JPH11190343A - Manufacture of dynamic pressure type porous oil retaining bearing - Google Patents

Manufacture of dynamic pressure type porous oil retaining bearing

Info

Publication number
JPH11190343A
JPH11190343A JP36056197A JP36056197A JPH11190343A JP H11190343 A JPH11190343 A JP H11190343A JP 36056197 A JP36056197 A JP 36056197A JP 36056197 A JP36056197 A JP 36056197A JP H11190343 A JPH11190343 A JP H11190343A
Authority
JP
Japan
Prior art keywords
core rod
die
dynamic pressure
sintered metal
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36056197A
Other languages
Japanese (ja)
Other versions
JP3602319B2 (en
Inventor
Makoto Shiranami
誠 白波
Kazuo Okamura
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP36056197A priority Critical patent/JP3602319B2/en
Publication of JPH11190343A publication Critical patent/JPH11190343A/en
Application granted granted Critical
Publication of JP3602319B2 publication Critical patent/JP3602319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To smoothly separate a sintered metal material from a die without collapsing a dynamic pressure groove after the latter is formed. SOLUTION: A core rod 1 having a forming part 1b corresponding to a shape of a bearing surface is inserted in the inner peripheral surface of a cylindrical sintered metal material 2'. The material 2' is press-fitted in a die 3 while it is constrained at its axially opposite ends by punches 4, 5. With the use of a pressing force obtained at this time, the inner peripheral surface of the material 2' is pressed against the forming part 1b of the core rod 1, a bearing surface having, in its inner peripheral surface, a dynamic pressure groove whose shape corresponds to the forming part of the core rod 1, is formed. Thereafter, the sintered metal material 2' is taken out from the die 3 together with the core rod 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼結金属からなる
軸受本体の内周面に、動圧溝を有する軸受面を成形する
ための方法に関する。
The present invention relates to a method for forming a bearing surface having a dynamic pressure groove on an inner peripheral surface of a bearing body made of a sintered metal.

【0002】[0002]

【従来の技術】近年、CD−ROM、DVD−ROM
(RAM)、ハードディスク、レーザビームプリンタ等
の情報機器関連の小型スピンドルモータでは、回転性能
のより一層の向上や低コスト化が求められており、その
ための手段として、スピンドルの軸受を転がり軸受から
上記焼結含油軸受に置き換えることが検討されている。
2. Description of the Related Art Recently, CD-ROM, DVD-ROM
For small spindle motors related to information devices such as (RAM), hard disk, and laser beam printers, there is a demand for further improvement in rotational performance and reduction in cost. Replacement with a sintered oil-impregnated bearing is being considered.

【0003】この種の焼結含油軸受としては、一般に真
円軸受(軸受面の全領域が平坦な円筒面である焼結含油
軸受)が用いられており、その製造工程においては、円
筒状の軸受本体を焼結した後、所要の寸法を得るための
二次加工(サイジング)が行われる。
[0003] As this type of sintered oil-impregnated bearing, a perfect circular bearing (sintered oil-impregnated bearing having a flat cylindrical surface over its entire bearing surface) is generally used. After sintering the bearing body, secondary processing (sizing) for obtaining required dimensions is performed.

【0004】図6に真円軸受におけるサイジング工程の
一例を示す。サイジング装置は、軸状のコアロッド21、
ダイ23、上下のパンチ24・25、上パンチ24を加圧する上
ラム26、および下パンチ25を駆動する駆動手段(図示せ
ず)とで構成される。コアロッド21の上端は上ラム26に
係止されており、そのためにコアロッド21と上ラム26と
は一体となって移動可能である。焼結材22は、先ずダイ
23上の所定位置に配置され(工程1)、次に上ラム26の
降下により内径部にコアロッド21を挿入した上で(工程
2)、上パンチ26に加圧されてダイ23の内部に圧入され
る(工程3、4)。ダイ23に圧入された焼結材22は、そ
の軸方向両側を上下のパンチ24、25で拘束した状態で、
その外周面がダイ23により、その内周面がコアロッド21
によりそれぞれ成形(サイジング)される。サイジング
の終了後は、先ず上ラム26を上昇させてコアロッド21を
焼結材22の内径部から抜き(工程5、6)、次に下パン
チ25で焼結材22を押し上げてダイ23から焼結材22(軸受
本体)を取り出すようにしている(工程7、8)。
FIG. 6 shows an example of a sizing process in a perfect circular bearing. The sizing device has an axial core rod 21,
It comprises a die 23, upper and lower punches 24, 25, an upper ram 26 for pressing the upper punch 24, and a driving means (not shown) for driving the lower punch 25. The upper end of the core rod 21 is locked to the upper ram 26, so that the core rod 21 and the upper ram 26 can move integrally. First, the sintered material 22 is
The core rod 21 is inserted into the inner diameter part by the lowering of the upper ram 26 (step 2), and is pressed into the die 23 by being pressed by the upper punch 26 (step 2). (Steps 3 and 4). The sintered material 22 press-fitted into the die 23 is constrained on both sides in the axial direction by upper and lower punches 24 and 25,
The outer peripheral surface is formed by a die 23 and the inner peripheral surface is formed by a core rod 21.
Respectively (sizing). After sizing, the upper ram 26 is first lifted to remove the core rod 21 from the inner diameter of the sintered material 22 (steps 5 and 6), and then the sintered material 22 is pushed up by the lower punch 25 and fired from the die 23. The binder 22 (bearing body) is taken out (steps 7 and 8).

【0005】[0005]

【発明が解決しようとする課題】真円軸受は、軸の偏心
が小さいところでは不安定な振動が発生しやすく、回転
速度の1/2の速度で振れ回るいわゆるホワールが発生
しやすい。そのため、軸受本体内周面の軸受面にへリン
グボーン型やスパイラル型の動圧溝を設け、軸の回転に
伴う動圧作用により軸受隙間に動圧油膜を形成して軸を
浮上支持することにより、ホワール等の不安定振動の問
題を解消する試みが従来よりなされている(動圧型多孔
質含油軸受)。
In a perfect circular bearing, unstable vibration is likely to occur where the eccentricity of the shaft is small, and so-called whirling which swings at half the rotational speed is likely to occur. For this reason, a herringbone type or spiral type dynamic pressure groove is provided on the bearing surface on the inner peripheral surface of the bearing body, and a dynamic pressure oil film is formed in the bearing gap by the dynamic pressure effect accompanying the rotation of the shaft to support the shaft floating. Accordingly, attempts to solve the problem of unstable vibration such as whirl have been made conventionally (dynamic pressure type porous oil-impregnated bearings).

【0006】この種の動圧型多孔質含油軸受における、
動圧溝を有する軸受面の形成方法としては、圧縮成形が
考えられる。すなわち、例えば上記サイジング工程にお
いて、コアロッド21の外周面に、動圧溝を有する軸受面
の形状に対応した凹凸形状の型を有する成形部を形成
し、焼結材22を、その内径側にコアロッド21を配置した
状態でダイ23に圧入し、焼結材22をダイ23内で圧迫して
焼結材22の内周面をコアロッド21の成形部に加圧し、当
該内周面に成形部の形状を転写するのである。
In this type of dynamic pressure type oil-impregnated bearing,
As a method of forming the bearing surface having the dynamic pressure groove, compression molding can be considered. That is, for example, in the sizing step, a molded portion having a concave and convex shape corresponding to the shape of the bearing surface having the dynamic pressure groove is formed on the outer peripheral surface of the core rod 21, and the sintered material 22 is placed on the inner diameter side of the core rod 21. 21 is pressed into a die 23 in a state in which the sintered material 22 is pressed in the die 23 to press the inner peripheral surface of the sintered material 22 against the molded portion of the core rod 21, and the inner peripheral surface of the molded portion is pressed. It transfers the shape.

【0007】しかし、従来のサイジング工程では、上述
のように焼結材の脱型に際し、先ずコアロッド21を抜き
(この時、成形後の焼結材22はダイ23内に残ってい
る)、その後下パンチ24で焼結材をダイ23外に押し出す
ようにしているため、脱型時に焼結材22の内径部に形成
された動圧溝がコアロッド21の抜き取りと同時に崩れて
しまう問題がある。
However, in the conventional sizing process, the core rod 21 is first removed (at this time, the formed sintered material 22 remains in the die 23) when the sintered material is released from the die as described above. Since the sintered material is pushed out of the die 23 by the lower punch 24, there is a problem that the dynamic pressure groove formed in the inner diameter portion of the sintered material 22 collapses at the same time as the core rod 21 is removed when the mold is released.

【0008】この場合、コアロッド21の抜き(上昇)と
同時に下パンチ25を上昇させれば、焼結材とコアロッド
の位置関係が保持され、動圧溝の崩れを防止することが
できるが、この時の上昇タイミングはコアロッド側と下
パンチ側とで完全に一致させる必要があり、その実現は
極めて難しく、仮にできたとしても機構的にかなり大型
で複雑なものとなる。
In this case, if the lower punch 25 is raised at the same time when the core rod 21 is pulled (raised), the positional relationship between the sintered material and the core rod is maintained, and the collapse of the dynamic pressure groove can be prevented. It is necessary to completely match the rising timing of the core rod side and the lower punch side, and it is extremely difficult to achieve this, and even if it can be done, it becomes mechanically quite large and complicated.

【0009】そこで、本発明は、簡単な構造で、動圧溝
成形後の軸受本体(焼結金属素材)を、動圧溝を崩すこ
となくスムーズに脱型することのできる動圧型多孔質含
油軸受の製造方法および製造装置の提供を目的とする。
Accordingly, the present invention provides a dynamic pressure type porous oil-impregnated body having a simple structure and capable of smoothly releasing a bearing body (sintered metal material) after forming a dynamic pressure groove without breaking the dynamic pressure groove. It is an object of the present invention to provide a bearing manufacturing method and a manufacturing apparatus.

【0010】[0010]

【課題を解決するための手段】上記目的とを達成すべ
く、本発明では、焼結金属からなる円筒状の軸受本体の
内周面に傾斜状の動圧溝を有する軸受面を形成し、この
軸受本体に潤滑油または潤滑グリースを含浸させてなる
動圧型多孔質含油軸受の製造方法であって、上記軸受面
の形状に対応した形状の成形部を有するコアロッドを円
筒状の焼結金属素材の内周面に挿入し、焼結金属素材
を、その軸方向両側を一対のパンチで拘束しつつダイに
圧入して圧迫し、この時の圧迫力で焼結金属素材の内周
面をコアロッドの成形部に加圧して、当該内周面にコア
ロッドの成形部に対応した形状の動圧溝を有する軸受面
を成形した後、焼結金属素材を、コアロッドとの位置関
係を保持しながら当該コアロッドと共にダイから取り出
すようにした。
In order to achieve the above object, according to the present invention, a bearing surface having an inclined dynamic pressure groove is formed on the inner peripheral surface of a cylindrical bearing body made of sintered metal. A method of manufacturing a dynamic pressure type porous oil-impregnated bearing obtained by impregnating a lubricating oil or a lubricating grease into a bearing body, comprising: The sintered metal material is pressed into the die while pressing both sides in the axial direction with a pair of punches, while pressing the inner surface of the sintered metal material with a pair of punches. After forming a bearing surface having a dynamic pressure groove of a shape corresponding to the forming portion of the core rod on the inner peripheral surface by pressing the formed portion, the sintered metal material is pressed while maintaining the positional relationship with the core rod. The core rod was taken out of the die.

【0011】この場合、焼結金属素材の内周面に軸受面
を成形した後、一方のパンチを駆動してダイから抜くと
共に、コアロッドおよび他方のパンチを同期駆動し、他
方のパンチで焼結金属素材を押し込んで当該焼結金属素
材をダイから取り出すようにする。
In this case, after forming the bearing surface on the inner peripheral surface of the sintered metal material, one of the punches is driven to pull out the die, the core rod and the other punch are driven synchronously, and the other punch is used for sintering. The sintered metal material is taken out from the die by pressing the metal material.

【0012】この時、コアロッドを駆動する駆動装置に
対するコアロッドの軸方向の遅れを所定範囲内で許容し
つつ、その範囲内で駆動装置と他方のパンチとを同期駆
動することにより、焼結金属素材をダイから取り出すよ
うにするのがよい。
At this time, the sintered metal material is driven by synchronously driving the driving device and the other punch within the predetermined range while allowing the axial delay of the core rod with respect to the driving device for driving the core rod within a predetermined range. Should be taken out of the die.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施形態を図1
乃至図5に基いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.
A description will be given based on FIGS.

【0014】図1は、本発明を適用した成形装置(サイ
ジング装置)を示すものである。この装置は、図6に示
す従来装置と同様に、軸受本体2の内周面を成形するコ
アロッド1と、軸受本体2の外周面を成形するダイ3
と、軸受本体2の軸方向両側を拘束する一対のパンチ
4、5と、コアロッド1および上パンチ4を駆動する駆
動装置となる上ラム6とを具備する。
FIG. 1 shows a molding apparatus (sizing apparatus) to which the present invention is applied. This device has a core rod 1 for forming the inner peripheral surface of the bearing main body 2 and a die 3 for forming the outer peripheral surface of the bearing main body 2, as in the conventional device shown in FIG.
And a pair of punches 4, 5 for restraining both sides of the bearing body 2 in the axial direction, and an upper ram 6 serving as a driving device for driving the core rod 1 and the upper punch 4.

【0015】コアロッド1の外周面1aの軸方向2箇所に
は、動圧型多孔質含油軸受の軸受本体2(図5参照)の
内周面2aに軸受面2bを形成するための成形部1bが軸方向
に離隔して形成される。この成形部1bは、図2に示すよ
うに、軸受面2bにおける動圧溝2b1の形成領域を成形す
る第1領域1b1と、軸受面2bにおける動圧溝2b1以外の
領域、すなわち動圧溝2b1間の背の部分2b2および軸受
面2bの軸方向中間部の環状平滑部2b3を成形する第2領
域1b2とで構成される。第1領域1b1は、軸受面2bの動
圧溝パターンに対応させて形成され、図面ではいわゆる
へリングボーン型の動圧溝2b1に対応させた場合を例示
している。第2領域1b2は、第1領域1b1に対して所定
量だけ凹み、その凹み量は動圧溝2b1の深さにほぼ等し
く、例えば2〜4μmである。動圧溝2b1の形状は、軸
方向に対して傾斜したものである限り任意であり、スパ
イラル型等の他の傾斜溝とする場合には、第1領域1b1
を当該溝形状に対応した形状に形成する。コアロッド1
に設ける成形部1bの数は図示のような2つに限定され
ず、軸受本体2に形成する軸受面2bの数に合わせて1つ
もしくは3つ以上とすることができる。なお、図2では
成形部1bの凹凸をかなり誇張して描いている。
Forming portions 1b for forming a bearing surface 2b on an inner peripheral surface 2a of a bearing body 2 (see FIG. 5) of a hydrodynamic porous oil-impregnated bearing are provided at two axial positions on an outer peripheral surface 1a of the core rod 1. They are formed spaced apart in the axial direction. As shown in FIG. 2, the forming portion 1b includes a first region 1b1 for forming a formation region of the dynamic pressure groove 2b1 on the bearing surface 2b, and a region other than the dynamic pressure groove 2b1 on the bearing surface 2b, that is, a dynamic pressure groove 2b1. And a second region 1b2 for forming an annular smooth portion 2b3 at the axially intermediate portion of the bearing surface 2b. The first region 1b1 is formed so as to correspond to the dynamic pressure groove pattern of the bearing surface 2b, and the drawing illustrates a case where the first region 1b1 corresponds to the so-called herringbone type dynamic pressure groove 2b1. The second region 1b2 is recessed by a predetermined amount with respect to the first region 1b1, and the amount of the recess is substantially equal to the depth of the dynamic pressure groove 2b1, for example, 2 to 4 μm. The shape of the dynamic pressure groove 2b1 is arbitrary as long as it is inclined with respect to the axial direction. In the case of another inclined groove such as a spiral type, the first region 1b1 is used.
Is formed in a shape corresponding to the groove shape. Core rod 1
Is not limited to two as shown in the figure, but may be one or three or more in accordance with the number of bearing surfaces 2b formed on the bearing body 2. In FIG. 2, the irregularities of the molded portion 1b are drawn in an exaggerated manner.

【0016】上ラム6には、軸方向長さを軸受本体2の
それよりも長くした空間6a(収容部)が形成される。こ
の収容部6aには、コアロッド1の上端に形成されたフラ
ンジ部1cが軸方向に摺動自在に収容され、これによって
コアロッド1と上ラム6との間に軸方向の相対変位が許
容されている。フランジ部1cの下面と収容部6aの下面と
の間には、コイルスプリング等の弾性部材7が圧縮状態
で介装され、コアロッド1は弾性部材7によって図面上
方、すなわちダイ3から離隔する方向に常時弾圧されて
いる。軸受本体2の成形前の待機時(図4の工程1)に
は、弾性部材7の弾圧力によりフランジ部1cが収容部6a
の上面に当接するので、コアロッド1の位置出しがなさ
れる。
The upper ram 6 is formed with a space 6a (accommodating portion) whose axial length is longer than that of the bearing main body 2. A flange portion 1c formed at the upper end of the core rod 1 is slidably accommodated in the accommodation portion 6a in the axial direction, whereby relative displacement in the axial direction between the core rod 1 and the upper ram 6 is allowed. I have. An elastic member 7 such as a coil spring is interposed between the lower surface of the flange portion 1c and the lower surface of the housing portion 6a in a compressed state, and the core rod 1 is moved upward by the elastic member 7 in the drawing, that is, in a direction away from the die 3. It is constantly suppressed. At the time of standby before molding of the bearing body 2 (step 1 in FIG. 4), the flange portion 1c is moved by the elastic force of the elastic member 7 into the housing portion 6a.
, The core rod 1 is positioned.

【0017】以下、上記成形装置における動圧溝の成形
工程を図4に基いて説明する。
Hereinafter, the step of forming the dynamic pressure grooves in the above-described forming apparatus will be described with reference to FIG.

【0018】先ず、ダイ3上に、予め厚肉円筒状に成形
された焼結材2'(図3参照)をコアロッド1、および上
下のパンチ4、5と同軸にして配置する(工程1)。こ
の時、コアロッド1、上パンチ4、およびラム6は上位
置(待機位置)にある。一方、下パンチ5はダイ3に摺
動自在に挿入され、ダイ3の成形孔の上端で待機して焼
結金属素材2'の下面を受ける。
First, a sintered material 2 '(see FIG. 3) previously formed into a thick cylindrical shape is arranged coaxially with the core rod 1 and the upper and lower punches 4, 5 on the die 3 (step 1). . At this time, the core rod 1, the upper punch 4, and the ram 6 are at the upper position (standby position). On the other hand, the lower punch 5 is slidably inserted into the die 3 and waits at the upper end of the forming hole of the die 3 to receive the lower surface of the sintered metal material 2 '.

【0019】この時、焼結材2'の外径は、ダイ23の内径
よりも圧入代分だけ大きく、内径はコアロッド1の内径
よりも僅かに大きくする。図面では、内周面2aおよび外
周面2cをストレート面とした焼結材2'を例示している
が、外周面2cは一部に大径部を有する段違い面としても
よい。焼結材2'は、銅系あるいは鉄系、またはその双方
を主成分とする焼結金属で、望ましくは銅を20〜95wt%
使用して形成される。
At this time, the outer diameter of the sintered material 2 ′ is larger than the inner diameter of the die 23 by the press-fitting allowance, and the inner diameter is slightly larger than the inner diameter of the core rod 1. In the drawings, the sintered material 2 'having the inner peripheral surface 2a and the outer peripheral surface 2c as straight surfaces is illustrated, but the outer peripheral surface 2c may be a stepped surface having a large diameter portion in part. The sintered material 2 'is a sintered metal mainly composed of copper or iron, or both of them, and preferably contains 20 to 95% by weight of copper.
Formed using.

【0020】次に、油圧機構等よりなる駆動装置を起動
して上ラム6を前進(降下)させる。これにより、先ず
コアロッド1の先端部が焼結材2'の内径部に挿入され
(工程2)、これに遅れて上ラム6に加圧された上パン
チ4が降下し、焼結材2'の上面に当接する(工程3)。
上ラム6がさらに降下すると、焼結材2'は上下のパンチ
で軸方向両側から拘束された状態でダイ3に圧入される
(工程4)。この時、下パンチ5は上ラム6と同期して
降下する。ダイ3への圧入に伴って、焼結材2'はダイ3
および上下のパンチ4、5から圧迫力を受け、その上下
端部が内径側に肉移動してそれぞれ対向する成形部1bに
押付けられる。これにより、成形部1bの形状が焼結材2'
の内周面の上下端部に転写され、成形部1bの第1領域1
b1で動圧溝2b1が、第2領域1b2で背の部分2b2および
平滑部2b3が同時形成される。
Next, a drive device such as a hydraulic mechanism is activated to move the upper ram 6 forward (down). As a result, the tip of the core rod 1 is first inserted into the inner diameter of the sintered material 2 '(step 2), and after that, the upper punch 4 pressed by the upper ram 6 descends, and the sintered material 2' (Step 3).
When the upper ram 6 is further lowered, the sintered material 2 'is pressed into the die 3 while being restrained from both sides in the axial direction by the upper and lower punches (step 4). At this time, the lower punch 5 descends in synchronization with the upper ram 6. With the press-fitting into the die 3, the sintered material 2 '
The upper and lower ends receive the compressive force from the upper and lower punches 4 and 5, and the upper and lower ends move toward the inner diameter side and are pressed against the opposing forming portions 1b. Thereby, the shape of the molded part 1b is changed to the sintered material 2 ′.
Is transferred to the upper and lower end portions of the inner peripheral surface of the first portion 1 of the molding portion 1b.
The dynamic pressure groove 2b1 is formed at b1, and the back portion 2b2 and the smooth portion 2b3 are formed at the same time in the second region 1b2.

【0021】次いで、上ラム6を後退(上昇)させる
(工程5)。この時、上パンチ4は適当な追従手段によ
って上ラム6の上昇動に追従させる。コアロッド1は弾
性部材7を介してラム6に弾性支持されており、上ラム
6の上昇に伴って弾性部材7が圧縮されるため、コアロ
ッド1は上ラム6に追従することなく、前工程(工程
4)の位置で静止して焼結材2'との間の位置関係を保持
する。この時、弾性部材7の弾性率が大きすぎると、弾
性部材7が圧縮されず、コアロッド1が上ラム6に追従
上昇して動圧溝を崩すことになり、一方弾性係数が小さ
すぎると待機状態(工程1)においてコアロッド1の位
置出しが不正確となるので、弾性部材7の弾性率はこれ
らを勘案して決定される。
Next, the upper ram 6 is retracted (raised) (step 5). At this time, the upper punch 4 is caused to follow the upward movement of the upper ram 6 by an appropriate following means. The core rod 1 is elastically supported by the ram 6 via the elastic member 7, and the elastic member 7 is compressed as the upper ram 6 rises. At the position of step 4), it is stopped and the positional relationship with the sintered material 2 'is maintained. At this time, if the elastic modulus of the elastic member 7 is too large, the elastic member 7 is not compressed, and the core rod 1 follows the upper ram 6 and breaks down the dynamic pressure groove. Since the positioning of the core rod 1 is inaccurate in the state (step 1), the elastic modulus of the elastic member 7 is determined in consideration of these.

【0022】上ラム6の上昇と同期させて、例えばカム
機構等よりなる駆動装置により下パンチ5を前進(上
昇)させ、焼結材2'をダイ3から押し出す(工程6)。
この時、仮に下パンチ5の上昇が上ラム6の上昇に遅れ
て開始されても、上ラム6に対するコアロッド1の遅れ
が許容される間、すなわち弾性部材7が圧縮限界に達す
るより以前であれば、その時間差が弾性部材7によって
吸収されるため、動圧溝が崩れることはない。また、下
パンチ5の前進速度と上ラム6の後退速度とに多少のず
れがある場合でも、弾性部材7の弾性変形によってその
速度差が吸収されるので、上記速度差に基く動圧溝の崩
れも防止することができる。
In synchronization with the raising of the upper ram 6, the lower punch 5 is advanced (raised) by a drive device such as a cam mechanism or the like, and the sintered material 2 'is pushed out of the die 3 (step 6).
At this time, even if the ascent of the lower punch 5 is started with a delay with respect to the ascent of the upper ram 6, it may be performed while the delay of the core rod 1 with respect to the upper ram 6 is allowed, that is, before the elastic member 7 reaches the compression limit. For example, the time difference is absorbed by the elastic member 7, so that the dynamic pressure groove does not collapse. Even if there is a slight difference between the forward speed of the lower punch 5 and the retreat speed of the upper ram 6, the speed difference is absorbed by the elastic deformation of the elastic member 7, so that the dynamic pressure groove based on the speed difference is absorbed. Collapse can also be prevented.

【0023】焼結材2'がダイ3から押し出された後、上
パンチ4の上ラム6に対する追従関係を切り、上ラム6
を継続して上昇させつつ上パンチ4を停止させると、焼
結材2'の上端が上パンチ4の下端に当接する(工程
7)。その後、さらに上ラム6を上昇させれば、焼結材
2'がコアロッド1から抜け落ちて図5に示す軸受本体2
が取り出される(工程8)。焼結材2'は、ダイ3の外部
に押し出されると同時にスプリングバックし、その内径
が僅かに拡大しているので、コアロッド1から抜き取ら
れる際に、動圧溝が成形部1bの第1領域1b1と干渉して
崩れることはない。なお、図面では、ダイ3から押し出
された焼結材2'がコアロッド1との間の摩擦力によって
コアロッド1と共に上昇する場合を例示しているが、焼
結材2'のスプリングバック量が動圧溝深さよりもかなり
大きい場合は、焼結材2'はダイ3外に押し出されると同
時にコアロッド1から滑り落ちて脱落する。
After the sintered material 2 ′ is extruded from the die 3, the following relationship is cut off with respect to the upper ram 6 of the upper punch 4.
When the upper punch 4 is stopped while continuing to move upward, the upper end of the sintered material 2 'comes into contact with the lower end of the upper punch 4 (step 7). After that, if the upper ram 6 is further raised, the sintered material
2 'comes off the core rod 1 and the bearing body 2 shown in FIG.
Is taken out (step 8). The sintered material 2 ′ is spring-backed at the same time as being pushed out of the die 3, and its inner diameter is slightly enlarged. Therefore, when the sintered material 2 ′ is extracted from the core rod 1, the dynamic pressure groove is formed in the first region of the molded portion 1 b. It does not collide with 1b1. In the drawings, the case where the sintered material 2 ′ extruded from the die 3 rises together with the core rod 1 due to the frictional force with the core rod 1, but the amount of springback of the sintered material 2 ′ varies. If it is much larger than the depth of the press groove, the sintered material 2 ′ is pushed out of the die 3 and at the same time slides off the core rod 1 and falls off.

【0024】このようにして取り出された軸受本体2
を、洗浄・乾燥した後、これに潤滑油や潤滑グリースを
含浸させれば、内周面に動圧溝を有する動圧型焼結含油
軸受が製造される。
The bearing body 2 thus taken out
Is washed and dried, and then impregnated with lubricating oil or lubricating grease, whereby a hydrodynamic sintered oil-impregnated bearing having a hydrodynamic groove on the inner peripheral surface is manufactured.

【0025】[0025]

【発明の効果】以上のように、本発明方法によれば、焼
結金属素材を、コアロッドとの位置関係を保持しながら
当該コアロッドと共にダイから取り出すようにしている
ので、焼結金属素材とコアロッドとを同期させ、両者間
の位置ずれを防止して動圧溝の崩れを確実に回避するこ
とができる。
As described above, according to the method of the present invention, the sintered metal material is taken out of the die together with the core rod while maintaining the positional relationship with the core rod. Can be synchronized with each other to prevent the displacement between them, and the collapse of the dynamic pressure groove can be reliably avoided.

【0026】また、焼結金属素材の内周面に軸受面を成
形した後、一方のパンチを駆動してダイから抜くと共
に、コアロッドおよび他方のパンチを同期駆動し、他方
のパンチで焼結金属素材を押し込んで当該焼結金属素材
をダイから取り出すようにし、さらに、コアロッドを駆
動する駆動装置に対するコアロッドの軸方向の遅れを所
定範囲内で許容しつつ、その範囲内で駆動装置と他方の
パンチとを同期駆動しているので、コアロッドと他方の
パンチとの同期にずれ(駆動開始タイミングや駆動速度
等)がある場合でも、焼結金属素材をコアロッドとの位
置関係を保持しながら当該コアロッドと共にダイから取
り出すことができ、動圧溝の崩れを確実に回避すること
ができる。しかも構造を簡素化することができ、従来の
成形装置(サイジング装置等)からの転用も容易であ
る。
After the bearing surface is formed on the inner peripheral surface of the sintered metal material, one of the punches is driven to pull out the die, the core rod and the other punch are synchronously driven, and the other punch is used to drive the sintered metal. The material is pushed in to take out the sintered metal material from the die. Further, while allowing a delay in the axial direction of the core rod with respect to the drive device for driving the core rod within a predetermined range, the drive device and the other punch within the range. And the synchronous driving of the core rod and the other punch, even if there is a deviation (driving start timing, driving speed, etc.) in the synchronization between the core rod and the other punch, the sintered metal material is held together with the core rod while maintaining the positional relationship with the core rod. It can be taken out of the die, and the collapse of the dynamic pressure groove can be reliably avoided. Moreover, the structure can be simplified, and conversion from a conventional molding device (such as a sizing device) is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる製造装置の断面図である。FIG. 1 is a sectional view of a manufacturing apparatus according to the present invention.

【図2】コアロッドの部分拡大側面図である。FIG. 2 is a partially enlarged side view of a core rod.

【図3】焼結体の断面図である。FIG. 3 is a sectional view of a sintered body.

【図4】本発明にかかるサイジング工程を示す断面図で
ある。
FIG. 4 is a sectional view showing a sizing step according to the present invention.

【図5】動圧溝の形成後の軸受本体の断面図である。FIG. 5 is a cross-sectional view of the bearing main body after a dynamic pressure groove is formed.

【図6】従来のサイジング工程を示す断面図である。FIG. 6 is a cross-sectional view showing a conventional sizing step.

【符号の説明】[Explanation of symbols]

1 コアロッド 1a 外周面 1b 成形部 2 軸受本体 2' 焼結金属素材(焼結材) 2a 内周面 2b 軸受面 2b1 動圧溝 3 ダイ 4 一方のパンチ(上パンチ) 5 他方のパンチ(下パンチ) 6 駆動装置(上ラム) DESCRIPTION OF SYMBOLS 1 Core rod 1a Outer peripheral surface 1b Molding part 2 Bearing main body 2 'Sintered metal material (sintered material) 2a Inner peripheral surface 2b Bearing surface 2b1 Dynamic pressure groove 3 Die 4 One punch (upper punch) 5 The other punch (lower punch) 6) Drive (upper ram)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 焼結金属からなる円筒状の軸受本体の内
周面に傾斜状の動圧溝を有する軸受面を形成し、この軸
受本体に潤滑油または潤滑グリースを含浸させてなる動
圧型多孔質含油軸受の製造方法であって、 上記軸受面の形状に対応した形状の成形部を有するコア
ロッドを円筒状の焼結金属素材の内周面に挿入し、焼結
金属素材を、その軸方向両側を一対のパンチで拘束しつ
つダイに圧入して圧迫し、この時の圧迫力で焼結金属素
材の内周面をコアロッドの成形部に加圧して、当該内周
面にコアロッドの成形部に対応した形状の動圧溝を有す
る軸受面を成形した後、焼結金属素材を、コアロッドと
の位置関係を保持しながら当該コアロッドと共にダイか
ら取り出すようにした動圧型多孔質含油軸受の製造方
法。
1. A dynamic pressure type in which a bearing surface having an inclined dynamic pressure groove is formed on an inner peripheral surface of a cylindrical bearing body made of a sintered metal, and the bearing body is impregnated with lubricating oil or lubricating grease. A method for manufacturing a porous oil-impregnated bearing, comprising: inserting a core rod having a molded portion having a shape corresponding to the shape of the bearing surface into an inner peripheral surface of a cylindrical sintered metal material; While pressing both sides in a direction with a pair of punches and pressing into the die to press, the pressing force at this time presses the inner peripheral surface of the sintered metal material against the core rod forming part, forming the core rod on the inner peripheral surface. Manufacturing of a dynamic pressure-type porous oil-impregnated bearing in which after forming a bearing surface having a dynamic pressure groove having a shape corresponding to the portion, the sintered metal material is taken out of the die together with the core rod while maintaining the positional relationship with the core rod. Method.
【請求項2】 焼結金属素材の内周面に軸受面を成形し
た後、一方のパンチを駆動してダイから抜くと共に、コ
アロッドおよび他方のパンチを同期駆動し、他方のパン
チで焼結金属素材を押し込んで当該焼結金属素材をダイ
から取り出すようにした請求項1記載の動圧型多孔質含
油軸受の製造方法。
2. After forming a bearing surface on the inner peripheral surface of the sintered metal material, one of the punches is driven to pull out the die, the core rod and the other punch are synchronously driven, and the other punch is used to drive the sintered metal. 2. The method for manufacturing a hydrodynamic porous oil-impregnated bearing according to claim 1, wherein the material is pushed in to take out the sintered metal material from the die.
【請求項3】 コアロッドを駆動する駆動装置に対する
コアロッドの軸方向の遅れを所定範囲内で許容しつつ、
その範囲内で駆動装置と他方のパンチとを同期駆動する
ことにより、焼結金属素材をダイから取り出すようにし
た請求項2記載の動圧型多孔質含油軸受の製造方法。
3. While allowing a delay in the axial direction of the core rod with respect to a driving device for driving the core rod within a predetermined range,
3. The method according to claim 2, wherein the sintered metal material is taken out of the die by synchronously driving the driving device and the other punch within the range.
JP36056197A 1997-12-26 1997-12-26 Manufacturing method of hydrodynamic porous oil-impregnated bearing Expired - Lifetime JP3602319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36056197A JP3602319B2 (en) 1997-12-26 1997-12-26 Manufacturing method of hydrodynamic porous oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36056197A JP3602319B2 (en) 1997-12-26 1997-12-26 Manufacturing method of hydrodynamic porous oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JPH11190343A true JPH11190343A (en) 1999-07-13
JP3602319B2 JP3602319B2 (en) 2004-12-15

Family

ID=18469939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36056197A Expired - Lifetime JP3602319B2 (en) 1997-12-26 1997-12-26 Manufacturing method of hydrodynamic porous oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP3602319B2 (en)

Also Published As

Publication number Publication date
JP3602319B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
JP3954695B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
EP2447555B1 (en) Oil-impregnated sintered bearing and method of manufacturing the same
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP2006125516A (en) Oil-retaining sintered bearing
JP3602319B2 (en) Manufacturing method of hydrodynamic porous oil-impregnated bearing
JP2011047005A (en) Method of manufacturing bearing sleeve and fluid dynamic bearing device
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP3602320B2 (en) Manufacturing method of hydrodynamic sintered oil-impregnated bearing
JP4172944B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2004360863A (en) Dynamic-pressure bearing manufacturing method
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP2001056028A (en) Manufacture of bearing
JP3856363B2 (en) Manufacturing method of bearing
KR100593921B1 (en) An apparatus for manufacturing the fluid dynamic pressure bearing
JP2005180707A (en) Dynamic pressure type sintered oil-impregnated bearing unit
JP2001020956A (en) Manufacture method of bearing
JP2001295845A (en) Oil-impregnated sintered bearing and its manufacturing method
JP2002097503A (en) Method of manufacturing sintered bearing with dynamic pressure groove
JP2001032838A (en) Manufacture of bearing
JP2000054003A (en) Formation of metallic material
JP2000065045A (en) Kinetic pressure bearing
JP2001059106A (en) Manufacture of bearing
JP3797465B2 (en) Manufacturing method of bearing
JP3734130B2 (en) Method for producing sintered oil-impregnated bearing
JP4451409B2 (en) Method for producing hydrodynamic sintered oil-impregnated bearing unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term