JPH11189836A - Al-mg-si aluminum alloy sheet to be formed excellent in surface properties - Google Patents

Al-mg-si aluminum alloy sheet to be formed excellent in surface properties

Info

Publication number
JPH11189836A
JPH11189836A JP36772397A JP36772397A JPH11189836A JP H11189836 A JPH11189836 A JP H11189836A JP 36772397 A JP36772397 A JP 36772397A JP 36772397 A JP36772397 A JP 36772397A JP H11189836 A JPH11189836 A JP H11189836A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
alloy sheet
cube orientation
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36772397A
Other languages
Japanese (ja)
Other versions
JP3919315B2 (en
Inventor
Manabu Nakai
学 中井
Takehiko Eto
武比古 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP36772397A priority Critical patent/JP3919315B2/en
Publication of JPH11189836A publication Critical patent/JPH11189836A/en
Application granted granted Critical
Publication of JP3919315B2 publication Critical patent/JP3919315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the alloy sheet without the surface properties being deteriorated due to the generation of a ridging mark or further an orange peel effect, etc., under more severe forming conditions by specifying the cube orientation at the surface-layer part and specified region of an Al-Mg-Si aluminum alloy sheet of specified composition. SOLUTION: This Al-Mg-Si Al alloy sheet contains, by weight, 0.2-1.8% Si and 0.2-1.6% Mg and with the accumulation degree of the cube orientation controlled to 2-5 at the surface-layer part and to <=7, preferably <=6, at the 1/4 thickness region of the sheet. The cube orientation means 100} <100> orientation and is formed when the rolled sheet with a rolling texture formed is recrystallized. Besides, the alloy may contain, as required, 0.005-1.0% each of Zn and Cu, 0.001-0.1% Ti, 1-300 ppm B, 1-100 ppm Be and further >=1 kind among <=1.0% Mn, <=0.3% Cr and <=0.15% each of Zr and V, and the crystal grain diameter on the sheet surface is preferably controlled to <=45 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、屋根、インテリ
ア、カーテンウオール等の建材、器物、電気部品、光学
機器、自動車、鉄道車両及び航空機等の輸送機器、一般
機械部品等の用途に適する、成形加工後の表面性状に優
れる成形加工用Al−Mg−Si系アルミニウム合金板
材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to moldings suitable for use in building materials such as roofs, interiors, curtain walls, etc., equipment, electric parts, optical equipment, transportation equipment such as automobiles, railway vehicles and aircraft, and general machine parts. The present invention relates to an Al-Mg-Si-based aluminum alloy sheet material for forming which has excellent surface properties after processing.

【0002】[0002]

【従来の技術】6000系(Al−Mg−Si系)アル
ミニウム合金板材は、耐食性及び常温での成形加工性が
比較的優れ、人工時効処理により高強度が得られること
から、成形性あるいは軽量化、薄肉化が要求される用途
に適している。Al−Mg−Si系合金板材は、通常、
均質化処理後、熱間圧延し、続いて中間焼鈍した後、必
要に応じて冷間圧延を施して所定厚の板材とし、これに
溶体化焼入れを施し、さらにその後必要に応じてスキン
パス、冷間圧延、ストレッチ等を施して製造される。
2. Description of the Related Art A 6000 (Al-Mg-Si) aluminum alloy sheet is relatively excellent in corrosion resistance and formability at room temperature, and has high strength by artificial aging. It is suitable for applications requiring thinning. Al-Mg-Si based alloy sheet materials are usually
After the homogenization treatment, hot rolling is performed, followed by intermediate annealing, and then, if necessary, cold rolling is performed to obtain a sheet having a predetermined thickness, which is then subjected to solution quenching, and then, if necessary, a skin pass and a cold pass. It is manufactured by performing rolling, stretching and the like.

【0003】ところが、Al−Mg−Si系合金板材に
対し成形加工を行ったとき、特開平7−228956号
公報又は特開平8−232052号公報に記載されてい
るように、板表面にリジングマークと呼ばれる表面荒れ
が発生することが問題となっている。このリジングマー
クが発生すると、表面が極めて美麗であることが要求さ
れるインテリア、カメラケース、自動車用外板パネル等
の用途には外観不良として使用できず、また、リジング
マークは塗装を行った場合特に目立つようになるため、
成形加工後気付かれないまま塗装工程に進み、塗装後に
初めて認識されることもある。つまり製品になって初め
て現れることがあるという困った特性を持っている。
However, when a forming process is performed on an Al-Mg-Si alloy sheet material, a ridging mark is formed on the surface of the sheet as described in JP-A-7-228956 or JP-A-8-23252. The problem is that surface roughness called "surface roughness" occurs. When this ridging mark is generated, it cannot be used as a poor appearance for applications such as interiors, camera cases, automobile outer panel panels etc. where the surface is required to be extremely beautiful. To be particularly noticeable,
After the molding process, it proceeds to the painting process without being noticed, and may be recognized for the first time after painting. In other words, it has the troublesome characteristic that it sometimes appears only when it is a product.

【0004】成形加工時に板表面に発生するリジングマ
ーク等による表面性状の劣化を防止するためには、製品
形状を変更し成形加工をより緩い条件で行うことが必要
となるが、製品形状の変更は一般に成形加工条件のきび
しい部位の曲率半径を小さくすることとなり、これでは
所期製品形状を実現することができない。一方、成形加
工時に表面性状の劣化が発生した場合、板表面をペーパ
ー等で研磨することにより表面性状のある程度の修正は
可能ではあるが、製造工程が増えコスト増となる。
[0004] In order to prevent deterioration of the surface properties due to ridging marks or the like generated on the plate surface during the forming process, it is necessary to change the product shape and perform the forming process under milder conditions. In general, the radius of curvature of a portion where the forming conditions are severe is reduced, and the desired product shape cannot be realized with this. On the other hand, if the surface properties are deteriorated during molding, the surface properties can be corrected to some extent by polishing the plate surface with paper or the like, but the number of manufacturing steps increases and the cost increases.

【0005】[0005]

【発明が解決しようとする課題】前記特開平7−228
956号公報及び特開平8−232052号公報では、
いずれも熱間圧延温度を低めに設定し、同時にその他の
各工程の処理条件も厳密に制御し、微細かつ結晶学的方
位がランダムな結晶粒を生じさせることにより、リジン
グマークの発生を防止している。しかし、特開平7−2
28956号公報ではリジングマークが発生しなかった
とされるプレス加工の変形量の開示がなく、特開平8−
232052号公報ではプレス加工のシミュレーション
として高々2%の引張変形が行われたに過ぎない(つま
り、高々2%の引張変形に相当する成形加工により発生
するリジングマークを防止することが意図されているに
過ぎない)。
SUMMARY OF THE INVENTION The above-mentioned JP-A-7-228
In Japanese Unexamined Patent Publication No. 956 and Japanese Unexamined Patent Publication No. Hei 8-23252,
In each case, the hot rolling temperature is set lower, and at the same time, the processing conditions of each of the other steps are strictly controlled, and fine and crystallographic orientations are generated at random to prevent the generation of ridging marks. ing. However, JP-A-7-2
Japanese Patent Application Laid-Open No. 8-9556 does not disclose the amount of deformation of press working which is considered to have no ridging mark.
Japanese Patent No. 232052 discloses a simulation of press working in which only 2% of tensile deformation is performed (that is, it is intended to prevent ridging marks generated by forming processing corresponding to at most 2% of tensile deformation). Only).

【0006】本発明は、意匠性に優れる成形加工品に対
する需要の高まり、及び成形加工条件が今まで以上にき
びしい方向に向かいつつある状況に鑑み、よりきびしい
加工条件下でリジングマークさらにはオレンジピール等
の発生による表面性状劣化が生じない、成形加工用Al
−Mg−Si系アルミニウム合金板材を提供することを
目的とする。
[0006] In view of the growing demand for molded products having excellent design properties and the situation in which molding processing conditions are going to be more severe than ever, the present invention provides a ridging mark and orange peel under more severe processing conditions. Al for molding without deterioration of surface properties due to generation of
An object is to provide a Mg-Si-based aluminum alloy sheet.

【0007】[0007]

【課題を解決するための手段】本発明に係る成形加工用
Al−Mg−Si系アルミニウム合金板材は、Si:
0.2〜1.8%、Mg:0.2〜1.6%を含有する
Al−Mg−Si系アルミニウム合金板材であり、キュ
ーブ方位の集積度が板表層部で2〜5、かつ板厚1/4
部位で7以下、好ましくは板表層部で2〜4、かつ板厚
1/4部位で6以下であることを特徴とする。
The Al-Mg-Si-based aluminum alloy sheet for forming according to the present invention comprises Si:
An Al-Mg-Si-based aluminum alloy sheet material containing 0.2 to 1.8% and Mg: 0.2 to 1.6%. 1/4 thickness
7 or less at the portion, preferably 2 to 4 at the plate surface portion, and 6 or less at the 1/4 thickness portion.

【0008】キューブ方位とは{100}〈100〉方
位を意味し、圧延集合組織が形成された圧延板を再結晶
させたときに形成される。アルミニウム合金では、キュ
ーブ方位を有する再結晶粒は板面内にランダムに配置す
るのではなく、圧延方向に並んで配置しやすい。これら
は圧延材だけでなく押出材にも共通にみられる現象であ
る。本発明者らは、このようなアルミニウム合金板材を
成形加工した場合、キューブ方位を有する再結晶粒が圧
延方向に並んだ領域と、それが圧延方向に並んでいない
他領域とは変形量及び変形する方位が異なるため、成形
加工後の板表面では、キューブ方位を有する再結晶粒が
圧延方向に並んだ領域が筋模様として観察されやすいこ
と、特にこのような領域が圧延方向に長くかつ多数存在
した場合、成形加工後の板表面には圧延方向に顕著な筋
模様が観察されるようになることを見いだした。これが
リジングマークである。
[0008] The cube orientation means the {100} <100> orientation, and is formed when a rolled sheet having a rolled texture is recrystallized. In an aluminum alloy, the recrystallized grains having the cube orientation are not arranged randomly in the plate surface, but are easily arranged side by side in the rolling direction. These are phenomena common to not only rolled materials but also extruded materials. The present inventors have found that, when such an aluminum alloy sheet material is formed, the region where the recrystallized grains having the cube orientation are arranged in the rolling direction and the other regions where the recrystallized grains are not arranged in the rolling direction are deformed and deformed. Due to the different orientations, regions where recrystallized grains having a cube orientation are aligned in the rolling direction are easily observed as streaks on the plate surface after forming, and particularly such regions are long and numerous in the rolling direction. In this case, it was found that a remarkable streak pattern was observed in the rolling direction on the plate surface after the forming process. This is the ridging mark.

【0009】本発明者らはこのような知見をもとに、キ
ューブ方位の集積度を低くすれば、成形加工時に板表面
に発生するリジングマークが改善されることに想到し
た。すなわちキューブ方位の集積度が低くなれば、圧延
方向に並ぶキューブ方位の再結晶粒の列は分断され、個
々の再結晶粒の列の長さは短くなる。また、キューブ方
位の再結晶粒からなる列も減る。これにより、成形加工
時に発生する筋模様の長さは短く、かつ筋模様の数も減
り、リジングマークの程度は低くなり、ひいては肉眼で
はリジングマークを観察できなくなる。また、リジング
マークの発生には、板表層部におけるキューブ方位の集
積度だけでなく、板内部におけるキューブ方位の集積度
が影響し、しかも、板表層部と板内部ではキューブ方位
の集積度が異なることも多く(特に中間焼鈍を省略した
場合などは顕著)、従って、板表層部と板内部(特に板
厚1/4部位)のそれぞれにおいてキューブ方位の集積
度を低くする必要があることも分かった。
[0009] Based on such knowledge, the present inventors have conceived that if the degree of integration of the cube orientation is reduced, the ridging marks generated on the plate surface during the forming process can be improved. In other words, if the degree of integration of the cube orientation decreases, the row of the recrystallized grains having the cube orientation arranged in the rolling direction is divided, and the length of the row of the individual recrystallized grains decreases. In addition, the number of rows of recrystallized grains in the cube orientation is reduced. As a result, the length of the streaks generated during the forming process is short, and the number of the streaks is also reduced, the degree of the ridging mark is reduced, and the ridging mark cannot be observed with the naked eye. In addition, the occurrence of the ridging mark is affected not only by the degree of integration of the cube orientation in the surface layer of the plate, but also by the degree of integration of the cube orientation in the interior of the plate. In many cases (especially when the intermediate annealing is omitted), it is understood that it is necessary to reduce the degree of integration of the cube orientation in each of the surface layer portion and the inside of the plate (particularly, a 1/4 thickness portion). Was.

【0010】Si:0.2〜1.8%、Mg:0.2〜
1.6%を含有するAl−Mg−Si系アルミニウム合
金板材において、成形加工後の板表面においてリジング
マーク発生を防止するには、キューブ方位の集積度が板
表層部で5以下、かつ板厚1/4部位で7以下とするこ
とが必要となる。キューブ方位の集積度が板表層部で5
又は板厚1/4部位で7を超えると、成形加工時に板表
面に顕著なリジングマークが発生する。さらに平面歪状
態、等2軸引張状態等のよりきびしい成形加工条件下に
おいても、リジングマークの発生を防止するには、キュ
ーブ方位の集積度が板表層部で4以下、かつ板厚1/4
部位で6以下とすることが望ましい。
Si: 0.2-1.8%, Mg: 0.2-
In an Al-Mg-Si-based aluminum alloy sheet material containing 1.6%, in order to prevent the occurrence of ridging marks on the sheet surface after forming, the degree of integration of cube orientation is 5 or less at the sheet surface portion and the sheet thickness. It is necessary to set it to 7 or less at a 4 site. The degree of integration of cube orientation is 5 at the plate surface
Or, when the thickness exceeds 7 at a 厚 portion of the plate thickness, a remarkable ridging mark is generated on the plate surface during molding. Furthermore, in order to prevent the occurrence of ridging marks even under more severe forming conditions such as a plane strain state and an equibiaxial tension state, the degree of integration of cube orientation is 4 or less at the surface layer of the plate and the plate thickness is 1/4.
It is desirable that the number be 6 or less at the site.

【0011】このように、リジングマークを低減するた
めには、キューブ方位の集積度を低くすることが望まし
い。ところが、キューブ方位の集積度が低くなると、圧
延方向に曲げ加工(曲げ線が圧延方向と直角方向)を行
った場合に、板表面にクラック等の割れが生じやすくな
ることが分かった。これは、キューブ方位の集積度が低
くなると、圧延方向に並ぶキューブ方位の再結晶粒の列
は分断され、個々の再結晶粒の列の長さが短くなり、特
にSi:0.2〜1.8%、Mg:0.2〜1.6%を
含有するAl−Mg−Si系アルミニウム合金板材にお
いて、キューブ方位の集積度が2未満になると分断部位
が圧延方向と直角に並びやすくなり、圧延方向に曲げ加
工を行ったとき、このような分断部位に変形が集中しや
すく、板表面に割れが生じやすくなるためである。
As described above, in order to reduce ridging marks, it is desirable to reduce the degree of integration of cube orientations. However, it was found that when the degree of integration of the cube orientation was low, cracks such as cracks were likely to occur on the plate surface when bending was performed in the rolling direction (the bending line was perpendicular to the rolling direction). This is because when the degree of integration of the cube orientation decreases, the row of the recrystallized grains having the cube orientation arranged in the rolling direction is divided, and the length of the row of the individual recrystallized grains becomes shorter. In an Al-Mg-Si-based aluminum alloy sheet material containing 0.8% and Mg: 0.2 to 1.6%, if the degree of integration of the cube orientation is less than 2, the divided parts are likely to be arranged at right angles to the rolling direction, This is because when bending is performed in the rolling direction, the deformation tends to concentrate on such a divided portion, and cracks easily occur on the plate surface.

【0012】曲げ加工時の割れの生じやすさに及ぼすキ
ューブ方位の集積度の影響は、板表層部に比べて板内部
では小さいため、この点に関してはキューブ方位の集積
度は板表層部のみを規定すればよい。すなわち、キュー
ブ方位は板表層部において2以上とする。従って、Al
−Mg−Si系アルミニウム合金板材において、リジン
グマークの発生を防止し、かつ曲げ加工時の割れを防止
するには、キューブ方位の集積度を板表層部で2〜5
で、かつ板厚1/4部位で7以下、望ましくはキューブ
方位の集積度を板表層部で2〜4で、かつ板厚1/4部
位で6以下とする。
The influence of the degree of accumulation of cube orientation on the likelihood of cracking during bending is smaller in the interior of the sheet than in the surface layer of the sheet. It may be specified. That is, the cube orientation is 2 or more in the plate surface layer. Therefore, Al
In order to prevent the occurrence of ridging marks and to prevent cracking during bending in an Mg-Si based aluminum alloy sheet, the degree of integration of the cube orientation should be 2 to 5 at the sheet surface layer.
And at a plate thickness portion of 7 or less, desirably, the degree of integration of cube orientation is 2 to 4 at the plate surface layer portion and 6 or less at a plate thickness of 1/4 portion.

【0013】なお、キューブ方位について、例えば特開
平5−263203号公報に、再結晶によりキューブ方
位が強く形成されたアルミニウム合金板材は、異方性が
強く出て深絞り性が低下することが記載されている。し
かし、キューブ方位の集積度がリジングマークの発生に
影響していること、しかも板表層部と板内部の双方のキ
ューブ方位の集積度を所定値以下に規定することでリジ
ングマークの発生を防止できること、しかし、余りキュ
ーブ方位の集積度を低下させると曲げ加工時の割れが発
生しやすくなること等、本発明者らの知見を示唆する開
示は全くない。
Regarding the cube orientation, for example, Japanese Patent Application Laid-Open No. 5-263203 discloses that an aluminum alloy sheet material having a strong cube orientation by recrystallization has strong anisotropy and lowers deep drawability. Have been. However, that the degree of accumulation of cube orientations affects the occurrence of ridging marks, and that the occurrence of ridging marks can be prevented by defining the degree of accumulation of cube orientations on both the surface layer and the inside of the plate to a predetermined value or less. However, there is no disclosure suggesting the findings of the present inventors, such as that if the degree of integration of the cube orientation is excessively reduced, cracks are likely to occur during bending.

【0014】また、オレンジピールの発生をも防止する
ためには板表面の結晶粒径を45μm以下とすることが
望ましい。以上により、成形加工時にリジングマークや
割れ、さらにはオレンジピール等が生じない板表面性状
に優れる成形加工用アルミニウム合金板材を得ることが
できる。
Further, in order to prevent the occurrence of orange peel, the crystal grain size on the plate surface is desirably 45 μm or less. As described above, it is possible to obtain an aluminum alloy sheet material for forming work which is excellent in sheet surface properties and does not cause ridging marks, cracks, and orange peel during forming.

【0015】[0015]

【発明の実施の形態】成分組成の面でいえば、本発明
は、Si:0.2〜1.8%、Mg:0.2〜1.6%
を含有し、残部Alと不可避不純物からなるアルミニウ
ム合金のほか、必要に応じて、さらにZn:0.00
5〜1.0%、Cu:0.005〜1.0%、Ti:
0.001〜0.1%、B:1〜300ppm、B
e:0.1〜100ppm、Mn:1.0%以下、C
r:0.3%以下、Zr:0.15%以下、V:0.1
5%以下のうちから1種又は2種以上を合計で0.01
〜1.5%、のいずれか又はこれらを組み合わせて含有
するアルミニウム合金など、Si:0.2〜1.8%、
Mg:0.2〜1.6%を含有するAl−Mg−Si系
アルミニウム合金全てに適用し得る。Al−Mg−Si
系合金の組成を上記のように規定した理由は下記のとお
りである。
BEST MODE FOR CARRYING OUT THE INVENTION In terms of the composition of components, the present invention relates to the following: Si: 0.2 to 1.8%, Mg: 0.2 to 1.6%
, An aluminum alloy containing the balance of Al and unavoidable impurities, and if necessary, further Zn: 0.00
5 to 1.0%, Cu: 0.005 to 1.0%, Ti:
0.001-0.1%, B: 1-300 ppm, B
e: 0.1 to 100 ppm, Mn: 1.0% or less, C
r: 0.3% or less, Zr: 0.15% or less, V: 0.1
One or more of 5% or less of a total of 0.01
Si: 0.2 to 1.8%, such as an aluminum alloy containing any one or a combination thereof.
Mg: Applicable to all Al-Mg-Si-based aluminum alloys containing 0.2-1.6%. Al-Mg-Si
The reasons for defining the composition of the system alloy as described above are as follows.

【0016】Mg:MgはSiとともに強度を付与する
元素であるが、0.2%未満では人工時効で十分な強度
が得られず、一方、1.6%を越えると成形性が低下す
る。従って、Mg含有量は0.2〜1.6%の範囲とす
る。 Si:SiはMgとともに強度を付与する元素である
が、0.2%未満では人工時効で十分な強度が得られ
ず、一方、1.8%を越えると伸びが低くなり、成形性
が低下する。従って、Si含有量は0.2〜1.8%の
範囲とする。なお、人工時効で高い強度を得るには、M
gとSiとの含有量の割合を、Si/Mg≧0.65と
することが望ましい。
Mg: Mg is an element that imparts strength together with Si, but if it is less than 0.2%, sufficient strength cannot be obtained by artificial aging, whereas if it exceeds 1.6%, formability decreases. Therefore, the Mg content is in the range of 0.2 to 1.6%. Si: Si is an element that imparts strength together with Mg, but if it is less than 0.2%, sufficient strength cannot be obtained by artificial aging, while if it exceeds 1.8%, elongation decreases and moldability decreases. I do. Therefore, the Si content is in the range of 0.2 to 1.8%. In order to obtain high strength by artificial aging, M
It is desirable that the ratio of the content of g and Si be Si / Mg ≧ 0.65.

【0017】Zn:Znは人工時効時においてMgZn
2を微細かつ高密度に析出させ高い強度を実現させる。
ただし、0.005%未満では十分な強度が得られず、
一方1.0%を越えると耐食性が顕著に低下するため、
含有量は0.005〜1.0%の範囲とする。 Cu:Cuは人工時効時にMg2Siを微細にかつ高密
度に析出させ、高い強度を実現させる。ただし、0.0
05%未満では効果がなく、一方、1.0%を越えると
耐食性及び溶接性が顕著に低下するため、含有量は0.
005〜1.0%の範囲とする。 Ti:Tiは鋳塊の結晶粒を微細化し、成形性を向上さ
せるために添加する元素であるが、0.001%未満で
は効果がなく、一方、0.1%を越えて添加されると粗
大な晶出物を形成し、成形性を低下させる。このため、
Ti含有量は0.001〜0.1%の範囲とする。
Zn: Zn is MgZn during artificial aging.
2 is finely and densely deposited to achieve high strength.
However, if less than 0.005%, sufficient strength cannot be obtained,
On the other hand, if it exceeds 1.0%, the corrosion resistance is significantly reduced,
The content is in the range of 0.005 to 1.0%. Cu: Cu precipitates Mg 2 Si finely and at high density during artificial aging, and realizes high strength. However, 0.0
If it is less than 05%, there is no effect, while if it exceeds 1.0%, the corrosion resistance and weldability are remarkably reduced.
005 to 1.0%. Ti: Ti is an element added for refining the crystal grains of the ingot and improving formability. However, if it is less than 0.001%, there is no effect, and if it exceeds 0.1%, it is not effective. It forms coarse crystals and lowers moldability. For this reason,
The Ti content is in the range of 0.001 to 0.1%.

【0018】B:BはTiと同様に鋳塊の結晶粒を微細
化し、成形性を向上させるために添加する合金である
が、1ppm未満の添加では効果がなく、300ppm
を越えて含有されると粗大な晶出物を形成し、成形性を
低下させる。このため、B含有量は1〜300ppmの
範囲とする。 Be:Beは空気中におけるアルミニウム溶湯の再酸化
を防止するため、必要があれば0.1ppm以上含有さ
せる。しかし、100ppmを越えると材料硬度が増大
し成形性が低下するため、Be含有量は0.1〜100
ppmの範囲とする。
B: Similar to Ti, B is an alloy added for refining the crystal grains of the ingot and improving formability. However, if less than 1 ppm is added, there is no effect.
If contained in excess of the above, a coarse crystallized product is formed and the moldability is reduced. Therefore, the B content is in the range of 1 to 300 ppm. Be: Be is contained in an amount of 0.1 ppm or more, if necessary, to prevent reoxidation of the aluminum melt in the air. However, if the content exceeds 100 ppm, the hardness of the material increases and the formability decreases.
ppm range.

【0019】Mn、Cr、Zr、V:これらの成分は均
質化熱処理時及びその後の熱間圧延時にAl20Cu2
3、Al12Mg2Cr、Al3Zr、Al2Mg3Zn3
の分散粒子を生成する。これらの分散粒子は再結晶後の
粒界移動を妨げる効果があるため、微細な結晶粒を得る
ことができる。しかし、過剰な添加は溶解鋳造時に粗大
な不溶性金属間化合物を生成しやすく、成形加工時の破
壊の起点となり、成形性を低下させる原因となる。ま
た、Zrの過剰添加はミクロ組織を針長状にしやすく、
特定方向の破壊靱性及び疲労特性さらには成形性を劣化
させる。このため、Mn、Cr、Zr、Vそれぞれの添
加量は、1.0%、0.30%、0.15%、0.15
%以下とする。
Mn, Cr, Zr, V: These components are Al 20 Cu 2 M during the homogenizing heat treatment and during the subsequent hot rolling.
Dispersed particles such as n 3 , Al 12 Mg 2 Cr, Al 3 Zr, and Al 2 Mg 3 Zn 3 are generated. Since these dispersed particles have an effect of hindering the movement of the grain boundary after recrystallization, fine crystal grains can be obtained. However, excessive addition tends to generate a coarse insoluble intermetallic compound at the time of melting casting, becomes a starting point of destruction at the time of forming, and causes a reduction in formability. Also, excessive addition of Zr tends to make the microstructure needle-like,
Fracture toughness and fatigue properties in a specific direction, as well as formability are deteriorated. Therefore, the addition amounts of Mn, Cr, Zr, and V are 1.0%, 0.30%, 0.15%, and 0.15%, respectively.
% Or less.

【0020】Fe:不純物として含まれるFeは、Al
7Cu2Fe、Al12(Fe,Mn)3Cu2、(Fe,M
n)Al6等の晶出物を生成する。これらの晶出物は破
壊靱性及び疲労特性に対して有害であり、Fe含有量が
0.5%を越えると顕著に破壊靱性、疲労特性及び成形
性が低下するため、Fe含有量は0.5%以下とする。
なお、晶出物としては、Fe系以外のAl2Cu2Mg、
Al2Cu2、Mg2Si等の可溶のものがあり、これら
は溶体化処理及び焼入れで十分にAlマトリックス中に
再固溶させることが望ましい。 その他の不純物:Niは0.05%以下に制限する。
Fe: Fe contained as impurities is Al
7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 , (Fe, M
n) Produce crystallized substances such as Al 6 . These crystals are harmful to the fracture toughness and the fatigue properties. If the Fe content exceeds 0.5%, the fracture toughness, the fatigue properties and the formability are remarkably reduced. 5% or less.
In addition, as a crystallized substance, Al 2 Cu 2 Mg other than Fe-based,
There are soluble ones such as Al 2 Cu 2 and Mg 2 Si, and it is desirable that these are sufficiently re-dissolved in an Al matrix by solution treatment and quenching. Other impurities: Ni is limited to 0.05% or less.

【0021】次に、本発明に係る成形加工用Al−Mg
−Si系アルミニウム合金板材の製造方法を例示する
と、まず常法に則り溶解鋳造により鋳塊にした後、均質
化熱処理し、熱間圧延後、必要に応じて中間焼鈍した
後、冷間圧延し、最終的に溶体化処理及び焼入れを実施
し、製品板とする。以下、例示したこの製造方法の各工
程について、その好ましい条件とともにもう少し詳細に
説明する。
Next, the Al-Mg for forming according to the present invention is used.
As an example of a method for producing a Si-based aluminum alloy sheet material, first, an ingot is formed by melting and casting in accordance with a conventional method, then homogenized and heat-treated, hot-rolled, and if necessary, subjected to intermediate annealing, and then cold-rolled. Finally, solution treatment and quenching are performed to obtain a product plate. Hereinafter, each step of the exemplified manufacturing method will be described in more detail together with preferable conditions.

【0022】熱間圧延 粗熱間圧延及び仕上げ熱間圧延を通し、圧延開始温度を
均熱温度以下(例えば470〜540℃)、圧延終了温
度を350〜450℃と設定し、熱間圧延の最終パス時
の歪速度を9000〜20000%/秒に設定する。こ
れにより熱延後の板材の表層部から少なくとも板厚1/
4部位までの金属学的組織を微細な再結晶粒として、最
終製品板においてキューブ方位を有する再結晶粒を圧延
方向に並ばせる要因となる繊維状組織をなくすことがで
き、これで、最終製品板において、成形時にリジングマ
ークの発生を防止することができる。また、最終製品板
において、キューブ方位の再結晶粒の列が分断され、個
々の結晶粒の列が短くなり、分断部位が圧延方向と直角
方向に一列に並ぶほどにはキューブ方位は低減されな
い。これにより、圧延方向に曲げ加工を行った際に板表
面(板が圧延方向に伸びるように変形した箇所)にクラ
ックが発生するのを抑制でき、圧延方向への曲げ加工性
を向上できる。つまり、最終製品板においてキューブ方
位の集積度が板表層部で2〜5、かつ板厚1/4部位で
7以下、望ましくはそれぞれ2〜4、6以下として、リ
ジングマークの発生を防止し、曲げ加工性を向上させる
ことができる。ここで、歪速度の定義は、歪速度=最終
ロールによる圧延率(%)÷最終ロールを板が通過する
時間(秒)とする。
Hot Rolling Through rough hot rolling and finish hot rolling, the rolling start temperature is set to be equal to or lower than the soaking temperature (for example, 470 to 540 ° C.), and the rolling end temperature is set to 350 to 450 ° C. The distortion speed at the time of the final pass is set to 9000 to 20000% / sec. As a result, at least the sheet thickness 1 / from the surface layer of the sheet material after hot rolling.
The metallographic structure of up to four sites can be made into fine recrystallized grains to eliminate the fibrous structure that causes the recrystallized grains having the cube orientation to be aligned in the rolling direction in the final product sheet. In the plate, the occurrence of ridging marks during molding can be prevented. Also, in the final product sheet, the rows of recrystallized grains in the cube orientation are divided, the rows of individual crystal grains are shortened, and the cube orientation is not reduced to such an extent that the divided portions are aligned in a direction perpendicular to the rolling direction. Thereby, it is possible to suppress the occurrence of cracks on the plate surface (where the plate is deformed so as to extend in the rolling direction) when the bending process is performed in the rolling direction, and it is possible to improve bending workability in the rolling direction. In other words, in the final product plate, the degree of integration of the cube orientation is 2 to 5 at the plate surface layer portion and 7 or less at the 1/4 thickness portion, preferably 2 to 4, 6 or less, respectively, to prevent the occurrence of ridging marks, Bending workability can be improved. Here, the strain rate is defined as: strain rate = rolling rate (%) by final roll / time (second) that the sheet passes through the final roll.

【0023】中間焼鈍 熱間圧延の開始部に当たるコイルの先端部位近傍と熱間
圧延の終了部に当たるコイルの後端部位近傍のミクロ組
織は、熱間圧延が安定して行われる定状部位(コイル長
手方向の中央部位)のミクロ組織とは異なる場合が多
い。製品板をコイルのどの部位から採取しても安定的に
キューブ方位の集積度を、板表層部で2〜5、かつ板厚
1/4部位で7以下であることを実現するには、必要に
応じて中間焼鈍を行うとよい。また、中間焼鈍は、キュ
ーブ方位の再結晶粒の列を細分化し、かつ数を減少させ
るためにも効果があり、特にリジングマークの低減を優
先させる場合には行う。好ましい中間焼鈍条件は、加熱
速度:400℃までを30℃/分〜500℃/秒、40
0〜500℃を10〜100℃/分、保持条件:500
〜580℃×10秒〜10分、冷却速度:保持温度から
50℃までを30℃/分以上である。なお、中間焼鈍を
行う場合は、熱間圧延の圧延終了温度を先に熱間圧延
において記載した温度範囲より低く設定できる(例えば
150℃〜450℃)。また、熱間圧延後の最終パス時
の歪速度を低く設定できる(例えば7000〜2000
0%/秒)。
Intermediate Annealing The microstructure near the leading end of the coil at the start of hot rolling and near the trailing end of the coil at the end of hot rolling is a fixed part (coil) where hot rolling is stably performed. (Central portion in the longitudinal direction) in many cases. It is necessary to stably maintain the degree of integration of the cube orientation of 2 to 5 at the surface of the plate and 7 or less at the 1/4 plate thickness, regardless of where the product plate is collected from the coil. Intermediate annealing may be performed according to. Intermediate annealing is also effective for subdividing the row of recrystallized grains in the cube orientation and reducing the number, especially when priority is given to reducing ridging marks. Preferred intermediate annealing conditions are as follows: heating rate: up to 400 ° C., 30 ° C./min to 500 ° C./sec, 40 ° C.
0 to 500 ° C. at 10 to 100 ° C./min, holding condition: 500
5580 ° C. × 10 seconds to 10 minutes, cooling rate: 30 ° C./min or more from the holding temperature to 50 ° C. In the case of performing the intermediate annealing, the rolling end temperature of the hot rolling can be set lower than the temperature range previously described in the hot rolling (for example, 150 ° C. to 450 ° C.). Further, the strain rate at the final pass after hot rolling can be set low (for example, 7000 to 2000).
0% / sec).

【0024】冷間圧延 ミクロ結晶粒(通常の結晶粒)の粒径を45μm以下と
するため、好ましくは冷間圧延率は50%以上とする。
なお、上記の中間焼鈍を行った場合は、固溶度が高く冷
間圧延での加工硬化度が高くなり、最終溶体化処理での
ミクロ結晶粒は小さくなりやすい。従って、冷延率は3
0%以上で十分である。 最終溶体化処理 好ましい最終溶体化処理条件は、400℃までの加熱速
度は30℃/分以上、400〜530℃を10℃/分以
上、保持条件:530〜580℃×10秒〜10分、冷
却速度:保持温度から30℃までを30℃/分以上であ
る。
Cold Rolling In order to reduce the grain size of the micro crystal grains (normal crystal grains) to 45 μm or less, preferably, the cold rolling rate is 50% or more.
When the above-described intermediate annealing is performed, the solid solubility is high, the work hardening degree in cold rolling is high, and the micro crystal grains in the final solution treatment are likely to be small. Therefore, the cold rolling rate is 3
0% or more is sufficient. Final solution treatment The preferred final solution treatment conditions are as follows: heating rate up to 400 ° C is 30 ° C / min or more, 400 to 530 ° C is 10 ° C / min or more, holding condition: 530 to 580 ° C × 10 seconds to 10 minutes, Cooling rate: 30 ° C./min or more from the holding temperature to 30 ° C.

【0025】以上は、Al−Mg−Si系合金を熱間圧
延後、必要に応じて中間焼鈍した後、冷間圧延し、最終
的に溶体化処理及び焼入れを実施する場合を例にとっ
て、その好ましい条件等について説明したが、本発明は
この方法又は条件に限定されることなく、種々の方法で
製造されたAl−Mg−Si系アルミニウム合金板材一
般に等しく適用される。要するに、所定量のMg及びS
iを含むAl−Mg−Si系アルミニウム合金板材にお
いて、キューブ方位の集積度が板表層部で2〜5、かつ
板厚1/4部位で7以下であればよい。
The above is an example of the case where the Al—Mg—Si alloy is hot-rolled, intermediately-annealed if necessary, cold-rolled, and finally subjected to solution treatment and quenching. Although the preferred conditions and the like have been described, the present invention is not limited to this method or conditions, and is equally applicable to Al-Mg-Si-based aluminum alloy sheets generally manufactured by various methods. In short, a certain amount of Mg and S
In the Al-Mg-Si-based aluminum alloy sheet containing i, the degree of integration of the cube orientation may be 2 to 5 at the surface of the sheet and 7 or less at 1/4 thickness.

【0026】[0026]

【実施例】以下、本発明の実施例を説明する。 (実施例1)Mg0.5%、Si1.3%、Mn0.0
5%、Fe0.16%、Cr0.25%、Ni0.00
2%、Zn0.05%、Cu0.1%、Ti0.06
%、B:10ppm、Be:30ppmを含み、残部A
l及び不純物からなるアルミニウム合金を溶解鋳造し、
460mm厚の鋳塊とし、次に540℃×4hrの均熱
処理を行った後、表1に示す種々の条件で熱間圧延し、
2.0mm厚及び2.5mm厚の板とした。続いて、中
間焼鈍することなく冷間圧延し、1.2mm厚の板とし
た。この板を550℃の溶体化温度に加熱して20秒間
保持した後、水焼入れした(150℃までの冷却速度は
約50℃/s)。その後、室温で3カ月間放置した後、
板幅の中央部からサンプリングを行い、材料特性を評価
した。その結果を表1にあわせて示す。
Embodiments of the present invention will be described below. (Example 1) Mg 0.5%, Si 1.3%, Mn 0.0
5%, Fe 0.16%, Cr 0.25%, Ni 0.00
2%, Zn 0.05%, Cu 0.1%, Ti 0.06
%, B: 10 ppm, Be: 30 ppm, the balance A
melting and casting an aluminum alloy consisting of
After forming a 460 mm thick ingot, and then performing a soaking heat treatment at 540 ° C. for 4 hours, hot rolling was performed under various conditions shown in Table 1.
The plates were 2.0 mm and 2.5 mm thick. Subsequently, cold rolling was performed without intermediate annealing to obtain a 1.2 mm thick plate. The plate was heated to a solution temperature of 550 ° C., held for 20 seconds, and then water-quenched (cooling rate to 150 ° C. is about 50 ° C./s). Then, after leaving at room temperature for 3 months,
Sampling was performed from the center of the plate width to evaluate the material properties. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】なお、表1の各材料特性は次のようにして
測定した。 キューブ方位の集積度 板表面と板厚1/4部位を電解研磨(Ra<0.1μ
m)により平滑にした後、X線(CoKα線)を用いて
Schulzの反射法により{111}極点図を測定
し、得られた極点図上よりキューブ方位{100}<1
10>の集積度(ランダム試料の{111}での回折強
度(=ランダム強度)に対する比)を評価した。なお、
板厚1/4部位のキューブ方位の集積度を測定する場合
は、板片面をエメリー紙(#400→#800→#12
00→#1500)→OPS研磨→ダイヤモンド砥粒に
よる研磨(6μm→1μm)で板厚の1/4まで研磨し
た後、電解研磨を実施した。
The properties of each material in Table 1 were measured as follows. The degree of integration of the cube orientation Electrolytic polishing (Ra <0.1μ)
m), the {111} pole figure was measured by the Schulz reflection method using X-rays (CoKα rays), and the cube orientation {100} <1 was obtained from the obtained pole figure.
10> (the ratio of the random sample to the diffraction intensity at {111} (= random intensity)) was evaluated. In addition,
In order to measure the degree of integration of cube orientation at a 1/4 thickness, one side of the plate is emery paper (# 400 → # 800 → # 12
00 → # 1500) → OPS polishing → Polishing by diamond abrasive grains (6 μm → 1 μm) to 研磨 of the plate thickness, and then electropolishing.

【0029】ミクロ結晶粒 板表面を約0.05〜0.1mmまで機械研磨した後、
電解エッチングし、光学顕微鏡(偏光板使用)を用いて
観察した。粒径は圧延方向でラインインターセプト法に
てL−L面を測定した。1測定ライン長は500μmで
あり、1視野当り各5本で計5視野観察した。 引張特性 JIS−Z2241に準拠し、常温大気中でJIS5号
試験片を用いて、LT方向(圧延方向に対して90゜方
向)に引張速度5mm/分にて行った。 リジングマークの評価 製品板をw200×l180mmサイズ(w200が圧
延方向に平行)に切断後、φ50.8mmの球頭ポンチ
を用いて、10mm高さまで張り出した。他の成形条件
はロックビード状態、使用油は鋼板用潤滑油、ポンチ速
度250mm/分とした。成形試験後、板表面(ポンチ
接触側とは反対側の表面)の平面歪加工領域を目視観察
し、リジングマークが発生した場合を×、リジングマー
クの判別困難な場合を○と評価した。 オレンジピールの評価 引張試験において、20%引張変形した後、板表面に梨
地模様が顕著に観察される場合を×、梨地模様が判別困
難な場合を○と評価した。
After the surface of the plate is mechanically polished to about 0.05 to 0.1 mm,
It was electrolytically etched and observed using an optical microscope (using a polarizing plate). The grain size was measured on the LL plane in the rolling direction by a line intercept method. One measurement line length was 500 μm, and a total of five visual fields were observed with five lines per visual field. Tensile properties Based on JIS-Z2241, a tensile test was performed in the LT direction (90 ° direction with respect to the rolling direction) at a tensile speed of 5 mm / min using a JIS No. 5 test piece in a normal temperature atmosphere. Evaluation of ridging mark The product plate was cut into a size of w200 × l180 mm (w200 is parallel to the rolling direction), and then extended to a height of 10 mm using a φ50.8 mm ball-head punch. The other forming conditions were a rock bead state, the oil used was a lubricating oil for steel plates, and the punch speed was 250 mm / min. After the molding test, a plane strain processing region on the plate surface (the surface opposite to the punch contact side) was visually observed, and a case where a ridging mark was generated was evaluated as x, and a case where it was difficult to distinguish the ridging mark was evaluated as ○. Evaluation of Orange Peel In the tensile test, after 20% tensile deformation, a case where a matte pattern was remarkably observed on the plate surface was evaluated as x, and a case where the matte pattern was difficult to discriminate was evaluated as ○.

【0030】表1より分かるように、キューブ方位の集
積度が本発明に規定する範囲内であるNo.1〜No.
3、No.7〜No.8はリジングマークが発生せず、
特にミクロ結晶粒径が45μm以下のNo.1〜No.
3はオレンジピールの発生もない。一方、キューブ方位
の集積度が本発明に規定する範囲外のNo.4〜No.
6はリジングマークが発生し、成形加工後の表面性状の
程度は低いことが分かる。
As can be seen from Table 1, the degree of integration of the cube orientation is within the range specified in the present invention. 1 to No.
3, No. 7-No. 8 has no ridging mark,
In particular, No. 4 having a microcrystal grain size of 45 μm or less. 1 to No.
3 has no orange peel. On the other hand, when the degree of integration of the cube orientation is out of the range specified in the present invention, No. 4-No.
In No. 6, ridging marks are generated, and it can be seen that the degree of surface texture after the forming is low.

【0031】(実施例2)実施例1と同じアルミニウム
合金を溶解鋳造し、460mm厚の鋳塊とし、次に54
0℃×4hrの均熱処理を行った後、表2に示す種々の
条件で熱間圧延し、2.5mm厚の板とした。続いて、
表2に示す加熱速度で昇温し520℃で20秒間保持す
る中間焼鈍を行った後、室温まで50℃/分で冷却し、
冷間圧延して1mm厚の板とした。この板を550℃の
溶体化温度に加熱して20秒間保持した後、水焼入れし
た(150℃までの冷却速度は約50℃/s)。その
後、室温で3カ月間放置した後、板幅の中央部からサン
プリングを行い、材料特性を評価した。その結果を表2
にあわせて示す。なお、曲げ性の評価は次のように行っ
た。 曲げ性の評価 JIS−Z−2204の4号試験片形状に切り出した試
験片(W25×l200mm、120mmが圧延方向)
を用い、JIS−Z−2248に規定される方法で曲げ
試験(押し曲げ法、曲げ内側の半径は板厚の半分で、1
80度曲げ)を行った。曲げ試験後に曲げ曲面に割れが
観察される場合を×、割れが観察されない場合を○と評
価した。
Example 2 The same aluminum alloy as in Example 1 was melt-cast to form a 460 mm thick ingot.
After performing soaking at 0 ° C. × 4 hr, hot rolling was performed under various conditions shown in Table 2 to obtain a 2.5 mm thick plate. continue,
After performing intermediate annealing at a heating rate shown in Table 2 and holding at 520 ° C. for 20 seconds, cooling was performed to room temperature at 50 ° C./min.
It was cold rolled into a 1 mm thick plate. The plate was heated to a solution temperature of 550 ° C., held for 20 seconds, and then water-quenched (cooling rate to 150 ° C. is about 50 ° C./s). Then, after leaving at room temperature for 3 months, sampling was performed from the center of the plate width to evaluate the material properties. Table 2 shows the results.
Shown along with. The evaluation of the bendability was performed as follows. Evaluation of bendability Specimen cut into a JIS-Z-2204 No. 4 test piece shape (W25 x 1200 mm, 120 mm is in the rolling direction)
And a bending test according to the method specified in JIS-Z-2248.
(80 degree bending). The case where cracks were observed on the bending surface after the bending test was evaluated as x, and the case where no cracks were observed was evaluated as ○.

【0032】[0032]

【表2】 [Table 2]

【0033】表2より分かるように、キューブ方位の集
積度が本発明に規定する範囲内であるNo.10〜N
o.13はリジングマーク及びオレンジピールの発生が
ない。一方、キューブ方位の集積度が本発明に規定する
範囲より高いNo.14〜No.15はリジングマーク
が発生し、成形加工後の表面性状の程度が低く、板表層
部の集積度が低いNo.16は曲げ性が劣ることが分か
る。
As can be seen from Table 2, the degree of integration of the cube orientation is within the range specified in the present invention. 10 to N
o. No. 13 has no ridging mark and no orange peel. On the other hand, when the integration degree of the cube orientation is higher than the range defined in the present invention, 14-No. In No. 15, a ridging mark was generated, the degree of surface texture after forming was low, and the degree of integration of the surface layer portion of the plate was low. 16 shows that bending property is inferior.

【0034】[0034]

【発明の効果】本発明によれば、リジングマークの発生
がなく、曲げ性に優れ、さらにはオレンジピールの発生
もない成形加工用Al−Mg−Si系アルミニウム合金
板材を得ることができる。
According to the present invention, it is possible to obtain an Al-Mg-Si-based aluminum alloy sheet material for forming which does not generate ridging marks, has excellent bendability, and does not generate orange peel.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 623 C22F 1/00 623 630 630K ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 623 C22F 1/00 623 630 630K

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Si:0.2〜1.8%(重量%、以下
同じ)、Mg:0.2〜1.6%を含有するAl−Mg
−Si系アルミニウム合金板材において、キューブ方位
の集積度が板表層部で2〜5、かつ板厚1/4部位で7
以下であることを特徴とする表面性状に優れる成形加工
用Al−Mg−Si系アルミニウム合金板材。
1. Al-Mg containing Si: 0.2 to 1.8% (% by weight, the same applies hereinafter) and Mg: 0.2 to 1.6%.
-In the Si-based aluminum alloy sheet material, the degree of integration in the cube orientation is 2 to 5 at the surface layer of the sheet and 7 at the 1/4 sheet thickness portion.
An Al-Mg-Si-based aluminum alloy sheet for forming and processing having excellent surface properties, characterized in that:
【請求項2】 Si:0.2〜1.8%、Mg:0.2
〜1.6%、Zn:0.005〜1.0%、Cu:0.
005〜1.0%、Ti:0.001〜0.1%、B:
1〜300ppm、Be:0.1〜100ppmを含有
し、さらにMn:1.0%以下、Cr:0.3%以下、
Zr:0.15%以下、V:0.15%以下のうちより
1種又は2種以上を合計で0.01〜1.5%含有し、
残部Al及び不可避不純物からなるAl−Mg−Si系
アルミニウム合金板材において、キューブ方位の集積度
が板表層部で2〜5、かつ板厚1/4部位で7以下であ
ることを特徴とする表面性状に優れる成形加工用Al−
Mg−Si系アルミニウム合金板材。
2. Si: 0.2-1.8%, Mg: 0.2
To 1.6%, Zn: 0.005 to 1.0%, Cu: 0.
005 to 1.0%, Ti: 0.001 to 0.1%, B:
1 to 300 ppm, Be: 0.1 to 100 ppm, Mn: 1.0% or less, Cr: 0.3% or less,
Zr: 0.15% or less, V: One or more of 0.15% or less contained in a total of 0.01 to 1.5%,
In an Al-Mg-Si-based aluminum alloy sheet material comprising the remaining Al and unavoidable impurities, the degree of integration of cube orientation is 2 to 5 in the surface layer portion of the plate and 7 or less in a 1/4 thickness region. Al- for molding with excellent properties
Mg-Si based aluminum alloy sheet material.
【請求項3】 キューブ方位の集積度が板表層部で2〜
4、かつ板厚1/4部位で6以下であることを特徴とす
る請求項1又は2に記載された表面性状に優れる成形加
工用Al−Mg−Si系アルミニウム合金板材。
3. The degree of integration of the cube orientation is 2 to 3 at the surface layer of the plate.
The Al-Mg-Si-based aluminum alloy sheet material for forming according to claim 1 or 2, wherein the sheet material has a surface thickness of 4 or less and a thickness of 1/4 or less.
【請求項4】 ミクロ結晶粒の粒径が45μm以下であ
ることを特徴とする請求項1〜3のいずれかに記載され
た表面性状に優れる成形加工用Al−Mg−Si系アル
ミニウム合金板材。
4. The Al-Mg-Si based aluminum alloy sheet material for forming according to claim 1, wherein the micro crystal grains have a particle size of 45 μm or less.
【請求項5】 熱間圧延後、必要に応じて中間焼鈍した
後、冷間圧延を受けたAl−Mg−Si系アルミニウム
合金板材であることを特徴とする請求項1〜4のいずれ
かに記載された表面性状に優れる成形加工用Al−Mg
−Si系アルミニウム合金板材材。
5. The Al-Mg-Si-based aluminum alloy sheet which has been subjected to hot rolling, intermediate annealing as required, and then cold rolling. Al-Mg for forming process excellent in the described surface properties
-Si-based aluminum alloy sheet material.
JP36772397A 1997-12-25 1997-12-25 Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties Expired - Lifetime JP3919315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36772397A JP3919315B2 (en) 1997-12-25 1997-12-25 Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36772397A JP3919315B2 (en) 1997-12-25 1997-12-25 Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties

Publications (2)

Publication Number Publication Date
JPH11189836A true JPH11189836A (en) 1999-07-13
JP3919315B2 JP3919315B2 (en) 2007-05-23

Family

ID=18490036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36772397A Expired - Lifetime JP3919315B2 (en) 1997-12-25 1997-12-25 Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties

Country Status (1)

Country Link
JP (1) JP3919315B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015859A1 (en) * 1998-09-10 2000-03-23 Kabushiki Kaisha Kobe Seiko Sho Al-Mg-Si ALLOY SHEET
US6221182B1 (en) * 1998-09-02 2001-04-24 Alcoa Inc. Al-Mg based alloy sheets with good press formability
JP2004292899A (en) * 2003-03-27 2004-10-21 Kobe Steel Ltd Al-Mg-Si-BASED ALLOY SHEET HAVING EXCELLENT SURFACE PROPERTY, PRODUCTION METHOD THEREFOR, AND PRODUCTION INTERMEDIATE MATERIAL THEREOF
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2006307241A (en) * 2005-04-26 2006-11-09 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN DEEP-DRAWABILITY AND MANUFACTURING METHOD THEREFOR
EP1967599A1 (en) * 2001-03-28 2008-09-10 Sumitomo Light Metal Industries, Inc. Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
WO2009123011A1 (en) * 2008-03-31 2009-10-08 株式会社神戸製鋼所 Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
CN105734366A (en) * 2016-04-27 2016-07-06 谭钰良 Aluminum foil material for automobile radiator
JP2017061709A (en) * 2015-09-23 2017-03-30 株式会社Uacj Aluminum alloy sheet excellent in ridging resistance and hem bendability and manufacturing method therefor
EP2964800B1 (en) 2013-03-07 2017-08-09 Aleris Aluminum Duffel BVBA Method of manufacturing an al-mg-si alloy rolled sheet product with excellent formability
US11731230B2 (en) 2017-10-02 2023-08-22 Sumitomo Chemical Company, Limited Method for manufacturing sputtering target and sputtering target

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221182B1 (en) * 1998-09-02 2001-04-24 Alcoa Inc. Al-Mg based alloy sheets with good press formability
US6334916B1 (en) 1998-09-10 2002-01-01 Kobe Steel Ltd. A1-Mg-Si based alloy sheet
WO2000015859A1 (en) * 1998-09-10 2000-03-23 Kabushiki Kaisha Kobe Seiko Sho Al-Mg-Si ALLOY SHEET
EP1967599A1 (en) * 2001-03-28 2008-09-10 Sumitomo Light Metal Industries, Inc. Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
JP2004292899A (en) * 2003-03-27 2004-10-21 Kobe Steel Ltd Al-Mg-Si-BASED ALLOY SHEET HAVING EXCELLENT SURFACE PROPERTY, PRODUCTION METHOD THEREFOR, AND PRODUCTION INTERMEDIATE MATERIAL THEREOF
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2006307241A (en) * 2005-04-26 2006-11-09 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN DEEP-DRAWABILITY AND MANUFACTURING METHOD THEREFOR
WO2009123011A1 (en) * 2008-03-31 2009-10-08 株式会社神戸製鋼所 Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP2009263781A (en) * 2008-03-31 2009-11-12 Kobe Steel Ltd Aluminum alloy sheet with excellent post-fabrication surface quality and method of manufacturing same
US8366846B2 (en) 2008-03-31 2013-02-05 Kobe Steel, Ltd. Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
KR101251237B1 (en) 2008-03-31 2013-04-08 가부시키가이샤 고베 세이코쇼 Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
EP2964800B1 (en) 2013-03-07 2017-08-09 Aleris Aluminum Duffel BVBA Method of manufacturing an al-mg-si alloy rolled sheet product with excellent formability
JP2017061709A (en) * 2015-09-23 2017-03-30 株式会社Uacj Aluminum alloy sheet excellent in ridging resistance and hem bendability and manufacturing method therefor
CN105734366A (en) * 2016-04-27 2016-07-06 谭钰良 Aluminum foil material for automobile radiator
US11731230B2 (en) 2017-10-02 2023-08-22 Sumitomo Chemical Company, Limited Method for manufacturing sputtering target and sputtering target

Also Published As

Publication number Publication date
JP3919315B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JP6785772B2 (en) Highly moldable aluminum sheet for automobiles with reduced or no surface roping and its manufacturing method
KR101318460B1 (en) Magnesium alloy sheet, magnesium alloy formed body and method of producing magnesium alloy sheet
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
EP1967599B1 (en) Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
KR20140063818A (en) Aluminum composite material with almgsi core alloy layer
JP6506678B2 (en) Aluminum alloy sheet for automobile structural member and method of manufacturing the same
US8425698B2 (en) Aluminum alloy sheet and method for manufacturing the same
EP2239347A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPWO2015155911A1 (en) High-strength aluminum alloy plate excellent in bending workability and shape freezing property and method for producing the same
JPH11189836A (en) Al-mg-si aluminum alloy sheet to be formed excellent in surface properties
JP3498942B2 (en) Aluminum alloy plate with excellent ridging mark resistance and method for evaluating the occurrence of ridging mark
JPH08232052A (en) Production of aluminum alloy sheet for automobile outer sheet
EP0761837B1 (en) Method of producing aluminum alloys having superplastic properties
CN100415917C (en) Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
EP0990058B1 (en) Process of producing heat-treatable aluminum alloy sheet
JP4186240B2 (en) Al-Mg-Si aluminum alloy sheet for forming
JP4865174B2 (en) Manufacturing method of aluminum alloy sheet with excellent bending workability and drawability
JP5685055B2 (en) Aluminum alloy plate
JP3491819B2 (en) Method for producing aluminum alloy sheet having excellent surface properties after forming
CN111684090A (en) Aluminum alloy sheet for automobile structural member, and method for producing aluminum alloy sheet for automobile structural member
JP3498943B2 (en) Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties
JP2003171726A (en) Aluminum alloy sheet having excellent bending workability and corrosion resistance, and production method therefor
JP3226259B2 (en) Aluminum alloy plate excellent in formability, bake hardenability and corrosion resistance and method for producing the same
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

EXPY Cancellation because of completion of term