JPH1118496A - Controller and control method for electric vehicle - Google Patents

Controller and control method for electric vehicle

Info

Publication number
JPH1118496A
JPH1118496A JP9161343A JP16134397A JPH1118496A JP H1118496 A JPH1118496 A JP H1118496A JP 9161343 A JP9161343 A JP 9161343A JP 16134397 A JP16134397 A JP 16134397A JP H1118496 A JPH1118496 A JP H1118496A
Authority
JP
Japan
Prior art keywords
synchronous machine
temperature
magnet
voltage
induced voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9161343A
Other languages
Japanese (ja)
Inventor
Sanshiro Obara
三四郎 小原
Noriyoshi Sasazawa
憲佳 笹沢
Toshisada Mitsui
利貞 三井
Nobunori Matsudaira
信紀 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9161343A priority Critical patent/JPH1118496A/en
Publication of JPH1118496A publication Critical patent/JPH1118496A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/64Controlling or determining the temperature of the winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/67Controlling or determining the motor temperature by back electromotive force [back-EMF] evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To ensure a good travel control by estimating the magnet temperature of a synchronous machine from an estimated induction voltage and a temperature estimation table thereof and compensating for the output therefrom, depending on the increase of estimated magnet temperature of the synchronous machine. SOLUTION: A motor controller 5 is provided with a magnet temperature estimating means 232 and a magnet temperature compensating means 234. The magnet temperature estimating means 232 estimates the magnet temperature TMG from the relationship between a temperature estimation table 2322 and an induced voltage E010 estimated by an induced voltage estimating means 2321. The induced voltage increases as the magnet temperature increases, and thereby the motor voltage decreases. Consequently, the power factor fluctuates, and the output torque decreases. So, the magnet temperature compensating means 234 estimates the magnet temperature TMG from the estimated induction voltage with reference to the temperature estimation table 2322 and compensates for the d-axis current Id and the q-axis current Iq. In this way, the fluctuations in the output voltage of a synchronous machine due to the fluctuations of the magnet temperature TMG is compensated for through the compensation of current command values Id*, Iq*.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気車の制御装置
および制御方法に係り、特に、車輪駆動源としての永久
磁石型同期電動機やバッテリー充電用永久磁石型同期発
電機のような磁極位置センサを用いた同期機を備えた電
気車の制御装置および制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device and a control method for an electric vehicle, and more particularly to a magnetic pole position sensor such as a permanent magnet type synchronous motor as a wheel drive source and a permanent magnet type synchronous generator for charging a battery. TECHNICAL FIELD The present invention relates to a control device and a control method for an electric vehicle provided with a synchronous machine using the same.

【0002】[0002]

【従来の技術】従来、電気車用の交流電動機を駆動する
制御装置は電動機として誘導電動機であれ、永久磁石を
用いた同期電動機であれ、電動機の電流をトルク電流I
qと励磁電流Idに分解して制御するベクトル制御が実
用化されている。この永久磁石型同期電動機の磁石の温
度上昇による出力低下を補償するために特開平7ー21
2915では電動機の電圧、電流さらに温度センサをも
とにq軸電流指令Iq*のみを補償している。
2. Description of the Related Art Conventionally, a control device for driving an AC motor for an electric vehicle, whether an induction motor or a synchronous motor using a permanent magnet as a motor, converts the current of the motor into a torque current I.
Vector control in which q and the excitation current Id are decomposed and controlled has been put to practical use. In order to compensate for a decrease in output due to a rise in the temperature of a magnet of this permanent magnet type synchronous motor, Japanese Patent Application Laid-Open No.
In 2915, only the q-axis current command Iq * is compensated based on the voltage and current of the motor and the temperature sensor.

【0003】[0003]

【発明が解決しようとする課題】永久磁石型同期電動機
の磁石の温度変化に伴う出力特性は、磁石材料により異
なる。例えば、温度による誘起電圧の低下は、フェライ
ト磁石でほぼ−0.2%/℃、ネオジ磁石で−0.1%
/℃である。このような誘起電圧の低下により電動機の
出力あるいはトルクは低下する。
The output characteristics of a permanent magnet type synchronous motor with a change in temperature of a magnet differ depending on the magnet material. For example, the decrease in induced voltage due to temperature is approximately -0.2% / ° C for ferrite magnets and -0.1% for neodymium magnets.
/ ° C. The output or torque of the motor decreases due to the decrease in the induced voltage.

【0004】特に装置を小型、高性能化するために、機
器の実装密度を高めた同期電動機や同期発電機では、磁
石の温度上昇が顕著となり、同期機の出力あるいはトル
クの低下が著しい。
In particular, in a synchronous motor or a synchronous generator in which the mounting density of devices is increased in order to reduce the size and the performance of the device, the temperature of the magnet rises remarkably, and the output or torque of the synchronous machine drops remarkably.

【0005】このような、永久磁石型同期機の磁石温度
上昇を検出し、温度上昇に伴う出力低下を補償する手段
として、電気車に搭載された同期機のステータのコア温
度からロータの磁石温度を間接的に推定し、出力低下を
補償することが考えられる。しかし、実験によれば、ス
テータのコア温度とロータの磁石温度の間には、磁石温
度の上昇時あるいは下降時に、±30℃程度の温度誤差
が生じる。そのため、コア温度に基づいて磁石温度を推
定し出力低下を補償する方法は、同期機の出力を十分補
償し出力精度を確保することができない。
[0005] As a means for detecting such a rise in magnet temperature of a permanent magnet type synchronous machine and compensating for a decrease in output due to the rise in temperature, the magnet temperature of the rotor is calculated from the core temperature of the stator of the synchronous machine mounted on the electric vehicle. Is indirectly estimated to compensate for the output reduction. However, according to experiments, a temperature error of about ± 30 ° C. occurs between the core temperature of the stator and the magnet temperature of the rotor when the magnet temperature rises or falls. Therefore, the method of estimating the magnet temperature based on the core temperature and compensating for the output drop cannot sufficiently compensate for the output of the synchronous machine and ensure the output accuracy.

【0006】永久磁石型同期機の温度上昇に伴う出力変
動を正確に検知する方法としては、インバータを停止さ
せ、同期機を空転させて誘起される電圧を検出する方法
が考えられる。しかし、この方法は実験室で行うことは
可能であるが、同期機を実際の電気車に搭載した状態で
行うことはできない。
[0006] As a method of accurately detecting an output fluctuation due to a rise in temperature of a permanent magnet type synchronous machine, a method of stopping an inverter and idling the synchronous machine to detect a voltage induced is considered. However, although this method can be performed in a laboratory, it cannot be performed with the synchronous machine mounted on an actual electric vehicle.

【0007】他方、永久磁石型同期機の出力あるいはト
ルクの低下要因として、磁石の温度上昇のほかに、永久
磁石の減磁も考えられる。
On the other hand, as a factor for reducing the output or torque of the permanent magnet type synchronous machine, demagnetization of the permanent magnet may be considered in addition to the temperature rise of the magnet.

【0008】本発明は、永久磁石型同期機を備えた電気
車における同期機の磁石温度上昇を的確に推定して出力
変動を補償し、良好な走行制御が可能な電気車の制御装
置および制御方法を提供することを目的とする。
The present invention relates to a control apparatus and control for an electric vehicle that can accurately estimate a magnet temperature rise of the synchronous machine in an electric vehicle equipped with a permanent magnet type synchronous machine, compensate for output fluctuations, and perform good running control. The aim is to provide a method.

【0009】本発明の他の目的は、永久磁石型同期機を
備えた電気車における同期機の磁石温度上昇及び永久磁
石の減磁を的確に推定して、出力補償その他必要な処置
を行うことのできる電気車の制御装置を提供することを
目的とする。
Another object of the present invention is to accurately estimate a magnet temperature rise and a demagnetization of a permanent magnet in an electric vehicle equipped with a permanent magnet type synchronous machine to perform output compensation and other necessary measures. It is an object of the present invention to provide a control device for an electric car that can be operated.

【0010】[0010]

【課題を解決するための手段】本発明は、磁極位置セン
サを用いた永久磁石型同期発電機および電動機の同期
機、前記同期機を駆動する電力変換器、同期機のd軸電
流指令とq軸電流指令を発生する電流指令発生手段、d
q軸電流指令と同期機電流からのdq軸電流を検出値を
もとにdq軸電圧指令値Vd*,Vq*、座標変換処理
を行って交流電圧指令値Vu*、Vv*,Vw*、さら
に磁極位置センサと角度センサから座標変換処理で使用
する位相演算処理や速度演算を行うdq軸電流制御手
段、前記交流電圧指令値から前記電力変換器のパワー素
子を駆動する信号を出力するPWM手段を備えた電気車
の制御装置において、前記同期機の誘起電圧を推定する
誘起電圧推定手段と、永久磁石の材料によって決まる前
記同期機の誘起電圧と温度の関係を与える温度推定テー
ブルと、前記同期機の推定誘起電圧と前記温度推定テー
ブルとから前記同期機の磁石温度を推定する磁石温度推
定手段と、推定された前記同期機の磁石温度の上昇に応
じて前記同期機の出力を補償する磁石温度補償手段とを
設けたことを特徴とする。
SUMMARY OF THE INVENTION The present invention provides a permanent magnet type synchronous generator and a synchronous machine for a motor using a magnetic pole position sensor, a power converter for driving the synchronous machine, a d-axis current command for the synchronous machine and q Current command generating means for generating a shaft current command, d
Based on the detected qq-axis current command and the dq-axis current from the synchronous machine current, the dq-axis voltage command values Vd * and Vq * are subjected to coordinate conversion processing, and the AC voltage command values Vu *, Vv *, Vw *, Further, dq-axis current control means for performing phase calculation processing and speed calculation used in coordinate conversion processing from the magnetic pole position sensor and angle sensor, and PWM means for outputting a signal for driving a power element of the power converter from the AC voltage command value An induced voltage estimating means for estimating an induced voltage of the synchronous machine; a temperature estimating table for giving a relationship between an induced voltage of the synchronous machine and a temperature determined by a material of a permanent magnet; Magnet temperature estimating means for estimating the magnet temperature of the synchronous machine from the estimated induced voltage of the synchronous machine and the temperature estimation table, and outputting the synchronous machine in response to the estimated increase in the magnet temperature of the synchronous machine. Characterized in that a magnet temperature compensating means for compensating.

【0011】本発明の他の特徴は、前記誘起電圧推定手
段が、q軸電圧指令値Vq*、d軸電流指令値Id*、
回転数そして電力変換器の入力電圧を入力することにあ
る。
Another feature of the present invention is that the induced voltage estimating means includes a q-axis voltage command value Vq *, a d-axis current command value Id *,
It consists in inputting the speed and the input voltage of the power converter.

【0012】本発明の他の特徴は、前記磁石温度推定手
段の出力値である磁石温度推定値をもとに、q軸電流の
電流指令Id*,Iq*を補償することにある。
Another feature of the present invention is that the current commands Id * and Iq * of the q-axis current are compensated based on the magnet temperature estimated value which is the output value of the magnet temperature estimating means.

【0013】本発明の他の特徴は、磁極位置センサを用
いた永久磁石型同期機と、前記同期機を駆動する電力変
換器と、前記同期機のd軸電流指令とq軸電流指令を発
生する電流指令発生手段と、前記d、q軸電流指令と前
記同期機の電流検出値をもとにdq軸電圧指令値を生成
し、座標変換処理を行って交流電圧指令値を生成するd
q軸電流制御手段と、前記交流電圧指令値から前記電力
変換器のパワー素子を駆動する信号を出力するPWM制
御手段とを備えた制御装置による電気車の制御方法にお
いて、誘起電圧推定手段により前記同期機の誘起電圧を
推定し、磁石温度推定手段により、永久磁石の材料によ
って決まる前記同期機の誘起電圧と温度の関係を与える
温度推定テーブルと前記同期機の推定誘起電圧とから前
記同期機の磁石温度を推定し、磁石温度磁石温度補償手
段により、推定された前記磁石温度の上昇に応じて前記
同期機の出力を補償することにある。
Another feature of the present invention is that a permanent magnet type synchronous machine using a magnetic pole position sensor, a power converter for driving the synchronous machine, and a d-axis current command and a q-axis current command for the synchronous machine are generated. Current command generating means for generating a dq-axis voltage command value based on the d- and q-axis current commands and the current detection value of the synchronous machine, and performing a coordinate conversion process to generate an AC voltage command value.
A control method for an electric vehicle by a control device comprising: q-axis current control means; and PWM control means for outputting a signal for driving a power element of the power converter from the AC voltage command value. Estimating the induced voltage of the synchronous machine, and estimating the induced voltage of the synchronous machine by the magnet temperature estimating means from a temperature estimation table that gives a relationship between the induced voltage of the synchronous machine and the temperature determined by the material of the permanent magnet and the estimated induced voltage of the synchronous machine. The magnet temperature is estimated, and the output of the synchronous machine is compensated for by magnet temperature magnet temperature compensating means in accordance with the estimated magnet temperature rise.

【0014】本発明によれば、推定誘起電圧と温度推定
テーブルから磁石温度を推定するため、永久磁石型同期
機を備えた電気車における同期機の磁石温度上昇を的確
に推定して出力変動を補償し、良好な走行制御が可能な
電気車の制御装置および制御方法を提供することができ
る。
According to the present invention, in order to estimate the magnet temperature from the estimated induced voltage and the temperature estimation table, an increase in the magnet temperature of the synchronous machine in an electric vehicle equipped with a permanent magnet type synchronous machine is accurately estimated to reduce the output fluctuation. It is possible to provide a control device and a control method for an electric vehicle that can compensate and perform good traveling control.

【0015】また、永久磁石型同期機を備えた電気車に
おける同期機の磁石温度上昇及び永久磁石の減磁を的確
に推定して、出力補償その他必要な処置を行うことがで
きる。
Also, in an electric vehicle equipped with a permanent magnet type synchronous machine, it is possible to accurately estimate the magnet temperature rise of the synchronous machine and the demagnetization of the permanent magnet, and perform output compensation and other necessary measures.

【0016】[0016]

【発明の実施の形態】以下、図によって本発明の実施例
を説明する。まず、図1は、本発明の一実施例になる電
気車用駆動制御システムの構成を示すものである。電動
機1は永久磁石型同期電動機であり、電力変換器として
逆変換器すなわちインバータ2を用いる。永久磁石型同
期電動機1には、その回転角度センサであるエンコーダ
3及び磁極位置を検出する磁極位置検出器4が直結され
ている。電動機制御装置5は、エンコーダ3と磁極位置
検出器4の出力及び電流検出器6の出力に基づいてPW
M信号を生成し、インバータ2を制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, FIG. 1 shows a configuration of a drive control system for an electric vehicle according to an embodiment of the present invention. The motor 1 is a permanent magnet type synchronous motor, and uses an inverter, that is, an inverter 2 as a power converter. The encoder 3 as a rotation angle sensor and a magnetic pole position detector 4 for detecting a magnetic pole position are directly connected to the permanent magnet type synchronous motor 1. The motor control device 5 performs PW based on the outputs of the encoder 3 and the magnetic pole position detector 4 and the output of the current detector 6.
An M signal is generated to control the inverter 2.

【0017】駆動システム制御部11は、アクセルペタ
ル及びブレーキペタルの操作量に応じた電動機トルク指
令τM*を電動機制御装置5に送り、電動機1がアクセ
ルペタル及びブレーキペタルの操作量に対応したトルク
を発生するように制御する。電動機制御装置5は、エン
コーダ3と磁極位置検出器4の出力及び電流検出器6の
出力に基づいてdq軸電流指令値や交流電圧指令値を生
成するdq軸電流制御機能と、交流電圧指令値に基づい
てインバータ2を制御するPWM信号を生成するPWM
信号生成機能を備えている。インバータ2は、6個のパ
ワー素子(IGBT)と各パワー素子に並列に接続され
たダイオードを用いて構成され、電動機1のU、V、W
各相の巻線に流れる電流を制御する3相ブリッヂ回路
と、1個の平滑コンデンサとを備えている。
The drive system control unit 11 sends a motor torque command τM * corresponding to the operation amounts of the accelerator petal and the brake petal to the motor control device 5, and the motor 1 generates the torque corresponding to the operation amounts of the accelerator petal and the brake petal. Control to occur. The motor control device 5 includes a dq-axis current control function for generating a dq-axis current command value and an AC voltage command value based on the outputs of the encoder 3 and the magnetic pole position detector 4 and the output of the current detector 6, and an AC voltage command value. Generating a PWM signal for controlling inverter 2 based on PWM
It has a signal generation function. The inverter 2 is configured using six power elements (IGBTs) and diodes connected in parallel to each power element.
It has a three-phase bridge circuit for controlling the current flowing through each phase winding and one smoothing capacitor.

【0018】永久磁石型同期電動機1の電源は、バッテ
リー7もしくはガソリンエンジン8で駆動される永久磁
石型同期発電機9からコンバータ10を介して供給され
る。また、永久磁石型同期発電機9によりバッテリー7
を充電する。
The power of the permanent magnet type synchronous motor 1 is supplied from a battery 7 or a permanent magnet type synchronous generator 9 driven by a gasoline engine 8 via a converter 10. In addition, the permanent magnet type synchronous generator 9 controls the battery 7.
Charge.

【0019】図2に、永久磁石型同期電動機1の制御を
行う電動機制御装置5の詳細機能ブロック図を示す。電
動機制御装置5は、3/2相変換手段202,IdIq
電流制御手段204,2/3相変換手段206,PWM
制御手段208及び位相演算手段210,速度演算手段
212を備えている。速度演算手段212の入力側は、
エンコーダ3に接続され、位相演算手段210の入力側
はエンコーダ3及び磁極位置検出手段4に接続されてい
る。電動機制御装置5はさらに、Iq制御手段224及
びId制御手段226を含む電流指令発生手段220を
備えている。
FIG. 2 shows a detailed functional block diagram of the motor control device 5 for controlling the permanent magnet type synchronous motor 1. The motor control device 5 includes 3 / 2-phase conversion means 202, IdIq
Current control means 204, 2/3 phase conversion means 206, PWM
A control unit 208, a phase calculation unit 210, and a speed calculation unit 212 are provided. The input side of the speed calculation means 212
The input side of the phase calculating means 210 is connected to the encoder 3 and the magnetic pole position detecting means 4. The motor control device 5 further includes a current command generation unit 220 including an Iq control unit 224 and an Id control unit 226.

【0020】電動機制御装置5はまた、永久磁石型同期
電動機1の磁石温度を推定する磁石温度推定手段23
2、磁石温度の上昇に伴い電動機出力を補償する磁石温
度補償手段234、磁石の減磁を検出する磁石異常検出
手段242、磁石の減磁量に応じた出力補正をする指令
補正手段244を含む磁石温度補償手段230を備えて
いる。磁石温度推定手段232は、q軸電圧指令値Vq
*、d軸電流指令値Id*、同期機の回転数ω、及び電力変
換器2の直流電圧VBを入力として同期機の推定誘起電
圧を演算する誘起電圧推定手段2321と、この推定誘
起電圧から磁石温度TMGを推定するための温度推定テー
ブル2322を備えている。
The motor control device 5 also has magnet temperature estimating means 23 for estimating the magnet temperature of the permanent magnet type synchronous motor 1.
2. Includes magnet temperature compensating means 234 for compensating the motor output as the magnet temperature rises, magnet abnormality detecting means 242 for detecting magnet demagnetization, and command correcting means 244 for correcting output according to the amount of magnet demagnetization. A magnet temperature compensating means 230 is provided. The magnet temperature estimating means 232 calculates the q-axis voltage command value Vq
*, D-axis current command value Id *, rotation speed ω of the synchronous machine, and DC voltage VB of power converter 2 as inputs, and an induced voltage estimating means 2321 for calculating an estimated induced voltage of the synchronous machine. A temperature estimation table 2322 for estimating the magnet temperature TMG is provided.

【0021】永久磁石型同期発電機9も、永久磁石型同
期電動機1の電動機制御装置5と同様な、磁石温度推定
手段、磁石温度補償手段、磁石異常検出出段及び指令補
正手段を含む磁石温度補償手段を含む制御装置(図示せ
ず)を備えている。以下、電動機制御装置5について説
明し、永久磁石型同期発電機9の制御装置の説明は省略
する。
The permanent magnet type synchronous generator 9 also has a magnet temperature estimating means, a magnet temperature compensating means, a magnet abnormality detecting stage and a command correcting means similar to the motor control device 5 of the permanent magnet type synchronous motor 1. A control device (not shown) including compensation means is provided. Hereinafter, the motor control device 5 will be described, and the description of the control device of the permanent magnet type synchronous generator 9 will be omitted.

【0022】電動機制御装置5において、トルク分電流
に相当するq軸電流の指令値Iq*は、トルク指令値τ
M* と回転数をもとにIq制御手段224で算出する。
一方、d軸電流の指令値Id*も、トルク指令値τM*と
回転数をもとに、Id制御手段226で算出する。この
ようにして、電動機制御装置におけるId,Iqテーブ
ル224,226は、トルク指令値τM0と回転数をも
とに高効率制御に要求される電流指令値Iq* ,Id*
を算出する。
In the motor control device 5, the command value Iq * of the q-axis current corresponding to the torque component current is the torque command value τ
It is calculated by the Iq control means 224 based on M * and the rotation speed.
On the other hand, the command value Id * of the d-axis current is also calculated by the Id control means 226 based on the torque command value τM * and the rotation speed. As described above, the Id and Iq tables 224 and 226 in the motor control device store the current command values Iq * and Id * required for high-efficiency control based on the torque command value τM0 and the rotation speed.
Is calculated.

【0023】3/2相座標変換手段202は、電流検出
器6で検出した電動機電流の3相交流電流を3/2相の
座標変換処理を行いd,q軸電流Id,Iqを算出す
る。これらの検出値Id,Iqと指令値Id*,Iq*
をもとに、IdIq電流制御手段204は、比例あるい
は比例積分電流制御処理を行い、電圧指令値Vd*,V
q*を算出する。
The 3 / 2-phase coordinate conversion means 202 performs a 3 / 2-phase coordinate conversion process on the three-phase alternating current of the motor current detected by the current detector 6 to calculate d- and q-axis currents Id and Iq. These detected values Id, Iq and command values Id *, Iq *
IdIq current control means 204 performs a proportional or proportional integral current control process based on the voltage command values Vd * and Vd *.
Calculate q *.

【0024】さらに、2/3相変換手段206におい
て、2/3相の座標変換を行い3相交流電圧指令値VU
* ,VV* ,VW* を算出する。PWM制御手段208
はこの電圧指令値VU* ,VV* ,VW* から三角波信
号の搬送波信号との比較処理を行って、PWM信号を発
生し、インバータ2を駆動する。このようにして電動機
1にPWM制御された電圧を印加することにより、電動
機電流が電流指令値Iq* ,Id* に一致するように制
御する。
Further, the 2 / 3-phase conversion means 206 performs 2 / 3-phase coordinate conversion to perform a 3-phase AC voltage command value VU.
*, VV *, VW * are calculated. PWM control means 208
Compares the voltage command values VU *, VV *, and VW * with a carrier signal of a triangular wave signal, generates a PWM signal, and drives the inverter 2. By applying the PWM-controlled voltage to the motor 1 in this manner, the motor current is controlled so as to match the current command values Iq * and Id *.

【0025】なお、2/3相変換処理206,3相/2
相座標変換手段202の座標変換処理で使用する位相角
θ1は、位相演算手段210において、電動機1の誘起
電圧と同位相の信号を出力する磁極位置検出器4、回転
角度信号(パルス信号)を出力するエンコーダ3の各出
力から算出する。
The 2/3 phase conversion processing 206, 3 phase / 2
The phase angle θ1 used in the coordinate transformation processing of the phase coordinate transformation means 202 is calculated by the phase calculation means 210 by using the magnetic pole position detector 4 for outputting a signal having the same phase as the induced voltage of the electric motor 1, It is calculated from each output of the encoder 3 to output.

【0026】この磁極位置検出器4の出力信号と電動機
電流I1,誘起電圧E0に対する、電動機制御装置5内
部の位相角θ1の位相関係を図3に示す。位相信号は、
エンコーダ3のパルス信号を累積する位相演算手段21
0で演算され、鋸波状信号となる。磁極位置検出器4の
出力信号である磁極位置信号は、電動機1の誘起電圧E
0と同期させる。このような処理を行うことによって、
電動機制御装置5は、トルク指令値τM* のトルクでか
つ損失を最小とする、高効率制御を行う。
FIG. 3 shows the phase relationship of the phase angle θ1 inside the motor control device 5 with respect to the output signal of the magnetic pole position detector 4, the motor current I1, and the induced voltage E0. The phase signal is
Phase calculation means 21 for accumulating pulse signals of encoder 3
The calculation is performed with 0, and a sawtooth signal is obtained. A magnetic pole position signal, which is an output signal of the magnetic pole position detector 4, is based on an induced voltage E of the electric motor 1.
Synchronize with 0. By performing such processing,
The motor control device 5 performs high-efficiency control with the torque of the torque command value τM * and minimizing loss.

【0027】そのときの電動機1のベクトル図を図4に
示す。高効率点を得るためのIq*,Id* により、最適
な進み角β(β=tan−1(Id* /Iq* ))で制
御される。なお、進み角βの基準点は図3示すt0時点
であり、このt0時点で制御されている電流I1を破線
で示す。
FIG. 4 shows a vector diagram of the electric motor 1 at that time. The optimum lead angle β (β = tan-1 (Id * / Iq *)) is controlled by Iq * and Id * for obtaining a high efficiency point. The reference point of the advance angle β is the time point t0 shown in FIG. 3, and the current I1 controlled at the time point t0 is indicated by a broken line.

【0028】電動機1の出力トルクは(1)式で示され
る。 τM=Pn[{E0+(1−ρ)LdId}Iq] …(1) ただし、Pnは定数、ρはLqとLdの比、E0は誘起
電圧である。
The output torque of the electric motor 1 is expressed by equation (1). τM = Pn [{E0 + (1-ρ) LdId} Iq] (1) where Pn is a constant, ρ is a ratio between Lq and Ld, and E0 is an induced voltage.

【0029】(1)式において、右辺第1項は同期トル
ク、第2項はリアクタンストルクと呼ばれている。
In the equation (1), the first term on the right side is called synchronous torque, and the second term is called reactance torque.

【0030】電動機への印加電圧一定とし、進み角βを
可変としたトルク特性は、図5に示すようになる。同期
トルク及びリアクタンストルクの和が発生トルクτMで
ある。このように(1)式のρが1よりも大きい逆突極
特性をもつ同期電動機は進み角βが45度付近で最大ト
ルクを発生するので、この角度以上で制御される。この
ような動作で電気自動車は駆動される。
FIG. 5 shows a torque characteristic in which the applied voltage to the motor is constant and the lead angle β is variable. The sum of the synchronous torque and the reactance torque is the generated torque τM. As described above, since the synchronous motor having the reverse salient pole characteristic in which the ρ of the equation (1) is larger than 1 generates the maximum torque when the lead angle β is around 45 degrees, the control is performed at the angle or more. The electric vehicle is driven by such an operation.

【0031】次に、電動機の温度補償制御の動作を図6
以下で説明する。まず、図6に、永久磁石型同期電動機
の磁石温度TMGに対する誘起電圧E0と出力トルク特性
の関係を示す。磁石温度TMGの上昇に伴い、誘起電圧及
び出力トルクは低下することがわかる。
Next, the operation of the temperature compensation control of the motor will be described with reference to FIG.
This will be described below. First, FIG. 6 shows the relationship between the induced voltage E0 and the output torque characteristics with respect to the magnet temperature TMG of the permanent magnet type synchronous motor. It can be seen that the induced voltage and the output torque decrease as the magnet temperature TMG increases.

【0032】同期機の電圧、電流の基本式は次式に示す
通りである。 Vd=Xq・Iq−r1・Id Vq=E0+Xd・Id+r1・Iq …(2) ここで、r1を無視すると、 Vd=Xq・Iq, Vq=E0+Xd・Id …(3) 故に、 E0= Vq− Xd・Id となる。
The basic equations of voltage and current of the synchronous machine are as shown in the following equations. Vd = Xq · Iq−r1 · Id Vq = E0 + Xd · Id + r1 · Iq (2) Here, if r1 is ignored, Vd = Xq · Iq, Vq = E0 + Xd · Id (3) Therefore, E0 = Vq−Xd・ Id

【0033】ここで、Vqは、 電動機制御装置5内の
電圧指令値Vq*、Xdは1/300minで規格化した
固定値を用いる。Idは指令値Id*を用いる。
Here, Vq uses a voltage command value Vq * in the motor control device 5 and Xd uses a fixed value standardized at 1/300 min. Id uses the command value Id *.

【0034】誘起電圧E0は、同期機の回転数に比例し
て増加する。そこで、誘起電圧E0を、特定の回転数ω
で規格化する。例えば、1/300minで規格化された
誘起電圧E010は、次のようになる。
The induced voltage E0 increases in proportion to the rotation speed of the synchronous machine. Therefore, the induced voltage E0 is changed to a specific rotational speed ω
Standardize with For example, the induced voltage E010 standardized at 1/300 min is as follows.

【0035】 E010= E0×(ω3000/ωr) …(4) 故に、 E010=(ω3000/ωr)× {(VB0/VB)× Vq*− Xd・Id*} =k1・Vq*− k2・Xd・Id* …(5) (5)式において、電圧指令値Vq*を直流電圧VBで
補正している。VB0は設計値、VBは実測値である。電
動機制御装置5内での電圧指令値Vq*は、実質PWM
信号を発生するための信号であることから、VBの大き
さにより補正することにより、図4のようなベクトル図
に示すVq*として示すことができる。また、(5)式
において、k1、k2の係数を回転数ωrにより可変して
E010を演算する。
E010 = E0 × (ω3000 / ωr) (4) Therefore, E010 = (ω3000 / ωr) × {(VB0 / VB) × Vq * −Xd · Id *} = k1 · Vq * −k2 · Xd Id * (5) In the equation (5), the voltage command value Vq * is corrected by the DC voltage VB. VB0 is a design value, and VB is an actually measured value. The voltage command value Vq * in the motor control device 5 is substantially equal to PWM.
Since it is a signal for generating a signal, it can be represented as Vq * shown in a vector diagram as shown in FIG. 4 by correcting it according to the magnitude of VB. In the equation (5), E010 is calculated by varying the coefficients of k1 and k2 depending on the rotational speed ωr.

【0036】磁石温度推定手段232は、誘起電圧推定
手段2321で求めた推定誘起電圧E010と温度推定テ
ーブル2322の関係から磁石温度TMGを推定する。
The magnet temperature estimating means 232 estimates the magnet temperature TMG from the relationship between the estimated induced voltage E010 obtained by the induced voltage estimating means 2321 and the temperature estimating table 2322.

【0037】また、図7の(a)に磁石温度が低温時の
電動機制御動作ベクトル図、(b)に磁石温度が高温時
の電動機制御動作ベクトル図を示す。これらのベクトル
図において、Xd,Xqはdq軸インピーダンスで、 Xd
=ωfLd,Xq=ωfLqで示され、図8に示すよう
に、LdはIdのいかんに係わらず一定となり、Lqは
Iqに応じて減少する。
FIG. 7A shows a motor control operation vector diagram when the magnet temperature is low, and FIG. 7B shows a motor control operation vector diagram when the magnet temperature is high. In these vector diagrams, Xd and Xq are dq-axis impedances, Xd
= ΩfLd, Xq = ωfLq, and as shown in FIG. 8, Ld becomes constant irrespective of Id, and Lq decreases according to Iq.

【0038】図7において、磁石温度上昇によりE00>
E01のように誘起電圧Eが減少する。それに伴って、電
動機電圧が減少する(V10>V11)。その結果、力率が変
動し、出力トルクが減少する。そこで、(5)の演算式
にもとづく推定誘起電圧E010から温度推定テーブルを
参照して磁石温度TMGを推定して、 Id、Iqの補償を
行う。
In FIG. 7, E00>
The induced voltage E decreases like E01. As a result, the motor voltage decreases (V10> V11). As a result, the power factor fluctuates and the output torque decreases. Therefore, the magnet temperature TMG is estimated from the estimated induced voltage E010 based on the arithmetic expression (5) with reference to the temperature estimation table, and Id and Iq are compensated.

【0039】このように、本発明は、磁石温度TMGの変
化に伴う同期機の出力変動を、電流指令値Id*、Iq
*の補償により補償することを特徴としている。
As described above, according to the present invention, the output fluctuation of the synchronous machine due to the change of the magnet temperature TMG is determined by the current command values Id *, Iq
* It is characterized by compensation by compensation.

【0040】すなわち、磁石温度補償手段234は、図
9の詳細ブロック図に示すように、Id補償テーブル2
341、Iq補償テーブル2342を備えている。これ
らId補償テーブル2341、Iq補償テーブル234
2は、同期機の出力指令τM0と磁石温度TMGをもとに、
dq軸電流の電流指令Id*、Iq*を補償する補償係
数Kd、Kqを出力する。
That is, as shown in the detailed block diagram of FIG. 9, the magnet temperature compensating means 234
341 and an Iq compensation table 2342. These Id compensation table 2341 and Iq compensation table 234
2 is based on the synchronous machine output command τM0 and magnet temperature TMG,
It outputs compensation coefficients Kd and Kq for compensating the current commands Id * and Iq * for the dq-axis currents.

【0041】図10、11は、磁石温度補償制御手段の
Id、Iqテーブルのデータの一例を示す。図10のI
dテーブルは、磁石温度推定値TMGとトルク指令値相当
値τM0 を入力することにより、電流指令値Id*の補
償係数Kdが得られる。図11のIqテーブルは、磁石
温度推定値TMGとトルク指令値相当値τM0 を入力とする
ことにより、電流指令値Iq*の補償係数Kqが得られ
る。
FIGS. 10 and 11 show examples of data of the Id and Iq tables of the magnet temperature compensation control means. I in FIG.
In the d table, the compensation coefficient Kd of the current command value Id * can be obtained by inputting the magnet temperature estimated value TMG and the torque command value equivalent value τM0. In the Iq table of FIG. 11, the compensation coefficient Kq of the current command value Iq * can be obtained by inputting the magnet temperature estimated value TMG and the torque command value equivalent value τM0.

【0042】図12に、磁石温度推定手段232によ
り、温度推定テーブル2322を用いた磁石温度の推定
手順を示す。
FIG. 12 shows a procedure for estimating the magnet temperature using the temperature estimation table 2322 by the magnet temperature estimating means 232.

【0043】まず、電動機の始動直後、コア温度TM2
と推定磁石温度TMGOを等しい(図12の(1)として、
温度推定デーフル2322を参照して得たE020(図12
の(2))と(5)式で算出したEO10を比較して、E020=E
O10となるように予め、係数k1.k2をマッチングして
置く。そうすることにより動作中に(5)式で算出したE
O10から磁石温度TMG1を推定する。(図12の(4))こ
のようにして推定された、磁石温度TMG10は、実際の
同期機の磁石温度に非常に近いものとなる。したがっ
て、本発明の方法によれば、図13に示すように、実際
の磁石温度の変化に追従した的確な温度補償が行え、コ
ア温度からの推定方式に比べて、出力トルクの制御精度
が向上する。
First, immediately after starting the motor, the core temperature TM2
And the estimated magnet temperature TMGO are equal ((1) in FIG.
E020 obtained by referring to the temperature estimation file 2322 (FIG. 12)
(2)) and EO10 calculated by the equation (5) are compared, and E020 = E
O10 in advance so that the coefficient k1. Match k2 and put. By doing so, the E calculated by equation (5) during operation is obtained.
The magnet temperature TMG1 is estimated from O10. ((4) in FIG. 12) The magnet temperature TMG10 estimated in this manner is very close to the actual magnet temperature of the synchronous machine. Therefore, according to the method of the present invention, as shown in FIG. 13, accurate temperature compensation following the actual magnet temperature change can be performed, and the control accuracy of the output torque is improved compared to the estimation method based on the core temperature. I do.

【0044】本発明の他の実施例になる磁石温度推定手
段として、図14に示すように(5)式で算出したEO10
と磁石温度100℃の誘起電圧EO100との比(図14の
(1))から、温度推定テーブルを用いて磁石温度TMGO
を推定してもよい。
As a magnet temperature estimating means according to another embodiment of the present invention, as shown in FIG. 14, EO10 calculated by the equation (5) is used.
Of the induced voltage EO100 at a magnet temperature of 100 ° C. (FIG. 14)
From (1)), the magnet temperature TMGO is calculated using the temperature estimation table.
May be estimated.

【0045】図12、14で推定磁石温度が磁石の許容
減磁温度TMGMAXに達した場合は、異常判定手段24
2はシステム停止等の異常処理を行う。もし、許容減磁
温度TMGMAXを多少越え、システム停止後誘起電圧を
測定した結果、減磁の程度が小さく運転が可能な場合に
は、磁石温度推定手段232は新たに温度推定テーブル
2322の特性(一点鎖線)で推定した磁石温度を推定す
る。多少減磁したことにより出力が減少するので、出来
る限りトルク指令τM*を指令補正手段244で増や
し、さらに磁石温度補償手段234で温度補償を行い、
異常判定手段242で磁石温度を監視しながら運転を続
ける。
If the estimated magnet temperature reaches the permissible demagnetizing temperature TMGMAX of the magnet in FIGS.
2 performs abnormal processing such as system stoppage. If the degree of the demagnetization is small and the operation is possible as a result of measuring the induced voltage after the system is stopped and the temperature slightly exceeds the allowable demagnetization temperature TMGMAX, the magnet temperature estimating means 232 newly adds the characteristic ( The magnet temperature estimated by the dashed line) is estimated. Since the output decreases due to a slight demagnetization, the torque command τM * is increased as much as possible by the command correction means 244, and the temperature is compensated by the magnet temperature compensation means 234.
The operation is continued while monitoring the magnet temperature by the abnormality determination means 242.

【0046】[0046]

【発明の効果】本発明によれば、推定誘起電圧と温度推
定テーブルから磁石温度を推定するため、永久磁石型同
期機を備えた電気車における同期機の磁石温度上昇を的
確に推定して出力変動を補償し、良好な走行制御が可能
な電気車の制御装置を提供することができる。
According to the present invention, in order to estimate the magnet temperature from the estimated induced voltage and the temperature estimation table, the magnet temperature rise of the synchronous machine in the electric vehicle equipped with the permanent magnet synchronous machine is accurately estimated and output. It is possible to provide an electric vehicle control device capable of compensating for fluctuations and performing good traveling control.

【0047】本発明によればまた、永久磁石型同期機を
備えた電気車における同期機の磁石温度上昇及び永久磁
石の減磁を的確に推定して、出力補償その他必要な処置
を行うことができる。
According to the present invention, it is also possible to accurately estimate the magnet temperature rise and the demagnetization of the permanent magnet of the synchronous machine in the electric vehicle equipped with the permanent magnet type synchronous machine, and perform output compensation and other necessary measures. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例になる発電システムを備えた
電気車の駆動システム構成図。
FIG. 1 is a drive system configuration diagram of an electric vehicle including a power generation system according to an embodiment of the present invention.

【図2】図1の電動機制御装置の詳細機能ブロック図。FIG. 2 is a detailed functional block diagram of the motor control device of FIG. 1;

【図3】電動機制御装置内部の位相角θ1,θ2の位相
関係を示す図。
FIG. 3 is a diagram showing a phase relationship between phase angles θ1 and θ2 inside the motor control device.

【図4】同期電動機の制御動作時のベクトル図。FIG. 4 is a vector diagram at the time of control operation of the synchronous motor.

【図5】電動機への印加電圧一定とし、進み角βを可変
としたトルク特性図。
FIG. 5 is a torque characteristic diagram in which the applied voltage to the electric motor is constant and the lead angle β is variable.

【図6】磁石温度に対する誘起電圧E0と出力トルク特
性の関係を示す図。
FIG. 6 is a diagram showing a relationship between an induced voltage E0 and an output torque characteristic with respect to a magnet temperature.

【図7】磁石温度の変化に対する電動機制御動作ベクト
ル図の関係を示す図。
FIG. 7 is a diagram showing a relationship between a motor control operation vector diagram and a magnet temperature change.

【図8】Id,IqとLd、Lqの関係を示す図。FIG. 8 is a diagram showing a relationship between Id and Iq and Ld and Lq.

【図9】図2に示す磁石温度補償制御手段の詳細制御ブ
ロック図を示す。
FIG. 9 is a detailed control block diagram of the magnet temperature compensation control means shown in FIG. 2;

【図10】磁石温度補償制御手段のIdテーブルのデー
タを示す図。
FIG. 10 is a diagram showing data of an Id table of a magnet temperature compensation control unit.

【図11】磁石温度補償制御手段のIqテーブルのデー
タを示す図。
FIG. 11 is a diagram showing data of an Iq table of a magnet temperature compensation control unit.

【図12】温度推定テーブルを用いた磁石温度推定手段
による温度の推定手順を示す。
FIG. 12 shows a procedure for estimating a temperature by magnet temperature estimating means using a temperature estimating table.

【図13】本発明の効果を示す図。FIG. 13 is a diagram showing the effect of the present invention.

【図14】本発明の他の実施例の動作説明図。FIG. 14 is an operation explanatory view of another embodiment of the present invention.

【図15】磁石温度と許容減磁特性及び許容減磁温度と
の関係を示す図である。
FIG. 15 is a diagram illustrating a relationship between a magnet temperature, an allowable demagnetization characteristic, and an allowable demagnetization temperature.

【符号の説明】[Explanation of symbols]

5…電動機制御装置、202…3/2相変換手段,20
4…IdIq電流制御手段,206…2/3相変換手
段,208…PWM制御手段、210…位相演算手段,
212…速度演算手段、224…Iq制御手段、226
…Id制御手段、220…電流指令発生手段、232…
磁石温度推定手段、234…磁石温度補償手段、242
…磁石異常検出手段、244…指令補正手段
5 ... motor control device, 202 ... 3/2 phase conversion means, 20
4 ... IdIq current control means, 206 ... 2/3 phase conversion means, 208 ... PWM control means, 210 ... Phase calculation means,
212 ... speed calculation means, 224 ... Iq control means, 226
... Id control means, 220 ... Current command generation means, 232 ...
Magnet temperature estimating means, 234: magnet temperature compensating means, 242
... Magnet abnormality detection means, 244 ... Command correction means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松平 信紀 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobunori Matsudaira 2520 Takada, Hitachinaka-shi, Ibaraki Automobile Division, Hitachi, Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】磁極位置センサを用いた永久磁石型同期機
と、前記同期機を駆動する電力変換器と、前記同期機の
d軸電流指令とq軸電流指令を発生する電流指令発生手
段と、前記d、q軸電流指令と前記同期機の電流検出値
をもとにdq軸電圧指令値を生成し、座標変換処理を行
って交流電圧指令値を生成するdq軸電流制御手段と、
前記交流電圧指令値から前記電力変換器のパワー素子を
駆動する信号を出力するPWM制御手段とを備えた電気
車の制御装置において、 前記同期機の誘起電圧を推定する誘起電圧推定手段と、
永久磁石の材料によって決まる前記同期機の誘起電圧と
温度の関係を与える温度推定テーブルと、前記同期機の
推定誘起電圧と前記温度推定テーブルとから前記同期機
の磁石温度を推定する磁石温度推定手段と、推定された
前記同期機の磁石温度の上昇に応じて前記同期機の出力
を補償する磁石温度補償手段とを設けたことを特徴とす
る電気車の制御装置。
1. A permanent magnet type synchronous machine using a magnetic pole position sensor, a power converter for driving the synchronous machine, and current command generating means for generating a d-axis current command and a q-axis current command for the synchronous machine. Dq-axis current control means for generating a dq-axis voltage command value based on the d- and q-axis current commands and the current detection value of the synchronous machine, and performing a coordinate conversion process to generate an AC voltage command value;
In a control device for an electric vehicle, comprising: a PWM control unit that outputs a signal for driving a power element of the power converter from the AC voltage command value, an induced voltage estimating unit that estimates an induced voltage of the synchronous machine,
Magnet temperature estimating means for estimating the magnet temperature of the synchronous machine from the temperature estimation table for giving a relationship between the induced voltage of the synchronous machine and the temperature determined by the material of the permanent magnet, and the estimated induced voltage of the synchronous machine and the temperature estimation table And a magnet temperature compensating means for compensating the output of the synchronous machine according to the estimated increase in the magnet temperature of the synchronous machine.
【請求項2】前記磁石温度補償手段は、前記磁石温度推
定手段の出力値である磁石温度推定値をもとに、前記
d、q軸電流の電流指令を補正することを特徴とする請
求項1記載の電気車の制御装置。
2. The apparatus according to claim 1, wherein said magnet temperature compensating means corrects said d and q axis current commands based on a magnet temperature estimated value which is an output value of said magnet temperature estimating means. 2. The control device for an electric vehicle according to claim 1.
【請求項3】前記誘起電圧推定手段は、前記q軸電圧指
令値、前記d軸電流指令値、前記同期機の回転数、及び
前記電力変換器の入力直流電圧を入力として前記同期機
の推定誘起電圧を演算し、 前記磁石温度推定手段は、該推定誘起電圧と前記温度推
定テーブルから前記磁石温度を推定し、 前記磁石温度補償手段は、該磁石温度推定値とId補償
テーブル及びIq補償テーブルをもとに前記dq軸電流
の電流指令を補償することを特徴とする請求項2記載の
電気車の制御装置。
3. The inductive voltage estimating means estimates the synchronous machine by inputting the q-axis voltage command value, the d-axis current command value, the rotation speed of the synchronous machine, and the input DC voltage of the power converter. Calculating an induced voltage, the magnet temperature estimating means estimates the magnet temperature from the estimated induced voltage and the temperature estimation table, and the magnet temperature compensating means calculates the magnet temperature estimated value, the Id compensation table, and the Iq compensation table. The control device for an electric vehicle according to claim 2, wherein the current command of the dq-axis current is compensated based on the following.
【請求項4】前記誘起電圧推定手段は、前記電力変換器
の入力直流電圧に応じて前記q軸電圧指令値を補正する
機能を有していることを特徴とする請求項3記載の電気
車の制御装置。
4. The electric vehicle according to claim 3, wherein said induced voltage estimating means has a function of correcting said q-axis voltage command value according to an input DC voltage of said power converter. Control device.
【請求項5】前記磁石温度補償手段の前記Id補償テー
ブル及び前記Iq補償テーブルは、前記同期機の出力指
令と前記磁石温度推定値を入力として、前記前記dq軸
電流の電流指令補償値を出力するように構成されている
ことを特徴とする請求項3記載の電気車の制御装置。
5. The Id compensation table and the Iq compensation table of the magnet temperature compensating means output a current command compensation value of the dq-axis current with an output command of the synchronous machine and the magnet temperature estimated value as inputs. The control device for an electric vehicle according to claim 3, wherein the control device is configured to:
【請求項6】磁極位置センサを用いた永久磁石型同期機
と、前記同期機を駆動する電力変換器と、前記同期機の
d軸電流指令とq軸電流指令を発生する電流指令発生手
段と、前記d、q軸電流指令と前記同期機の電流検出値
をもとにdq軸電圧指令値を生成し、座標変換処理を行
って交流電圧指令値を生成するdq軸電流制御手段と、
前記交流電圧指令値から前記電力変換器のパワー素子を
駆動する信号を出力するPWM制御手段とを備えた電気
車の制御装置において、 前記同期機の誘起電圧を推定する誘起電圧推定手段と、
永久磁石の材料によって決まる前記同期機の誘起電圧と
温度の関係を与える温度推定テーブルと、前記同期機の
推定誘起電圧と前記温度推定テーブルとから前記同期機
の磁石温度を推定する磁石温度推定手段と、推定された
前記同期機の磁石温度に基づいて前記同期機の永久磁石
の減磁を検出する異常判定手段とを有することを特徴と
する電気車の制御装置。
6. A permanent magnet type synchronous machine using a magnetic pole position sensor, a power converter for driving the synchronous machine, and current command generating means for generating a d-axis current command and a q-axis current command for the synchronous machine. Dq-axis current control means for generating a dq-axis voltage command value based on the d- and q-axis current commands and the current detection value of the synchronous machine, and performing a coordinate conversion process to generate an AC voltage command value;
In a control device for an electric vehicle, comprising: a PWM control unit that outputs a signal for driving a power element of the power converter from the AC voltage command value, an induced voltage estimating unit that estimates an induced voltage of the synchronous machine,
Magnet temperature estimating means for estimating the magnet temperature of the synchronous machine from the temperature estimation table for giving a relationship between the induced voltage of the synchronous machine and the temperature determined by the material of the permanent magnet, and the estimated induced voltage of the synchronous machine and the temperature estimation table And an abnormality determining means for detecting demagnetization of a permanent magnet of the synchronous machine based on the estimated magnet temperature of the synchronous machine.
【請求項7】磁極位置センサを用いた永久磁石型同期機
と、前記同期機を駆動する電力変換器と、前記同期機の
d軸電流指令とq軸電流指令を発生する電流指令発生手
段と、前記d、q軸電流指令と前記同期機の電流検出値
をもとにdq軸電圧指令値を生成し、座標変換処理を行
って交流電圧指令値を生成するdq軸電流制御手段と、
前記交流電圧指令値から前記電力変換器のパワー素子を
駆動する信号を出力するPWM制御手段とを備えた電気
車の制御装置において、前記同期機の誘起電圧を推定す
る誘起電圧推定手段と、永久磁石の材料によって決まる
前記同期機の誘起電圧と温度の関係を与える温度推定テ
ーブルと、前記同期機の推定誘起電圧と前記温度推定テ
ーブルとから前記同期機の磁石温度を推定する磁石温度
推定手段と、推定された前記同期機の磁石温度に基づい
て前記同期機の永久磁石の減磁を検出する異常判定手段
と、前記永久磁石の減磁に応じて前記同期機の出力を補
償するために指令値を補正する指令補正手段とを有する
ことを特徴とする電気車の制御装置。
7. A permanent magnet synchronous machine using a magnetic pole position sensor, a power converter for driving the synchronous machine, and current command generating means for generating a d-axis current command and a q-axis current command for the synchronous machine. Dq-axis current control means for generating a dq-axis voltage command value based on the d- and q-axis current commands and the current detection value of the synchronous machine, and performing a coordinate conversion process to generate an AC voltage command value;
A control device for an electric vehicle including a PWM control unit that outputs a signal for driving a power element of the power converter from the AC voltage command value, wherein an induced voltage estimating unit that estimates an induced voltage of the synchronous machine; A temperature estimation table that gives a relationship between the induced voltage and the temperature of the synchronous machine determined by a material of the magnet; and a magnet temperature estimating unit that estimates a magnet temperature of the synchronous machine from the estimated induced voltage of the synchronous machine and the temperature estimation table. Abnormality determination means for detecting demagnetization of the permanent magnet of the synchronous machine based on the estimated magnet temperature of the synchronous machine; and a command for compensating the output of the synchronous machine according to the demagnetization of the permanent magnet. A control device for an electric vehicle, comprising: command correction means for correcting a value.
【請求項8】磁極位置センサを用いた永久磁石型同期機
と、前記同期機を駆動する電力変換器と、前記同期機の
d軸電流指令とq軸電流指令を発生する電流指令発生手
段と、前記d、q軸電流指令と前記同期機の電流検出値
をもとにdq軸電圧指令値を生成し、座標変換処理を行
って交流電圧指令値を生成するdq軸電流制御手段と、
前記交流電圧指令値から前記電力変換器のパワー素子を
駆動する信号を出力するPWM制御手段とを備えた電気
車の制御装置において、 前記同期機の誘起電圧を推定する誘起電圧推定手段と、
永久磁石の材料によって決まる前記同期機の誘起電圧と
温度の関係を与える温度推定テーブルと、前記同期機の
推定誘起電圧と前記温度推定テーブルとから前記同期機
の磁石温度を推定する磁石温度推定手段と、推定された
前記同期機の磁石温度に基づいて前記同期機の永久磁石
の減磁を検出する異常判定手段と、前記磁石温度推定値
の上昇及び前記永久磁石の減磁に応じて前記同期機の出
力を補償する磁石温度補償手段とを有することを特徴と
する電気車の制御装置。
8. A permanent magnet type synchronous machine using a magnetic pole position sensor, a power converter for driving the synchronous machine, and current command generating means for generating a d-axis current command and a q-axis current command for the synchronous machine. Dq-axis current control means for generating a dq-axis voltage command value based on the d- and q-axis current commands and the current detection value of the synchronous machine, and performing a coordinate conversion process to generate an AC voltage command value;
In a control device for an electric vehicle, comprising: a PWM control unit that outputs a signal for driving a power element of the power converter from the AC voltage command value, an induced voltage estimating unit that estimates an induced voltage of the synchronous machine,
Magnet temperature estimating means for estimating the magnet temperature of the synchronous machine from the temperature estimation table for giving a relationship between the induced voltage of the synchronous machine and the temperature determined by the material of the permanent magnet, and the estimated induced voltage of the synchronous machine and the temperature estimation table Abnormality determination means for detecting demagnetization of the permanent magnet of the synchronous machine based on the estimated magnet temperature of the synchronous machine; and synchronizing in accordance with an increase in the magnet temperature estimated value and demagnetization of the permanent magnet. And a magnet temperature compensating means for compensating the output of the electric machine.
【請求項9】磁極位置センサを用いた永久磁石型同期機
と、前記同期機を駆動する電力変換器と、前記同期機の
d軸電流指令とq軸電流指令を発生する電流指令発生手
段と、前記d、q軸電流指令と前記同期機の電流検出値
をもとにdq軸電圧指令値を生成し、座標変換処理を行
って交流電圧指令値を生成するdq軸電流制御手段と、
前記交流電圧指令値から前記電力変換器のパワー素子を
駆動する信号を出力するPWM制御手段とを備えた制御
装置による電気車の制御方法において、 誘起電圧推定手段により前記同期機の誘起電圧を推定
し、 磁石温度推定手段により、永久磁石の材料によって決ま
る前記同期機の誘起電圧と温度の関係を与える温度推定
テーブルと前記同期機の推定誘起電圧とから前記同期機
の磁石温度を推定し、 磁石温度磁石温度補償手段により、推定された前記磁石
温度の上昇に応じて指令補正手段で前記dq軸指令値を
補償することを特徴とする電気車の制御方法。
9. A permanent magnet type synchronous machine using a magnetic pole position sensor, a power converter for driving the synchronous machine, and current command generating means for generating a d-axis current command and a q-axis current command for the synchronous machine. Dq-axis current control means for generating a dq-axis voltage command value based on the d- and q-axis current commands and the current detection value of the synchronous machine, and performing a coordinate conversion process to generate an AC voltage command value;
A control method for an electric vehicle, comprising: a PWM control unit that outputs a signal for driving a power element of the power converter from the AC voltage command value, wherein an induced voltage of the synchronous machine is estimated by an induced voltage estimation unit. Magnet temperature estimating means for estimating the magnet temperature of the synchronous machine from a temperature estimation table that gives a relationship between the induced voltage of the synchronous machine and the temperature determined by the material of the permanent magnet and the estimated induced voltage of the synchronous machine; A method for controlling an electric vehicle, wherein the dq-axis command value is compensated for by a command correction means in accordance with an estimated rise in the magnet temperature by a temperature magnet temperature compensation means.
【請求項10】磁極位置センサを用いた永久磁石型同期
機と、前記同期機を駆動する電力変換器と、前記同期機
のd軸電流指令とq軸電流指令を発生する電流指令発生
手段と、前記d、q軸電流指令と前記同期機の電流検出
値をもとにdq軸電圧指令値を生成し、座標変換処理を
行って交流電圧指令値を生成するdq軸電流制御手段
と、前記交流電圧指令値から前記電力変換器のパワー素
子を駆動する信号を出力するPWM制御手段とを備えた
電気車の制御方法において、 誘起電圧推定手段により前記同期機の誘起電圧を推定
し、 磁石温度推定手段により、永久磁石の材料によって決ま
る前記同期機の誘起電圧と温度の関係を与える温度推定
テーブルと、前記同期機の推定誘起電圧ととから前記同
期機の磁石温度を推定し、 異常判定手段により、推定された前記同期機の磁石温度
に基づいて前記同期機の永久磁石の減磁を検出し、 指令補正手段により、前記永久磁石の減磁に応じて前記
同期機の出力を補償することを特徴とする電気車の制御
方法。
10. A permanent magnet synchronous machine using a magnetic pole position sensor, a power converter for driving the synchronous machine, and current command generating means for generating a d-axis current command and a q-axis current command for the synchronous machine. A dq-axis current control unit that generates a dq-axis voltage command value based on the d- and q-axis current commands and the current detection value of the synchronous machine, and performs a coordinate conversion process to generate an AC voltage command value; A PWM control means for outputting a signal for driving a power element of the power converter from an AC voltage command value, wherein the induced voltage of the synchronous machine is estimated by an induced voltage estimating means; An estimating means for estimating a magnet temperature of the synchronous machine from a temperature estimation table for giving a relation between an induced voltage of the synchronous machine determined by a material of the permanent magnet and a temperature, and an estimated induced voltage of the synchronous machine; To Detecting the demagnetization of the permanent magnet of the synchronous machine based on the estimated magnet temperature of the synchronous machine, and compensating the output of the synchronous machine according to the demagnetization of the permanent magnet by command correction means. A control method for an electric vehicle, comprising:
JP9161343A 1997-06-18 1997-06-18 Controller and control method for electric vehicle Pending JPH1118496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9161343A JPH1118496A (en) 1997-06-18 1997-06-18 Controller and control method for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9161343A JPH1118496A (en) 1997-06-18 1997-06-18 Controller and control method for electric vehicle

Publications (1)

Publication Number Publication Date
JPH1118496A true JPH1118496A (en) 1999-01-22

Family

ID=15733286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9161343A Pending JPH1118496A (en) 1997-06-18 1997-06-18 Controller and control method for electric vehicle

Country Status (1)

Country Link
JP (1) JPH1118496A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186800A (en) * 1999-12-27 2001-07-06 Toyo Electric Mfg Co Ltd Controller for permanent-magnet synchronous motor
JP2002010677A (en) * 2000-06-21 2002-01-11 Hitachi Ltd Motor-control unit
WO2006056565A1 (en) * 2004-11-25 2006-06-01 Siemens Aktiengesellschaft Method and device for varying a nominal current
JP2006141092A (en) * 2004-11-10 2006-06-01 Mitsubishi Motors Corp Motor controller
JP2006280141A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Constant detector and control unit of motor for hybrid vehicle
WO2006131523A1 (en) * 2005-06-08 2006-12-14 Siemens Vdo Automotive Ag Method and device for controlling a brushless direct-current motor
CN100449014C (en) * 2007-03-07 2009-01-07 北京科技大学 Process of preparing high-performance magnetism temperature compensation alloy for gyroscope
US7531982B2 (en) 2003-07-31 2009-05-12 Toyota Jidosha Kabushiki Kaisha Motor drive apparatus capable of accurately estimating demagnetization of permanent magnet motor
JP2009232531A (en) * 2008-03-21 2009-10-08 Denso Corp Controller for rotating machine, and control system for rotating machine
WO2010049058A2 (en) * 2008-10-31 2010-05-06 Bayerische Motoren Werke Aktiengesellschaft Method for adjusting an electrical drive and motor vehicle
JP2010200430A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Drive controller for motors
DE102013109624A1 (en) 2012-09-06 2014-04-03 Fanuc Corp. Regulating device for permanent magnet synchronous motor, which prevents irreversible demagnetization of the permanent magnet and control system for it
KR20150005044A (en) * 2013-07-04 2015-01-14 현대모비스 주식회사 Apparatus and Method for estimating rotor temperature of motor
JP2015089236A (en) * 2013-10-30 2015-05-07 アイダエンジニアリング株式会社 Controller of synchronous motor
EP2736165A4 (en) * 2011-07-22 2015-10-28 Hitachi Ind Equipment Sys Power converter
CN105121215A (en) * 2013-04-11 2015-12-02 三菱电机株式会社 Cooling control device and cooling control method for electric-vehicle motor
EP1800936A3 (en) * 2005-12-26 2016-10-12 Denso Corporation Control apparatus for electric vehicles
WO2017017211A1 (en) * 2015-07-28 2017-02-02 Mahle International Gmbh Method for determining the rotor temperature in an electric motor
JP2017055552A (en) * 2015-09-09 2017-03-16 日立オートモティブシステムズ株式会社 Motor controller
JP2018027733A (en) * 2016-08-16 2018-02-22 三菱自動車工業株式会社 Charge controller of hybrid vehicle
JP2020191769A (en) * 2019-05-14 2020-11-26 北斗制御株式会社 Electric motor demagnetization detection method
CN113196642A (en) * 2018-12-28 2021-07-30 株式会社日立制作所 Drive device and drive method for rotating electric machine
JP2021182866A (en) * 2017-12-28 2021-11-25 株式会社デンソー Rotary electric machine
JP2022010160A (en) * 2017-12-28 2022-01-14 株式会社デンソー Control device, power conversion device, and rotary electric machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548886B2 (en) * 1999-12-27 2010-09-22 東洋電機製造株式会社 Control device for permanent magnet type synchronous motor
JP2001186800A (en) * 1999-12-27 2001-07-06 Toyo Electric Mfg Co Ltd Controller for permanent-magnet synchronous motor
JP2002010677A (en) * 2000-06-21 2002-01-11 Hitachi Ltd Motor-control unit
JP4577949B2 (en) * 2000-06-21 2010-11-10 日立オートモティブシステムズ株式会社 Motor control device
US7531982B2 (en) 2003-07-31 2009-05-12 Toyota Jidosha Kabushiki Kaisha Motor drive apparatus capable of accurately estimating demagnetization of permanent magnet motor
JP2006141092A (en) * 2004-11-10 2006-06-01 Mitsubishi Motors Corp Motor controller
WO2006056565A1 (en) * 2004-11-25 2006-06-01 Siemens Aktiengesellschaft Method and device for varying a nominal current
US7952311B2 (en) 2004-11-25 2011-05-31 Siemens Aktiengesellschaft Method and apparatus for variation of a rated current
JP2006280141A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Constant detector and control unit of motor for hybrid vehicle
US7746013B2 (en) 2005-06-08 2010-06-29 Siemens Vdo Automotive Ag Method and device for controlling a brushless direct-current motor
WO2006131523A1 (en) * 2005-06-08 2006-12-14 Siemens Vdo Automotive Ag Method and device for controlling a brushless direct-current motor
EP1800936A3 (en) * 2005-12-26 2016-10-12 Denso Corporation Control apparatus for electric vehicles
CN100449014C (en) * 2007-03-07 2009-01-07 北京科技大学 Process of preparing high-performance magnetism temperature compensation alloy for gyroscope
JP2009232531A (en) * 2008-03-21 2009-10-08 Denso Corp Controller for rotating machine, and control system for rotating machine
JP4582168B2 (en) * 2008-03-21 2010-11-17 株式会社デンソー Rotating machine control device and rotating machine control system
WO2010049058A2 (en) * 2008-10-31 2010-05-06 Bayerische Motoren Werke Aktiengesellschaft Method for adjusting an electrical drive and motor vehicle
WO2010049058A3 (en) * 2008-10-31 2011-09-22 Bayerische Motoren Werke Aktiengesellschaft Method for adjusting an electrical drive and motor vehicle
JP2010200430A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Drive controller for motors
EP2736165A4 (en) * 2011-07-22 2015-10-28 Hitachi Ind Equipment Sys Power converter
US9054617B2 (en) 2012-09-06 2015-06-09 Fanuc Corporation Control device of permanent magnet synchronous motor for preventing irreversible demagnetization of permanent magnet and control system including the same
DE102013109624A1 (en) 2012-09-06 2014-04-03 Fanuc Corp. Regulating device for permanent magnet synchronous motor, which prevents irreversible demagnetization of the permanent magnet and control system for it
CN105121215A (en) * 2013-04-11 2015-12-02 三菱电机株式会社 Cooling control device and cooling control method for electric-vehicle motor
US9623753B2 (en) 2013-04-11 2017-04-18 Mitsubishi Electric Corporation Cooling control apparatus and cooling control method for an electric vehicle motor
KR20150005044A (en) * 2013-07-04 2015-01-14 현대모비스 주식회사 Apparatus and Method for estimating rotor temperature of motor
JP2015089236A (en) * 2013-10-30 2015-05-07 アイダエンジニアリング株式会社 Controller of synchronous motor
WO2017017211A1 (en) * 2015-07-28 2017-02-02 Mahle International Gmbh Method for determining the rotor temperature in an electric motor
JP2017055552A (en) * 2015-09-09 2017-03-16 日立オートモティブシステムズ株式会社 Motor controller
JP2018027733A (en) * 2016-08-16 2018-02-22 三菱自動車工業株式会社 Charge controller of hybrid vehicle
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11664707B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
US11831228B2 (en) 2017-07-21 2023-11-28 Denso Corporation Rotating electrical machine
US11962228B2 (en) 2017-07-21 2024-04-16 Denso Corporation Rotating electrical machine
JP2021182866A (en) * 2017-12-28 2021-11-25 株式会社デンソー Rotary electric machine
JP2022010160A (en) * 2017-12-28 2022-01-14 株式会社デンソー Control device, power conversion device, and rotary electric machine
JP2022031937A (en) * 2017-12-28 2022-02-22 株式会社デンソー Rotary electric machine and system comprising the same
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
CN113196642A (en) * 2018-12-28 2021-07-30 株式会社日立制作所 Drive device and drive method for rotating electric machine
JP2020191769A (en) * 2019-05-14 2020-11-26 北斗制御株式会社 Electric motor demagnetization detection method

Similar Documents

Publication Publication Date Title
JPH1118496A (en) Controller and control method for electric vehicle
US9475403B2 (en) DC bus voltage control
KR101157732B1 (en) Controller for electric motor
US10778130B2 (en) Control apparatus for alternating-current rotary electric machine
US7049779B2 (en) Motor drive control apparatus, motor drive control method and program of the same
US5920161A (en) Driving system for permanent magnet type synchronous machine suitable for electric vehicle and driving control method using the same
US8232753B2 (en) Control device for electric motor drive apparatus
EP2034605B1 (en) Electric motor driving device, and compressor driving device
JP3661642B2 (en) Motor control device and control method thereof
JP4715576B2 (en) Electric drive control device and electric drive control method
US10804831B2 (en) Control apparatus for alternating-current rotary electric machine
GB2390767A (en) Vector control system for permanent magnet synchronous motor
JP2003061386A (en) Synchronous motor drive system
JP2000032799A (en) Controller and control method for electric rotating machine
JP4402600B2 (en) Synchronous motor drive system and synchronous motor drive method
JP2011050183A (en) Inverter device
JPH1169900A (en) Controller for electric rolling stock
JP5354036B2 (en) Vehicle and vehicle control method
JP4596906B2 (en) Electric motor control device
JP2018057077A (en) Motor control device and drive system
JP3985550B2 (en) Electric vehicle drive control device, electric vehicle drive control method, and program thereof
US20130278186A1 (en) Ac motor control apparatus
WO2021186842A1 (en) Synchronous machine control device, synchronous machine control method, and electric vehicle
Kano et al. Signal-injection-based sensorless IPM traction drive for wide-torque range operation at low speed
WO2019008838A1 (en) Induction motor drive device and drive method