JPH11195405A - Thin battery - Google Patents

Thin battery

Info

Publication number
JPH11195405A
JPH11195405A JP9368677A JP36867797A JPH11195405A JP H11195405 A JPH11195405 A JP H11195405A JP 9368677 A JP9368677 A JP 9368677A JP 36867797 A JP36867797 A JP 36867797A JP H11195405 A JPH11195405 A JP H11195405A
Authority
JP
Japan
Prior art keywords
battery
internal pressure
sealing portion
laminate
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9368677A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ono
博行 大野
Tsutomu Sonozaki
勉 園嵜
Ikurou Nakane
育朗 中根
Satoshi Ubukawa
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9368677A priority Critical patent/JPH11195405A/en
Publication of JPH11195405A publication Critical patent/JPH11195405A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To open a battery before the internal pressure of the battery is increased without mounting a pressure releasing valve on the battery by opening the sealed part of a laminate facing body when the internal pressure of the battery reaches a specified range value. SOLUTION: This thin battery has a generating element 1 formed of a positive electrode consisting of LiCoO2 , a negative electrode consisting of a carbon material, and a separator for isolating both the electrodes. The generating element 1 is arranged within a housing space 3, and the housing space 3 is formed by sealing the upper and lower ends of a laminate facing body 2 by seal parts 4a, 4b. The seal parts 4a, 4b of the laminate facing body 2 are opened when the internal pressure of the battery reaches 3-5 kg/cm<2> . Even when the battery is ruptured, the scattering quantity of electrolyte can be suppressed also with suppression of reduction in battery performance. Thus, breakage of an equipment using the battery can be prevented without increasing the manufacturing cost of the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電要素と、ラミ
ネート材を溶着して封止することによって上記発電要素
を収納するための収納空間が形成されたラミネート外装
体とを備えた薄型電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin battery having a power generating element and a laminate outer package having a housing space for housing the power generating element by welding and sealing a laminate material. .

【0002】[0002]

【従来の技術】近年、電子機器等の小型化に伴って、電
池の小型化が望まれるようになってきている。この電池
の小型化を達成するために、本発明者らは、先に、アル
ミニウム層の両面に接着剤層を介して樹脂層が形成され
たラミネート材を袋状にしてラミネート外装体を構成
し、このラミネート外装体の収納空間に発電要素を収納
するような薄型電池を提案した。このような構造の電池
であれば、飛躍的に電池の小型化を達成できる。
2. Description of the Related Art In recent years, as electronic devices and the like have become smaller, it has been desired to reduce the size of batteries. In order to achieve the miniaturization of the battery, the present inventors first formed a laminate outer body by forming a laminate material in which a resin layer was formed on both sides of an aluminum layer via an adhesive layer in a bag shape. Proposed a thin battery in which a power generation element is stored in the storage space of the laminate exterior body. With a battery having such a structure, the size of the battery can be dramatically reduced.

【0003】しかしながら、上記ラミネート外装体を用
いた薄型電池では、電池内の電解液が気化して、電池の
内部圧力が高まることがある。このような状態で電池が
破裂すると、電解液或いは電極等の電池構成部材が電池
外に飛散して、電池を用いた機器等を破損するおそれが
ある。そこで、電池の内部圧力が高まる前に開口するよ
うな圧力開放弁を電池に取り付けることも考えられる。
しかしながら、このような構造とすると、上記圧力開放
弁を構成する新たな材料が必要となり、しかも圧力開放
弁を電池に取り付けるという作業工程が新たに必要とな
るため、電池の製造コストが高騰するという課題を有し
ていた。
[0003] However, in a thin battery using the above-mentioned laminated outer package, the electrolyte in the battery may evaporate and the internal pressure of the battery may increase. If the battery ruptures in such a state, the battery components such as the electrolyte solution or the electrodes may scatter outside the battery, possibly damaging equipment using the battery. Therefore, it is conceivable to attach a pressure release valve to the battery so as to open before the internal pressure of the battery increases.
However, such a structure requires a new material for forming the pressure relief valve, and further requires a new operation step of attaching the pressure relief valve to the battery, so that the manufacturing cost of the battery increases. Had issues.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上の事情
に鑑みなされたものであって、圧力開放弁を電池に取り
付けることなく、電池の内部圧力が高まる前に開口する
ことにより、電池の製造コストを高騰させることなく、
電池を用いた機器等の破損を防止できる薄型電池の提供
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made in view of the above-mentioned circumstances by opening a battery before the internal pressure of the battery increases without mounting a pressure release valve on the battery. Without increasing manufacturing costs
It is an object of the present invention to provide a thin battery that can prevent damage to equipment using the battery.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、発電要素
と、ラミネート材を溶着して封止することによって上記
発電要素を収納するための収納空間が形成されたラミネ
ート外装体とを備えた薄型電池において、電池の内部圧
力が3〜5kg/cm2 に達した場合に、上記ラミネー
ト外装体の封止部が開口することを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, the power generating element is housed by welding and sealing the power generating element and a laminate material. Battery having a storage space for storing the same, the sealing portion of the laminate outer case is opened when the internal pressure of the battery reaches 3 to 5 kg / cm 2. Features.

【0006】このように電池の内部圧力が3〜5kg/
cm2 に達した時点で封止部を開口するのは、以下の理
由による。即ち、電池の内部圧力が3kg/cm2 未満
で封止部が開口する構成とすると、封止部の封止力が不
十分であるために、封止部から水分が侵入したり、電解
液が蒸発したりするため、保存特性等の電池性能が低下
する。一方、電池の内部圧力が5kg/cm2 を超えて
封止部が開口する構成とすると、電池が破裂した場合
に、電解液或いは電極等の電池構成部材が電池外に飛散
する量が格段に大きくなるため、電池を用いた機器等を
破損するおそれがあるという理由によるものである。
As described above, the internal pressure of the battery is 3 to 5 kg /
The reason why the sealing portion is opened at the time of reaching cm 2 is as follows. That is, when the internal pressure of the battery is less than 3 kg / cm 2 and the sealing portion is opened, moisture may intrude from the sealing portion or the electrolytic solution may not be formed due to insufficient sealing force of the sealing portion. Evaporates, so that the battery performance such as storage characteristics deteriorates. On the other hand, if the internal pressure of the battery exceeds 5 kg / cm 2 and the sealing portion is opened, when the battery ruptures, the amount of the battery component such as the electrolyte or the electrode scattered outside the battery is remarkably increased. The reason for this is that there is a possibility that the device using the battery may be damaged due to the increase in size.

【0007】また、請求項2記載の発明は、請求項1記
載の発明において、前記封止部の幅が2〜10mm、好
ましくは3〜7mmであることを特徴とする。このよう
な範囲に規制するのは、封止部の幅が2mm未満である
と、電池の内部圧力が3kg/cm2 未満となるおそれ
が大きく、また封止部の幅が10mmを超えると、電池
の内部圧力が5kg/cm2 を超えるおそれが大きいた
め、上記のような不都合を生じる可能性が高くなるから
である。
According to a second aspect of the present invention, in the first aspect, the width of the sealing portion is 2 to 10 mm, preferably 3 to 7 mm. If the width of the sealing portion is less than 2 mm, the internal pressure of the battery is likely to be less than 3 kg / cm 2, and if the width of the sealing portion exceeds 10 mm, This is because the internal pressure of the battery is likely to exceed 5 kg / cm 2 , which increases the possibility of causing the above-described inconvenience.

【0008】また、請求項3記載の発明は、請求項2記
載の発明において、前記封止部の幅が3〜10mmであ
る場合に、当該封止部を形成する際の前記ラミネート材
の溶着温度が200℃以上300℃以下であることを特
徴とする。このように封止部の幅とラミネート材の溶着
温度とを規制すれば、電池の内部圧力が3〜5kg/c
2 となった時点で、確実に封止部が開口する。
According to a third aspect of the present invention, in the second aspect of the present invention, when the width of the sealing portion is 3 to 10 mm, the laminating material is welded when forming the sealing portion. It is characterized in that the temperature is 200 ° C. or more and 300 ° C. or less. By regulating the width of the sealing portion and the welding temperature of the laminate material in this manner, the internal pressure of the battery becomes 3 to 5 kg / c.
At the time when m 2 is reached, the sealing portion is reliably opened.

【0009】また、請求項4記載の発明は、請求項2記
載の発明において、前記封止部の幅が2〜7mmである
場合に、当該封止部を形成する際の前記ラミネート材の
溶着温度が300℃を超え350度以下であることを特
徴とする。このように封止部の幅とラミネート材の溶着
温度とを規制すれば、電池の内部圧力が3〜5kg/c
2 となった時点で、確実に封止部が開口する。
According to a fourth aspect of the present invention, in the second aspect of the invention, when the width of the sealing portion is 2 to 7 mm, the laminating material is welded when forming the sealing portion. It is characterized in that the temperature is higher than 300 ° C. and not higher than 350 ° C. By regulating the width of the sealing portion and the welding temperature of the laminate material in this manner, the internal pressure of the battery becomes 3 to 5 kg / c.
At the time when m 2 is reached, the sealing portion is reliably opened.

【0010】また、請求項5記載の発明は、請求項1、
2、3又は4記載の発明において、前記ラミネート材の
溶着に、超音波溶着装置又は高周波誘導溶着装置が用い
られることを特徴とする。このような装置を用いてラミ
ネート材を溶着すれば、封止部を電解液で濡らすことな
く封止できるので、更に良好な封止が可能となる。具体
的には、ラミネート材を単純に加熱して溶着する方法で
あれば、電解液がラミネート材間に挟み込まれた状態で
封止されるので、封止部が電解液で濡れる。これに対し
て、超音波溶着装置を用いてラミネート材を溶着すれ
ば、ラミネート材間の電解液は振動により電池外に押し
出されるので、封止部が電解液で濡れることを防止でき
る。また、高周波誘導溶着装置を用いてラミネート材を
溶着すれば、樹脂の移動に伴ってラミネート材間の電解
液も電池外に押し出されるので、やはり封止部が電解液
で濡れることを防止できる。
[0010] The invention described in claim 5 is based on claim 1,
The invention according to 2, 3 or 4, wherein an ultrasonic welding device or a high-frequency induction welding device is used for welding the laminate. When a laminate material is welded using such an apparatus, sealing can be performed without wetting the sealing portion with an electrolytic solution, so that better sealing can be achieved. Specifically, if the method of simply heating and welding the laminated material is used, the sealing is performed in a state where the electrolytic solution is sandwiched between the laminated materials, so that the sealing portion is wet with the electrolytic solution. On the other hand, if the laminate is welded using an ultrasonic welding device, the electrolyte between the laminates is pushed out of the battery by vibration, so that the sealing portion can be prevented from being wet with the electrolyte. In addition, if the laminate is welded using a high-frequency induction welding device, the electrolyte between the laminates is also pushed out of the battery as the resin moves, so that the sealing portion can be prevented from getting wet with the electrolyte.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を、図1及び
図2に基づいて、以下に説明する。図1は本発明の薄型
電池の正面図、図2は本発明の薄型電池の側面図であ
り、これら図1及び図2に示すように、本発明の薄型電
池は、LiCoO2 から成る正極と、炭素材料から成る
負極と、これら両電極を離間するセパレータとから成る
発電要素1を有している。この発電要素1は収納空間3
内に配置されており、この収納空間3は、ラミネート外
装体2の上下端を封口部4a・4bにより封口すること
により形成される。また、収納空間3には、エチレンカ
ーボネート(EC)とジエチルカーボネート(DEC)
とが体積比で3:7の割合で混合された混合溶媒にLi
PF6 が1M(モル/リットル)の割合で溶解された電
解液が注入されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a front view of the thin battery of the present invention, and FIG. 2 is a side view of the thin battery of the present invention. As shown in FIGS. 1 and 2, the thin battery of the present invention has a positive electrode made of LiCoO 2 , A power generating element 1 including a negative electrode made of a carbon material and a separator separating the two electrodes. This power generating element 1 is a storage space 3
The storage space 3 is formed by sealing the upper and lower ends of the laminate exterior body 2 with the sealing portions 4a and 4b. The storage space 3 contains ethylene carbonate (EC) and diethyl carbonate (DEC).
Is mixed in a mixed solvent of 3: 7 in volume ratio with Li
An electrolyte in which PF 6 is dissolved at a rate of 1 M (mol / liter) is injected.

【0012】ここで、上記ラミネート外装体2(厚み:
100μm)の具体的な構造は、アルミニウム合金層
(厚み:30μm)の一方の面に、ウレタン系接着剤か
ら成る接着剤層(厚み:2μm)を介してポリプロピレ
ンから成る樹脂層(厚み:20μm)が接着されてお
り、またアルミニウム合金層の他方の面に、変性ポリプ
ロピレンから成る接着剤層(厚み:2μm)を介してポ
リプロピレンから成る樹脂層(厚み:60μm)が接着
される構造である。
Here, the laminate outer body 2 (thickness:
The specific structure of 100 μm) is such that a resin layer (thickness: 20 μm) of polypropylene is provided on one surface of an aluminum alloy layer (thickness: 30 μm) via an adhesive layer (thickness: 2 μm) of a urethane-based adhesive. Is bonded, and a resin layer (thickness: 60 μm) made of polypropylene is bonded to the other surface of the aluminum alloy layer via an adhesive layer (thickness: 2 μm) made of modified polypropylene.

【0013】また、上記正極はアルミニウムから成る正
極集電端子5に、また上記負極はニッケルから成る負極
集電端子6に接続され、電池内部で生じた化学エネルギ
ーを電気エネルギーとして外部へ取り出し得るようにな
っている。尚、この電池の大きさは、図1に示すよう
に、幅L1 が36mm、長さL2 が65mmとなるよう
に構成されており、また、封止部4a・4bの幅L3
4は5mmとなるように構成されている。
The positive electrode is connected to a positive electrode current collecting terminal 5 made of aluminum, and the negative electrode is connected to a negative electrode current collecting terminal 6 made of nickel, so that chemical energy generated inside the battery can be taken out as electric energy. It has become. In addition, as shown in FIG. 1, the size of this battery is configured such that the width L 1 is 36 mm and the length L 2 is 65 mm, and the width L 3.
L 4 is a is configured to be 5 mm.

【0014】ここで、上記構造の電池を、以下のように
して作製した。先ず、樹脂層(ポリプロピレン)/接着
剤層/アルミニウム合金層/接着剤層/樹脂層(ポリプ
ロピレン)の5層構造から成る帯状のラミネート材の両
端を溶着して筒状とした後、この筒状のラミネート材の
収納空間3内に発電要素1を挿入した。この際、筒状の
ラミネート材の一方の開口部から両集電端子5・6が突
出するように発電要素1を配置した。次に、この状態
で、両集電端子5・6が突出している開口部のラミネー
ト材を溶着して封止し、封止部4aを形成した。この
際、溶着は高周波誘導溶着装置を用いて行った。ここ
で、このときの溶着条件は、溶着温度300℃、溶着幅
5mm、溶着時間1秒間という条件である。
Here, the battery having the above structure was manufactured as follows. First, both ends of a strip-shaped laminate material having a five-layer structure of a resin layer (polypropylene) / adhesive layer / aluminum alloy layer / adhesive layer / resin layer (polypropylene) are welded to form a cylindrical shape. The power generating element 1 was inserted into the storage space 3 of the laminate material. At this time, the power generating element 1 was arranged so that both the current collecting terminals 5 and 6 protruded from one opening of the cylindrical laminated material. Next, in this state, the laminated material in the opening from which the current collecting terminals 5 and 6 protruded was welded and sealed to form a sealed portion 4a. At this time, welding was performed using a high frequency induction welding apparatus. Here, the welding conditions at this time are a welding temperature of 300 ° C., a welding width of 5 mm, and a welding time of 1 second.

【0015】次いで、この状態で、真空加熱乾燥(温
度:105℃)を2時間行い、ラミネート材及び発電要
素1の水分を除去した。この後、エチレンカーボネート
とジエチルカーボネートとが体積比で3:7の割合で混
合された混合溶媒に、溶質であるLiPF6 が1M(モ
ル/リットル)の割合で溶解された電解液を注入した
後、この状態で1時間放置した。この後、発電要素1に
対応するラミネート材を金属板にて加圧しつつ、上記封
止部4aとは反対側のラミネート材端部を超音波溶着装
置を用いて溶着し、封止部4bを形成することにより薄
型電池を作製した。尚、このときの溶着条件は、前記と
同様の条件であり、また、上記電解液注入工程以降の工
程は、アルゴン雰囲気のドライボックス内で行った。
Next, in this state, vacuum heating and drying (temperature: 105 ° C.) was performed for 2 hours to remove moisture of the laminate material and the power generating element 1. Thereafter, an electrolyte in which LiPF 6 as a solute was dissolved at a ratio of 1 M (mol / liter) was injected into a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7. This was left for 1 hour. Thereafter, while pressing the laminate material corresponding to the power generating element 1 with a metal plate, the end of the laminate material opposite to the sealing portion 4a is welded using an ultrasonic welding device, and the sealing portion 4b is removed. By forming, a thin battery was manufactured. The welding conditions at this time were the same as those described above, and the steps after the electrolyte injection step were performed in a dry box in an argon atmosphere.

【0016】ここで、ラミネート外装体2の樹脂層とし
ては上記ポリプロピレンに限定されるものではなく、例
えば、ポリエチレン等のポリオレフィン系高分子、ポリ
エチレンテレフタラート等のポリエステル系高分子、ポ
リフッ化ビニリデン、ポリ塩化ビニリデン等のポリビニ
リデン系高分子、ナイロン6、ナイロン66、ナイロン
7等のポリアミド系高分子等が挙げられる。
Here, the resin layer of the laminate outer package 2 is not limited to the above-mentioned polypropylene, but may be, for example, a polyolefin-based polymer such as polyethylene, a polyester-based polymer such as polyethylene terephthalate, polyvinylidene fluoride, or polyvinylidene. Polyvinylidene polymers such as vinylidene chloride; polyamide polymers such as nylon 6, nylon 66 and nylon 7;

【0017】また、樹脂層の厚さは、1μm以上500
μm以下、好ましくは5μm以上100μm以下である
ことが望ましく、金属層の厚さは、0.1μm以上20
0μm以下、好ましくは1μm以上50μm以下である
ことが望ましい。これは、金属層や樹脂層の厚みが余り
に小さくなると、酸素透過性が高くなるため電池特性が
低下する等の問題が生じる一方、樹脂層の厚みが余りに
大きくなると加工性が低下する等の問題が生じ、金属層
の厚みが余りに大きくなると電池が重くなったり電池の
柔軟性に欠ける等の問題が生じるからである。これらの
ことから、樹脂/金属積層体全体の厚みは、2μm以上
1mm以下、好ましくは10μm以上200μm以下で
あるのが望ましい。
The thickness of the resin layer is not less than 1 μm and not more than 500 μm.
μm or less, preferably 5 μm or more and 100 μm or less, and the thickness of the metal layer is 0.1 μm or more and 20 μm or less.
It is desirably 0 μm or less, preferably 1 μm or more and 50 μm or less. This is because if the thickness of the metal layer or the resin layer is too small, the oxygen permeability becomes high, causing a problem such as a decrease in battery characteristics. On the other hand, if the thickness of the resin layer is too large, the workability is reduced. This is because if the thickness of the metal layer is too large, the battery becomes heavy and the battery lacks flexibility. From these facts, it is desirable that the thickness of the entire resin / metal laminate is 2 μm or more and 1 mm or less, preferably 10 μm or more and 200 μm or less.

【0018】更に、正極材料としては上記LiCoO2
に限定するものではなく、例えば、LiNiO2 、Li
Mn2 4 、或いはこれらの複合体等であっても良く、
また本発明は上記リチウムイオン電池に限定されるもの
ではなく、正負極間に固体電解質が存在するポリマー電
池等の他の電池にも適用しうる。加えて、溶着時間は1
秒に限定するものではなく、1〜3秒であれば同様の効
果を得ることを実験により確認している。
Further, as the positive electrode material, the above LiCoO 2
However, for example, LiNiO 2 , Li
Mn 2 O 4 or a composite thereof may be used,
Further, the present invention is not limited to the above-mentioned lithium ion battery, but can be applied to other batteries such as a polymer battery in which a solid electrolyte exists between the positive and negative electrodes. In addition, the welding time is 1
It is confirmed by experiments that the effect is not limited to seconds and that the same effect can be obtained if it is 1 to 3 seconds.

【0019】[0019]

【実施例】〔実施例〕実施例としては上記発明の実施の
形態に示す構造の電池を用いた。このようにして作製し
た電池を、以下、本発明電池Aと称する。
EXAMPLES [Examples] As examples, batteries having the structure shown in the above embodiment of the present invention were used. The battery fabricated in this manner is hereinafter referred to as Battery A of the invention.

【0020】〔比較例1〕封止部4a・4bの幅を1m
mとする他は、上記実施例と同様にして電池を作製し
た。このようにして作製した電池を、以下、比較電池X
1と称する。
Comparative Example 1 The width of the sealing portions 4a and 4b was 1 m.
A battery was fabricated in the same manner as in the above example except that m was used. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X
No. 1.

【0021】〔比較例2〕封止部4a・4bを形成する
際の融着温度を400℃とする他は、上記実施例と同様
にして電池を作製した。このようにして作製した電池
を、以下、比較電池X2と称する。
Comparative Example 2 A battery was manufactured in the same manner as in the above example, except that the fusion temperature at the time of forming the sealing portions 4a and 4b was 400 ° C. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X2.

【0022】〔比較例3〕封止部4a・4bを形成する
際の融着温度を180℃とする他は、上記実施例と同様
にして電池を作製した。このようにして作製した電池
を、以下、比較電池X3と称する。
Comparative Example 3 A battery was manufactured in the same manner as in the above example except that the fusion temperature at the time of forming the sealing portions 4a and 4b was 180 ° C. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X3.

【0023】〔実験1〕上記本発明電池A及び比較電池
X1〜X3において、電池開口時の内部圧力、電池開口
時の内容物の飛散率、及び60℃で20日間電池を保存
した後の容量回復率を調べたので、それらの結果を表1
に示す。尚、電池開口時の内容物の飛散率は数1にて算
出し、容量回復率は数2にて算出した。
[Experiment 1] In the battery A of the present invention and the comparative batteries X1 to X3, the internal pressure when the battery was opened, the scattering rate of the contents when the battery was opened, and the capacity after storing the battery at 60 ° C. for 20 days. The recovery rate was examined, and the results are shown in Table 1.
Shown in In addition, the scattering rate of the contents at the time of opening the battery was calculated by Equation 1, and the capacity recovery rate was calculated by Equation 2.

【0024】[0024]

【数1】 (Equation 1)

【0025】[0025]

【数2】 (Equation 2)

【0026】[0026]

【表1】 [Table 1]

【0027】表1から明らかなように、本発明電池Aで
は、電池開口時の内部圧力が約4.3kg/cm2 、内
容物の飛散率が約5.3%であるのに対して、比較電池
X1・X3では、電池開口時の内部圧力が約2.4kg
/cm2 、内容物の飛散率が約3.5%であるため、比
較電池X1・X3の方が本発明電池Aに比べて内容物の
飛散率が少なくなっていることが認められる。しかし、
本発明電池Aでは、容量回復率が約77%であるのに対
して、比較電池X1・X3では容量回復率が約65%と
極めて小さくなっていることが認められる。尚、比較電
池X2は溶着温度が高すぎるため、封止部の樹脂層が熱
によって大きく溶け出し、十分な封止をすることができ
なかった。
As apparent from Table 1, in the battery A of the present invention, the internal pressure at the time of opening the battery is about 4.3 kg / cm 2 and the scattering rate of the contents is about 5.3%. In the comparative batteries X1 and X3, the internal pressure when the battery was opened was about 2.4 kg.
/ Cm 2 and the scattering rate of the contents is about 3.5%. Therefore, it is recognized that the scattering rates of the contents of the comparative batteries X1 and X3 are smaller than that of the battery A of the present invention. But,
The battery A of the present invention has a capacity recovery rate of about 77%, while the comparative batteries X1 and X3 have a capacity recovery rate of about 65%, which is extremely small. In addition, since the welding temperature of the comparative battery X2 was too high, the resin layer of the sealing portion was largely melted by heat, and sufficient sealing could not be performed.

【0028】このような実験結果を踏まえて、電池開口
時の内部圧力と内容物の飛散率との関係、電池開口時の
内部圧力と容量回復率との関係、及び溶着温度を変化さ
せた際の封止幅と電池開口時の内部圧力との関係につい
て調べたので、下記に示す。
Based on the above experimental results, the relationship between the internal pressure when the battery is opened and the scattering rate of the contents, the relationship between the internal pressure when the battery is opened and the capacity recovery rate, and when the welding temperature is changed. The relationship between the sealing width and the internal pressure when the battery was opened was examined, and is shown below.

【0029】〔実験2〕電池開口時の内部圧力と内容物
の飛散率との関係とを調べたので、その結果を図3に示
す。尚、電池開口時の内容物の飛散率は上記実験1と同
様にして算出した。図3から明らかなように、電池開口
時の内部圧力が5kg/cm2 以下では内容物の飛散率
が約7%以下と少ないが、電池開口時の内部圧力が5k
g/cm2を超えると内容物の飛散率が急激に高くなる
ことが認められる。したがって、内容物の飛散を抑制す
るためには、電池開口時の内部圧力が5kg/cm2
下に規制するのが望ましい。
[Experiment 2] The relationship between the internal pressure when the battery was opened and the scattering rate of the contents was examined. The results are shown in FIG. The scattering rate of the contents when the battery was opened was calculated in the same manner as in Experiment 1. As is apparent from FIG. 3, when the internal pressure at the time of opening the battery is 5 kg / cm 2 or less, the scattering rate of the contents is as small as about 7% or less, but the internal pressure at the time of opening the battery is 5 k / cm 2.
When it exceeds g / cm 2 , it is recognized that the scattering rate of the contents rapidly increases. Therefore, in order to suppress the scattering of the contents, it is desirable to regulate the internal pressure at the time of opening the battery to 5 kg / cm 2 or less.

【0030】〔実験3〕電池開口時の内部圧力と60℃
で20日間保存した後の容量回復率との関係とを調べた
ので、その結果を図4に示す。尚、容量回復率は上記実
験1と同様にして算出した。図4から明らかなように、
電池開口時の内部圧力が3kg/cm2 以上では容量回
復率が約75%以上と高くなっているが、電池開口時の
内部圧力が3kg/cm2 未満になると、封止が不十分
で水分が電池内に侵入したり電解液が蒸発することに起
因して、容量回復率が急激に低くなることが認められ
る。したがって、容量回復率を高く維持するためには、
電池開口時の内部圧力が3kg/cm2以上に規制する
のが望ましい。上記実験2及び実験3の結果から、容量
回復率が高く、しかも内容物の飛散を抑制するには、電
池開口時の内部圧力を3〜5kg/cm2 に規制する必
要があることがわかる。
[Experiment 3] Internal pressure at battery opening and 60 ° C.
And the relationship with the capacity recovery rate after storage for 20 days was examined. The results are shown in FIG. The capacity recovery rate was calculated in the same manner as in Experiment 1. As is clear from FIG.
When the internal pressure at the time of opening the battery is 3 kg / cm 2 or more, the capacity recovery rate is as high as about 75% or more. However, when the internal pressure at the time of opening the battery is less than 3 kg / cm 2 , the sealing is insufficient and It is recognized that the capacity recovery rate sharply decreases due to intrusion of the electrolyte into the battery and evaporation of the electrolyte. Therefore, to keep the capacity recovery rate high,
It is desirable to regulate the internal pressure at the time of opening the battery to 3 kg / cm 2 or more. From the results of Experiments 2 and 3, it can be seen that the internal pressure at the time of opening the battery must be regulated to 3 to 5 kg / cm 2 in order to achieve a high capacity recovery rate and to suppress the scattering of the contents.

【0031】〔実験4〕溶着温度を変化させた際の封止
幅と電池開口時の内部圧力との関係について調べたの
で、その結果を図5に示す。図5から明らかなように、
封止部の幅が3〜10mmである場合に、ラミネート材
の溶着温度が200℃以上300℃以下であれば、電池
開口時の内部圧力を3〜5kg/cm2 に確実に規制で
きることが認められ、また封止部の幅が2〜7mmであ
る場合に、ラミネート材の溶着温度が300℃を超え3
50度以下であれば電池開口時の内部圧力を3〜5kg
/cm2 に確実に規制できることが認められる。
[Experiment 4] The relationship between the sealing width when the welding temperature was changed and the internal pressure when the battery was opened was examined, and the results are shown in FIG. As is clear from FIG.
When the width of the sealing portion is 3 to 10 mm and the welding temperature of the laminate material is 200 ° C. or more and 300 ° C. or less, it is recognized that the internal pressure at the time of opening the battery can be reliably regulated to 3 to 5 kg / cm 2. When the width of the sealing portion is 2 to 7 mm, the welding temperature of the laminate exceeds 300 ° C.
If the temperature is 50 degrees or less, the internal pressure when the battery is opened is 3 to 5 kg.
/ Cm 2 can be reliably controlled.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
封止部から水分が侵入したり、電解液が蒸発したりする
ことによる、保存特性等の電池性能の低下を抑制でき、
しかも電池が破裂した場合であっても、電解液或いは電
極等の電池構成部材が電池外に飛散する量を抑制できる
ので、電池を用いた機器等を破損を防止することができ
るという優れた効果を奏する。
As described above, according to the present invention,
It is possible to suppress a decrease in battery performance such as storage characteristics due to intrusion of moisture from the sealing portion or evaporation of the electrolyte,
Moreover, even when the battery is ruptured, the amount of the battery components such as the electrolyte solution or the electrodes scattered outside the battery can be suppressed, so that it is possible to prevent a device using the battery from being damaged. To play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池の正面図である。FIG. 1 is a front view of a battery of the present invention.

【図2】本発明電池の側面図である。FIG. 2 is a side view of the battery of the present invention.

【図3】電池開口時の内部圧力と内容物の飛散率との関
係を示すグラフである。
FIG. 3 is a graph showing a relationship between an internal pressure when a battery is opened and a scattering rate of contents.

【図4】電池開口時の内部圧力と容量回復率との関係を
示すグラフである。
FIG. 4 is a graph showing a relationship between an internal pressure at the time of opening a battery and a capacity recovery rate.

【図5】溶着温度を変化させた際の封止幅と電池開口時
の内部圧力との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the sealing width when the welding temperature is changed and the internal pressure when the battery is opened.

【符号の説明】[Explanation of symbols]

1:発電要素 2:ラミネート外装体 3:収納空間 4a:封止部 4b:封止部 1: power generation element 2: laminate exterior 3: storage space 4a: sealing portion 4b: sealing portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生川 訓 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor: Nori Ikukawa 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発電要素と、ラミネート材を溶着して封
止することによって上記発電要素を収納するための収納
空間が形成されたラミネート外装体とを備えた薄型電池
において、 電池の内部圧力が3〜5kg/cm2 に達した場合に、
上記ラミネート外装体の封止部が開口することを特徴と
する薄型電池。
1. A thin battery comprising: a power generating element; and a laminate exterior body in which a housing space for housing the power generating element is formed by welding and sealing a laminate material. When it reaches 3-5 kg / cm 2 ,
A thin battery, wherein a sealing portion of the laminate exterior body is open.
【請求項2】 前記封止部の幅が2〜10mm、好まし
くは3〜7mmである、請求項1記載の薄型電池。
2. The thin battery according to claim 1, wherein the width of the sealing portion is 2 to 10 mm, preferably 3 to 7 mm.
【請求項3】 前記封止部の幅が3〜10mmである場
合に、当該封止部を形成する際の前記ラミネート材の溶
着温度が200℃以上300℃以下である、請求項2記
載の薄型電池。
3. The method according to claim 2, wherein when the width of the sealing portion is 3 to 10 mm, a welding temperature of the laminate material when forming the sealing portion is 200 ° C. or more and 300 ° C. or less. Thin battery.
【請求項4】 前記封止部の幅が2〜7mmである場合
に、当該封止部を形成する際の前記ラミネート材の溶着
温度が300℃を超え350度以下である、請求項2記
載の薄型電池。
4. When the width of the sealing portion is 2 to 7 mm, a welding temperature of the laminate material when forming the sealing portion is more than 300 ° C. and 350 ° C. or less. Thin battery.
【請求項5】 前記ラミネート材の溶着に、超音波溶着
装置又は高周波誘導溶着装置が用いられる、請求項1、
2、3又は4記載の薄型電池。
5. An ultrasonic welding device or a high-frequency induction welding device is used for welding the laminate material.
The thin battery according to 2, 3 or 4.
JP9368677A 1997-12-26 1997-12-26 Thin battery Pending JPH11195405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9368677A JPH11195405A (en) 1997-12-26 1997-12-26 Thin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9368677A JPH11195405A (en) 1997-12-26 1997-12-26 Thin battery

Publications (1)

Publication Number Publication Date
JPH11195405A true JPH11195405A (en) 1999-07-21

Family

ID=18492457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9368677A Pending JPH11195405A (en) 1997-12-26 1997-12-26 Thin battery

Country Status (1)

Country Link
JP (1) JPH11195405A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102091A (en) * 1999-07-29 2001-04-13 Toshiba Corp Non-aqueous electrolyte secondary cell
WO2001056097A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for nonaqueous electrolyte cell and cell comprising the same
WO2001056093A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for material containing nonaqueous solvent and cell comprising the same
WO2001056096A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for material containing nonaqueous solvent and cell comprising the same
KR100449755B1 (en) * 2001-10-19 2004-09-22 삼성에스디아이 주식회사 Secondary battery
JP2005310671A (en) * 2004-04-23 2005-11-04 Toshiba Corp Sealed battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102091A (en) * 1999-07-29 2001-04-13 Toshiba Corp Non-aqueous electrolyte secondary cell
WO2001056097A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for nonaqueous electrolyte cell and cell comprising the same
WO2001056093A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for material containing nonaqueous solvent and cell comprising the same
WO2001056096A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for material containing nonaqueous solvent and cell comprising the same
US6660430B1 (en) 2000-01-24 2003-12-09 Mitsubishi Denki Kabushiki Kaisha Package for nonaqueous electrolyte cell and cell comprising the same
KR100449755B1 (en) * 2001-10-19 2004-09-22 삼성에스디아이 주식회사 Secondary battery
JP2005310671A (en) * 2004-04-23 2005-11-04 Toshiba Corp Sealed battery
JP4660112B2 (en) * 2004-04-23 2011-03-30 株式会社東芝 Sealed battery

Similar Documents

Publication Publication Date Title
KR100354947B1 (en) Nonaqueous electrolyte secondary battery
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
JP4265014B2 (en) Thin battery
US6048639A (en) Thin type sealed cell and producing method thereof
US20010038938A1 (en) Electrochemical device
JP3795713B2 (en) Manufacturing method of sheet type battery
EP1643569A1 (en) Lithium rechargeable battery
JP5057706B2 (en) Battery pack
JP2002298825A (en) Method of producing electrochemical device and the electrochemical device
JP2000311717A (en) Battery element and battery
JP4862211B2 (en) Sealed secondary battery
JP2001256933A (en) Battery and battery pack
JP2002008629A (en) Electro chemical device
JP2002270239A (en) Electrochemical device
JP3829630B2 (en) Secondary battery
JP2003272595A (en) Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device
JP4138172B2 (en) Electrochemical device and manufacturing method thereof
WO2022000314A1 (en) Separator for electrochemical device, electrochemical device and electronic device
JPH11195405A (en) Thin battery
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JP2002245994A (en) Accommodation member for lithium secondary battery and secondary battery pack using it
JP4821043B2 (en) Electrochemical devices
JP2000021387A (en) Sheet type battery
JP5334109B2 (en) Laminated battery
JPH11102673A (en) Thin secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206