JP2005310671A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2005310671A
JP2005310671A JP2004128708A JP2004128708A JP2005310671A JP 2005310671 A JP2005310671 A JP 2005310671A JP 2004128708 A JP2004128708 A JP 2004128708A JP 2004128708 A JP2004128708 A JP 2004128708A JP 2005310671 A JP2005310671 A JP 2005310671A
Authority
JP
Japan
Prior art keywords
battery
sealed
exterior material
power generation
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004128708A
Other languages
Japanese (ja)
Other versions
JP4660112B2 (en
Inventor
Hiroshi Shimoyamada
啓 下山田
Fumimasa Yamamoto
文将 山本
Koichi Kawamura
公一 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP2004128708A priority Critical patent/JP4660112B2/en
Publication of JP2005310671A publication Critical patent/JP2005310671A/en
Application granted granted Critical
Publication of JP4660112B2 publication Critical patent/JP4660112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed battery capable of effectively preventing deformation of a battery and reducing dimensional change in use for allowing highly precise layout designing. <P>SOLUTION: This sealed battery is provided with an armor material 4 formed of a metal laminated resin film having a drawn part 5 formed by drawing, a power generation element 1 housed in the drawn part 5 of the armor material 4, and external terminals 2 and 3 electrically connected to the power generation element 1. The circumference part of the armor material 4 is sealed by heat sealing, while the external terminals 2 and 3 are led to the outside via a part heat sealed to the metal laminated resin film serving as the armor material 4. In this sealed battery, a projection part 6 protruding to the sealed side of the external terminals 2 and 3 is formed on the side face of the drawn part 5 housing the power generation element 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は密閉型電池に係り、特に絞り成形された金属ラミネート樹脂フィルム製外装材の絞り成形部に発電要素を収納した後に外装材の周縁部を封止した密閉型電池であり、電池の変形を効果的に抑止でき使用中の寸法変化が小さく高精度な配置設計が可能な密閉型電池に関する。   The present invention relates to a sealed battery, and in particular, is a sealed battery in which a power generation element is housed in a drawn part of a drawn metal laminate resin film outer package, and then a peripheral part of the outer package is sealed. The present invention relates to a hermetic battery that can effectively suppress the dimensional change during use and can be highly accurately arranged.

近年、ビデオカメラやヘッドホンステレオ、携帯端末機などの携帯電子機器における急速な高性能化,多機能化,軽量化および小型化を指向した技術展開には目覚しいものがあり、これらの電子機器を長時間稼動させるための駆動電源となる二次電池の高エネルギー化および高容量化への技術的要求も一段と高まっている。   In recent years, there have been remarkable developments in technologies aimed at rapid performance enhancement, multifunctionalization, weight reduction, and miniaturization in portable electronic devices such as video cameras, headphone stereos, and portable terminals. Technical demands for higher energy and higher capacity of secondary batteries, which serve as drive power sources for time operation, are further increasing.

これらの技術的要求に対応するため、リチウム金属、リチウム合金、もしくは炭素質材料のようなリチウムを吸蔵、放出できる物質を負極材料に使用した非水電解液二次電池の開発が活発に進められるようになった。この非水電解液二次電池のなかでも、電池の発電要素以外が占める体積を減少させることが、電池の高エネルギー化および小型化に有利であるという技術的観点から、従来から電池外装材として使用されていた鉄やアルミニウム製の金属缶の代わりに、より薄肉化が可能な金属ラミネート樹脂フィルムを外装材として使用した密閉型電池が注目されている。   In order to meet these technical demands, the development of non-aqueous electrolyte secondary batteries using materials that can occlude and release lithium, such as lithium metal, lithium alloys, or carbonaceous materials, is actively promoted. It became so. Among these non-aqueous electrolyte secondary batteries, from the technical point of view that reducing the volume occupied by elements other than the power generation element of the battery is advantageous for increasing the energy and size of the battery, it has been conventionally used as a battery exterior material. Instead of the metal cans made of iron or aluminum, a sealed battery using a metal laminate resin film that can be made thinner as an exterior material has attracted attention.

上記金属ラミネート樹脂フィルムは、電解液や水分およびガスの透過を防止することが可能なアルミニウム箔などの軟質金属膜とナイロン、ポリエチレン、ポリプロピレンなどのプラスチックフィルムとを貼り合わせて積層して構成される。この金属ラミネート樹脂フィルムが電池外装材として使用される場合には、発電要素を収納した状態で外装材周縁部が熱融着により封止される構造が一般的に採用されている。   The metal laminate resin film is formed by laminating and laminating a soft metal film such as an aluminum foil capable of preventing permeation of electrolyte solution, moisture and gas, and a plastic film such as nylon, polyethylene, and polypropylene. . When this metal laminate resin film is used as a battery exterior material, a structure in which the outer periphery of the exterior material is sealed by thermal fusion in a state where the power generation element is accommodated is generally employed.

上記封止構造を採用する場合、金属ラミネート樹脂フィルムの形態には大きく分けて2種類に分かれ、一つの従来の形態としては積層シート状の金属ラミネート樹脂フィルムをそのまま袋状に形成して、その内部に発電要素(電池本体)を収納する形態が採用されている(例えば、特許文献1参照)。   When adopting the above sealing structure, the form of the metal laminate resin film is roughly divided into two types, and as one conventional form, a laminated sheet metal laminate resin film is formed as a bag as it is, A configuration is adopted in which a power generation element (battery body) is housed inside (see, for example, Patent Document 1).

他の一つの形態としては、金属ラミネート樹脂フィルムに絞り成形加工を施し、その絞り成形部分に発電要素を収納する形態である。この場合、後者の形態では、収納される発電要素の形状に合致した絞り成形部分を形成しているために、前者の袋状の外装材と比較して電池全体の体積に占める発電要素の割合を大きくすることができ、電池容量を高めることができるという利点がある。   Another form is a form in which the metal laminate resin film is subjected to a drawing process, and the power generation element is housed in the drawing part. In this case, in the latter form, since the drawn portion that matches the shape of the power generation element to be accommodated is formed, the ratio of the power generation element to the entire battery volume compared to the former bag-shaped exterior material There is an advantage that the battery capacity can be increased.

さらに、深絞り成形部の側壁に、電極端子が延在する方向に沿って発電要素に近づくように絞り成形部の内側に突出する突出部を形成した構造も採用されている(例えば、特許文献2参照)。この突出部を形成した電池構造によれば、突出部が絞り成形部内において発電要素を位置決めするため、発電要素が絞り成形部内で移動することが効果的に防止できる。その結果、発電要素が電極端子に応力を作用させることが防止できるため、電極端子の断線が回避され、信頼性が高い電池を供給することができるとされている。
特開平11−40114号公報(第1−3頁、第3図) 特開2003−77426号公報(第1−3頁、図1)
Furthermore, a structure in which a protruding portion that protrudes to the inside of the drawing portion is formed on the side wall of the deep drawing portion so as to approach the power generation element along the direction in which the electrode terminals extend (for example, Patent Documents). 2). According to the battery structure in which the projecting portion is formed, the projecting portion positions the power generation element in the drawing portion, so that the power generation element can be effectively prevented from moving in the drawing portion. As a result, since it is possible to prevent the power generating element from exerting stress on the electrode terminal, disconnection of the electrode terminal is avoided, and a battery with high reliability can be supplied.
Japanese Patent Laid-Open No. 11-40114 (page 1-3, FIG. 3) JP 2003-77426 A (page 1-3, FIG. 1)

しかしながら、上記特許文献1に記載されているように金属ラミネート樹脂フィルムをそのまま袋状に形成して、その内部に発電要素を収納した従来の電池では、金属缶を外装材として用いた電池と比較して電池が変形しやすいという欠点があった。これは、樹脂フィルムが軟質で可撓性を有し、また外装材自体の強度が金属缶と比較して小さいためである。そのため、過充電操作等によって電池内部でガスが発生した場合などに、電池が膨張変形してしまい、所定寸法より電池が厚くなって配置設計が困難になったり、周辺部品に応力を作用させたりするなどの問題が発生していた。   However, in the conventional battery in which the metal laminate resin film is formed in a bag shape as described in Patent Document 1 and the power generation element is housed therein, the battery is compared with a battery using a metal can as an exterior material. As a result, the battery is liable to be deformed. This is because the resin film is soft and flexible, and the strength of the exterior material itself is smaller than that of the metal can. For this reason, when gas is generated inside the battery due to overcharge operation, etc., the battery expands and deforms, making the battery thicker than the predetermined size, making layout design difficult, and applying stress to peripheral parts. There was a problem such as.

また、このような電池内圧上昇に起因する変形については、金属ラミネート樹脂フィルムに絞り成形を施した電池の方が、絞り成形を施さない電池より不利な場合がある。つまり、金属ラミネート樹脂フィルムに絞り成形を施したセルの場合、絞り成形部を発電要素の外形形状とほぼ同一形状に形成できるため、結果的に電池内に無駄な空間が少なくなり、電池内において発生したわずかなガスによっても電池が大きく変形してしまう問題点があった。   In addition, with respect to deformation due to such an increase in battery internal pressure, a battery in which a metal laminate resin film is subjected to drawing may be more disadvantageous than a battery that is not subjected to drawing. In other words, in the case of a cell in which a metal laminate resin film is drawn, the drawn portion can be formed in almost the same shape as the outer shape of the power generation element, resulting in less wasted space in the battery. There is a problem that the battery is greatly deformed even by a slight amount of generated gas.

一方、前記特許文献2に載されているように深絞り成形部の側壁に、電極端子が延在する方向に沿って発電要素に近づくように絞り成形部の内側に突出する突出部を形成した従来の電池では、上記突出部の両側に形成された張り出し部が、外部端子の熱融着部と干渉する位置に形成されている。そのため、上記張り出し部の張り出し高さに相当する分だけ外部端子の熱融着部の幅が減少することになり、熱融着部における気密封止性が低下し水分の混入等によって電池特性が低下する問題点もあった。   On the other hand, as described in Patent Document 2, a protruding portion that protrudes inside the drawn portion is formed on the side wall of the deep drawn portion so as to approach the power generation element along the direction in which the electrode terminal extends. In the conventional battery, the overhang portions formed on both sides of the protruding portion are formed at positions that interfere with the heat fusion portion of the external terminal. For this reason, the width of the heat-sealed portion of the external terminal is reduced by an amount corresponding to the overhang height of the above-mentioned overhang portion, the hermetic sealing performance at the heat-welded portion is reduced, and the battery characteristics are reduced due to moisture mixing. There was also a problem that decreased.

本発明は上述した従来の密閉型電池に生起している問題点を解決するためになされたものであり、特に電池の変形を効果的に抑止でき使用中の寸法変化が小さく高精度な配置設計が可能な密閉型電池を提供することを目的とする。   The present invention has been made in order to solve the problems occurring in the above-described conventional sealed battery, and in particular, the battery can be effectively prevented from being deformed, and the dimensional change during use is small and the layout design is highly accurate. An object of the present invention is to provide a sealed battery capable of achieving the above.

上記目的を達成するために、本発明に係る密閉型電池は、絞り成形を施して絞り成形部を形成した金属ラミネート樹脂フィルムから成る外装材と、この外装材の絞り成形部に収納された発電要素と、この発電要素に電気的に接続された外部端子とを具備し、上記外装材の周縁部が熱融着により封止されているとともに、上記外部端子が外装材である上記金属ラミネート樹脂フィルムに熱融着される部分を経由して外部に導出されている構造を有する密閉型電池において、上記発電要素を収納する絞り成形部の側面に、上記外部端子の融着側に突出する凸部が形成されていることを特徴とする。   In order to achieve the above object, a sealed battery according to the present invention includes an exterior material made of a metal-laminated resin film formed by drawing and forming a drawn portion, and a power generation housed in the drawn portion of the exterior material. The metal laminate resin comprising an element and an external terminal electrically connected to the power generation element, the peripheral portion of the exterior material being sealed by thermal fusion, and the external terminal being an exterior material In a sealed battery having a structure that is led to the outside via a portion that is heat-sealed to a film, a protrusion that protrudes toward the fusion side of the external terminal is formed on a side surface of the drawing portion that houses the power generation element. A portion is formed.

すなわち、本発明においては、外装材として使用する金属ラミネート樹脂フィルムの絞り成形部の側面から突出するように凸部を形成することを特徴的構成としている。電池内部でガスが発生した場合には、上記凸部に発生ガスが収容吸収されるため、電池の変形を効果的に抑止することが可能となる。つまり、電池内でガスが発生した場合において、電池外形寸法に影響を与えない上記凸部に発生ガスを逃がして蓄積することにより、二次電池の膨れを回避することができる。その結果、電池内に占める発電要素の割合が大きく高容量であり、使用中の寸法変化が小さい安定した品質を有する密閉型電池を供給することが可能になる。   That is, in the present invention, the convex portion is formed so as to protrude from the side surface of the drawn portion of the metal laminated resin film used as the exterior material. When gas is generated inside the battery, the generated gas is accommodated and absorbed by the convex portion, so that deformation of the battery can be effectively suppressed. That is, when gas is generated in the battery, it is possible to avoid swelling of the secondary battery by allowing the generated gas to escape and accumulate on the convex portions that do not affect the external dimensions of the battery. As a result, it is possible to supply a sealed battery having a stable quality with a large proportion of power generation elements in the battery and a high capacity and a small dimensional change during use.

また、上記密閉型電池において、前記絞り成形部の側面から突出する凸部が、前記外部端子の熱融着部と干渉しない位置に形成されていることが好ましい。   Further, in the sealed battery, it is preferable that a convex portion protruding from a side surface of the draw forming portion is formed at a position where it does not interfere with the heat fusion portion of the external terminal.

上記凸部の形成位置が、外部端子の熱融着部と重なり干渉してしまうと、その重なり幅に相当する分だけ外部端子の熱融着部の幅が減少してしまうので封止性が低下し電池特性が劣化し易くなる。そこで、凸部が前記外部端子の熱融着部と干渉しない位置として、例えば、正陰極外部端子の中間の位置または各外部端子の外側位置に上記凸部を形成することにより、熱融着部幅の減少が回避され封止性の低下は起こらず電池特性の劣化も少なくできる。   If the formation position of the convex portion overlaps and interferes with the heat fusion portion of the external terminal, the width of the heat fusion portion of the external terminal is reduced by an amount corresponding to the overlap width, so that the sealing property is improved. The battery characteristics are likely to deteriorate. Therefore, as a position where the convex portion does not interfere with the heat fusion portion of the external terminal, for example, the heat fusion portion is formed by forming the convex portion at an intermediate position of the positive cathode external terminal or an outer position of each external terminal. The reduction in the width is avoided, the sealing performance is not lowered, and the deterioration of the battery characteristics can be reduced.

さらに、上記密閉型電池において、前記絞り成形部内に発電要素を収納した金属ラミネート樹脂フィルム製外装材の周縁部を熱融着により封止する際に、上記金属ラミネート樹脂フィルム製外装材に形成した絞り成形部内が減圧された状態で封止されていることが好ましい。   Furthermore, in the sealed battery, when the peripheral portion of the metal laminate resin film exterior material containing the power generation element in the drawing molded portion is sealed by thermal fusion, the metal laminate resin film exterior material is formed. It is preferable that the inside of the drawn portion is sealed in a state where the pressure is reduced.

上記のように、封止作業を減圧環境下で実施するなど、外装材に形成した絞り成形部内を予め減圧した状態で封止することにより、電池内部の無駄な空間を極力小さくでき、さらには電池製造段階から電池内に残留する気体成分等の影響が効果的に回避でき、特に電池の経年変化に伴う内圧上昇による電池の変形を効果的に防止する効果も得られる。   As described above, by performing sealing work in a reduced pressure environment and sealing the inside of the drawn-formed part formed on the exterior material in a pre-reduced state, the useless space inside the battery can be reduced as much as possible. The effects of gas components and the like remaining in the battery from the battery manufacturing stage can be effectively avoided, and in particular, the effect of effectively preventing the deformation of the battery due to the increase in internal pressure accompanying the aging of the battery can be obtained.

また、上記密閉型電池において、前記絞り成形部内に発電要素を収納した金属ラミネート樹脂フィルム製外装材の周縁部のうち、前記外部端子が外装材である金属ラミネート樹脂フィルムに熱融着される部分の長さL(図2に示す)は3mm以上であることが好ましい。   Further, in the sealed battery, a portion of the peripheral portion of the metal laminate resin film exterior material in which the power generation element is accommodated in the draw molding portion, the external terminal being thermally fused to the metal laminate resin film as the exterior material The length L (shown in FIG. 2) is preferably 3 mm or more.

上記のように前記外部端子が外装材である金属ラミネート樹脂フィルムに熱融着される部分の幅が3mm未満であると、熱融着部の封止性が不十分となり水分等が電池内に混入して電池特性を阻害する恐れが高くなる。そのため、外部端子の熱融着部の長さは3mm以上であることが好ましい。さらに電池の容積効率の観点から上記外部端子の熱融着部の長さは4〜5mmの範囲がより好ましい。   As described above, if the width of the portion where the external terminal is heat-sealed to the metal laminate resin film which is an exterior material is less than 3 mm, the sealing property of the heat-sealed portion becomes insufficient and moisture or the like is contained in the battery. There is a high risk that the battery characteristics will be impaired by mixing. For this reason, the length of the heat-sealed portion of the external terminal is preferably 3 mm or more. Furthermore, the length of the heat fusion part of the external terminal is more preferably in the range of 4 to 5 mm from the viewpoint of the volumetric efficiency of the battery.

本発明に係る密閉型電池によれば、外装材として使用する金属ラミネート樹脂フィルムの絞り成形部の側面から突出するように凸部を形成しているため、電池内部でガスが発生した場合には、上記凸部に発生ガスが収容吸収されるため、電池の変形を効果的に抑止することが可能となる。つまり、電池内でガスが発生した場合において、電池外形寸法に影響を与えない上記凸部に発生ガスを逃がして蓄積することにより、二次電池の膨れを回避することができる。その結果、電池内に占める発電要素の割合が大きく高容量であり、使用中の寸法変化が小さい安定した品質を有する密閉型電池を供給することが可能になる。   According to the sealed battery according to the present invention, since the convex portion is formed so as to protrude from the side surface of the drawn portion of the metal laminate resin film used as the exterior material, when gas is generated inside the battery, Since the generated gas is accommodated and absorbed in the convex portion, it is possible to effectively suppress the deformation of the battery. That is, when gas is generated in the battery, it is possible to avoid swelling of the secondary battery by allowing the generated gas to escape and accumulate on the convex portions that do not affect the external dimensions of the battery. As a result, it is possible to supply a sealed battery having a stable quality with a large proportion of power generation elements in the battery and a high capacity and a small dimensional change during use.

以下、本発明に係る密閉型電池の実施形態の一例について添付図面を参照してより具体的に説明する。   Hereinafter, an example of an embodiment of a sealed battery according to the present invention will be described more specifically with reference to the accompanying drawings.

図1に本発明が適用される密閉型電池を構成する発電要素1と外装材4とを組立てる状態を示す斜視分解図である。発電要素1は、負極材料をその支持体である負極集電体に保持してなる負極板と、正極活物質をその支持体である正極集電体に保持してなる正極板と、この負極板と正極板との間に介在して電解液を保持しつつ両極の短絡を防止するセパレータとから成る。上記負極板、正極板、およびセパレータは、いずれも薄いシート状もしくは箔状に成形されており、これらの積層体が所定の捲回軸周りに捲回された後に押圧されて扁平な長円筒状に形成される。また、上記発電要素1には負極と電気的に接続される負極リード2と、正極と電気的に接続される正極リード3とが設けられており、共に捲回軸と平行な方向で上記発電要素1より延出されている。   FIG. 1 is an exploded perspective view showing a state where a power generation element 1 and an exterior material 4 constituting a sealed battery to which the present invention is applied are assembled. The power generation element 1 includes a negative electrode plate in which a negative electrode material is held on a negative electrode current collector that is a support, a positive electrode plate in which a positive electrode active material is held on a positive electrode current collector that is a support, and the negative electrode The separator is interposed between the plate and the positive electrode plate to hold the electrolytic solution and prevent a short circuit between the two electrodes. The negative electrode plate, the positive electrode plate, and the separator are all formed into a thin sheet shape or foil shape, and these laminated bodies are pressed around a predetermined winding axis and then pressed into a flat long cylindrical shape. Formed. The power generation element 1 is provided with a negative electrode lead 2 electrically connected to the negative electrode and a positive electrode lead 3 electrically connected to the positive electrode, both of which generate the power generation in a direction parallel to the winding axis. It extends from element 1.

上記発電要素1は正極板と負極板との間にセパレータを配設し、電解液をセパレータが保持する形態を有しているが、正極板と負極板との間に固体電解質またはゲル状電解質を配設して成る発電要素を採用することもできる。   The power generating element 1 has a configuration in which a separator is disposed between a positive electrode plate and a negative electrode plate, and the separator holds the electrolytic solution. However, a solid electrolyte or a gel electrolyte is interposed between the positive electrode plate and the negative electrode plate. It is also possible to employ a power generation element formed by disposing.

上記発電要素1を収納する外装材4としては、絞り成形加工を施して絞り成形部5および凸部6を形成した金属ラミネート樹脂フィルムを使用している。この金属ラミネート樹脂フィルムは、アルミニウムなどの軟質金属薄膜に、上記発電要素1を収納した後に熱融着するためのポリエチレン、ポリプロピレン、ナイロンなど熱可塑性プラスチックフィルムを貼り合わせて形成されている。   As the exterior material 4 that houses the power generating element 1, a metal laminate resin film that has been subjected to a drawing process to form a drawing part 5 and a convex part 6 is used. The metal laminate resin film is formed by bonding a thermoplastic metal film such as polyethylene, polypropylene, nylon, etc., for heat-sealing after housing the power generating element 1 to a soft metal thin film such as aluminum.

また、発電要素を収納する絞り成形部5は、発電要素1よりわずかに大きい断面矩形状の成形部を備え、この矩形状の成形部の側面に形成され上記外部端子の融着側に突出する凸部6を備える。なお、形成する凸部6の寸法は、使用する発電要素1のサイズ仕様によって異なる。例えば、発電要素1の幅が30〜40mmである場合には、上記凸部6の幅は8〜12mmの範囲とし、突出量は1〜4mm程度とし、高さは発電要素1の高さと同じく4〜5mmの範囲とすることが、発生ガスの吸収容量および熱融着部の封止性の観点から望ましい。   The draw forming part 5 for storing the power generation element includes a molding part having a rectangular cross section slightly larger than that of the power generation element 1, and is formed on a side surface of the rectangular molding part and protrudes to the fusion side of the external terminal. Convex part 6 is provided. In addition, the dimension of the convex part 6 to form changes with size specifications of the electric power generation element 1 to be used. For example, when the width of the power generation element 1 is 30 to 40 mm, the width of the convex portion 6 is in the range of 8 to 12 mm, the protrusion amount is about 1 to 4 mm, and the height is the same as the height of the power generation element 1. A range of 4 to 5 mm is desirable from the viewpoint of the generated gas absorption capacity and the sealing property of the heat fusion part.

上記金属ラミネート樹脂フィルム製外装材4に上記発電要素1を収納する方法は、図1に示すように、矩形状の絞り成形部5および凸部6を形成した外装材4の一辺を谷折りし、その谷折りした辺と反対側の辺から負極リード2と正極リード3とが引き出される向きとなるように発電要素1を収納し、谷折りした辺以外の3辺の周縁部を熱融着することにより最終的に封止する方法とした。   As shown in FIG. 1, the method of housing the power generating element 1 in the metal laminate resin film exterior material 4 is to fold one side of the exterior material 4 formed with the rectangular drawn portion 5 and the convex portion 6. The power generating element 1 is housed so that the negative electrode lead 2 and the positive electrode lead 3 are pulled out from the side opposite to the valley-folded side, and the three peripheral edges other than the valley-folded side are heat-sealed. Thus, the final sealing method was adopted.

なお、上記した3辺の融着処理においては、まず正負極リード2,3を引き出す辺(トップシール部)と正負極リード2,3と平行な2辺(サイドシール部)の内の1辺を熱融着した段階で、熱融着を実施していない残る1辺(サイドシール部)側から電解液を注入する。さらに、電解液注入後における未融着の辺(サイドシール部)の熱融着を実施するに際して、例えば減圧環境下で熱融着を実施するなどの方法を採用して電池内部を減圧状態にして封止することにより、電池内部の無駄な空間を極力小さくした。   In the above three-side fusion process, first, one side out of the side (top seal portion) from which the positive and negative electrode leads 2 and 3 are drawn and the two sides (side seal portion) parallel to the positive and negative electrode leads 2 and 3 are used. At the stage of heat sealing, the electrolyte is injected from the remaining one side (side seal part) side where heat sealing is not performed. Furthermore, when performing the thermal fusion of the unfused side (side seal part) after the electrolyte injection, the inside of the battery is brought into a decompressed state by adopting a method such as thermal fusion in a reduced pressure environment. The useless space inside the battery was reduced as much as possible.

外装材として金属ラミネート樹脂フィルムを使用した電池では、負極端子2および正極端子3は、図2に示すように、外装材4の熱融着する部分(トップシール部)を経由して外部に引き出され、外部端子としての役割を果たす。   In a battery using a metal laminate resin film as an exterior material, the negative electrode terminal 2 and the positive electrode terminal 3 are pulled out to the outside via a heat-sealed portion (top seal portion) of the exterior material 4 as shown in FIG. It serves as an external terminal.

この負極端子2および正極端子3の融着部分は金属と樹脂とを融着する弱い接合構造であるため、外装材の樹脂同士を融着する強固な接合構造部分と比較して封止性が劣る。このため、外部端子を引き出す辺については、電解液注入前に封止することが望ましい。また、負極リード2および正極リード3が外装材4と熱融着される部分の封止性を高めるために、金属と接着しやすい他の樹脂フィルムを介して負極リード2および正極リード3を外装材4と融着することが好ましい。   Since the fused portion of the negative electrode terminal 2 and the positive electrode terminal 3 has a weak joint structure in which a metal and a resin are fused, sealing performance is improved as compared with a strong joint structure portion in which the resin of the exterior material is fused. Inferior. For this reason, it is desirable to seal the side from which the external terminal is drawn out before injecting the electrolyte. Further, in order to improve the sealing performance of the portion where the negative electrode lead 2 and the positive electrode lead 3 are heat-sealed to the outer packaging material 4, the negative electrode lead 2 and the positive electrode lead 3 are packaged via another resin film that is easily bonded to a metal. It is preferable to fuse with the material 4.

さらに、本実施形態による密閉型電池では、この外装材4と外部端子とが融着される距離(熱融着幅)が大きく長い方が、優れた封止性が得易い。そのため、形成する凸部6は外部端子の融着部分と重なることがない位置、すなわち正陰極外部端子の中間の位置または各外部端子の外側位置に形成することが望ましい。   Furthermore, in the sealed battery according to the present embodiment, the greater the distance (heat fusion width) at which the exterior material 4 and the external terminal are fused, the easier it is to obtain excellent sealing performance. Therefore, it is desirable to form the convex portion 6 to be formed at a position where it does not overlap with the fused portion of the external terminal, that is, at a position intermediate between the positive cathode external terminals or an outer position of each external terminal.

また、この封止操作の際、電池の大きさを極力小さくする手段として、電池内部を減圧した状態で封止することが望ましい。   Moreover, it is desirable to seal in the state which pressure-reduced the inside of a battery as a means to make the magnitude | size of a battery small as much as possible in this sealing operation.

[実施例]
次に、本発明を適用した実施形態について、以下の実施例および比較例を参照して、より具体的に説明する。
[Example]
Next, embodiments to which the present invention is applied will be described more specifically with reference to the following examples and comparative examples.

[実施例1]
発電要素1として、図1に示すように捲回軸と平行な方向の長さが34mmであり、巾が29mmであり、厚さが6mmであるような寸法の発電要素1を準備した。外部端子となる負極リード2および正極リード3の幅はそれぞれ2mmとした。この負極リード2および正極リード3は、捲回軸と平行な方向に発電要素1から延出しており、発電要素1の幅の中心からの距離がそれぞれ6mmとなる位置に、正負極リードの間隔が12mmとなるように接続した。
[Example 1]
As shown in FIG. 1, a power generation element 1 having dimensions such that the length in the direction parallel to the winding axis is 34 mm, the width is 29 mm, and the thickness is 6 mm was prepared. The widths of the negative electrode lead 2 and the positive electrode lead 3 serving as external terminals were each 2 mm. The negative electrode lead 2 and the positive electrode lead 3 extend from the power generation element 1 in a direction parallel to the winding axis, and the distance between the positive and negative electrode leads is 6 mm from the center of the width of the power generation element 1. Was connected to be 12 mm.

外装材4として使用する金属ラミネート樹脂フィルムとして、厚さ25μmのナイロン層と、厚さ40μmの軟質アルミニウム層と、厚さ30μmのポリプロピレン層との3層から成るアルミラミネートフィルムを用意した。次にこの外装材4に対して、ポンチとダイスとから成る絞り成形機を使用し、ナイロン層が外側になるように絞り成形加工を施し、図1に示すような矩形状の絞り成形部5および凸部6を形成した外装材4を製造した。   As a metal laminate resin film used as the exterior material 4, an aluminum laminate film composed of three layers of a nylon layer having a thickness of 25 μm, a soft aluminum layer having a thickness of 40 μm, and a polypropylene layer having a thickness of 30 μm was prepared. Next, the exterior material 4 is subjected to a drawing process so that the nylon layer is on the outside using a drawing machine comprising a punch and a die, and a rectangular drawing part 5 as shown in FIG. And the exterior material 4 which formed the convex part 6 was manufactured.

上記絞り成形部5は、発電要素1が収納される矩形状の部分と、その矩形状部分の側面から突出した凸部6とから成り、矩形状の部分の大きさは、縦が35mm、幅が30mm、深さが6mmとなるように絞り成形加工した。この凸部6は、図2に示すように、外部端子2,3が融着されて外部に引き出される側の側面中央部に位置し、6mmの成形深さの部分全体が外部端子2,3の熱融着部と重ならない位置に形成され、幅が9mmで、突出量が3mmの大きさで突出するように形成した。   The drawing portion 5 includes a rectangular portion in which the power generation element 1 is accommodated and a convex portion 6 protruding from the side surface of the rectangular portion. The size of the rectangular portion is 35 mm in length and width. Was 30 mm and the depth was 6 mm. As shown in FIG. 2, the convex portion 6 is located at the center of the side surface on the side where the external terminals 2 and 3 are fused and drawn to the outside, and the entire portion having a molding depth of 6 mm is the external terminals 2 and 3. It was formed at a position where it does not overlap with the heat-sealed part, and the width was 9 mm and the protruding amount was 3 mm.

外装材4は、凸部6が形成された側面に対向する辺を谷折りして発電要素1を収納し、谷折りした辺以外の3辺を熱融着することにより封止した。この封止操作は、折り曲げられることにより重なり合った外装材4の部分を、ヒーターもしくはヒーターを内蔵した金属板により挟み込み熱融着することにより実施した。上記3辺の融着処理においては、まず正負極リード2,3を引き出す辺(トップシール部)と正負極リード2,3と平行な2辺(サイドシール部)の内の1辺を熱融着した段階で、熱融着を実施していない残る1辺(サイドシール部)側から電解液を注入した。   The exterior material 4 was sealed by folding the side facing the side surface on which the convex portion 6 was formed to accommodate the power generating element 1 and heat-sealing three sides other than the side folded. This sealing operation was performed by sandwiching and heat-sealing the portion of the outer packaging material 4 that was overlapped by being bent by a heater or a metal plate incorporating the heater. In the above three-side fusion process, first, one side of the side (top seal portion) from which the positive and negative electrode leads 2 and 3 are drawn and the two sides (side seal portion) parallel to the positive and negative electrode leads 2 and 3 is thermally fused. At the stage of wearing, the electrolytic solution was injected from the remaining one side (side seal portion) side where heat fusion was not performed.

上記熱融着の幅は、外部端子2,3を熱融着する凸部6が位置する側面側については、折り曲げた外装材4の長さが41mmとなるように外装材4を裁断し、凸部6が存在する部分の融着幅は2mmとする一方、外部端子2,3を融着する部分の融着長さが5mmとなるような形状のヒーターを準備し、矩形状の絞り成形部5および凸部6の直近外側を熱融着した。また、2辺については融着幅が2mmとなるように熱融着したが、電解液注入後に最終的に密閉することになる融着部(サイドシール部の1辺)については、内部を減圧状態にして融着した。その結果、最終的に図2に示すような形状および構造を有する実施例1に係る密閉型電池を調製した。   The width of the heat fusion is such that the exterior material 4 is cut so that the length of the folded exterior material 4 is 41 mm on the side surface where the convex portion 6 for heat-sealing the external terminals 2 and 3 is located. Prepare a heater with a shape such that the fusion width of the portion where the convex portion 6 exists is 2 mm, while the fusion length of the portion where the external terminals 2 and 3 are fused is 5 mm, and rectangular drawing The immediate outside of the part 5 and the convex part 6 was heat-sealed. In addition, the two sides were heat-sealed so that the fusion width was 2 mm, but the inside of the fusion part (one side of the side seal part) that was to be finally sealed after the electrolyte injection was reduced in pressure. Fused in the state. As a result, a sealed battery according to Example 1 having a shape and structure as shown in FIG. 2 was finally prepared.

[実施例2]
実施例1において絞り成形部5の側面中央部に形成した凸部6に加え、図3に示すように同じ絞り成形部5の側面側であって外部端子融着部の外側両端の2箇所に、幅が6mmであり、突出量が3mmである寸法を有する凸部6a、6bをそれぞれ形成した点以外は、全て実施例1と同一仕様の発電要素1使用し、外装材の絞り成形加工、電解液の注入および熱融着処理を実施することにより、最終的に図3に示すような形状および構造を有する実施例2に係る密閉型電池を調製した。
[Example 2]
In addition to the convex portion 6 formed at the center of the side surface of the drawn portion 5 in the first embodiment, as shown in FIG. 3, at the two sides on the side surface side of the same drawn portion 5 and outside the outer terminal fusion portion. The power generation element 1 having the same specifications as in Example 1 is used except that the protrusions 6a and 6b each having a width of 6 mm and a protrusion amount of 3 mm are formed, respectively, A sealed battery according to Example 2 having a shape and a structure as shown in FIG. 3 was finally prepared by performing the injection of the electrolytic solution and the heat fusion treatment.

[比較例1]
側面に凸部を形成せず、外部端子2,3が引き出される側面側の融着幅を全て5mmとした点以外は、全て実施例1と同一仕様の発電要素1使用し、外装材の絞り成形加工、電解液の注入および熱融着処理を実施することにより、最終的に図4に示すような従来の形状および構造を有する比較例1に係る密閉型電池を調製した。
[Comparative Example 1]
Except that no convex portion is formed on the side surface and the fusion width on the side surface from which the external terminals 2 and 3 are pulled out is all 5 mm, the power generation element 1 having the same specifications as in Example 1 is used, A sealed battery according to Comparative Example 1 having a conventional shape and structure as shown in FIG. 4 was finally prepared by carrying out a molding process, injection of an electrolytic solution, and heat fusion treatment.

[比較例2]
絞り成形部5の側面に局部的に突出する凸部を形成しない代わりに、発電要素1の外部端子2,3の引き出し方向に延びる空間部が発電要素1の端面全体に形成されるように、絞り成形部5の寸法を縦が38mmで、幅が30mmとし、外部端子が引き出される側面側の融着幅を、外部端子2,3の融着部も含めて全て2mmとした点以外は全て実施例1と同一仕様の発電要素1使用し、外装材の絞り成形加工、電解液の注入および熱融着処理を実施することにより、従来構造を有する比較例2に係る密閉型電池を調製した。
[Comparative Example 2]
Instead of forming a locally projecting protrusion on the side surface of the drawn portion 5, a space that extends in the pull-out direction of the external terminals 2, 3 of the power generation element 1 is formed on the entire end surface of the power generation element 1. The dimensions of the drawn portion 5 are 38 mm in length, the width is 30 mm, and the fusion width on the side surface from which the external terminals are drawn out is all 2 mm including the fusion portions of the external terminals 2 and 3. A sealed battery according to Comparative Example 2 having a conventional structure was prepared by using a power generation element 1 having the same specifications as in Example 1 and performing drawing processing of an exterior material, injection of an electrolytic solution, and heat fusion treatment. .

上記のように調製した各実施例および比較例に係る各100個の密閉型電池のサンプルについて、温度90℃の高温度環境に24時間放置する耐久試験を実施した前後における各電池サンプルの厚さをマイクロメーターで測定し、耐久試験前後における電池厚さの変化量の平均値を比較した。   The thickness of each battery sample before and after the endurance test in which the samples of 100 sealed batteries according to each Example and Comparative Example prepared as described above were left in a high temperature environment of 90 ° C. for 24 hours. Were measured with a micrometer, and the average values of changes in battery thickness before and after the durability test were compared.

また、上記高温耐久試験後において各電池の封止部を目視観察によって検査し電解液の漏洩(漏液)を発生しているサンプル数を計数した。これらの測定計数結果を下記表1に示す。

Figure 2005310671
Moreover, the sealing part of each battery was inspected by visual observation after the high-temperature endurance test, and the number of samples that generated leakage (leakage) of the electrolyte was counted. These measurement count results are shown in Table 1 below.
Figure 2005310671

上記表1に示す結果から明らかなように、外装材4として使用する金属ラミネート樹脂フィルムの絞り成形部5の側面から突出するように凸部6,6a,6bを形成した各実施例1,2に係る密閉型電池によれば、高温度環境下において電池内部にガスが発生した場合においても、上記凸部6,6a,6bに発生ガスが収容吸収されるため、電池厚さの変化量が小さく電池の変形を効果的に抑止することが可能となることが判明した。つまり、電池内でガスが発生した場合においても、電池外形寸法に影響を与えない上記凸部6,6a,6bに発生ガスを逃がして蓄積することにより、二次電池の膨れを回避することができた。その結果、電池内に占める発電要素の割合が大きく高容量であり、使用中の寸法変化が小さい安定した品質を有する密閉型電池を供給することが可能になった。   As is clear from the results shown in Table 1 above, the first and second embodiments in which the convex portions 6, 6 a, 6 b are formed so as to protrude from the side surface of the drawn portion 5 of the metal laminate resin film used as the exterior material 4. According to the sealed battery according to the present invention, even when gas is generated inside the battery in a high temperature environment, the generated gas is accommodated and absorbed by the convex portions 6, 6 a, and 6 b, so that the amount of change in battery thickness is small. It has been found that small battery deformation can be effectively suppressed. In other words, even when gas is generated in the battery, it is possible to avoid the swelling of the secondary battery by letting the generated gas escape and accumulate in the convex portions 6, 6 a, 6 b that do not affect the external dimensions of the battery. did it. As a result, it is possible to supply a sealed battery having a stable quality with a large proportion of power generation elements in the battery and a high capacity, and a small dimensional change during use.

これに対して、凸部を形成していない比較例1に係る電池サンプルにおいては、高温度環境下に放置後の電池厚さが平均値で0.5mmも増加しており、使用条件によっては変形量が大きくなることが判明した。これに対して、局部的に凸部6,6a,6bを形成した実施例1,2に係るサンプルは全て比較例1のサンプルより厚み増加量が小さくなっており、形状の安定性が優れている。このことから、電池内部でのガス発生による電池厚さの増加は、凸部を形成することにより効果的に抑制できるが判明した。   On the other hand, in the battery sample according to Comparative Example 1 in which no convex portion is formed, the battery thickness after being left in a high temperature environment has increased by an average value of 0.5 mm, depending on the use conditions. It was found that the amount of deformation increased. In contrast, all the samples according to Examples 1 and 2 in which the convex portions 6, 6a and 6b are locally formed have a smaller thickness increase than the sample of Comparative Example 1, and the shape stability is excellent. Yes. From this, it has been found that an increase in battery thickness due to gas generation inside the battery can be effectively suppressed by forming convex portions.

一方、絞り成形部5の縦方向の長さを発電要素1の縦方向長さより全体的に3mm長くした比較例2に係る電池サンプルでは、絞り成形部5内の発生ガスの逃げ空間は十分に存在するために耐久試験前後における電池厚さの増加量は実施例1と同等に少ない。しかしながら、外部端子の融着長さが2mmと短いため、端子融着部の封止性が高温度環境下において劣化し電解液が漏洩した電池の割合が急増した。また、耐久試験後においても外部からの水分の浸入が発生したためか、電池の厚さの更なる増加傾向も観察された。   On the other hand, in the battery sample according to the comparative example 2 in which the length in the longitudinal direction of the drawing portion 5 is 3 mm longer than the length in the longitudinal direction of the power generating element 1, the escape space for the generated gas in the drawing portion 5 is sufficiently large. Therefore, the amount of increase in battery thickness before and after the durability test is as small as that in Example 1. However, since the fusion length of the external terminal is as short as 2 mm, the ratio of the batteries in which the sealing property of the terminal fusion part deteriorates in a high temperature environment and the electrolyte solution leaks rapidly. Further, even after the endurance test, a further increasing tendency of the thickness of the battery was observed because of the intrusion of moisture from the outside.

さらに、図2に示す実施例1に係る密閉型電池において、外部端子2,3が外装材4である金属ラミネート樹脂フィルムに熱融着される部分の長さLが1〜5mmと変化するように各種の密閉型電池を作成し、前記と同様の高温度耐久性試験を実施した後における漏液を発生した電池割合を計数したところ、熱融着部分の長さLが3mm以上である場合に漏液電池数をほぼゼロにすることが可能であることが確認された。   Furthermore, in the sealed battery according to Example 1 shown in FIG. 2, the length L of the portion where the external terminals 2 and 3 are thermally fused to the metal laminate resin film which is the exterior material 4 varies from 1 to 5 mm. When various types of sealed batteries were prepared and the percentage of batteries that had leaked after the same high-temperature durability test as described above was counted, the length L of the heat-sealed portion was 3 mm or more. It was confirmed that the number of leaking batteries can be made almost zero.

以上の耐久性試験結果より、本発明の実施形態である実施例1、2の電池サンプルが、比較例の電池サンプルと比較して内部ガス発生時の電池厚さの変化量が小さく、封止部の信頼性が高い電池が得られることが証明された。   From the above durability test results, the battery samples of Examples 1 and 2, which are embodiments of the present invention, are smaller in the amount of change in battery thickness when generating internal gas than the battery sample of the comparative example, and sealed. It was proved that a battery with high reliability of the part could be obtained.

本発明が適用された密閉型電池を構成する発電要素と外装材とを組立てる状態を示す分解斜視図。The disassembled perspective view which shows the state which assembled the electric power generation element and exterior material which comprise the sealed battery to which this invention was applied. 本発明が適用された密閉型電池の外形構造を概略的に示す斜視図。The perspective view which shows roughly the external structure of the sealed battery to which this invention was applied. 本発明が適用された密閉型電池の他の実施例に係る密閉型電池の外形構造を概略的に示す斜視図。The perspective view which shows schematically the external structure of the sealed battery which concerns on the other Example of the sealed battery to which this invention was applied. 従来例の密閉型電池の外形構造を概略的に示す斜視図。The perspective view which shows roughly the external structure of the sealed battery of a prior art example.

符号の説明Explanation of symbols

1 発電要素
2 負極リード(負極端子)
3 正極リード(正極端子)
4 外装材(金属ラミネート樹脂フィルム)
5 絞り成形部
6,6a,6b 凸部
L 外部端子の熱融着部の長さ
1 Power generation element 2 Negative electrode lead (negative electrode terminal)
3 Positive lead (positive terminal)
4 Exterior material (metal laminate resin film)
5 Drawing forming parts 6, 6a, 6b Convex part L Length of heat-sealed part of external terminal

Claims (4)

絞り成形を施して絞り成形部を形成した金属ラミネート樹脂フィルムから成る外装材と、この外装材の絞り成形部に収納された発電要素と、この発電要素に電気的に接続された外部端子とを具備し、上記外装材の周縁部が熱融着により封止されているとともに、上記外部端子が外装材である上記金属ラミネート樹脂フィルムに熱融着される部分を経由して外部に導出されている構造を有する密閉型電池において、上記発電要素を収納する絞り成形部の側面に、上記外部端子の融着側に突出する凸部が形成されていることを特徴とする密閉型電池。 An exterior material made of a metal-laminated resin film formed by drawing to form a drawn part, a power generation element housed in the drawing part of the exterior material, and an external terminal electrically connected to the power generation element And the outer periphery of the exterior material is sealed by thermal fusion, and the external terminal is led out to the outside via a portion that is thermally fused to the metal laminate resin film as the exterior material. In the sealed battery having the above structure, a projecting portion that protrudes toward the fusion side of the external terminal is formed on a side surface of the drawn portion that houses the power generating element. 前記絞り成形部の側面から突出する凸部が、前記外部端子の熱融着部と干渉しない位置に形成されていることを特徴とする請求項1記載の密閉型電池。 The sealed battery according to claim 1, wherein a convex portion protruding from a side surface of the draw-molded portion is formed at a position where it does not interfere with the heat fusion portion of the external terminal. 前記絞り成形部内に発電要素を収納した金属ラミネート樹脂フィルム製外装材の周縁部を熱融着により封止する際に、上記金属ラミネート樹脂フィルム製外装材に形成した絞り成形部内が減圧された状態で封止されていることを特徴とする請求項1記載の密閉型電池。 When the peripheral part of the metal laminate resin film exterior material containing the power generation element in the draw molding part is sealed by thermal fusion, the inside of the draw part formed in the metal laminate resin film exterior material is decompressed The sealed battery according to claim 1, wherein the sealed battery is sealed with. 前記絞り成形部内に発電要素を収納した金属ラミネート樹脂フィルム製外装材の周縁部のうち、前記外部端子が外装材である金属ラミネート樹脂フィルムに熱融着される部分の長さが3mm以上であることを特徴とする請求項1記載の密閉型電池。 Of the peripheral portion of the metal laminate resin film exterior material in which the power generation element is housed in the drawing portion, the length of the portion where the external terminal is heat-sealed to the metal laminate resin film as the exterior material is 3 mm or more. The sealed battery according to claim 1.
JP2004128708A 2004-04-23 2004-04-23 Sealed battery Expired - Fee Related JP4660112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128708A JP4660112B2 (en) 2004-04-23 2004-04-23 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128708A JP4660112B2 (en) 2004-04-23 2004-04-23 Sealed battery

Publications (2)

Publication Number Publication Date
JP2005310671A true JP2005310671A (en) 2005-11-04
JP4660112B2 JP4660112B2 (en) 2011-03-30

Family

ID=35439178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128708A Expired - Fee Related JP4660112B2 (en) 2004-04-23 2004-04-23 Sealed battery

Country Status (1)

Country Link
JP (1) JP4660112B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238665A (en) * 2008-03-28 2009-10-15 Dainippon Printing Co Ltd Electrochemical cell
JP2011507208A (en) * 2007-12-18 2011-03-03 エルジー・ケム・リミテッド Pouch-type secondary battery with improved safety
JP2011113803A (en) * 2009-11-26 2011-06-09 Toyota Motor Corp All solid battery
EP2503622A2 (en) 2011-03-25 2012-09-26 NEC Corporation Secondary battery
JP2014053322A (en) * 2013-11-11 2014-03-20 Dainippon Printing Co Ltd Electrochemical cell
KR20180106073A (en) * 2017-03-17 2018-10-01 주식회사 엘지화학 Battery Cell Comprising Extended Terrace Part
JP2020017485A (en) * 2018-07-27 2020-01-30 トヨタ自動車株式会社 All-solid battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195405A (en) * 1997-12-26 1999-07-21 Sanyo Electric Co Ltd Thin battery
JP2000357493A (en) * 1999-06-14 2000-12-26 Yuasa Corp Frame-furnished battery
JP2001052748A (en) * 1999-08-12 2001-02-23 Yuasa Corp Nonaqueous electrolyte secondary battery and its manufacture
JP2003077426A (en) * 2001-08-31 2003-03-14 Mitsubishi Electric Corp Battery
JP2003288883A (en) * 2001-09-04 2003-10-10 Nec Corp Unit battery and battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195405A (en) * 1997-12-26 1999-07-21 Sanyo Electric Co Ltd Thin battery
JP2000357493A (en) * 1999-06-14 2000-12-26 Yuasa Corp Frame-furnished battery
JP2001052748A (en) * 1999-08-12 2001-02-23 Yuasa Corp Nonaqueous electrolyte secondary battery and its manufacture
JP2003077426A (en) * 2001-08-31 2003-03-14 Mitsubishi Electric Corp Battery
JP2003288883A (en) * 2001-09-04 2003-10-10 Nec Corp Unit battery and battery pack

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507208A (en) * 2007-12-18 2011-03-03 エルジー・ケム・リミテッド Pouch-type secondary battery with improved safety
US8043743B2 (en) 2007-12-18 2011-10-25 Lg Chem, Ltd. Pouch type secondary battery with improved safety
JP2009238665A (en) * 2008-03-28 2009-10-15 Dainippon Printing Co Ltd Electrochemical cell
JP2011113803A (en) * 2009-11-26 2011-06-09 Toyota Motor Corp All solid battery
EP2503622A2 (en) 2011-03-25 2012-09-26 NEC Corporation Secondary battery
US9076995B2 (en) 2011-03-25 2015-07-07 Nec Corporation Secondary battery
JP2014053322A (en) * 2013-11-11 2014-03-20 Dainippon Printing Co Ltd Electrochemical cell
KR20180106073A (en) * 2017-03-17 2018-10-01 주식회사 엘지화학 Battery Cell Comprising Extended Terrace Part
KR102276571B1 (en) * 2017-03-17 2021-07-13 주식회사 엘지에너지솔루션 Battery Cell Comprising Extended Terrace Part
JP2020017485A (en) * 2018-07-27 2020-01-30 トヨタ自動車株式会社 All-solid battery

Also Published As

Publication number Publication date
JP4660112B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US11935997B2 (en) Pouch exterior for secondary battery, pouch-type secondary battery using the pouch exterior, and method of manufacturing the pouch-type secondary battery
JP6734482B2 (en) Pouch exterior material for secondary battery, pouch type secondary battery using the same, and manufacturing method thereof
KR100895202B1 (en) Pouch-type Battery
JP5252937B2 (en) Stacked battery and method for manufacturing the same
JP6743664B2 (en) Power storage device and method of manufacturing power storage device
WO2019188825A1 (en) Battery cell
JP2007311323A (en) Secondary battery which has fixed separator to battery case and raised stability
JP2007053002A (en) Manufacturing method of battery
CN210040267U (en) Secondary battery
JP6681720B2 (en) Electrochemical cell and method of manufacturing electrochemical cell
JP2010033922A (en) Layered secondary battery
JP2006344457A (en) Thin secondary battery, its battery pack and their manufacturing methods
JP7213250B2 (en) Coin-shaped battery and its manufacturing method
JP4660112B2 (en) Sealed battery
JP4664614B2 (en) Sealed battery
JP2005228573A (en) Closed type battery
JP4403375B2 (en) Thin pack battery
JP7056560B2 (en) Power storage element and manufacturing method of power storage element
JP2019036565A (en) Electrochemical device and manufacturing method thereof
JP2005222901A (en) Sealed battery
JP6793702B2 (en) Electrochemical cell and manufacturing method of electrochemical cell
CN113904034A (en) Sealed battery
KR102164973B1 (en) Pouch-typed Secondary Battery Comprising Jelly-Roll Electrode Assembly
KR20150072236A (en) A Pouch Packaging Structure Having Sealed Terrace Area and a Method thereof
KR102654793B1 (en) Sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees