of gamma rays and X-rays, DNA single strand breaks and point mutations can be induced with a semi-lethal dose. In the case of heavy ion beams, suitable mutations can be induced in the dose range that has no effect on the fertility and survival rate, or at a very low dose range (Ota et al., 2013, Bioresour. Technol. 149: 432-438).
 突然誘発処理後の細胞は、洗浄後、システイン添加培地のプレートに塗布し、適当な生育条件下(例えば、後述する第2態様の長鎖脂肪酸生産方法における前培養工程に記載の条件と同様の条件下)でコロニーを形成させる。コロニーは、直径2mm~5mmのサイズまで形成させればよい。その後、TAP培地等のシステイン非添加培地のプレートに前記コロニーをセルロースフィルターや滅菌布を用いて転写してレプリカを取るか、又はスパチュラ又は白金耳等で同一コロニー由来の細胞からピックアップしてシステイン添加及び非添加培地のプレート上の同位置区画に移植する。再度適当な生育条件下で培養後、システイン添加プレート上では増殖してコロニーを再形成するが、システイン非添加プレート上では増殖せず、コロニーを形成できない株を候補株として選択する。 The cells after the sudden induction treatment are washed and then applied to a plate of cysteine-added medium, and under appropriate growth conditions (for example, the same conditions as described in the preculture step in the long-chain fatty acid production method of the second aspect described later) (Under conditions). Colonies may be formed to a size of 2 mm to 5 mm in diameter. Then, transfer the colonies to a plate of cysteine-free medium such as TAP medium using a cellulose filter or sterilized cloth to take a replica, or pick up from cells derived from the same colony with a spatula or platinum ear etc. and add cysteine And transplanted into the co-located compartment on the plate of non-supplemented medium. After culturing again under appropriate growth conditions, the strain grows on the cysteine-added plate to reconstitute colonies, but the strain that does not grow on the cysteine-free plate and cannot form colonies is selected as a candidate strain.
 候補株を、増殖した前記ステイン含有培地のプレートから採取し、システイン添加及び非添加培地のプレート上の同位置区画に再度移植する。その後、システイン非添加培地のプレート上でのみ生育しないことを再確認する。上記方法で得られたクロレラ科藻類を本発明のクロレラ科藻類システイン要求性変異株とする。cys変異株が生合成し、蓄積する長鎖脂肪酸の同定が必要であれば、cys変異株をTAP培地等の栄養ストレス条件下で培養後、公知方法で細胞内の長鎖脂肪酸を同定すればよい。長鎖脂肪酸を同定及び定量する方法は、特に限定はしない。例えば、質量分析法又はNMR法を利用することができる。質量分析法は、高速液体クロマトグラフ質量分析法(LC-MS)、高速液体クロマトグラフタンデム質量分析法(LC-MS/MS)、ガスクロマトグラフ質量分析法(GC-MS)、ガスクロマトグラフタンデム質量分析法(GC-MS/MS)、キャピラリー電気泳動質量分析法(CE-MS)及びICP質量分析法(ICP-MS)を含む。これらの分析方法は、いずれも当該分野に公知の技術であって、それらの方法に準じて行えばよい。例えば、Iijima et al., The Plant Journal (2008)54,949-962、Hirai et al. Proc Natl Acad Sci USA (2004) 101(27) 10205-10210、Sato et al., The Plant Journal (2004) 40(1)151-163、又はShimizu et al., Proteomics (2005) 5,3919-3931を参照にすればよい。栄養ストレス条件下で、各cys変異株がいずれの長鎖脂肪酸を生合成し、細胞内に蓄積するかを予め調べておき、データ化しておくことで、第2態様の長鎖脂肪酸生産方法において、脂肪酸組成が均質で目的の長鎖脂肪酸の含有量が高いcys変異株を必要とする場合、データベース内のcys変異株群の中から直ちに選択することが可能となる。例えば、P. kessleri 3A7株はエルカ酸の含有量が高いcys変異株として、またP. kessleri YY7株はオレイン酸やネルボン酸の含有量が高いcys変異株として、利用することができる。
1-4.効果
 本発明のcys変異株は、培養が容易で、また栄養ストレス条件下では多量の長鎖脂肪酸を生合成し、細胞内に蓄積する。それ故、本発明のcys変異株を用いることで、長鎖脂肪酸の容易かつ安価な生産が可能となる。
Candidate strains are taken from the grown plate of the stain-containing medium and re-implanted into the in-situ compartment on the plate with and without cysteine added medium. Thereafter, it is reconfirmed that it does not grow only on the cysteine-free medium plate. The Chlorellaceae algae obtained by the above method is used as the Chlorellaceae alga cysteine-requiring mutant of the present invention. If it is necessary to identify the long-chain fatty acids that cys mutants biosynthesize and accumulate, after culturing the cys mutants under nutrient stress conditions such as TAP medium, the intracellular long-chain fatty acids can be identified by known methods. Good. The method for identifying and quantifying long chain fatty acids is not particularly limited. For example, mass spectrometry or NMR can be used. Mass spectrometry includes high performance liquid chromatography mass spectrometry (LC-MS), high performance liquid chromatography tandem mass spectrometry (LC-MS / MS), gas chromatography mass spectrometry (GC-MS), and gas chromatography tandem mass spectrometry. Methods (GC-MS / MS), capillary electrophoresis mass spectrometry (CE-MS) and ICP mass spectrometry (ICP-MS). Any of these analysis methods are known in the art and may be performed according to these methods. For example, Iijima et al., The Plant Journal (2008) 54,949-962, Hirai et al. Proc Natl Acad Sci USA (2004) 101 (27) 10205-10210, Sato et al., The Plant Journal (2004) 40 ( 1) Refer to 151-163 or Shimizu et al., Proteomics (2005) 5,3919-3931. In the method for producing long-chain fatty acids of the second aspect, the long-chain fatty acids that each cys mutant strain biosynthesizes and accumulates in cells under nutrient stress conditions are preliminarily examined and converted into data. When a cys mutant having a uniform fatty acid composition and a high content of the desired long-chain fatty acid is required, it can be immediately selected from the group of cys mutants in the database. For example, the P. kessleri 3A7 strain can be used as a cys mutant having a high erucic acid content, and the P. kessleri YY7 strain can be used as a cys mutant having a high oleic acid or nervonic acid content.
1-4. Effect The cys mutant of the present invention is easy to culture, and biosynthesizes a large amount of long-chain fatty acids under nutrient stress conditions and accumulates in the cells. Therefore, by using the cys mutant of the present invention, it is possible to easily and inexpensively produce long chain fatty acids.
 本発明のcys変異株の作出方法によれば、システインの栄養要求性を指標として、多大な試行錯誤を必要とすることなく、比較的容易に目的のcys変異株を作出することができる。
2.長鎖脂肪酸生産方法
2-1.概要
 本発明の第2の態様は、長鎖脂肪酸生産方法である。本発明の生産方法は、前記第1態様に記載のクロレラ科藻類システイン要求性変異株を用いて長鎖脂肪酸を生産する。本発明の生産方法によれば、容易かつ安価に、また安定的に長鎖脂肪酸を提供することができる。
2-2.生産方法の構成
 本発明の長鎖脂肪酸生産方法は、前培養工程及びストレス付与工程を必須工程として、また抽出工程を選択工程として含む。以下、各工程について、具体的に説明をする。
(1)前培養工程
 「前培養工程」は、第1態様に記載のクロレラ科藻類システイン要求性変異株をシステイン添加培地で培養する、本生産方法において必須の工程である。前培養工程は、cys変異株の増殖及び細胞内のデンプンの蓄積を目的とする。これは、次のストレス付与工程で使用する栄養ストレス付与培地ではcys変異株がほとんど増殖できないため、また長鎖脂肪酸は細胞内に蓄積されたデンプンを変換して合成され、その量はデンプン量と反比例関係にあるためである。
According to the method for producing a cys mutant of the present invention, a target cys mutant can be produced relatively easily without requiring a great deal of trial and error using the auxotrophy of cysteine as an index.
2. 2. Long chain fatty acid production method 2-1. Outline | summary The 2nd aspect of this invention is a long-chain-fatty-acid production method. The production method of the present invention produces long-chain fatty acids using the Chlorellaceae algal cysteine-requiring mutant described in the first aspect. According to the production method of the present invention, a long-chain fatty acid can be provided easily, inexpensively and stably.
2-2. Configuration of Production Method The long-chain fatty acid production method of the present invention includes a pre-culture step and a stress application step as essential steps, and an extraction step as a selection step. Hereinafter, each step will be specifically described.
(1) Pre-culture process The "pre-culture process" is an essential process in this production method in which the chlorellaceae algaline cysteine-requiring mutant strain described in the first aspect is cultured in a cysteine-added medium. The pre-culture process is aimed at the growth of cys mutants and the accumulation of intracellular starch. This is because cys mutants can hardly grow on the nutrient-stressed medium used in the next stressing step, and long-chain fatty acids are synthesized by converting starch accumulated in the cells, the amount of which is the amount of starch This is because they are in inverse proportion.
 本明細書において「システイン添加培地」とは、システインを含むクロレラ科藻類の生育培地をいう。このような生育培地には、低濃度硫黄培地にシステインを添加したシステイン培地(本明細書では、しばしば「Cys培地」と表記する)や基礎生育培地にシステインを添加した培地が挙げられる。 As used herein, “cysteine-added medium” refers to a growth medium for Chlorellaceae algae containing cysteine. Examples of such a growth medium include a cysteine medium in which cysteine is added to a low-concentration sulfur medium (in this specification, often referred to as “Cys medium”) and a medium in which cysteine is added to a basal growth medium.
 前記Cys培地の組成例として、NH4Cl 40mg, CaCl2・2H2O 5.1mg, MgCl2・6H2O 25.3mg, K2HPO4 11.9mg, KH2PO46.03mg, Hutner's trace elements 0.1mL, Acetic acid 0.1mL, Tris(hydroxymethyl) aminomethane 242mg, Distilled water 99.8mL(pH6.5~6.8)(ここで、Hutner's trace elements:Na2EDTA・2H2O 5g, ZnSO4・7H2O 2.2g, H3BO3 1.14g, MnCl2・4H2O 506mg,FeSO4・7H2O 499mg, CoCl2・6H2O 161mg, CuSO4・5H2O 157mg, (NH4)6Mo7O24・4H2O 110mg, Distilled water 100mL)で示される低濃度硫黄培地に再終濃度1μg/mLでシステインを添加したものが挙げられる。また、基礎生育培地の組成は、野生型クロレラ科藻類が生育可能な培地であれば、特に限定はしない。例えば、硫酸(S)のみを硫黄源として含むTAP培地(NH4Cl 40mg, CaCl2・2H2O 5.1mg, MgSO4・7H2O 10mg, K2HPO4 11.9mg, KH2PO46.03mg, Hutner's trace elements(前述) 0.1mL, Acetic acid 0.1mL, Tris(hydroxymethyl) aminomethane 242mg, Distilled water 99.8mL)(pH6.5~6.8)が挙げられる。システインの添加量は、500ng/mL~100μg/mLであればよい。好ましくは、1μg/mLである。 Examples of the composition of the Cys medium include NH 4 Cl 40 mg, CaCl 2 · 2H 2 O 5.1 mg, MgCl 2 · 6H 2 O 25.3 mg, K 2 HPO 4 11.9 mg, KH 2 PO 4 6.03 mg, Hutner's trace elements 0.1 mL , Acetic acid 0.1 mL, Tris (hydroxymethyl) aminomethane 242 mg, Distilled water 99.8 mL (pH 6.5-6.8) (where Hutner's trace elements: Na 2 EDTA · 2H 2 O 5g, ZnSO 4 · 7H 2 O 2.2g, H 3 BO 3 1.14g, MnCl 2・ 4H 2 O 506mg, FeSO 4・ 7H 2 O 499mg, CoCl 2・ 6H 2 O 161mg, CuSO 4・ 5H 2 O 157mg, (NH 4 ) 6 Mo 7 O 24・ 4H 2 O 110 mg, distilled water 100 mL), and cysteine added at a final concentration of 1 μg / mL. The composition of the basic growth medium is not particularly limited as long as it is a medium in which wild-type Chlorellaceae can grow. For example, TAP medium containing only sulfuric acid (S) as a sulfur source (NH 4 Cl 40 mg, CaCl 2 · 2H 2 O 5.1 mg, MgSO 4 · 7H 2 O 10 mg, K 2 HPO 4 11.9 mg, KH 2 PO 4 6.03 mg , Hutner's trace elements (described above) 0.1 mL, Acetic acid 0.1 mL, Tris (hydroxymethyl) aminomethane 242 mg, Distilled water 99.8 mL) (pH 6.5 to 6.8). The amount of cysteine added may be 500 ng / mL to 100 μg / mL. Preferably, it is 1 μg / mL.
 培養温度は、cys変異株が増殖可能な温度であればよい。通常は、野生型クロレラ科藻類と同じ15~35℃、好ましくは18~30℃、より好ましくは20~28℃の範囲内である。 The culture temperature may be any temperature at which the cys mutant can grow. Usually, it is in the range of 15 to 35 ° C., preferably 18 to 30 ° C., more preferably 20 to 28 ° C., same as wild type Chlorellaceae.
 クロレラ科藻類は光合成を行うため、培養は曝光下で行う。曝光時の光量子束密度は、5~150μmol・m-2・s-1、好ましくは25~100μmol・m-2・s-1の範囲にあればよい。なお、光量子束密度は、1秒間、光が照射された面に含まれる全光子数を受光面積で除した値である。曝光は、連続照射であっても、明暗期を有する間断照射であってもよい。間断照射の場合、明暗期間は特に限定はしないが、例えば、明期8時間:暗期16時間(「8hr:16 hr」と表記する。以下同様とする。)~16hr:8hr時間の範囲でよい。10hr:14hr~14hr:10hrの範囲が好ましい。通常は12hr:12hrで行えばよい。クロレラ科藻類の光合成には、600~750 nmの光と400~500 nmの光が有効である。したがって、光源は、光合成に寄与するこれらの波長スペクトル光を放射可能であれば、特に制限しない。太陽光以外にも、蛍光灯、水銀灯、メタルハライドライト等が挙げられる。また、LED(Light Emitting Diode:発光ダイオード)のように、特定の波長にスペクトルピークを有する単色光を放射する光源であれば、前記波長スペクトルの範囲にスペクトルピークを有する複数種のLEDを組み合わせて本工程の光源として使用してもよい。 Chlorellaceae algae undergo photosynthesis, so the culture is performed under exposure. The photon flux density at the time of exposure may be in the range of 5 to 150 μmol · m −2 · s −1 , preferably 25 to 100 μmol · m −2 · s −1 . The photon flux density is a value obtained by dividing the total number of photons contained in the surface irradiated with light for 1 second by the light receiving area. The exposure may be continuous irradiation or intermittent irradiation having a light and dark period. In the case of intermittent irradiation, the light-dark period is not particularly limited. For example, the light period is 8 hours: the dark period is 16 hours (referred to as “8hr: 16 hr”, the same shall apply hereinafter) to 16 hr: 8 hours. Good. The range of 10hr: 14hr to 14hr: 10hr is preferable. Usually, it may be performed at 12hr: 12hr. Light of 600 to 750 nm and light of 400 to 500 nm are effective for photosynthesis of Chlorellaceae algae. Accordingly, the light source is not particularly limited as long as it can emit these wavelength spectrum lights contributing to photosynthesis. In addition to sunlight, fluorescent lamps, mercury lamps, metal halide lights, and the like can be given. In addition, in the case of a light source that emits monochromatic light having a spectrum peak at a specific wavelength, such as an LED (Light Emitting Diode), a plurality of types of LEDs having a spectrum peak in the range of the wavelength spectrum may be combined. You may use as a light source of this process.
 本工程の培養期間は、システイン添加培地に接種したcys変異株が対数増殖期~静止期に達するまで行う。対数増殖期は、細胞の高い増殖率が維持されながら、かつ多数の細胞を回収可能な後期対数増殖期が好ましい。また静止期は、増殖率が極めて緩やかな増加から0に達するまでの期間で、死細胞や衰弱した細胞の出現率が比較的低い前期静止期が好ましい。具体的な培養期間は、cys変異株、培地、培養温度等によって変動するが、例えば、P. kessleri 3A7株の場合、Cys培地で18~25℃の条件下であれば、2~14日、好ましくは6~12日である。 The culture period of this step is performed until the cys mutant inoculated in the cysteine-added medium reaches the logarithmic growth phase to the stationary phase. The logarithmic growth phase is preferably a late logarithmic growth phase in which a high cell growth rate is maintained and a large number of cells can be collected. The stationary phase is a period from the extremely slow increase in growth rate to 0, and the early stationary phase in which the appearance rate of dead cells and debilitated cells is relatively low is preferable. The specific culture period varies depending on the cys mutant, medium, culture temperature, etc. For example, in the case of P. kessleri 3A7 strain, it is 2-14 days under conditions of 18-25 ° C. in Cys medium. Preferably 6 to 12 days.
 本工程では、前培養期間を通して、又は定期的若しくは不定期に、必要に応じて培地を撹拌してもよい。撹拌手段は問わない。例えば、撹拌棒等の撹拌装置を用いてもよいし、培養槽を反転、回転、振動することで培地を撹拌してもよい。 In this step, the medium may be agitated as necessary throughout the pre-culture period, or regularly or irregularly. Any stirring means may be used. For example, a stirring device such as a stirring rod may be used, or the culture medium may be stirred by reversing, rotating, or vibrating the culture tank.
 また、必要に応じて、二酸化炭素を培地に添加してもよい。
(2)ストレス付与工程
 「ストレス付与工程」は前培養工程で得られたcys変異体の細胞を栄養ストレス付与培地で培養する、本生産方法において必須の工程である。本工程は、前培養工程で増殖させ、また細胞内にデンプンを蓄積させたcys変異株を栄養ストレス条件下に移すことによって、細胞内で長鎖脂肪酸を生合成させ、その後蓄積させることを目的とする。
Moreover, you may add a carbon dioxide to a culture medium as needed.
(2) Stress Application Process The “stress application process” is an essential process in the production method in which cells of the cys mutant obtained in the pre-culture process are cultured in a nutrient stress application medium. The purpose of this process is to biosynthesize long-chain fatty acids in the cells and then accumulate them by transferring cys mutants that have grown in the pre-culture process and accumulated starch in the cells under nutrient stress conditions. And
 栄養ストレスとは、前述のように、硫黄源欠乏ストレス、低濃度システインストレス、及びシステイン欠乏ストレスが該当する。硫黄源欠乏ストレスは、硫酸イオン(SO4 2-)のような硫黄源(S)の欠乏下でcys変異体を培養することで付与できる。また、低濃度システインストレスは、cys変異株の生育及び/又は増殖に必要なシステイン濃度未満の培地でcys変異体を培養することで付与できる。そして、システイン欠乏ストレスは、システイン非存在下でcys変異体を培養することで付与できる。本工程において、好ましい栄養ストレスは低濃度システインストレス又はシステイン欠乏ストレスであり、より好ましい栄養ストレスはシステイン欠乏ストレスである。 As described above, the nutrient stress corresponds to sulfur source deficiency stress, low-concentration cysteine stress, and cysteine deficiency stress. Sulfur source deficiency stress can be imparted by culturing cys mutants in the absence of a sulfur source (S) such as sulfate ion (SO 4 2− ). Moreover, low concentration cysteine stress can be imparted by culturing the cys mutant in a medium having a cysteine concentration lower than that required for growth and / or proliferation of the cys mutant. Cysteine deficiency stress can be imparted by culturing the cys mutant in the absence of cysteine. In this step, preferable nutritional stress is low-concentration cysteine stress or cysteine deficiency stress, and more preferable nutritional stress is cysteine deficiency stress.
 「栄養ストレス付与培地」とは、cys変異体に栄養ストレスを付与する培地をいう。例えば、栄養ストレスが硫黄源欠乏ストレスであれば、硫黄源欠乏培地(S欠培地)が該当する。具体的には、例えば、TAP培地におけるHutner's trace elementsのZnSO4及びFeSO4をそれぞれZnCl2及びFeCl2に置換して、培地から硫酸イオンを完全に除いたSTAP培地(Takeshita et al., 2014, Bioresour Technol. 158:127-34.)が挙げられる。また、栄養ストレスが低濃度システインストレスであれば、低濃度システイン培地(低Cys培地)が該当する。具体的には、システイン濃度が0.001~0.01μg/mL以下のCys培地が該当する。そして、栄養ストレスがシステイン欠乏ストレスであれば、システイン非添加培地、例えば前述の硫酸イオンのみを硫黄源として含むTAP培地が該当する。 “Nutritional stress imparting medium” refers to a medium that imparts nutritional stress to the cys mutant. For example, if the nutrient stress is a sulfur source deficient stress, a sulfur source deficient medium (S deficient medium) is applicable. Specifically, for example, a ZnSO 4 and FeSO 4 of Hutner's trace elements in TAP medium each substituted with ZnCl 2 and FeCl 2, STAP medium (Takeshita et al which completely removed the sulfate ions from the medium., 2014, Bioresour Technol. 158: 127-34.). Further, when the nutritional stress is a low concentration cysteine stress, a low concentration cysteine medium (low Cys medium) is applicable. Specifically, a Cys medium having a cysteine concentration of 0.001 to 0.01 μg / mL or less is applicable. If the nutrient stress is cysteine deficiency stress, a cysteine-free medium, for example, a TAP medium containing only the above-mentioned sulfate ion as a sulfur source is applicable.
 本工程では、前培養工程後の培養液からcys変異株の細胞を回収した後、栄養ストレス付与培地に細胞を植え継げばよい。細胞の回収は、前記培養液を常法により遠心又は濾過して、培地を除去することで達成できる。例えば、培養液を遠心機により適当な時間遠心した後、細胞スラリーを回収する方法や培養液を細胞サイズよりも小さい孔径を有する適当なフィルターを用いて培養液を除去する方法が挙げられる。回収した細胞は、必要に応じて水又は培地と同程度の浸透圧を有するバッファ若しくは生理食塩水で1回以上洗浄してもよい。 In this step, after collecting the cells of the cys mutant from the culture solution after the pre-culture step, the cells may be planted in a nutrient stressed medium. Cell recovery can be achieved by centrifuging or filtering the culture solution by a conventional method to remove the medium. For example, a method of recovering the cell slurry after centrifuging the culture solution for an appropriate time with a centrifuge and a method of removing the culture solution using an appropriate filter having a pore size smaller than the cell size of the culture solution can be mentioned. The collected cells may be washed once or more with a buffer or physiological saline having an osmotic pressure comparable to that of water or a medium as necessary.
 本工程での培養条件は、培養温度、明暗期等については、前培養工程に準じて行えばよい。培地の撹拌や二酸化炭素添加を行うこともできる。ただし、培養期間は、10日~30日間、好ましくは5~15日である。P. kessleri 3A7株及びYY7株の場合、TAP培地で20~28℃の条件下であれば、14~28日である。3A7株では、この工程により、細胞内でエルカ酸が、またYY7株では、オレイン酸やネルボン酸が生合成され、多量に蓄積される。
(3)抽出工程
 「抽出工程」は、ストレス付与工程後のcys変異株の細胞から長鎖脂肪酸を抽出する抽出工程である。本工程は、選択工程であって、必要に応じて行えばよい。本工程の目的は、ストレス付与工程でcys変異株が生合成し、細胞内に蓄積した長鎖脂肪酸を抽出し、回収することを目的とする。
The culture conditions in this step may be performed according to the pre-culture step with respect to the culture temperature, light and dark period, and the like. The medium can be stirred and carbon dioxide added. However, the culture period is 10 to 30 days, preferably 5 to 15 days. In the case of the P. kessleri 3A7 strain and the YY7 strain, it is 14 to 28 days under conditions of 20 to 28 ° C. in a TAP medium. In the 3A7 strain, erucic acid is biosynthesized intracellularly by this process, and in the YY7 strain, oleic acid and nervonic acid are biosynthesized and accumulated in large quantities.
(3) Extraction process The "extraction process" is an extraction process for extracting long-chain fatty acids from the cells of the cys mutant strain after the stress application process. This step is a selection step and may be performed as necessary. The purpose of this step is to extract and recover long-chain fatty acids that are biosynthesized by cys mutants in the stressing step and accumulated in the cells.
 本工程では、まずストレス付与工程後の培養液からcys変異株の細胞を回収する。回収方法は、前記ストレス付与工程に記載の方法と同様でよい。その後、必要に応じて細胞を水又は培地と同程度の浸透圧を有するバッファ若しくは生理食塩水で1回以上洗浄してもよい。 In this step, cys mutant cells are first recovered from the culture solution after the stressing step. The recovery method may be the same as the method described in the stress applying step. Thereafter, if necessary, the cells may be washed once or more with water or a buffer or physiological saline having an osmotic pressure comparable to that of the medium.
 本工程で使用する長鎖脂肪酸の抽出方法は、クロレラ科藻類等の炭化水素産生藻類から炭化水素を抽出するための当該分野で公知のあらゆる方法を用いることができる。クロレラ科藻類は、通常、強固な細胞壁を有している。したがって、細胞から長鎖脂肪酸を効率的に抽出するには、回収したcys変異株を物理的方法及び/又は化学的方法で処理することが好ましい。 The long-chain fatty acid extraction method used in this step can be any method known in the art for extracting hydrocarbons from hydrocarbon-producing algae such as Chlorellaceae algae. Chlorellaceae algae usually have a strong cell wall. Therefore, in order to efficiently extract long-chain fatty acids from cells, it is preferable to treat the recovered cys mutants by physical methods and / or chemical methods.
 物理的方法としては、例えば、圧潰法、超音波法、又はその組み合わせによる抽出方法が挙げられる。 Examples of physical methods include an extraction method using a crushing method, an ultrasonic method, or a combination thereof.
 「圧潰法」とは、細胞に物理的圧力を付与して細胞壁を圧潰破砕し、細胞内の長鎖脂肪酸を抽出する方法である。圧潰法は、例えば、まず、回収した細胞をビーズミル又はグラインドミル等を用いて物理的にすり潰して破砕液を得る。具体的な条件や方法は、ミルの使用説明書等を参考にすればよい。その後、必要に応じて破砕液中のタンパク質を変性除去し、破砕溶液をそのまま又は有機溶媒等を加えて遠心した後、長鎖脂肪酸を含む油相(有機溶媒相)を回収する方法である。使用する有機溶媒は、低極性又は非極性の水非混和性媒体であればよく、n-ヘキサン若しくはn-ヘプタンのような炭素数6~10の脂肪族若しくは脂環式炭化水素又はベンゼンのような炭素数6~10の芳香族炭化水素が好ましく、ヘキサン又はn-ヘプタンがより好ましい。 The “crushing method” is a method in which a physical pressure is applied to cells to crush the cell wall and extract long-chain fatty acids in the cells. In the crushing method, for example, first, the collected cells are physically ground using a bead mill or a grind mill to obtain a crushed liquid. Specific conditions and methods may be referred to the mill instruction manual. Thereafter, the protein in the crushing solution is denatured and removed as necessary, and the crushing solution is centrifuged as it is or after adding an organic solvent or the like, and then an oil phase (organic solvent phase) containing a long-chain fatty acid is recovered. The organic solvent used may be a low-polar or non-polar water-immiscible medium, such as an aliphatic or alicyclic hydrocarbon having 6 to 10 carbon atoms such as n-hexane or n-heptane, or benzene. An aromatic hydrocarbon having 6 to 10 carbon atoms is preferable, and hexane or n-heptane is more preferable.
 「超音波法」とは、超音波によって細胞壁を破砕し、細胞内の長鎖脂肪酸を抽出する方法である。超音波法は、例えば、まず、回収した細胞を水又はバッファ等の適当な溶液に懸濁した後、超音波破砕装置(ソニケーター)を用いて適当な発振周波数と出力で細胞を破砕する。具体的な条件や方法は、超音波破砕装置の使用説明書等を参考にすればよい。その後、必要に応じて破砕液中のタンパク質を変性除去し、破砕溶液から前記圧潰による抽出方法と同様に長鎖脂肪酸を回収する方法が挙げられる。 The “ultrasonic method” is a method in which cell walls are crushed by ultrasonic waves to extract long-chain fatty acids in the cells. In the ultrasonic method, for example, first, the collected cells are suspended in an appropriate solution such as water or a buffer, and then the cells are crushed at an appropriate oscillation frequency and output using an ultrasonic crusher (sonicator). Specific conditions and methods may be referred to the instruction manual for the ultrasonic crushing apparatus. Then, the protein in a crushing liquid is denatured and removed as needed, and the method of collect | recovering long chain fatty acids from the crushing solution similarly to the extraction method by the said crushing is mentioned.
 化学的方法としては、例えば、酵素法が挙げられる。 Examples of the chemical method include an enzyme method.
 「酵素法」とは、酵素によって細胞壁を溶解し、細胞内の長鎖脂肪酸を抽出する方法である。酵素方法では、例えば、Cellulase R-10、Hemicellulase、Lysozyme、α-Mannosidase、及びβ-Mannosidaseのカクテルを使用すればよい。酵素処理をする場合、まず、細胞を使用する酵素の至適条件下で処理する。その後、必要に応じて酵素処理溶液中のタンパク質を変性除去し、残った溶液から前記圧潰による抽出方法と同様に長鎖脂肪酸を回収する方法である。
(4)分離工程
 有機溶媒に溶解した長鎖脂肪酸の回収方法又は精製方法は当該分野で公知の方法を用いればよく、特に限定はしない。例えば、エステル化やアルカリ等によって鹸化し、分溜する方法が挙げられる。また、特開平8-9981に開示の発明を利用することもできる。
2-3.効果
 本発明の長鎖脂肪酸生産方法によれば、従来法で行われていた植物油脂の加水分解工程を必要とせず、細胞の培地を変えるだけで生産することができる。長鎖脂肪酸を、少ない工程で効率的に生産することができるため、生産コストの低減が可能となり、長鎖脂肪酸を安価で提供することができる。
The “enzymatic method” is a method in which a cell wall is lysed by an enzyme to extract intracellular long-chain fatty acids. In the enzyme method, for example, a cocktail of Cellulase R-10, Hemicellulase, Lysozyme, α-Mannosidase, and β-Mannosidase may be used. In the case of enzyme treatment, cells are first treated under the optimum conditions for the enzyme used. Thereafter, if necessary, the protein in the enzyme treatment solution is denatured and removed, and the long chain fatty acid is recovered from the remaining solution in the same manner as the extraction method by crushing.
(4) Separation step The method for recovering or purifying the long-chain fatty acid dissolved in the organic solvent may be any method known in the art and is not particularly limited. For example, a method of saponification with an esterification or alkali or the like and fractionating may be mentioned. Further, the invention disclosed in JP-A-8-9981 can be used.
2-3. Effect According to the method for producing a long-chain fatty acid of the present invention, it is possible to produce by simply changing the cell culture medium without requiring the vegetable oil / fat hydrolysis step performed by the conventional method. Since long-chain fatty acids can be efficiently produced with few steps, production costs can be reduced, and long-chain fatty acids can be provided at low cost.
 また、細胞中のデンプン蓄積量と長鎖脂肪酸蓄積量は、トレードオフの関係にあることから、それぞれを蓄積する培地での培養期間を調節することによって、細胞内に蓄積される長鎖脂肪酸量を制御することができる。 In addition, since the amount of starch accumulated in cells and the amount of accumulated long-chain fatty acids are in a trade-off relationship, the amount of long-chain fatty acids accumulated in the cells can be adjusted by adjusting the culture period in the medium for accumulating each. Can be controlled.
 さらに、本発明の長鎖脂肪酸生産方法は、クロレラ科藻類を原料とすることから、油脂用植物の作付量や生産量に左右されず、また食用としての植物油と競合問題も発生しないことから原料を安定的確保できる。 Furthermore, since the method for producing long-chain fatty acids of the present invention uses chlorellaceae algae as a raw material, it is not affected by the planting amount or production amount of a plant for fats and oils, and does not cause any competition problems with edible vegetable oil. Can be secured stably.
<実施例1:クロレラ科藻類のシステイン要求性変異株の分離>
(目的)
 クロレラ科藻類に突然変異誘発処理を施し、システイン要求性変異株を分離する。
(方法)
A.クロレラ科藻類の培養
 P. kessleriは、直径5~10μmのほぼ球形をした淡水性単細胞緑藻類で、クロレラ科藻類としてはやや大形な部類に属する。野生株は、TAP培地で容易に増殖し、培養は極めて易しい。また、含油量が他のクロレラ科藻類よりも比較的高く、増殖速度も速いことからバイオマス生産効率も高い。そこで、システイン要求性変異株の分離用クロレラ科藻類には、P. kessleriの野生株(WT)を用いた。国立環境研究所(つくば;日本)から入手したP. kessleri 野生株(N-2152株)を40mLのTAP培地に接種し、光強度を150μmol・m-2・s-1として、12hr:12hrの明暗期を与え、23℃で1~2週間静置培養した。この培養液を100mLのTAP培地に播種して同条件で5日間再度培養した。
B.突然変異誘発処理
 培養液を8連チューブ(Rikaken)に200mLずつ分配し、RIBF(RI-Beam Factory)(理化学研究所;和光;日本)で培養液に重イオンビーム照射を行い、P. kessleriに突然変異誘導処理を行った。照射ビームには56Feイオン(LET=645keV/μm)を用いた。重イオン照射後の株を500枚のCys-1.5%寒天培地(Cysプレート)に塗布し、12hr:12hrの明暗期を与えて23℃で、コロニーが形成されるまで、14日間程培養した。
C.システイン要求性変異株の選抜
 プレートから滅菌爪楊枝で単一コロニーを掻き取り、Cys培地とTAP培地を入れた寒天プレート(それぞれCysプレートとTAPプレート)に接種した。この時用いた2つのプレートは、192方眼のマス目で区画され、各区画にアドレスが付与されている。総数約3,500の単一コロニーを2つの寒天プレートの同じアドレスの区画に重複して(duplicateで)接種した。光強度を50μmol・m-2・s-1として、12hr:12hrの明暗期を与え、23℃で約10日間静置培養した。
<Example 1: Isolation of cysteine-requiring mutant of Chlorellaceae algae>
(the purpose)
Chlorellaceae algae are subjected to mutagenesis to isolate cysteine-requiring mutants.
(Method)
A. Cultivation of Chlorellaceae Algae P. kessleri is a freshwater unicellular green algae with a diameter of 5 to 10 μm, and belongs to a slightly larger class as Chlorellaceae. Wild strains grow easily on TAP medium and are extremely easy to culture. Moreover, since the oil content is relatively higher than other chlorellaceae and the growth rate is fast, the biomass production efficiency is also high. Therefore, a wild strain (WT) of P. kessleri was used as a Chlorellaceae for isolation of cysteine-requiring mutants. P. kessleri wild strain (N-2152 strain) obtained from National Institute for Environmental Studies (Tsukuba; Japan) is inoculated into 40 mL of TAP medium, and the light intensity is 150 μmol · m −2 · s −1 , 12hr: 12hr Light and dark periods were given, and static culture was performed at 23 ° C. for 1 to 2 weeks. This culture solution was seeded in 100 mL of TAP medium and cultured again for 5 days under the same conditions.
B. Mutagenesis treatment Divide 200 mL of the culture solution into 8 tubes (Rikaken) and irradiate the culture solution with RIBF (RI-Beam Factory) (RIKEN; Wako; Japan) to P. kessleri. Mutation induction treatment was performed. For the irradiation beam, 56 Fe ions (LET = 645 keV / μm) were used. Strains after irradiation with heavy ions were applied to 500 Cys-1.5% agar media (Cys plates), and the cells were cultured at 23 ° C. for 14 days until a colony was formed at a light / dark period of 12 hr: 12 hr.
C. Selection of Cysteine-Required Mutant Strains Single colonies were scraped from the plate with a sterile toothpick and inoculated on agar plates (Cys plate and TAP plate, respectively) containing Cys medium and TAP medium. The two plates used at this time are sectioned by 192 squares, and addresses are given to the sections. A total of about 3,500 single colonies were inoculated (duplicate) in duplicate on the same address section of two agar plates. The light intensity was 50 μmol · m −2 · s −1 , a 12 hr: 12 hr light-dark period was given, and the cells were statically cultured at 23 ° C. for about 10 days.
 藻類の成長を目視で確認し、Cysプレートでは増殖するがTAPプレートでは増殖していない株をシステイン要求性変異株の候補株として選択した。Cysプレートの対応するアドレスから滅菌爪楊枝を使って、予めCys液体培地を入れた24wellタイタープレート(Iwaki)に前記候補株を接種し、2週間静置培養して細胞数を増やした。滅菌爪楊枝の柄の先を使ってCys培地とTAP培地を入れた24ウェルの寒天平板プレートに培養液を再接種した。再び、12hr:12hrの明暗期を与えて23℃で10日間静置培養した。その後、再度、Cysプレートでは増殖するがTAPプレートでは増殖しない株を本発明のシステイン要求性変異株として単離した。
(結果)
 P. kessleriのシステイン要求性変異株として、3A7株及びYY7株を得た。なお、前述のようにP. kessleri 3A7株は国際受託番号FERM BP-22268として、またYY7株は国際受託番号FERM BP-22288として2015年7月14日付で、独立行政法人製品評価技術基盤機構 特許生物寄託センターに寄託されている。
<実施例2:P. kessleriのシステイン要求性変異株3A7株の基本性質の検証>
(目的)
 実施例1で得られたP. kessleriのシステイン要求性変異株である3A7株について、成長曲線、細胞の乾燥重量及び総脂質量等の基本性質について検証する。
(方法)
A.成長曲線
 P. kessleri 3A7株を100mLのTAP培地及びCys培地にそれぞれ接種し、光強度を150μmol・m-2・s-1として12hr:12hrの明暗期を与え、23℃で10日間静置培養した。その間、毎日培養液を一部採取し、粒度分布測定装置(CDA-1000, シスメックス)を用いて細胞濃度を算出した。陽性対照としてP. kessleri 野生株(WT:N-2152株)を同条件で用いた。
B.乾燥重量及び総脂質量
 P. kessleriの3A7株をTAP培地(硫黄含有システイン非添加培地)及びSTAP培地(硫黄欠乏システイン非添加培地)の2種の培地で培養し、それぞれの培地における培養期間と、乾燥重量の変化について調べた。また、TAP培地、STAP培地、TAP+cys培地(硫黄含有システイン添加培地)及びCys培地(低濃度硫黄システイン添加培地)の4種の培地で培養し、それぞれの培地における培養期間と総脂質量の変化について調べた。培養は、光強度を150μmol・m-2・s-1として、12hr:12hrの明暗期を与え、23℃で10日間静置培養した。乾燥重量の変化の検証では、培養2日後、4日後、7日後及び10日後に、また総脂質量の変化の検証では、培養3日後、5日後、7日後及び10日後に培養液の一部を採取した。
Algal growth was confirmed visually, and a strain that grew on the Cys plate but not on the TAP plate was selected as a candidate strain for a cysteine-requiring mutant. Using a sterile toothpick from the corresponding address of the Cys plate, the candidate strain was inoculated into a 24-well titer plate (Iwaki) that had been preliminarily filled with Cys liquid medium, and the number of cells was increased by stationary culture for 2 weeks. Using the tip of a sterile toothpick handle, the culture solution was re-inoculated on a 24-well agar plate containing Cys medium and TAP medium. Again, a 12 hr: 12 hr light-dark period was given, and static culture was performed at 23 ° C. for 10 days. Thereafter, again, a strain that grew on the Cys plate but did not grow on the TAP plate was isolated as a cysteine-requiring mutant of the present invention.
(result)
As cysteine-requiring mutants of P. kessleri, 3A7 strain and YY7 strain were obtained. As mentioned above, P. kessleri 3A7 shares are under the international accession number FERM BP-22268, and YY7 stock is under the international accession number FERM BP-22288 on July 14, 2015. Deposited at the biological deposit center.
<Example 2: Verification of basic properties of P. kessleri cysteine-requiring mutant 3A7>
(the purpose)
The 3A7 strain, which is a cysteine-requiring mutant strain of P. kessleri obtained in Example 1, is examined for basic properties such as growth curve, cell dry weight and total lipid amount.
(Method)
A. Growth curve P. kessleri 3A7 strain is inoculated into 100mL of TAP medium and Cys medium respectively, light intensity is 150μmol · m -2 · s -1 , 12hr: 12hr light / dark period is given, and static culture at 23 ° C for 10 days did. Meanwhile, a part of the culture solution was collected every day, and the cell concentration was calculated using a particle size distribution analyzer (CDA-1000, Sysmex). As a positive control, a wild P. kessleri strain (WT: N-2152 strain) was used under the same conditions.
B. Dry weight and total lipids P. kessleri strain 3A7 is cultured in two types of media: TAP medium (medium without sulfur-containing cysteine) and STAP medium (medium without sulfur-deficient cysteine). The change in dry weight was examined. In addition, culturing in 4 types of media: TAP medium, STAP medium, TAP + cys medium (sulfur-containing cysteine-added medium) and Cys medium (low-concentration sulfur cysteine-added medium). Examined. The culture was performed at a light intensity of 150 μmol · m −2 · s −1 , a light / dark period of 12 hr: 12 hr, and statically cultured at 23 ° C. for 10 days. For verification of changes in dry weight, after 2 days, 4 days, 7 days and 10 days of culture, and for verification of changes in total lipid content, a portion of the culture solution after 3 days, 5 days, 7 days and 10 days of culture. Were collected.
 乾燥重量は、次のように測定した。細胞懸濁液4mLを分取し、遠心分離によって上清を除去して細胞ペレットを得た。得られた細胞ペレットを1mLのエタノールに再懸濁し、予め計量したアルミシャーレに入れて、105℃で3時間乾燥させた。乾燥前後の重量差を求めて乾燥重量とした。陽性対照としてP. kessleri 野生株(WT:N-2152株)を同条件で用いた。 The dry weight was measured as follows. 4 mL of the cell suspension was collected, and the supernatant was removed by centrifugation to obtain a cell pellet. The obtained cell pellet was resuspended in 1 mL of ethanol, placed in a pre-weighed aluminum petri dish, and dried at 105 ° C. for 3 hours. The difference in weight before and after drying was determined and defined as the dry weight. As a positive control, P. kessleri wild strain (WT: N-2152 strain) was used under the same conditions.
 総脂質量は、次のように測定した。細胞懸濁液10mLを分取し、遠心分離によって上清を除去して細胞ペレットを得た。得られた細胞ペレットを1.5mLメタノール、及び5mL MTBEの順で懸濁し、超音波により60秒間細胞を破砕した。破砕後、振盪機(DOUBLE SHAKER NR-30:タイテック)により150rpmで2時間振盪し、1.5mLの水を加えて水層と油層に分離した。上層の油層を予め計量したアルミシャーレに分取し、ドラフト内で一晩乾燥させた。乾燥前後の重量差を求め乾燥重量とした。陽性対照としてP. kessleri 野生株(WT:N-2152株)を同条件で用いた。 The total lipid amount was measured as follows. 10 mL of the cell suspension was collected, and the supernatant was removed by centrifugation to obtain a cell pellet. The obtained cell pellet was suspended in the order of 1.5 mL methanol and 5 mL MTBE, and the cells were disrupted by ultrasonic waves for 60 seconds. After crushing, the mixture was shaken at 150 rpm for 2 hours with a shaker (DOUBLE : SHAKER NR-30: Taitec), and 1.5 mL of water was added to separate it into an aqueous layer and an oil layer. The upper oil layer was collected in a pre-weighed aluminum petri dish and dried overnight in a fume hood. The difference in weight before and after drying was determined as the dry weight. As a positive control, P. kessleri wild strain (WT: N-2152 strain) was used under the same conditions.
 また、培養10日後に各培地から細胞懸濁液1mLを分取し、遠心分離によって上清を除去して細胞ペレットを得た。得られた細胞ペレットに1mM NileRed染色液(in DMSO)を加え、4分間ボルテックスにより良く撹拌した。染色後の細胞を蛍光顕微鏡(オリンパスBX52)を用いて観察した。細胞あたりの総脂質量は、測定した総脂質量を細胞数で割って算出した。総脂質量の測定方法は前項に記載の方法から、また細胞数は「A.成長曲線」の項と同じ方法から求めた。
(結果)
A.図1に結果を示す。3A7株は、システインを包含するCys培地では、野生株と同程度に増殖した(図1A)。一方、硫黄を包含するがシステインを包含しないTAP培地では、野生株は正常に増殖したが、3A7株はほとんど増殖できず、システイン要求性変異株であることが確認された(図1B)。
B.P. kessleriの培養時間と乾燥重量の結果を図2に、また各培地で培養したP. kessleriの細胞あたりの脂質蓄積量を図3に示す。
Further, after 10 days of culture, 1 mL of cell suspension was separated from each medium, and the supernatant was removed by centrifugation to obtain a cell pellet. 1 mM NileRed staining solution (in DMSO) was added to the obtained cell pellet, and the mixture was well stirred by vortexing for 4 minutes. The stained cells were observed using a fluorescence microscope (Olympus BX52). The total lipid amount per cell was calculated by dividing the measured total lipid amount by the number of cells. The method for measuring the total lipid amount was determined from the method described in the previous section, and the number of cells was determined from the same method as in the section “A. Growth curve”.
(result)
A. The results are shown in FIG. The 3A7 strain grew to the same extent as the wild strain on the Cys medium containing cysteine (FIG. 1A). On the other hand, in the TAP medium containing sulfur but not containing cysteine, the wild strain grew normally, but the 3A7 strain could hardly grow, confirming that it was a cysteine-requiring mutant (FIG. 1B).
B. The results of the culture time and dry weight of P. kessleri are shown in FIG. 2, and the amount of lipid accumulation per cell of P. kessleri cultured in each medium is shown in FIG.
 図2から野生株及び3A7株は、いずれも硫黄欠乏システイン非添加ストレス下のSTAP培地では乾燥重量、すなわちバイオマスが著しく低下することが明らかとなった。この結果は、硫黄欠乏によってP. kessleriの増殖が抑制されるため、バイオマスが低下することを示唆している。 2. From FIG. 2, it was revealed that the dry weight, that is, the biomass of the wild strain and the 3A7 strain was significantly reduced in the STAP medium under the stress without addition of sulfur-deficient cysteine. This result suggests that biomass declines because sulfur deficiency suppresses the growth of P. ikessleri.
 図3から3A7株の場合、TAP培地やSTAP培地のようなシステイン非添加培地で培養した場合には、細胞あたりの脂質蓄積量が著しく高くなることが明らかとなった。それに対して、システインを添加した完全培地(TAP+cys培地及びCys培地)では、細胞あたりの脂質蓄積量は低かった。一方、野生株の場合は、硫黄を欠乏しているSTAP培地で培養したときにのみ細胞あたりの脂質蓄積量が高かった。 FIG. 3 shows that in the case of the 3A7 strain, the amount of lipid accumulation per cell is remarkably increased when cultured in a cysteine-free medium such as TAP medium or STAP medium. In contrast, in the complete medium (TAP + cys medium and Cys medium) supplemented with cysteine, the amount of lipid accumulation per cell was low. On the other hand, in the case of the wild strain, the lipid accumulation amount per cell was high only when cultured in the STAP medium lacking sulfur.
 STAP培地のような硫黄欠乏システイン非添加培地は、細胞あたりの脂質蓄積量の点では好適であるが、バイオマスが著しく低下するため総脂質量は伸びない。したがって、本発明のシステイン要求性変異株であるP. kessleriの3A7株を、TAP培地のようなシステイン非添加培地での培養した場合に、細胞あたりの脂質蓄積量とバイオマスや総脂質量を高い値で維持できることから、脂質の生産効率が最も良いことが判明した。
<実施例3:P. kessleri 3A7株における細胞内脂質の組成比>
(目的)
 P. kessleriの3A7株が細胞内に蓄積する脂質を同定し、培地による組成比の変化を同定する。
(方法)
 P. kessleriの3A7株を100mLのCys培地で、光強度を150μmol・m-2・s-1として、12hr:12hrの明暗期を与え、23℃で10日間静置培養した(前培養工程)。培養後、700gで10分間遠心(LOW SPEED CENTRIFUGE LC-121:TOMY)してスラリーを回収した。滅菌水で1回洗浄後、スラリーを100mLのTAP培地、STAP培地、TAP+cys培地、及びCys培地にそれぞれ移植し、これらを本培養とした。再度光強度を150μmol・m-2・s-1として、12hr:12hrの明暗期を与え、23℃で10日間静置培養した(ストレス付与工程)。
A sulfur-deficient cysteine-free medium such as STAP medium is suitable in terms of the amount of lipid accumulation per cell, but the total lipid amount does not increase because the biomass is significantly reduced. Therefore, when the 3A7 strain of P. kessleri, a cysteine-requiring mutant of the present invention, is cultured in a cysteine-free medium such as TAP medium, the amount of lipid accumulation per cell and the amount of biomass and total lipid are high. It was found that the lipid production efficiency was the best because it could be maintained at the value.
<Example 3: Composition ratio of intracellular lipid in P. kessleri 3A7 strain>
(the purpose)
P. kessleri strain 3A7 identifies lipids that accumulate in cells and identifies changes in composition ratio due to medium.
(Method)
P. kessleri strain 3A7 was cultivated in 100 mL of Cys medium at a light intensity of 150 μmol · m −2 · s −1 , 12 hr: 12 hr, and incubated at 23 ° C. for 10 days (pre-culture step) . After culturing, the slurry was collected by centrifugation at 700 g for 10 minutes (LOW SPEED CENTRIFUGE LC-121: TOMY). After washing once with sterilized water, the slurry was transplanted to 100 mL of TAP medium, STAP medium, TAP + cys medium, and Cys medium, respectively, which were used as main culture. Again, the light intensity was 150 μmol · m −2 · s −1 , a 12 hr: 12 hr light / dark period was given, and the cells were left to stand at 23 ° C. for 10 days (stress application step).
 培養8日目及び10日目に、本培養の各培養液を30mL採取し、培養液中の脂肪酸を同定した。脂肪酸の同定にはGCMS-QP2010 Plus(島津製作所)を用いた。使用カラムは、SP-2380(シグマアルドリッチ社)で、標準試料Supelco 37 Component FAME Mix 10 mg/mL in methylene chloride (varied), analytical standard (シグマアルドリッチ社)により定性分析を行い、MS装置に内蔵されているライブラリによりMSで定性も行った。脂肪酸の割合は得られたピークの面積から検査する面積百分率法により求めた。
(結果)
 図4に培養8日後の、また図5に培養10日後の、各培養液におけるP. kessleriの3A7株の細胞内脂質の組成比を示す。8日目、10日目ともに3A7株は、TAP培地で本培養を行ったときにC22:1のエルカ酸を最も多く細胞内に蓄積することが明らかとなった。その量は、培養10日目で63%にも達していた。P. kessleriの野生型は、硫黄源を欠乏したSTAP培地では、培養10日目で40%ほどのエルカ酸を含有していたが、TAP培地では10%程度しか含有していなかった。硫黄源は、培地中に様々な形態で含まれており、硫黄源欠乏培地によってエルカ酸の含有量を制御することは容易ではない。一方、クロレラ科藻類の野生型は、システインを生合成できることから、通常の生育培地にはシステインが添加されていない。それ故に、3A7株は、通常の生育培地にシステインを添加するか、しないかによって、細胞増殖及びエルカ酸の細胞内蓄積を容易に制御できる。
<実施例4:P. kessleri YY7株における細胞内脂質の組成比>
(目的)
 P. kessleriのYY7株が細胞内に蓄積する脂質を同定し、野生株や他の変異株との脂質組成比の違いを検証する。
(方法)
 基本的な操作は、実施例3に準ずる。まず、P. kessleriの野生株、3A7株、及びYY7株をそれぞれ100mLのCys培地で、光強度を150μmol・m-2・s-1として、12hr:12hrの明暗期を与え、23℃で10日間静置培養した(前培養工程)。培養後、700gで10分間遠心(LOW SPEED CENTRIFUGE LC-121:TOMY)してスラリーを回収した。滅菌水で1回洗浄後、各株のスラリーを100mLのTAP培地に移植して、これを本培養とした。再度光強度を150μmol・m-2・s-1として、12hr:12hrの明暗期を与え、23℃で10日間静置培養した(ストレス付与工程)。
On the 8th and 10th days of culture, 30 mL of each culture solution of the main culture was collected to identify fatty acids in the culture solution. GCMS-QP2010 Plus (Shimadzu Corporation) was used for fatty acid identification. The column used is SP-2380 (Sigma Aldrich), and qualitative analysis is performed with the standard sample Supelco 37 Component FAME Mix 10 mg / mL in methylene chloride (varied), analytical standard (Sigma Aldrich), which is built into the MS instrument. Qualitative analysis was also performed by MS using the library. The ratio of the fatty acid was determined by an area percentage method inspected from the obtained peak area.
(result)
FIG. 4 shows the composition ratio of intracellular lipid of P. kessleri strain 3A7 in each culture solution after 8 days of culture and FIG. 5 after 10 days of culture. On the 8th and 10th days, the 3A7 strain was found to accumulate the most C22: 1 erucic acid in the cells when the main culture was performed in the TAP medium. The amount reached 63% on the 10th day of culture. The wild type of P. kessleri contained about 40% erucic acid on the 10th day of culture in the STAP medium lacking the sulfur source, but contained only about 10% in the TAP medium. The sulfur source is contained in various forms in the medium, and it is not easy to control the content of erucic acid by the sulfur source-deficient medium. On the other hand, since the wild type of Chlorellaceae algae can biosynthesize cysteine, cysteine is not added to a normal growth medium. Therefore, the 3A7 strain can easily control cell growth and intracellular accumulation of erucic acid by adding or not adding cysteine to the normal growth medium.
<Example 4: Composition ratio of intracellular lipid in P. kessleri YY7 strain>
(the purpose)
We will identify the lipids that P. kessleri strain YY7 accumulates in the cells, and verify the difference in lipid composition ratio from wild-type and other mutants.
(Method)
The basic operation is in accordance with the third embodiment. First, P. kessleri wild strain, 3A7 strain, and YY7 strain were each 100 mL of Cys medium, light intensity was set to 150 μmol · m −2 · s −1 , and 12 hr: 12 hr of light and dark period was given, and 10 ° C. at 23 ° C. The culture was allowed to stand for 1 day (preculture process). After culturing, the slurry was collected by centrifugation at 700 g for 10 minutes (LOW SPEED CENTRIFUGE LC-121: TOMY). After washing once with sterilized water, the slurry of each strain was transplanted into 100 mL of TAP medium, which was used as main culture. Again, the light intensity was set to 150 μmol · m −2 · s −1 , a 12 hr: 12 hr light / dark period was given, and the cells were statically cultured at 23 ° C. for 10 days (stress application step).
 本培養0、2、4、7及び10日目に、培養液を30mL採取し、培養液中の脂肪酸を同定した。脂肪酸の同定にはGCMS-QP2010 Plus(島津製作所)を用いた。使用カラムは、SP-2380(シグマアルドリッチ社)で、標準試料Supelco 37 Component FAME Mix 10 mg/mL in methylene chloride (varied), analytical standard (シグマアルドリッチ社)により定性分析を行い、MS装置に内蔵されているライブラリによりMSで定性も行った。脂肪酸の割合は得られたピークの面積から検査する面積百分率法により求めた。
(結果)
 図5に結果を示す。a(野生株)、c(3A7株)、及びe(YY7株)は、本培養開始後における細胞内脂質組成比の経時変化を示す。また、b(野生株)、d(3A7株)、及びf(YY7株)は、細胞内に蓄積した各脂質量の経時変化を示す。
On the 0th, 2nd, 4th, 7th, and 10th days of the main culture, 30 mL of the culture solution was collected, and fatty acids in the culture solution were identified. GCMS-QP2010 Plus (Shimadzu Corporation) was used for fatty acid identification. The column used is SP-2380 (Sigma Aldrich), and qualitative analysis is performed with the standard sample Supelco 37 Component FAME Mix 10 mg / mL in methylene chloride (varied), analytical standard (Sigma Aldrich), which is built into the MS instrument. Qualitative analysis was also performed by MS using the library. The ratio of the fatty acid was determined by an area percentage method inspected from the obtained peak area.
(result)
The results are shown in FIG. a (wild strain), c (3A7 strain), and e (YY7 strain) show changes in the intracellular lipid composition ratio over time after the start of the main culture. Further, b (wild strain), d (3A7 strain), and f (YY7 strain) indicate changes over time in the amount of each lipid accumulated in the cells.
 YY7株では、本培養期間中、C18:1のオレイン酸とC24:1のネルボン酸を安定的に得ることができた。本培養7日目でオレイン酸の蓄積量は細胞内全脂質量の約65%、またネルボン酸の蓄積量は約16%にも達することが判明した。また、3A7株とYY7株は、いずれもP. kessleriであり、共に本培養下で細胞内にオレイン酸を蓄積するが、3A7株はネルボン酸を全く蓄積せず、またYY7株はエルカ酸を全く蓄積しないことが明らかとなった。この結果は、本発明のシステイン要求性変異株が同じ種由来であっても、株種によって異なる長鎖脂肪酸を生産し得ることを示唆している。 In the YY7 strain, C18: 1 oleic acid and C24: 1 nervonic acid could be stably obtained during the main culture period. On the 7th day of the main culture, the amount of oleic acid accumulated was found to be about 65% of the total intracellular lipid amount, and the amount of nervonic acid accumulated was about 16%. The 3A7 strain and the YY7 strain are both P. skessleri, and both accumulate oleic acid in the cells in the main culture, but the 3A7 strain does not accumulate nervonic acid at all, and the YY7 strain does not contain erucic acid. It became clear that it did not accumulate at all. This result suggests that even if the cysteine-requiring mutant strains of the present invention are derived from the same species, different long-chain fatty acids can be produced depending on the strain species.
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited in this specification are incorporated herein by reference in their entirety.

Claims (11)

  1.  システイン非存在下で長鎖脂肪酸の生産を増加するクロレラ科(Chlorellaceae)藻類のシステイン要求性変異株。 A cysteine-requiring mutant of the Chlorellaceae algae that increases the production of long-chain fatty acids in the absence of cysteine.
  2.  クロレラ科藻類がクロレラ属(Chlorella)藻類又はパラクロレラ属(Parachlorella)藻類である、請求項1に記載の変異株。 The mutant according to claim 1, wherein the Chlorellaceae is a Chlorella algae or a Parachlorella algae.
  3.  パラクロレラ属藻類が国際受託番号FERM BP-22268及びFERM BP-22288で示されるP. kessleriである、請求項2に記載の変異株。 The mutant strain according to claim 2, wherein the parachlorella algae is P. kessleri represented by international accession numbers FERM BP-22268 and FERM BP-22288.
  4.  クロレラ科藻類を変異原で処理する突然変異誘発工程、
     突然変異誘発工程後のクロレラ科藻類をシステイン添加培地のプレートに塗布し、コロニー形成するまで培養するコロニー形成工程、
     プレート状に形成された単一コロニー由来のクロレラ科藻類をシステイン添加培地のプレートとシステイン非添加培地のプレート上でそれぞれ培養するシステインストレス培養工程、
     システイン添加培地のプレートで増殖し、システイン非添加培地のプレートでは増殖しない株を候補株として選択する候補株選択工程、
     前記候補株をシステイン添加培地のプレートとシステイン非添加培地のプレート上で再度培養する確認培養工程、及び
     システイン非添加培地のプレートで増殖しない候補株をシステイン要求性変異株として選択するシステイン要求性変異株選択工程
    を含む長鎖脂肪酸生産性クロレラ科藻類の作出方法。
    A mutagenesis step in which a chlorellaceae algae is treated with a mutagen;
    A colony forming step of applying the chlorellaceae algae after the mutagenesis step to a plate of a cysteine-added medium and culturing until colony formation;
    Cysteine stress culture step of culturing chlorellaceae derived from a single colony formed in a plate shape on a plate of cysteine-added medium and a plate of cysteine-free medium,
    A candidate strain selection step of selecting a strain that grows on a plate of cysteine-added medium and does not grow on a plate of cysteine-free medium,
    Confirmation culture step of culturing the candidate strain again on a cysteine-added medium plate and a cysteine-free medium plate, and selecting a candidate strain that does not grow on the cysteine-free medium plate as a cysteine-requiring mutant A method for producing a long-chain fatty acid-producing chlorellaceae including a strain selection step.
  5.  変異原がアルキル化剤又は放射線である、請求項4に記載の作出方法。 The production method according to claim 4, wherein the mutagen is an alkylating agent or radiation.
  6.  放射線が重イオンビームである、請求項5に記載の作出方法。 The production method according to claim 5, wherein the radiation is a heavy ion beam.
  7.  請求項1~3のいずれか一項に記載のシステイン要求性変異株をシステイン添加培地で対数増殖期~静止期まで培養する前培養工程、及び
     前培養工程で得られた細胞を栄養ストレス付与培地で10日~30日間培養するストレス付与工程
    を含む長鎖脂肪酸生産方法。
    A pre-culturing step of culturing the cysteine-requiring mutant strain according to any one of claims 1 to 3 in a cysteine-added medium from a logarithmic growth phase to a stationary phase, and a cell obtained in the pre-culturing step comprising a nutrient-stressed medium A method for producing a long chain fatty acid comprising a stress applying step of culturing for 10 to 30 days.
  8.  ストレス付与工程後の細胞から長鎖脂肪酸を物理的方法及び/又は化学的方法により抽出する抽出工程をさらに含む、請求項7に記載の生産方法。 The production method according to claim 7, further comprising an extraction step of extracting long-chain fatty acids from the cells after the stress application step by a physical method and / or a chemical method.
  9.  栄養ストレス付与培地がシステイン非添加培地である、請求項7又は8に記載の生産方法。 The production method according to claim 7 or 8, wherein the nutrient-stressed medium is a cysteine-free medium.
  10.  請求項3に記載の国際受託番号FERM BP-22268で示されるP. kessleriの変異株を用いてエルカ酸を生産する、請求項7~9のいずれか一項に記載の生産方法。 The production method according to any one of claims 7 to 9, wherein erucic acid is produced using a mutant of P. kessleri represented by the international accession number FERM BP-22268 according to claim 3.
  11.  請求項3に記載の国際受託番号FERM BP-22288で示されるP. kessleriの変異株を用いてオレイン酸及びネルボン酸を生産する、請求項7~9のいずれか一項に記載の生産方法。 The production method according to any one of claims 7 to 9, wherein oleic acid and nervonic acid are produced using a mutant of P. kessleri represented by the international accession number FERM BP-22288 according to claim 3.
PCT/JP2015/071156 2014-07-25 2015-07-24 Algae for producing long-chain fatty acids, and method for producing long-chain fatty acids using same WO2016013671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016536002A JP6721807B2 (en) 2014-07-25 2015-07-24 Long-chain fatty acid producing algae and method for producing long-chain fatty acid using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-152376 2014-07-25
JP2014152376 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013671A1 true WO2016013671A1 (en) 2016-01-28

Family

ID=55163193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071156 WO2016013671A1 (en) 2014-07-25 2015-07-24 Algae for producing long-chain fatty acids, and method for producing long-chain fatty acids using same

Country Status (2)

Country Link
JP (1) JP6721807B2 (en)
WO (1) WO2016013671A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184698A (en) * 2016-04-08 2017-10-12 株式会社ユーグレナ Euglena with high content of oil and fat
JP2017184699A (en) * 2016-04-08 2017-10-12 株式会社ユーグレナ Manufacturing method of high-fat-containing euglena
JP2019017328A (en) * 2017-07-19 2019-02-07 バイオックス化学工業株式会社 Useful lipid production method using green algae
CN112522325A (en) * 2020-12-16 2021-03-19 桂林理工大学 Method for improving methane production by anaerobic digestion of waste oil through saponification pretreatment
JPWO2020027002A1 (en) * 2018-08-01 2021-08-12 国立大学法人高知大学 Seaweed cell manufacturing method
CN113897403A (en) * 2021-10-09 2022-01-07 南京师范大学 Method for improving oil yield of oleaginous microorganism and preparation method of microbial oil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029727A1 (en) * 2010-08-31 2012-03-08 独立行政法人科学技術振興機構 Alga in which production of photosynthetic products is improved, and use for said alga

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029727A1 (en) * 2010-08-31 2012-03-08 独立行政法人科学技術振興機構 Alga in which production of photosynthetic products is improved, and use for said alga

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FERNANDES, BRUNO ET AL.: "Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri", BIORESOURCE TECHNOLOGY, vol. 144, 2013, pages 268 - 274 *
MIZUNO, Y. ET AL.: "Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species", BIORESOURCE TECHNOLOGY, vol. 129, 2013, pages 150 - 155 *
OTA, S. ET AL.: "Phenotypic spectrum of Parachlorella kessleri (Chlorophyta) mutants produced by heavy-ion irradiation", BIORESOURCE TECHNOLOGY, vol. 149, 2013, pages 432 - 438, XP028758754, DOI: doi:10.1016/j.biortech.2013.09.079 *
TAKESHITA, T. ET AL.: "Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions", BIORESOURCE TECHNOLOGY, vol. 158, 13 February 2014 (2014-02-13), pages 127 - 134 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184698A (en) * 2016-04-08 2017-10-12 株式会社ユーグレナ Euglena with high content of oil and fat
JP2017184699A (en) * 2016-04-08 2017-10-12 株式会社ユーグレナ Manufacturing method of high-fat-containing euglena
JP2019017328A (en) * 2017-07-19 2019-02-07 バイオックス化学工業株式会社 Useful lipid production method using green algae
JPWO2020027002A1 (en) * 2018-08-01 2021-08-12 国立大学法人高知大学 Seaweed cell manufacturing method
JP7353653B2 (en) 2018-08-01 2023-10-02 国立大学法人高知大学 Seaweed cell production method
CN112522325A (en) * 2020-12-16 2021-03-19 桂林理工大学 Method for improving methane production by anaerobic digestion of waste oil through saponification pretreatment
CN113897403A (en) * 2021-10-09 2022-01-07 南京师范大学 Method for improving oil yield of oleaginous microorganism and preparation method of microbial oil
CN113897403B (en) * 2021-10-09 2024-04-16 南京师范大学 Method for improving oil yield of oleaginous microorganism and preparation method of microbial oil

Also Published As

Publication number Publication date
JPWO2016013671A1 (en) 2017-04-27
JP6721807B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP6721807B2 (en) Long-chain fatty acid producing algae and method for producing long-chain fatty acid using the same
Anandarajah et al. Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels
Yeesang et al. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand
Sun et al. Screening of Isochrysis strains for simultaneous production of docosahexaenoic acid and fucoxanthin
Polishchuk et al. Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry
JP5608640B2 (en) Microalgae belonging to the genus Navikura, a method for producing oil by culturing the microalgae, a dry alga body of the microalgae, and a carbon dioxide fixing method comprising a step of culturing the microalgae
US20110217743A1 (en) Method of Producing Lauric Acid-containing Oil or Fat
Sabia et al. Effect of different CO 2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana
Tang et al. Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE)
KR102202287B1 (en) Biomass of the microalgae schizochytrium mangrovei and method for preparing same
Santos et al. pH-upshock yields more lipids in nitrogen-starved Neochloris oleoabundans
JP7082340B2 (en) A method for producing a fat-rich stock, a method for producing a fat-rich stock, a method for producing a fat using a fat-rich stock, and an extract of a fat-rich stock.
Hwang et al. Effects of LED-controlled spatially-averaged light intensity and wavelength on Neochloris oleoabundans growth and lipid composition
JP5922377B2 (en) Method for culturing oil-producing microalgae
Bauer et al. Potential of immobilized Chlorella minutissima for the production of biomass, proteins, carotenoids and fatty acids
Gevorgiz et al. Biotechnological potential of a new strain of Cylindrotheca fusiformis producing fatty acids and fucoxanthin
Abdel-Hamid et al. Studies on biomass and lipid production of seven diatom species with special emphasis on lipid composition of Nitzschia palea (Bacillariophyceae) as reliable biodiesel feedstock
KR101424852B1 (en) Chlorella vulgaris CV-16 producing biodiesel, and method for producing biodiesel using the strain
JP7402447B2 (en) Breeding method of algae strain with high oil accumulation in the presence of nitrogen source, algae strain with high oil accumulation in the presence of nitrogen source and method for producing fats and oils using the same
Drira et al. Fatty acids from high rate algal pond’s microalgal biomass and osmotic stress effects
US8486672B2 (en) Method of producing lauric acid or an ester thereof
Abirami et al. Screening and optimization of culture conditions of Nannochloropsis gaditana for omega 3 fatty acid production
US9222111B2 (en) Method of producing lauric acid-containing oil or fat
JP6647593B2 (en) Production of useful lipids using green algae
KR101692695B1 (en) Thraustochytriidae sp. mutant strain GA containing high content of polyunsaturated fatty acid and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016536002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824531

Country of ref document: EP

Kind code of ref document: A1