JP2020191769A - Electric motor demagnetization detection method - Google Patents

Electric motor demagnetization detection method Download PDF

Info

Publication number
JP2020191769A
JP2020191769A JP2019120821A JP2019120821A JP2020191769A JP 2020191769 A JP2020191769 A JP 2020191769A JP 2019120821 A JP2019120821 A JP 2019120821A JP 2019120821 A JP2019120821 A JP 2019120821A JP 2020191769 A JP2020191769 A JP 2020191769A
Authority
JP
Japan
Prior art keywords
induced voltage
motor
demagnetization
coil
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019120821A
Other languages
Japanese (ja)
Other versions
JP6651188B1 (en
Inventor
山本 清
Kiyoshi Yamamoto
山本  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuto Seigyo KK
Original Assignee
Hokuto Seigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuto Seigyo KK filed Critical Hokuto Seigyo KK
Application granted granted Critical
Publication of JP6651188B1 publication Critical patent/JP6651188B1/en
Publication of JP2020191769A publication Critical patent/JP2020191769A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

To provide a demagnetization detection method for an electric motor, which is low cost, highly versatile, and has improved reliability during long-term operation by detecting the demagnetization amount and field temperature from an induced voltage during coasting rotation and monitoring the magnetic life of the permanent magnet field.SOLUTION: A control circuit coasts an electric motor from the energized and controlled rotation state as non-energized to measure a one-phase coil voltage fluctuation width ΔV and an electric angle period t, and stores a value obtained by multiplying the coil voltage fluctuation width ΔV within the obtained electric angle period t by the electric angle period t as an extended induced voltage constant KV, sets one or more desired extended induced voltage constants in advance as a threshold KVth, and determines that demagnetization has occurred when the extended induced voltage constant KV obtained by coasting rotation of the electric motor is equal to or less than the threshold value KVth.SELECTED DRAWING: Figure 3

Description

本開示は、例えば永久磁石界磁型電動機などの減磁検出方法及びこれに付随する界磁温度検出方法に関する。 The present disclosure relates to a demagnetization detection method for, for example, a permanent magnet field type electric motor, and a field temperature detection method associated therewith.

従来、永久磁石界磁型電動機(例えば三相DCモータ等)は、高効率で制御性に優れることから小型から大型まで民生産業用を問わず普及しており、構造的にはブラシレスDCモータ・ブラシ付きDCモータ・ステッピングモータ等に大別される。図13に代表的なモータ例としてセンサレス三相ブラシレス直流(BLDC)モータの構成を示す。回転子軸1を中心に回転する回転子2にはS極とN極で一対の永久磁石界磁3が設けられている。固定子4には120°位相差で設けられた極歯に電機子巻線(コイル)u,v,wが配置され、中性点Cを介してスター結線される。 Conventionally, permanent magnet field electric motors (for example, three-phase DC motors) have been widely used for consumer industries from small to large because of their high efficiency and excellent controllability. Structurally, brushless DC motors It is roughly divided into DC motors with brushes, stepping motors, etc. FIG. 13 shows the configuration of a sensorless three-phase brushless direct current (BLDC) motor as a typical motor example. The rotor 2 that rotates about the rotor shaft 1 is provided with a pair of permanent magnet fields 3 having an S pole and an N pole. Armature windings (coils) u, v, and w are arranged on the pole teeth provided in the stator 4 with a phase difference of 120 °, and are star-connected via the neutral point C.

図14にBLDCモータの駆動回路ブロック図を示す。MOTORはセンサレス三相BLDCモータである。MPU51はマイクロコントローラ(制御回路)で、上位コントローラ50からの回転指令RUNを受けてモータの回転停止制御を行い、また誘起電圧ゼロクロス検出回路(セロクロスコンパレータ:ZERO55)の出力に応じて励磁を切り替える位置センサレス駆動を行う。INV52は、三相ハーフブリッジ型インバータ回路(モータ出力回路)である。 FIG. 14 shows a drive circuit block diagram of the BLDC motor. MOTOR is a sensorless three-phase BLDC motor. The MPU 51 is a microcontroller (control circuit) that controls the rotation stop of the motor in response to the rotation command RUN from the host controller 50, and switches the excitation according to the output of the induced voltage zero cross detection circuit (cellocross comparator: ZERO55). Performs position sensorless drive. The INV 52 is a three-phase half-bridge type inverter circuit (motor output circuit).

図15にBLDCモータの駆動方式の一例として120°通電のタイミングチャートを示す。区間1はU相からV相に、区間2はU相からW相に、区間3はV相からW相に、区間4はV相からU相に、区間5はW相からU相に、区間6はW相からV相に、矩形波通電される。破線は誘起電圧波形である。HU〜HWはホールセンサ出力波形である。 FIG. 15 shows a timing chart of 120 ° energization as an example of the drive method of the BLDC motor. Section 1 is from U phase to V phase, section 2 is from U phase to W phase, section 3 is from V phase to W phase, section 4 is from V phase to U phase, and section 5 is from W phase to U phase. Section 6 is energized with a square wave from the W phase to the V phase. The broken line is the induced voltage waveform. HU to HW are Hall sensor output waveforms.

これらのDCモータはいずれも、界磁に用いている永久磁石が減磁するという欠点があり、減磁は出力低下や発熱増加或いは位置センサレス駆動の始動不安定化といった問題を引き起こす。減磁には種々あるが主に、永久磁石の温度が上昇するほど磁力が低下する熱減磁と、高温あるいは低温の限度を超えると不可逆的に磁力が低下し元に戻らない不可逆減磁、の二種類がある。図1に減磁曲線模式図を示す。横軸は温度T℃で縦軸は磁束密度βである。Loは低温側、Hiは高温側の使用許容温度である。磁束密度βは、温度変化に応じてa−b間を推移し、一度でも温度が限度を超えると不可逆減磁してc−d間を推移する。 All of these DC motors have a drawback that the permanent magnet used for the field magnetism is demagnetized, and the demagnetization causes problems such as a decrease in output, an increase in heat generation, and an unstable start of position sensorless drive. There are various types of demagnetization, but mainly thermal demagnetization, in which the magnetic force decreases as the temperature of the permanent magnet rises, and irreversible demagnetization, in which the magnetic force irreversibly decreases and does not return to the original value when the high or low temperature limit is exceeded. There are two types. FIG. 1 shows a schematic diagram of the demagnetization curve. The horizontal axis is the temperature T ° C. and the vertical axis is the magnetic flux density β. Lo is the low temperature side and Hi is the allowable temperature on the high temperature side. The magnetic flux density β changes between a and b in response to a temperature change, and once the temperature exceeds the limit, it is irreversibly demagnetized and changes between cd.

小型DCモータでは減磁検出はほとんど行われていないが、高出力モータ(電動自動車の主モータや家電用コンプレッサーモータ)は、保磁力の大きなネオジム磁石が用いられ高温で不可逆減磁しやすいことから磁気回路あるいは駆動回路の両面から減磁を低減する方法が研究されており、ロータ構造や界磁温度モニタリング等に関する技術が多数提案されている。 Although demagnetization detection is rarely performed in small DC motors, high-power motors (main motors for electric vehicles and compressor motors for home appliances) use neodymium magnets with a large coercive force and are easily irreversibly demagnetized at high temperatures. Methods for reducing demagnetization from both sides of the magnetic circuit or drive circuit have been studied, and many technologies related to rotor structures, field temperature monitoring, and the like have been proposed.

例えば モータ駆動時の永久磁石界磁の温度をリアルタイムでモニタリングし減磁を防止する方法として以下の文献が存在する。特許文献1(特開2017−28804号公報
)は、駆動用の交流電力に測定用交流電力を重畳させ、インピーダンスを測定し永久磁石の温度を推定するものである。特許文献2(特開2013−255570号公報)は、モータの熱抵抗等からなる熱回路を用いて永久磁石の温度を演算するものである。特許文献3(特開2003−19197号公報)は、コイル電流から誘起電圧を推定し磁極位置の温度変化を補償するものである。上記以外にも例えば減磁による電流増加を検出する方法なども提案されている。
For example, the following documents exist as a method of monitoring the temperature of the permanent magnet field during driving of a motor in real time to prevent demagnetization. Patent Document 1 (Japanese Unexamined Patent Publication No. 2017-28804) superimposes measurement AC power on driving AC power, measures impedance, and estimates the temperature of permanent magnets. Patent Document 2 (Japanese Unexamined Patent Publication No. 2013-255570) calculates the temperature of a permanent magnet using a thermal circuit including the thermal resistance of a motor. Patent Document 3 (Japanese Unexamined Patent Publication No. 2003-19197) estimates the induced voltage from the coil current and compensates for the temperature change of the magnetic pole position. In addition to the above, for example, a method of detecting an increase in current due to demagnetization has also been proposed.

特開2017−28804号公報JP-A-2017-28804 特開2013−255570号公報Japanese Unexamined Patent Publication No. 2013-255570 特開2003−19197号公報Japanese Unexamined Patent Publication No. 2003-19197

先行技術は減磁を検出してリアルタイムに減磁防止動作を行うものがほとんどであり駆動回路の複雑化と高コスト化を招いており、コスト要求が厳しい小型DCモータシステムには導入しにくいという実情がある。
また不可逆減磁は多くの場合長期間かけて非常にゆっくりと進行するため、リアルタイムで減磁を防止する必要性はそれほど高くない。しかし単に磁気的寿命を判定するだけであっても確実に動作するためには測定系に長期間にわたって高い安定度と高精度が要求され、従来の複雑な推定演算による方法では精度的に厳しいことが多い。永久磁石界磁型電動機の不可逆減磁による磁気的劣化は、多くのアプリケーションにおいて検出されておらず、永久磁石界磁の磁気的寿命を超えても使われ続け出力低下や発熱増大を招いている。
Most of the prior arts detect demagnetization and perform demagnetization prevention operation in real time, which leads to complicated drive circuits and high cost, and it is difficult to introduce it into small DC motor systems with strict cost requirements. There is a fact.
Also, since irreversible demagnetization often progresses very slowly over a long period of time, the need to prevent demagnetization in real time is not very high. However, the measurement system is required to have high stability and high accuracy over a long period of time in order to operate reliably even if only the magnetic life is determined, and the accuracy is strict with the conventional complicated estimation calculation method. There are many. Magnetic deterioration due to irreversible demagnetization of the permanent magnet field type motor has not been detected in many applications, and continues to be used even after the magnetic life of the permanent magnet field is exceeded, leading to a decrease in output and an increase in heat generation. ..

永久磁石界磁の減磁を検出するために永久磁石の温度を測定する方法は、間接的であり直接減磁を検出しているわけではないためコイル電流が増加し界磁あるいは電動機外装の温度が異常に上昇しないと減磁していることを検出できない。従って、永久磁石の温度ではなく磁力の低下即ち減磁量を直接検出する方法が望ましい。
また小型DCモータはブラシレスDC(BLDC)モータをはじめブラシ付きDCモータやステッピングモータまで多種多様であり、さらに相数・極数や着磁パターンあるいは回路構成等についても様々な種類があることから、それらすべてのモータシステムに適用できる汎用性が必要である。
さらにモータ温度を温度センサなしで検出できることが望ましい。例えば上位コントローラはモータ温度を表示したり、冷却ファンの回転数を自動調整したりすることも可能となる。
The method of measuring the temperature of the permanent magnet to detect the demagnetization of the permanent magnet field is indirect and does not directly detect the demagnetization, so the coil current increases and the field or the temperature of the motor exterior. It cannot be detected that the magnet is demagnetized unless it rises abnormally. Therefore, it is desirable to directly detect the decrease in magnetic force, that is, the amount of demagnetization, rather than the temperature of the permanent magnet.
In addition, there are a wide variety of small DC motors, including brushless DC (BLDC) motors, brushed DC motors, and stepping motors, and there are also various types of phases / poles, magnetizing patterns, circuit configurations, etc. It needs versatility that can be applied to all of these motor systems.
Further, it is desirable that the motor temperature can be detected without a temperature sensor. For example, the host controller can display the motor temperature and automatically adjust the rotation speed of the cooling fan.

このように減磁検出を高出力モータだけでなく小型DCモータにまで適用範囲を広げようとすると様々な課題がある。要約すると、リアルタイム性は要求されない用途あるいはすでにリアルタイムで減磁対策を行っているシステムの補助手段として、モータ構造や通電方式に依存することのない高い汎用性を備え、しかも界磁温度も検出することができる減磁検出手法を、低価格で簡単なハード・ソフトにて実現することが求められる。 As described above, there are various problems in expanding the application range of demagnetization detection not only to high-power motors but also to small DC motors. In summary, it has high versatility that does not depend on the motor structure or energization method, and also detects the field temperature as an auxiliary means for applications that do not require real-time performance or for systems that have already taken demagnetization measures in real time. It is required to realize a demagnetization detection method that can be performed with low-cost and simple hardware and software.

以下に述べるいくつかの実施形態に適用される開示は、上記課題を解決すべくなされたものであり、その目的とするところは、低価格で汎用性が高く高精度な永久磁石界磁の減磁検出方法並びに界磁温度検出手法を提供し、それにより永久磁石界磁の磁気的寿命を監視して安全性を向上させ更には界磁温度表示を可能とすることにある。 The disclosures applied to some of the embodiments described below are made to solve the above problems, and the purpose thereof is to reduce the permanent magnet field with low cost, versatility and high accuracy. It is an object of the present invention to provide a magnetic detection method and a field temperature detection method, thereby monitoring the magnetic life of a permanent magnet field to improve safety and further enabling field temperature display.

永久磁石界磁を備えた回転子と電機子コイルを有する固定子を備えた電動機と、前記回転子の回転を付勢するように前記電機子コイルへ通電する出力回路と上位コントローラからの指令を受けて前記出力回路による前記電機子コイルへの通電を制御する制御回路と、前記電機子コイルに発生したコイル電圧を測定して前記制御回路へ送出する測定回路と、を有する電動機の減磁検出方法であって、前記制御回路は、前記電動機を通電制御された回転状態から非通電として惰性回転させて一相のコイル電圧変動幅ΔV及び電気角周期tを測定し、得られた電気角周期t内のコイル電圧変動幅ΔVと電気角周期tを乗算して得られた値を拡張誘起電圧定数KVとして記憶し、予め所望の一つ或いは複数の拡張誘起電圧定数を閾値KVthとして設定しておき、電動機を惰性回転させて得られた拡張誘起電圧定数KVが前記閾値KVth以下なら減磁発生と判定することを特徴とする。 A command from an electric motor equipped with a rotor having a permanent magnet field and a stator having an armature coil, an output circuit for energizing the armature coil so as to urge the rotation of the rotor, and a command from an upper controller. Demagnetization detection of an electric motor having a control circuit that receives and controls energization of the armature coil by the output circuit, and a measurement circuit that measures the coil voltage generated in the armature coil and sends it to the control circuit. In a method, the control circuit coasts a non-energized rotating state of the electric motor to measure the one-phase coil voltage fluctuation width ΔV and the electric angle period t, and obtains the electric angle period. The value obtained by multiplying the coil voltage fluctuation width ΔV in t by the electric angle period t is stored as the extended induced voltage constant KV, and one or more desired extended induced voltage constants are set in advance as the threshold KVth. It is characterized in that if the extended induced voltage constant KV obtained by coasting the electric motor is equal to or less than the threshold value KVth, it is determined that demagnetization has occurred.

本発明にかかる減磁検出方法は、基本的にモータの通電期間(RUN)ごとに1回だけ減磁を検出することとしている。リアルタイムに出力を制御して減磁を防止することは想定していない。そこで、通電期間(RUN)直後に数msの短い出力オフ期間を設け、ブレーキをかけることなくモータを惰性回転させ開放状態のコイル電圧を測定する。このタイミングであればモータ駆動に影響を与えず、回転数も高く等速惰性回転とみなすことができ測定精度も確保できる。
Vc=コイル電圧、I=コイル電流、R=コイル抵抗、L=コイルインダクタンス、E=誘起電圧とすると、モータコイルの電圧方程式はVc=IR+Ldi/dt+Eである。上記電圧方程式はI=0のときVc=Eと簡略化される。このとき負荷電流変動もコイル温度特性も無視できるので誘起電圧の検出は容易でしかも誤差がない。そこでI=0を実現するために測定時はコイル通電を遮断し惰性回転させることとする。出力を遮断することで電源ラインと直接的には接続されなくなりコイル電圧は誘起電圧そのものとして扱える。また、誘起電圧E=βlvである(β=磁束密度、l=導体長、v=速度)。従って誘起電圧Eは磁束密度βに比例し、誘起電圧Eにより減磁を検出することができる。惰性回転時の誘起電圧Eは、任意相における通電区間内のコイル電圧変動幅ΔVとして観測され、コイル電圧変動幅ΔVを扱えば中性点電位の検出は不要となる。
さらに誘起電圧Eを回転数Nで除算すれば誘起電圧定数Keとなり、誘起電圧定数Keを扱えば回転数Nに依存しないで減磁を検出できる。誘起電圧E=KeN、N=1/t、(但しt=電気角周期)よりE=Ke/tと表すことができ、変形してKe=Etとなる。さらに前述により惰性回転時の誘起電圧E=コイル電圧変動幅ΔVであるから、Ke=ΔVt、つまり惰性回転時の誘起電圧定数Keはコイル電圧変動幅ΔV×電気角周期tで求めることができ、誘起電圧定数Keも磁束密度βに比例するから減磁を検出することができる。
The demagnetization detection method according to the present invention basically detects demagnetization only once for each energization period (RUN) of the motor. It is not assumed that the output is controlled in real time to prevent demagnetization. Therefore, a short output off period of several ms is provided immediately after the energization period (RUN), the motor is inertially rotated without applying the brake, and the coil voltage in the open state is measured. At this timing, the motor drive is not affected, the rotation speed is high, and it can be regarded as constant-velocity inertial rotation, and measurement accuracy can be ensured.
Assuming that Vc = coil voltage, I = coil current, R = coil resistance, L = coil inductance, and E = induced voltage, the voltage equation of the motor coil is Vc = IR + Ldi / dt + E. The above voltage equation is simplified as Vc = E when I = 0. At this time, since the load current fluctuation and the coil temperature characteristic can be ignored, the induced voltage can be easily detected and there is no error. Therefore, in order to realize I = 0, the coil energization is cut off and the coil is coasted during measurement. By shutting off the output, it is not directly connected to the power supply line and the coil voltage can be treated as the induced voltage itself. Further, the induced voltage E = βlv (β = magnetic flux density, l = conductor length, v = velocity). Therefore, the induced voltage E is proportional to the magnetic flux density β, and demagnetization can be detected by the induced voltage E. The induced voltage E during coastal rotation is observed as the coil voltage fluctuation width ΔV in the energized section in the arbitrary phase, and if the coil voltage fluctuation width ΔV is handled, the detection of the neutral point potential becomes unnecessary.
Further, if the induced voltage E is divided by the rotation speed N, the induced voltage constant Ke can be obtained, and if the induced voltage constant Ke is handled, demagnetization can be detected independently of the rotation speed N. From the induced voltage E = KeN, N = 1 / t, (however, t = electric angle period), it can be expressed as E = Ke / t, and it is transformed into Ke = Et. Further, as described above, since the induced voltage E during coasting rotation = coil voltage fluctuation width ΔV, Ke = ΔVt, that is, the induced voltage constant Ke during coasting rotation can be obtained by the coil voltage fluctuation width ΔV × electric angle period t. Since the induced voltage constant Ke is also proportional to the magnetic flux density β, demagnetization can be detected.

なおブラシ付きDCモータは出力回路にて直流を印可するとモータ内部のブラシにより整流されてコイルには交流が印可される。従って惰性回転時にコイルに発生する誘起電圧は、ブラシにより整流され直流に近い脈流(以下、整流波形という)となって観測されるため、誘起電圧定数Keを求めようとすると演算負荷が大きくなり、しかもブラシノイズなどの影響で測定精度も悪化する。そこで本検出方法では誘起電圧の振幅を推定せず、単にコイル電圧波形の変動幅ΔVだけを扱いそれを拡張誘起電圧定数KVと表記することとする。
誘起電圧定数Keと似ているが波形によっては全く異なる値となるので注意が必要である。拡張誘起電圧定数もKV=ΔVtで求めることができる。整流波形も磁束密度を反映するから拡張誘起電圧定数KVを用いて減磁を検出できる。惰性回転時のコイル電圧波形を、拡張誘起電圧定数KVとして扱うことで歪んだ概正弦波や概矩形波から整流波形まで波形を無視して適用することができる。
When a direct current is applied to the brushed DC motor in the output circuit, it is rectified by the brush inside the motor and an alternating current is applied to the coil. Therefore, the induced voltage generated in the coil during coasting rotation is rectified by the brush and observed as a pulsating current close to direct current (hereinafter referred to as the rectified waveform). Therefore, when trying to obtain the induced voltage constant Ke, the calculation load becomes large. Moreover, the measurement accuracy deteriorates due to the influence of brush noise and the like. Therefore, in this detection method, the amplitude of the induced voltage is not estimated, only the fluctuation width ΔV of the coil voltage waveform is treated, and it is expressed as the extended induced voltage constant KV.
It is similar to the induced voltage constant Ke, but it should be noted that the value may be completely different depending on the waveform. The extended induced voltage constant can also be obtained by KV = ΔVt. Since the rectified waveform also reflects the magnetic flux density, demagnetization can be detected using the extended induced voltage constant KV. By treating the coil voltage waveform during coasting rotation as an extended induced voltage constant KV, it is possible to apply the distorted approximate sine wave, approximate rectangular wave, and rectified waveform by ignoring the waveform.

また、予め所望の一つの拡張誘起電圧定数を閾値KVthとして設定しておくことで、1レベルの減磁発生を判定できる。
さらに予め複数の拡張誘起電圧定数を想定し複数の閾値KVth1〜nとして設定しておくことで、より精細な減磁判定を行うことが可能となる。例えば、予防安全のための減磁限界値より小さな閾値KVth1と、寿命判定のための減磁限界値と等しい閾値KVth2と、緊急事態に対処するための減磁限界値より大きな閾値KVth3の3段階を設定しておく。これにより測定した拡張誘起電圧定数KVが、KVth3を越えたら「高温・減磁警報」、KVth2を超えたら「モータ交換警告」、KVth1を超えたら「減磁注意報」、を制御回路は発令することができる。
Further, by setting one desired extended induced voltage constant as the threshold value KVth in advance, it is possible to determine the occurrence of one level of demagnetization.
Further, by assuming a plurality of extended induced voltage constants in advance and setting them as a plurality of threshold values KVth1 to n, it is possible to perform a finer demagnetization determination. For example, there are three stages: a threshold value KVth1 smaller than the demagnetization limit value for preventive safety, a threshold value KVth2 equal to the demagnetization limit value for life determination, and a threshold value KVth3 larger than the demagnetization limit value for dealing with an emergency. Is set. The control circuit issues a "high temperature / demagnetization warning" when the extended induced voltage constant KV measured by this exceeds KVth3, a "motor replacement warning" when it exceeds KVth2, and a "demagnetization warning" when it exceeds KVth1. be able to.

前記電動機を非通電として惰性回転させ、多相コイルの任意の一相のコイルを接地電位あるいは電源電位に接続し他相を開放としてから、開放相の一相のコイル電圧変動幅ΔV及び電気角周期tを測定することが好ましい。
通常、駆動回路の出力部にはFET(Field Effect Transistor)ゲートをプリドライブするための昇圧回路(チャージポンプ、ブートストラップ回路)やスイッチングノイズ除去フィルタ、あるいはセンサレス駆動の場合は中性点検出用の抵抗ネットワークなどが接続される。そのためコイルにはわずかな電流が流れ、非通電時のコイル端子は高インピーダンス状態となることから大きな電位が発生して中性点電位は電源電圧の1/2の値から大きく外れ、また回転数が高いと誘起電圧は電源電圧範囲を超えること、などから誘起電圧はFETボディーダイオードにより電源ラインにクランプされる。
これらの中性点電位変動や誘起電圧振幅変化を避けて正確に線間誘起電圧を測定するためには、コイル線をリレーなどで出力手段から切り離したうえで計測アンプによる差動入力で受ける必要がある。リレーやMOSスイッチ(SSR)などは動作時間が遅いあるいはON抵抗が大きいといった欠点がある。さらに計測アンプを動作させるためには+側電源及び−側電源を設けなければならずアンプの電源電圧はモータ電源電圧の2倍必要となるが、高電圧動作アンプは製造が困難であることからモータ電源電圧が12Vを超える場合などは各相の入力部に分圧抵抗を設けて測定電圧を下げる必要がある。従って測定手段が非常に大がかりとなり誤差要因が増えコストもかさむ。
The electric motor is de-energized and coasted, and any one-phase coil of the multi-phase coil is connected to the ground potential or power supply potential to open the other phase, and then the coil voltage fluctuation width ΔV and electric angle of the open phase one phase are opened. It is preferable to measure the period t.
Normally, the output of the drive circuit is a booster circuit (charge pump, bootstrap circuit) for pre-driving a FET (Field Effect Transistor) gate, a switching noise removal filter, or in the case of sensorless drive, for neutral point detection. A resistance network etc. is connected. Therefore, a small amount of current flows through the coil, and the coil terminal when not energized is in a high impedance state, so a large potential is generated, the neutral point potential greatly deviates from the value of 1/2 of the power supply voltage, and the number of revolutions. If is high, the induced voltage exceeds the power supply voltage range, and the induced voltage is clamped to the power supply line by the FET body diode.
In order to accurately measure the interline induced voltage while avoiding these neutral point potential fluctuations and induced voltage amplitude changes, it is necessary to disconnect the coil wire from the output means with a relay or the like and receive it with a differential input by a measuring amplifier. There is. Relays and MOS switches (SSRs) have drawbacks such as slow operation time or large ON resistance. Furthermore, in order to operate the measurement amplifier, a + side power supply and a-side power supply must be provided, and the power supply voltage of the amplifier is required to be twice the motor power supply voltage, but it is difficult to manufacture a high voltage operation amplifier. When the motor power supply voltage exceeds 12V, it is necessary to provide a voltage dividing resistor at the input portion of each phase to lower the measured voltage. Therefore, the measuring means becomes very large, error factors increase, and the cost increases.

そこで、測定相以外の任意の一相を出力手段により接地電位あるいは電源電位に短絡させたうえでコイル電圧測定をする。これによりコイル全体は電源ラインに対しコイル直流抵抗成分だけとなり低インピーダンスとなることから、出力手段に接続されている各種の抵抗やコンデンサやダイオードなどの影響をほとんど受けなくなる。従って、コイル線をリレー等により遮断することなく駆動回路とコイルを接続したまま測定しても、出力手段に付加した構成部品にほとんど影響されることがなく誘起電圧を正確に測定でき測定手順及び測定回路が大幅に簡略化できる。
例えば一相を短絡相として接地電位GNDに接続する(短絡する)ことにより、他の開放相端子には誘起電圧がGNDを中心に正負に発生する。誘起電圧波形は、負電圧側の半サイクルは出力手段FETのボディーダイオードを経由してGND電位にクランプされるため半波整流波形となり、負電圧の整流期間は誘起電圧を検出できない。しかし正電圧の半サイクルはクランプされないため誘起電圧を検出でき、コイル電圧変動幅ΔVから短絡相と開放相との合成誘起電圧の正ピーク電圧即ち線間誘起電圧(0toPEAK)が検出できる。
測定タイミングは、開放二相がともに正電圧となるおおむね120°の区間である。この区間に必ず正電圧ピークが存在するので確実にピーク電圧を検出できる。
以上の方法によれば正電圧側の誘起電圧はクランプされることなく測定でき、誤差の少ない線間誘起電圧(0toPEAK)を測定できるのですでに述べてきた方法で拡張誘起電圧定数KVを求めることができ高精度で減磁を検出可能である。
Therefore, the coil voltage is measured after short-circuiting any one phase other than the measurement phase to the ground potential or the power supply potential by the output means. As a result, the entire coil has only the coil DC resistance component with respect to the power supply line and has a low impedance, so that it is hardly affected by various resistors, capacitors, diodes, etc. connected to the output means. Therefore, even if the measurement is performed with the drive circuit and the coil connected without interrupting the coil wire by a relay or the like, the induced voltage can be accurately measured with almost no influence on the components added to the output means. The measurement circuit can be greatly simplified.
For example, by connecting (short-circuiting) one phase to the ground potential GND as a short-circuit phase, an induced voltage is generated positively or negatively around GND at the other open-phase terminals. The induced voltage waveform becomes a half-wave rectified waveform because the half cycle on the negative voltage side is clamped to the GND potential via the body diode of the output means FET, and the induced voltage cannot be detected during the negative voltage rectification period. However, since the half cycle of the positive voltage is not clamped, the induced voltage can be detected, and the positive peak voltage of the combined induced voltage of the short-circuit phase and the open phase, that is, the line-induced induced voltage (0toPEAK) can be detected from the coil voltage fluctuation width ΔV.
The measurement timing is a section of approximately 120 ° in which both open two phases have a positive voltage. Since a positive voltage peak always exists in this section, the peak voltage can be reliably detected.
According to the above method, the induced voltage on the positive voltage side can be measured without being clamped, and the line induced voltage (0toPEAK) with less error can be measured. Therefore, the extended induced voltage constant KV can be obtained by the method already described. It is possible to detect demagnetization with high accuracy.

未減磁状態で標準温度時の拡張誘起電圧定数KVあるいは前記閾値KVthと、今回測定した拡張誘起電圧定数KVとの差分から減磁量を検出してもよい。
これにより、減磁量を検出することで、減磁量を表示したり外部機器の制御に反映させたりすることができ、また減磁曲線(図1参照)の減磁量変化に照らし合わせて、減磁発生の要因が熱減磁によるものか、不可逆減磁によるものかを特定することができる。
The demagnetization amount may be detected from the difference between the extended induced voltage constant KV at the standard temperature or the threshold value KVth and the extended induced voltage constant KV measured this time in the unmagnetized state.
As a result, by detecting the demagnetization amount, the demagnetization amount can be displayed or reflected in the control of the external device, and also in comparison with the demagnetization amount change of the demagnetization curve (see FIG. 1). , It is possible to identify whether the cause of demagnetization is thermal demagnetization or irreversible demagnetization.

前記電動機の設計段階で使用最高温度を設定し、電動機運用前に前記永久磁石界磁が使用最高温度のときの拡張誘起電圧定数KVを推定若しくは測定し、前記制御回路は得られた値を閾値KVthとして記憶しておくことが好ましい。
界磁マグネットは使用初期に減磁しそれから安定する性質をもっているため、閾値は初期減磁を見込んで設定しなければならない。そこでいったん使用最高温度にして初期減磁を発生させてしまえば電動機運用時は初期減磁を考慮する必要がなくなり、閾値の設定が非常に簡単に行える。
The maximum operating temperature is set at the design stage of the motor, the extended induced voltage constant KV when the permanent magnet field is at the maximum operating temperature is estimated or measured before the operation of the motor, and the control circuit sets the obtained value as a threshold value. It is preferable to store it as KVth.
Since the field magnet has the property of demagnetizing at the initial stage of use and then stabilizing, the threshold value must be set in anticipation of the initial demagnetization. Therefore, once the maximum operating temperature is set and the initial demagnetization is generated, it is not necessary to consider the initial demagnetization when operating the motor, and the threshold value can be set very easily.

前記制御回路は、電動機運用前に少なくとも3点以上の複数の界磁温度にて拡張誘起電圧定数KVを推定若しくは測定して記憶しておき、前記界磁温度と前記拡張誘起電圧定数KVとの関係を表す関数(近似式)を求めて前記制御回路に記憶し、電動機運用時において拡張誘起電圧定数KVの測定時に前記関数を用いて界磁温度を推定することが好ましい。
実測により拡張誘起電圧定数KVと界磁温度Tの関係を表す関数を求めることができ、図3のように近似曲線MOTを描く。従って、測定によって拡張誘起電圧定数KVが得られたときは、近似式を用いて界磁温度を求めることができる。関数は二次近似式でも実用になるので最低3点の拡張誘起電圧定数KVを測定すれば演算用の二次関数を決定することができる。
In the control circuit, the extended induced voltage constant KV is estimated or measured and stored at a plurality of field temperatures of at least three points or more before the operation of the motor, and the field temperature and the extended induced voltage constant KV are stored. It is preferable to obtain a function (approximate formula) representing the relationship, store it in the control circuit, and estimate the field temperature using the function when measuring the extended induced voltage constant KV during operation of the motor.
By actual measurement, a function representing the relationship between the extended induced voltage constant KV and the field temperature T can be obtained, and an approximate curve MOT is drawn as shown in FIG. Therefore, when the extended induced voltage constant KV is obtained by the measurement, the field temperature can be obtained by using an approximate expression. Since the function can be put into practical use even with a quadratic approximation formula, a quadratic function for calculation can be determined by measuring at least three extended induced voltage constants KV.

前記制御回路は、電動機運用前に永久磁石界磁の標準温度にて拡張誘起電圧定数KVを推定若しくは測定して記憶しておき、電動機運用時に再び前記標準温度で拡張誘起電圧定数KVを測定し、今回測定値と運用前に記憶した拡張誘起電圧定数KVとの差分に基づいて上述で求めた関数の切片が補正された新たな関数を求めて前記制御回路に記憶し、拡張誘起電圧定数KVの測定時に前記補正された新たな関数を用いて界磁温度を推定することが好ましい。
不可逆減磁が発生するとオフセット誤差が生じ実際より高い温度に演算されるが、不可逆減磁量が判ればオフセットを補償できる。そこで、電動機運用前に標準温度で初期の拡張誘起電圧定数KVを求めて記憶しておき、電動機運用時に必要に応じて再度、標準温度
にて拡張誘起電圧定数KVを測定し、初期の標準温度での拡張誘起電圧定数KVとの差分
を不可逆減磁とみなして上述で求めた関数の切片が異なる新たな関数をオフセット補償として用いる。
オフセット補償は温度推定についてだけ行い、減磁判定に関してはオフセット補償しないでおけば減磁判定は不可逆減磁まで含めて行われ安全性は確保できる。
よって、モータ運用時にモータを標準温度にして拡張誘起電圧定数KVを測定し、それに基づいて上述で求めた関数の切片を補正して不可逆減磁によるオフセットを補償し、補正された新たな関数にて界磁温度の演算を行うことで、不可逆減磁が発生しても正確に界磁温度を検出することができる。
The control circuit estimates or measures and stores the extended induced voltage constant KV at the standard temperature of the permanent magnet field before operating the electric motor, and measures the extended induced voltage constant KV again at the standard temperature when operating the electric motor. , A new function obtained by correcting the section of the function obtained above based on the difference between the measured value this time and the extended induced voltage constant KV stored before the operation is obtained and stored in the control circuit, and the extended induced voltage constant KV is stored. It is preferable to estimate the field temperature using the corrected new function at the time of measurement.
When irreversible demagnetization occurs, an offset error occurs and the temperature is calculated to be higher than the actual temperature, but if the irreversible demagnetization amount is known, the offset can be compensated. Therefore, before operating the electric motor, the initial extended induced voltage constant KV is obtained and stored at the standard temperature, and when the electric motor is operated, the extended induced voltage constant KV is measured again at the standard temperature as needed, and the initial standard temperature is measured. The difference from the extended induced voltage constant KV in is regarded as irreversible demagnetization, and a new function with a different section of the function obtained above is used as offset compensation.
If offset compensation is performed only for temperature estimation and demagnetization judgment is not performed, demagnetization judgment is performed including irreversible demagnetization, and safety can be ensured.
Therefore, when the motor is in operation, the extended induced voltage constant KV is measured by setting the motor to the standard temperature, and based on this, the section of the function obtained above is corrected to compensate for the offset due to irreversible demagnetization, and the new function is corrected. By calculating the field temperature, the field temperature can be detected accurately even if irreversible demagnetization occurs.

上述した電動機の減磁検出方法を用いれば、永久磁石界磁の減磁及び界磁温度を高精度で検出でき、出力低下や過熱を予防することができる。上位コントローラは減磁判定結果や界磁温度情報を受信し、減磁アラームを出力し界磁温度を表示することができる。あるいは界磁温度に応じて外部機器を制御することができる。また減磁判定に際して負荷電流・コイル抵抗温度特性・回転数には依存しない。BLDCモータ・ステッピングモータ・ブラシ付きDCモータなどを含む幅広い電動機に適用することができる。また、アルゴリズムが明快で低コストで既存回路に組み込んで実用化することができる。 By using the demagnetization detection method of the electric motor described above, the demagnetization and field temperature of the permanent magnet field can be detected with high accuracy, and the output decrease and overheating can be prevented. The host controller can receive the demagnetization determination result and field temperature information, output a demagnetization alarm, and display the field temperature. Alternatively, the external device can be controlled according to the field temperature. In addition, it does not depend on the load current, coil resistance temperature characteristics, and rotation speed when determining demagnetization. It can be applied to a wide range of electric motors including BLDC motors, stepping motors, brushed DC motors, and the like. In addition, the algorithm is clear and can be incorporated into an existing circuit at low cost for practical use.

減磁曲線である。It is a demagnetization curve. 各種モータのコイル電圧波形模式図である。It is a schematic diagram of the coil voltage waveform of various motors. 拡張誘起電圧定数の温度特性図である。It is a temperature characteristic diagram of the extended induced voltage constant. 測定タイミングの説明図である。It is explanatory drawing of the measurement timing. 本案によるセンサレスBLDCモータの駆動回路ブロック図である。It is a drive circuit block diagram of the sensorless BLDC motor by this invention. 拡張誘起電圧定数の検出フローチャートである。It is a detection flowchart of the extended induced voltage constant. 非減磁BLDCモータのコイル電圧実測波形である。It is a coil voltage measurement waveform of a non-magnetized BLDC motor. 減磁BLDCモータのコイル電圧実測波形である。It is a coil voltage measurement waveform of a demagnetized BLDC motor. ステッピングモータの駆動回路ブロック図である。It is a drive circuit block diagram of a stepping motor. ステッピングモータのコイル電圧実測波形であるThis is the measured waveform of the coil voltage of the stepping motor. ブラシ付きDCモータの駆動回路ブロック図である。It is a drive circuit block diagram of a DC motor with a brush. ブラシ付きDCモータのコイル電圧実測波形であるThis is the measured waveform of the coil voltage of the brushed DC motor. センサレスBLDCモータの構成例である。This is a configuration example of a sensorless BLDC motor. 従来のセンサレスBLDCモータの駆動回路ブロック図である。It is a drive circuit block diagram of the conventional sensorless BLDC motor. 120°通電のタイミングチャートである。It is a timing chart of 120 ° energization. コイルを開放してモータを惰性回転したときの線間誘起電圧波形である。This is the line-induced voltage waveform when the coil is opened and the motor is inertially rotated. 一相を接地電位に接続してモータを惰性回転したときのコイル電圧波形である。It is a coil voltage waveform when one phase is connected to the ground potential and the motor is inertially rotated. 駆動回路(ECU)と接続された外部測定回路のブロック構成図である。It is a block block diagram of the external measurement circuit connected to the drive circuit (ECU).

以下、本発明に係る永久磁石界磁型電動機の減磁検出方法の実施形態について、3タイプの電動機(ブラシレスDCモータ、ステッピングモータ、ブラシ付きDCモータ)を例示し、添付図面を参照しながら説明する。 Hereinafter, embodiments of the demagnetization detection method for the permanent magnet field type electric motor according to the present invention will be described with reference to the attached drawings, exemplifying three types of electric motors (brushless DC motor, stepping motor, and brushed DC motor). To do.

(実施例1:ブラシレスDCモータ)
電動機の一例として三相ブラシレスDCモータを例示して説明する。三相ブラシレスDCモータは、回転子2に永久磁石界磁3を備え、固定子4に巻き線を120°位相差で配置してスター結線され、相端がモータ出力回路に接続されており、以下では近年利用が拡大しているセンサレスBLDCモータを用いて説明する。
(Example 1: Brushless DC motor)
A three-phase brushless DC motor will be described as an example of an electric motor. In a three-phase brushless DC motor, the rotor 2 is provided with a permanent magnet field 3, the stator 4 is star-connected by arranging windings with a phase difference of 120 °, and the phase ends are connected to the motor output circuit. In the following, a sensorless BLDC motor, whose use has been expanding in recent years, will be described.

図13にセンサレスBLDCモータが例示されているので同図を援用して説明する。図13は一例として2極永久磁石界磁3と3スロットを設けた固定子4を備えた三相ブラシレスDCモータを例示している。極数及び相数は任意である。界磁配置はインナーロータ型でもアウターロータ型でもいずれでもよい。また永久磁石埋め込み型(IPM)モータや表面永久磁石型(SPM)モータのいずれであってもよい。回転子軸1には回転子2が一体に設けられ、界磁として2極の永久磁石が設けられている。固定子4には120°位相差で極歯U,V,Wが永久磁石界磁3に対向して配置されている。固定子4の各極歯U,V,Wに電機子巻線(コイル)u,v,wを設けて相間をコモンCでスター結線して後述するモータ出力回路にu,v,wが配線される三相ブラシレスDCモータとなっている。 Since the sensorless BLDC motor is illustrated in FIG. 13, the same figure will be referred to for description. FIG. 13 illustrates, as an example, a three-phase brushless DC motor provided with a two-pole permanent magnet field 3 and a stator 4 provided with three slots. The number of poles and the number of phases are arbitrary. The field arrangement may be either an inner rotor type or an outer rotor type. Further, it may be either a permanent magnet embedded type (IPM) motor or a surface permanent magnet type (SPM) motor. A rotor 2 is integrally provided on the rotor shaft 1, and a two-pole permanent magnet is provided as a field magnet. Polar teeth U, V, and W are arranged on the stator 4 with a phase difference of 120 ° so as to face the permanent magnet field 3. Armature windings (coils) u, v, and w are provided on the pole teeth U, V, and W of the stator 4, star connections are made between the phases with a common C, and u, v, and w are wired to the motor output circuit described later. It is a three-phase brushless DC motor.

図5にセンサレスBLDCモータのモータ駆動回路のブロック構成図を例示する。通電方式は正弦波駆動でも矩形波駆動でもよいがここでは120°通電を例示する。図14を援用し共通部分の符号は同じものを用いる。例示した従来のセンサレス駆動回路と本案との相違点は1相分のコイル電圧をADコンバータ(ADC54)にて測定する部分であり、抵抗2個で構成される1相分の分圧手段(DIV)が追加されている。 FIG. 5 illustrates a block configuration diagram of a motor drive circuit of a sensorless BLDC motor. The energization method may be sine wave drive or square wave drive, but here, 120 ° energization is illustrated. With reference to FIG. 14, the same reference numerals are used for the common parts. The difference between the conventional sensorless drive circuit illustrated and the present invention is the part where the coil voltage for one phase is measured by the AD converter (ADC54), and the voltage dividing means for one phase (DIV) composed of two resistors. ) Has been added.

MOTORは三相センサレスモータである。MPU51はマイクロコントローラ(制御回路)である。MPU51は、三相コイルU,V,Wに対する6通りの通電パターンと各通電パターンに対応する120°通電の励磁切り替え区間(区間1〜区間6:図15参照)を指定する界磁位置情報を記憶している。MPU51は上位コントローラ50からのトルク指令に応じて後述する出力回路(INV52)をスイッチング制御し、三相コイルへの励磁状態を任意に切り替えるPWM(Pulse Width Modulation)制御回路(PWM53)及びコイル電圧を測定可能なADコンバータ(Analog-to-Digital Converter(測定回路):以下「ADC54」と表記する)を内蔵する。 MOTOR is a three-phase sensorless motor. The MPU 51 is a microcontroller (control circuit). The MPU 51 provides field position information that specifies six types of energization patterns for the three-phase coils U, V, and W and 120 ° energization switching sections (sections 1 to 6: see FIG. 15) corresponding to each energization pattern. I remember. The MPU 51 switches and controls the output circuit (INV52) described later in response to a torque command from the host controller 50, and controls the PWM (Pulse Width Modulation) control circuit (PWM53) and coil voltage that arbitrarily switch the excitation state to the three-phase coil. It has a built-in measurable AD converter (Analog-to-Digital Converter (measurement circuit): hereinafter referred to as "ADC54").

出力回路(INV52)は、三相コイルに通電し、モータトルクを制御するために励磁相切り替えあるいはPWM制御などのスイッチング動作を行う。上記出力回路(INV52)は、スイッチング素子として電界効果トランジスタ及びこれに逆並列に接続されるダイオードを備え、正極電源ライン及び接地電源ラインに任意に接続可能なハーフブリッジ型スイッチング回路が3相分設けられている。
また、非通電区間の中間で誘起電圧の正負が切り替わるいわゆるゼロクロス点が発生する。センサレスモータではこのゼロクロス点をゼロクロスコンパレータ(ZERO55)により検出してタイマーを用いて電気角で30°遅延を設けて励磁切り替えを行う位置センサレス駆動が用いられている。
The output circuit (INV52) energizes the three-phase coil and performs switching operations such as excitation phase switching or PWM control in order to control the motor torque. The output circuit (INV52) includes a field effect transistor as a switching element and a diode connected in antiparallel to the field effect transistor, and a half-bridge type switching circuit that can be arbitrarily connected to a positive electrode power supply line and a ground power supply line is provided for three phases. Has been done.
In addition, a so-called zero cross point occurs in which the positive and negative of the induced voltage is switched in the middle of the non-energized section. In the sensorless motor, a position sensorless drive is used in which the zero cross point is detected by a zero cross comparator (ZERO55) and a timer is used to provide a delay of 30 ° in the electric angle to perform excitation switching.

ADコンバータ(ADC54)は、分圧回路(DIV)を介してコイル出力の任意の1相が接続され、制御回路(MPU51)からの測定開始命令によりサイクリックにコイル電圧をサンプリングし、順次アナログ・デジタル変換し、変換結果を制御回路(MPU51)に送出する。通常ADコンバータ(ADC54)は制御回路(MPU51)に内蔵されており、最大入力電圧が低いため抵抗による分圧回路(DIV)を設けて入力レンジのスケーリングを行うことが望ましい。 In the AD converter (ADC54), any one phase of the coil output is connected via the voltage divider circuit (DIV), the coil voltage is cyclically sampled by the measurement start command from the control circuit (MPU51), and the coil voltage is sequentially analogized. It is digitally converted and the conversion result is sent to the control circuit (MPU51). Normally, the AD converter (ADC54) is built in the control circuit (MPU51), and since the maximum input voltage is low, it is desirable to provide a voltage dividing circuit (DIV) by a resistor to scale the input range.

(拡張誘起電圧定数による減磁検出)
前述したようにモータコイルの電圧方程式は、Vc=IR+LdI/dt+Eである。但しVc=コイル電圧、I=コイル電流、R=コイル抵抗、L=コイルインダクタンス、E=誘起電圧とする。上記電圧方程式はI=0のときVc=Eと簡略化される。このとき負荷電流変動もコイル温度特性も無視できるので誘起電圧の検出は容易でしかも誤差がない。
(Detection of demagnetization by extended induced voltage constant)
As described above, the voltage equation of the motor coil is Vc = IR + LdI / dt + E. However, Vc = coil voltage, I = coil current, R = coil resistance, L = coil inductance, E = induced voltage. The above voltage equation is simplified as Vc = E when I = 0. At this time, since the load current fluctuation and the coil temperature characteristic can be ignored, the induced voltage can be easily detected and there is no error.

I=0を実現するためにコイル電圧測定時はコイル通電を遮断し惰性回転させることとする。通電を遮断したコイルは開放相となり、開放相コイル電圧Vzには直流成分の中性点電位とそれに重畳して交流成分の誘起電圧が発生する。
誘起電圧E=βlvである。但しβ=磁束密度、l=導体長、v=速度。よって誘起電圧は磁束密度に比例し、誘起電圧から減磁を検出できる。
誘起電圧定数Ke=誘起電圧E/回転数Nである。またN=1/t、但しt=電気角周期、よりKe=E・tである。誘起電圧定数Keは回転数Nに依存しないことから、誘起電圧定数Keを扱うことによりコイル電圧測定時の回転数の制約を無くす。
In order to realize I = 0, when measuring the coil voltage, the coil energization is cut off and the coil is coasted. The coil that shuts off the energization becomes an open phase, and the neutral point potential of the DC component and the induced voltage of the AC component are generated on the open phase coil voltage Vz.
The induced voltage E = βlv. However, β = magnetic flux density, l = conductor length, v = velocity. Therefore, the induced voltage is proportional to the magnetic flux density, and demagnetization can be detected from the induced voltage.
Induced voltage constant Ke = induced voltage E / rotation speed N. Further, N = 1 / t, where t = electric angle period, and therefore Ke = E · t. Since the induced voltage constant Ke does not depend on the rotation speed N, handling the induced voltage constant Ke eliminates the restriction on the rotation speed at the time of coil voltage measurement.

さらに本検出方法は開放相コイル電圧の交流成分として正弦波だけでなく整流波形などの脈流にまで拡張することとする。そこで、電気角内のコイル電圧変動幅をΔVとし電気角周期をtとしたとき、ΔV×tあるいはΔV/Nにて定数化した交流成分を拡張誘起電圧定数KVと定義する。
ゆえにKV=ΔV・t、あるいはKV=ΔV/N
本検出方法はこのように拡張誘起電圧定数KVを用いることで中性点電位の検出を不要としまた開放相コイル電圧波形の制約を無くす。以下に具体的な波形を例示して説明する。
Furthermore, this detection method extends not only the sinusoidal wave but also the pulsating flow such as the rectified waveform as the AC component of the open phase coil voltage. Therefore, when the coil voltage fluctuation width within the electric angle is ΔV and the electric angle period is t, the AC component constantized by ΔV × t or ΔV / N is defined as the extended induced voltage constant KV.
Therefore, KV = ΔV · t, or KV = ΔV / N
This detection method eliminates the need to detect the neutral point potential and eliminates the restriction of the open phase coil voltage waveform by using the extended induced voltage constant KV in this way. A specific waveform will be illustrated below.

図2に各種モータの惰性回転時のコイル電圧波形模式図を示す。横軸は時間Time、縦軸は電圧Vである。開放相コイル電圧Vzは中性点電位に誘起電圧が重畳する。ΔVは電気角内のコイル電圧変動幅、tは電気角周期である。A図はサイン波着磁ブラシレスDCモータの波形例、B図は矩形波着磁ブラシレスDCモータの波形例、C図はステッピングモータの波形例、D図はブラシ付きDCモータの波形例である。
各波形のΔV×tの矩形波面積が拡張誘起電圧定数KVに相当し、図から波形への依存性が無いことが判る。また誘起電圧定数Keは中性点電位を基準とする0 to Peak値であるが、拡張誘起電圧定数KVは中性点電位と無関係であり値も誘起電圧定数Keと異なる。例えばA図ブラシレスモータはKV=2Ke、D図ブラシ付きモータはKV=0.232Keとなる。
FIG. 2 shows a schematic diagram of coil voltage waveforms during inertial rotation of various motors. The horizontal axis is time Time, and the vertical axis is voltage V. In the open phase coil voltage Vz, the induced voltage is superimposed on the neutral point potential. ΔV is the coil voltage fluctuation width within the electric angle, and t is the electric angle period. Figure A is a waveform example of a sine wave magnetizing brushless DC motor, Figure B is a waveform example of a square wave magnetizing brushless DC motor, Figure C is a waveform example of a stepping motor, and Figure D is a waveform example of a brushed DC motor.
It can be seen from the figure that the rectangular wave area of ΔV × t of each waveform corresponds to the extended induced voltage constant KV, and there is no dependence on the waveform. The induced voltage constant Ke is a 0 to Peak value based on the neutral point potential, but the extended induced voltage constant KV is irrelevant to the neutral point potential and the value is also different from the induced voltage constant Ke. For example, the brushless motor in Fig. A has KV = 2Ke, and the motor with brush in Fig. D has KV = 0.232Ke.

各相の電気的特性と熱的特性は対称性があると考えてよいため、コイル電圧の測定は1相についてだけ行う。これにより相数の制約を無くす。
具体的な測定方法は、1相のコイル電圧について惰性回転時にADコンバータ(ADC54)でサイクリックに高速サンプリングし、1電気角に相当するコイル電圧測定データ群から最大値と最小値を選び出し、最大値と最小値の差分をとって電圧変動幅ΔVを抽出する。またコイル電圧測定データ群から電気角周期tも抽出する。コイル電圧変動幅ΔV×電気角周期tにより拡張誘起電圧定数KVを求める。
予め減磁を見込んだ適切な閾値を設定しておき、得られた拡張誘起電圧定数KVと大小比較すれば、減磁量が大きくなり磁束密度が閾値以下に低下したかどうか、即ち磁気的寿命となったか判定できる。また、得られた拡張誘起電圧定数KVと閾値との差分から減磁量を検出できる。さらには未減磁状態で標準温度時の拡張誘起電圧定数KVあるいは前記閾値KVthと、今回測定した拡張誘起電圧定数KVとの差分から減磁量を検出してもよい。これにより、減磁量を検出することで、減磁量を表示したり外部機器の制御に反映させたりすることができ、また減磁曲線(図1参照)の減磁量変化に照らし合わせて、減磁発生の要因が熱減磁によるものか、不可逆減磁によるものかを特定することができる。
本検出方法は上述の手法を用いることで、モータ構造・通電方式・負荷電流・コイル抵抗等に影響されず、相数・電源電圧・測定回転数・コイル電圧波形等の制約もなく、極めて高い汎用性と安定性そして高精度を実現できる。
Since the electrical and thermal characteristics of each phase can be considered to be symmetrical, the coil voltage is measured for only one phase. This removes the restriction on the number of phases.
The specific measurement method is to cyclically sample the one-phase coil voltage at high speed with an AD converter (ADC54) during coasting rotation, select the maximum and minimum values from the coil voltage measurement data group corresponding to one electrical angle, and maximize the value. The voltage fluctuation width ΔV is extracted by taking the difference between the value and the minimum value. The electric angle period t is also extracted from the coil voltage measurement data group. The extended induced voltage constant KV is obtained by the coil voltage fluctuation width ΔV × electric angle period t.
If an appropriate threshold value that anticipates demagnetization is set in advance and compared with the obtained extended induced voltage constant KV, whether the demagnetization amount increases and the magnetic flux density drops below the threshold value, that is, the magnetic life It can be determined whether it has become. Further, the demagnetization amount can be detected from the difference between the obtained extended induced voltage constant KV and the threshold value. Further, the demagnetization amount may be detected from the difference between the extended induced voltage constant KV at the standard temperature or the threshold value KVth and the extended induced voltage constant KV measured this time in the unmagnetized state. As a result, by detecting the demagnetization amount, the demagnetization amount can be displayed or reflected in the control of the external device, and also in light of the demagnetization amount change of the demagnetization curve (see FIG. 1). , It is possible to identify whether the cause of demagnetization is thermal demagnetization or irreversible demagnetization.
By using the above method, this detection method is not affected by the motor structure, energization method, load current, coil resistance, etc., and is extremely high without restrictions on the number of phases, power supply voltage, measured rotation speed, coil voltage waveform, etc. Achieves versatility, stability and high accuracy.

(閾値の決定方法)
以下では、拡張誘起電圧定数KVの限界値を閾値KVthと表記するものとする。電動機の使用最高温度Tmaxはマグネット減磁特性あるいは内蔵センサの耐熱温度等からあらかじめ設計段階で決定される。そこで実際に運用に供する駆動回路にてモータを回転させ、恒温槽を使うなどしてモータ内部温度を使用最高温度Tmaxにまで昇温した状態にて拡張誘起電圧定数KVを測定し、測定値を閾値KVthとしてもよい。マグネットは使用初期に減磁しそれから安定する性質をもっているため、閾値は初期減磁を見込んで設定しなければならず減磁量推定を困難にしている。しかし上述の方法で閾値を決定すれば初期減磁まで含んだ適正な値に設定することができる。なお使用最高温度Tmaxは自己発熱も含んだ温度である。一般的にモータ内部温度はジュール熱によりモータ外装温度より高くなるので、許容雰囲気温度は使用最高温度Tmaxより自己発熱分低くなる。
(Method of determining threshold value)
In the following, the limit value of the extended induced voltage constant KV will be referred to as the threshold value KVth. The maximum operating temperature Tmax of the electric motor is determined in advance at the design stage from the magnet demagnetization characteristics, the heat resistant temperature of the built-in sensor, and the like. Therefore, the extended induced voltage constant KV is measured in a state where the motor is rotated by the drive circuit actually used for operation and the internal temperature of the motor is raised to the maximum operating temperature Tmax by using a constant temperature bath, and the measured value is measured. The threshold value may be KVth. Since the magnet has the property of demagnetizing at the initial stage of use and then stabilizing, the threshold value must be set in anticipation of the initial demagnetization, making it difficult to estimate the amount of demagnetization. However, if the threshold value is determined by the above method, it can be set to an appropriate value including the initial demagnetization. The maximum operating temperature Tmax is a temperature including self-heating. Generally, the internal temperature of the motor becomes higher than the exterior temperature of the motor due to Joule heat, so that the allowable atmospheric temperature is lower than the maximum operating temperature Tmax by the amount of self-heating.

図3に拡張誘起電圧定数KVの温度特性図を示す。横軸は温度T℃、縦軸は拡張誘起電圧定数KVである。KVは減磁率を判りやすくするため20℃の標準温度での値を基準値1としている。
図3左上の矢印範囲は安全動作領域を示している(例えば0℃〜80℃)。破線MAGはマグネット減磁特性(例えば−0.10%/℃)から推定した拡張誘起電圧定数KV温度特性カーブ、ドットDATAはモータによる拡張誘起電圧定数KV実測値、実線MOTは拡張誘起電圧定数KV実測値の近似曲線で図3右上に近似式を表示した。実線MOT′は不可逆減磁時の近似曲線でありMOTを下方に平行移動したものである。Tmaxは使用最高温度(例えば100℃)、閾値KVthは使用最高温度Tmax時の拡張誘起電圧定数KVである。
FIG. 3 shows a temperature characteristic diagram of the extended induced voltage constant KV. The horizontal axis is the temperature T ° C., and the vertical axis is the extended induced voltage constant KV. For KV, the value at a standard temperature of 20 ° C. is set as the reference value 1 in order to make the demagnetization rate easy to understand.
The arrow range on the upper left of FIG. 3 indicates a safe operating region (for example, 0 ° C to 80 ° C). The broken line MAG is the extended induced voltage constant KV temperature characteristic curve estimated from the magnet demagnetization characteristics (for example, -0.10% / ° C.), the dot DATA is the measured value of the extended induced voltage constant KV by the motor, and the solid line MOT is the extended induced voltage constant KV. The approximate expression is displayed in the upper right of FIG. 3 with the approximate curve of the measured value. The solid line MOT'is an approximate curve at the time of irreversible demagnetization, and is a translation of the MOT downward. Tmax is the maximum operating temperature (for example, 100 ° C.), and the threshold value KVth is the extended induced voltage constant KV at the maximum operating temperature Tmax.

仮に電動機運用時間が数千時間から数万時間経過し不可逆減磁が発生すると、近似曲線の切片が変わりMOTはMOT′へシフトし、より低い温度で閾値KVthと交差し減磁と判定される。減磁判定点(丸印)は、閾値KVth水平線上を左方向へ移動し判定温度は当初の100℃から不可逆減磁時は約60℃に低下している。これは不可逆減磁成分も減磁判定に寄与することを意味しており、本検出方法が経時変化しても安全側に動作することを担保する重要な特性である。図3は減磁量が5%の場合を例示してあるが、仮に10%減磁した場合は20℃で減磁と判定され過熱事故を未然に防ぐことができる。
それに対し従来の温度を検出する方式では、不可逆減磁時には検出点は使用最高温度Tmax垂直線上の△印となり、拡張誘起電圧定数KVは低下しそれにともなってコイル電流が増加し、電流の二乗で発熱も増えるため安全性は低下する。高温状態が長時間継続すると減磁量は50%に達する場合もあり発熱は非常に大きくなり部品焼損や火災の恐れもある。
マグネット減磁特性は、使用するマグネット材質とパーミアンス係数からシミュレーションにより求められる。しかしコイル電圧を測定するとき駆動回路の影響を受けて波形歪が発生するかあるいは整流されて正側波形しか出力されない場合等があり、閾値はマグネット減磁特性のシミュレーションだけでは決定できないため、最終的にはモータと駆動回路を組み合わせた電動機システムにより実際に動作させて拡張誘起電圧定数KVを実測し、実測データに基づき閾値KVthを決定することが望ましい。
If the motor operating time elapses from thousands to tens of thousands of hours and irreversible demagnetization occurs, the intercept of the approximate curve changes and the MOT shifts to MOT', crosses the threshold KVth at a lower temperature, and is determined to be demagnetized. .. The demagnetization determination point (circle) moves to the left on the threshold KVth horizontal line, and the determination temperature drops from the initial 100 ° C. to about 60 ° C. at the time of irreversible demagnetization. This means that the irreversible demagnetization component also contributes to the demagnetization determination, which is an important characteristic for ensuring that the detection method operates on the safe side even if it changes with time. FIG. 3 illustrates a case where the demagnetization amount is 5%, but if the demagnetization amount is 10%, it is determined that the demagnetization is at 20 ° C., and an overheating accident can be prevented.
On the other hand, in the conventional method of detecting the temperature, the detection point becomes a triangle mark on the vertical line of the maximum operating temperature Tmax at the time of irreversible demagnetization, the extended induced voltage constant KV decreases, and the coil current increases accordingly, which is the square of the current. Since heat generation also increases, safety decreases. If the high temperature state continues for a long time, the demagnetization amount may reach 50%, and the heat generation becomes very large, which may cause burnout of parts or fire.
The magnet demagnetization characteristics are obtained by simulation from the magnet material used and the permeance coefficient. However, when measuring the coil voltage, waveform distortion may occur due to the influence of the drive circuit, or it may be rectified and only the positive waveform is output.The threshold cannot be determined only by simulating the magnet demagnetization characteristics, so the final Specifically, it is desirable to actually operate the motor system by combining a motor and a drive circuit to actually measure the extended induced voltage constant KV, and to determine the threshold KVth based on the measured data.

(測定タイミング)
本検出方法は基本的にモータの通電期間(RUN)終了ごとにコイル電圧と電気角周期を測定し減磁を検出することとしている。通電時にリアルタイムに減磁量を検出してコイル出力を制御し減磁を防止することは想定していない。
通電期間(RUN)直後に短い出力オフ期間を設け、ブレーキをかけることなくモータを惰性回転させ測定する。このタイミングであればモータ駆動に影響を与えず、回転数も高く等速惰性回転とみなすことができ測定精度も確保できる。
(Measurement timing)
This detection method basically measures the coil voltage and the electric angle period at each end of the energization period (RUN) of the motor to detect demagnetization. It is not assumed that the amount of demagnetization is detected in real time when energized to control the coil output and prevent demagnetization.
A short output off period is provided immediately after the energization period (RUN), and the motor is coasted and measured without applying the brake. At this timing, the motor drive is not affected, the rotation speed is high, and it can be regarded as constant-velocity inertial rotation, and measurement accuracy can be ensured.

図4を参照して測定タイミングについて説明する。横軸は経過時間Time、縦軸は回転数Nである。RUNは通電期間である。出力オフ直後の丸印MEASUREが測定期間である。
なおRUN(通電回転時)でも瞬間的に出力オフすることが許されるならば任意のタイミングで測定可能であり、複数測定を行って減磁検出の応答性を改善できる。例えば24時間連続運転される冷蔵庫のコンプレッサー用モータなら1時間に1回程度測定すればよい、出力オフ時間は20ms程度でありモータ運転に与える影響はわずかである。
また、モータ始動後、目標速度近傍に到達したら測定してもよい。これによりすでに減磁しているモータでも回転開始時に減磁を検出して直ちにアラームを出力しあるいはコイル出力を停止するなどの安全対策を講じることができる。
また停止中に一瞬モータを回し惰性回転させコイル電圧を測定してもよい。あるいは外力で回転している場合は任意タイミングでコイル電圧を測定して減磁をセンシングしてもよい。
The measurement timing will be described with reference to FIG. The horizontal axis is the elapsed time Time, and the vertical axis is the rotation speed N. RUN is the energization period. The circled MEASURE immediately after the output is turned off is the measurement period.
It should be noted that even in RUN (during energization rotation), if the output can be momentarily turned off, measurement can be performed at any timing, and a plurality of measurements can be performed to improve the responsiveness of demagnetization detection. For example, in the case of a refrigerator motor for a compressor that is continuously operated for 24 hours, the measurement may be performed about once an hour. The output off time is about 20 ms, and the influence on the motor operation is small.
Further, after starting the motor, measurement may be performed when the speed reaches the vicinity of the target speed. As a result, even a motor that has already been demagnetized can take safety measures such as detecting demagnetization at the start of rotation and immediately outputting an alarm or stopping the coil output.
Further, the coil voltage may be measured by rotating the motor for a moment while it is stopped and coasting. Alternatively, when rotating by an external force, the coil voltage may be measured at an arbitrary timing to sense demagnetization.

(減磁量の検出)
ここまで拡張誘起電圧定数KVと閾値KVthの大小比較により減磁発生をデジタル的に検出する方法を中心に説明したが、さらに未減磁状態にて標準温度での拡張誘起電圧定数KVあるいは前記閾値KVthと、今回測定した拡張誘起電圧定数KVとの差分を演算してアナログ値の減磁量を検出可能である。
減磁量を検出することで、制御動作を高度化できる。例えば減磁量の数値表示や多段階の警報レベル設定等が可能となり、あるいは上位コントローラは減磁量に応じて外部機器の制御を行うことができる。
さらに例えば室温が一定といった条件下では、始動直後に拡張誘起電圧定数KVの測定を行うなどしてモータ運転による熱減磁の影響を回避し、時系列で減磁量を比較することで不可逆減磁量を検出できる。不可逆減磁量が急激に増加した時は、異常事態と判定してモータ出力停止などの安全対策を講じることができる。
(Detection of demagnetization amount)
Up to this point, the method of digitally detecting the occurrence of demagnetization by comparing the magnitude of the extended induced voltage constant KV and the threshold KVth has been mainly described, but the extended induced voltage constant KV at the standard temperature in the unmagnetized state or the threshold is further described. The demagnetization amount of the analog value can be detected by calculating the difference between KVth and the extended induced voltage constant KV measured this time.
By detecting the amount of demagnetization, the control operation can be enhanced. For example, the demagnetization amount can be displayed numerically, the alarm level can be set in multiple stages, or the host controller can control the external device according to the demagnetization amount.
Furthermore, under conditions such as constant room temperature, the effect of thermal demagnetization due to motor operation is avoided by measuring the extended induced voltage constant KV immediately after starting, and the amount of demagnetization is compared in chronological order to reduce irreversible value. The amount of magnetism can be detected. When the amount of irreversible demagnetization suddenly increases, it can be determined that the situation is abnormal and safety measures such as stopping the motor output can be taken.

(界磁温度の推定)
引き続き界磁温度の推定方法について説明する。本検出方法は、図3に例示したとおり実測等により拡張誘起電圧定数KVと界磁温度Tの関数(近似式)を求めることができる。従って電動機運用時に測定により拡張誘起電圧定数KVが得られたときは、関数を使って界磁温度を演算により求めることができる。関数は二次近似式で充分実用になるので最低3点の界磁温度にて拡張誘起電圧定数KVを測定すれば関数を決定できる。
(Estimation of field temperature)
Next, the method of estimating the field temperature will be described. In this detection method, as illustrated in FIG. 3, a function (approximate equation) of the extended induced voltage constant KV and the field temperature T can be obtained by actual measurement or the like. Therefore, when the extended induced voltage constant KV is obtained by measurement during operation of the motor, the field temperature can be obtained by calculation using a function. Since the function is sufficiently practical with a quadratic approximation formula, the function can be determined by measuring the extended induced voltage constant KV at the field temperature of at least three points.

そこで、電動機運用前に3点以上の複数の界磁温度で拡張誘起電圧定数KVを推定あるいは測定し、拡張誘起電圧定数KVと界磁温度の関数を求めMPU51(制御回路)に記憶しておき、電動機運用時は拡張誘起電圧定数KVの測定時に関数にて界磁温度を演算する。モータの温度を知りたい場面は多々あるがコストと信頼性から温度センサを設けることは許されないことも多い。また永久磁石界磁の温度を検出すること自体困難である。従って温度センサなしで界磁温度が判る効果は大きく、さらにモータを温度センサとして利用する新しい用途も広がる。
例えば医療器具用モータは高温殺菌処理されるが、もし電動機外装だけが冷えて内部はまだ熱い状態で使用されるとトルク不足となり好ましくないが界磁温度が表示されれば安全に運用できる。あるいはレンジフードや天井・屋根裏に設置される換気扇の温度を測定することで雰囲気温度を推定し自動的に換気扇の回転数を調整することなどが可能となり、さらには異常高温を検知して火災警報を出力するなどの応用も考えられる。
Therefore, before operating the motor, the extended induced voltage constant KV is estimated or measured at a plurality of field temperatures of three or more points, and the function of the extended induced voltage constant KV and the field temperature is obtained and stored in the MPU 51 (control circuit). When operating the motor, the field temperature is calculated by a function when measuring the extended induced voltage constant KV. There are many situations where you want to know the temperature of the motor, but it is often not allowed to install a temperature sensor because of cost and reliability. Moreover, it is difficult to detect the temperature of the permanent magnet field. Therefore, the effect of knowing the field temperature without a temperature sensor is great, and new applications for using the motor as a temperature sensor are expanding.
For example, a motor for medical equipment is sterilized at high temperature, but if only the exterior of the motor is cooled and the inside is still hot, torque will be insufficient, which is not preferable, but if the field temperature is displayed, it can be operated safely. Alternatively, it is possible to estimate the ambient temperature by measuring the temperature of the ventilation fan installed on the range hood or ceiling / attic, and automatically adjust the rotation speed of the ventilation fan. Furthermore, it detects an abnormally high temperature and gives a fire alarm. Applications such as outputting are also conceivable.

(界磁温度推定の補正方法)
ただし不可逆減磁が発生するとオフセット誤差が生じ実際より高い温度に演算される。この誤差に関しては不可逆減磁量が判ればオフセットを補償することで解消できる。そこで運用前に標準温度で初期のKVを求めて記憶しておき、運用時に必要に応じて再度、標準温度にてKVを測定し、初期の標準温度でのKVとの差分を不可逆減磁成分とみなして関数の切片に加算する。
よって運用時にモータを標準温度にしてKVを測定し、それに基づいて関数の切片を補正して不可逆減磁によるオフセットを補償し、補正した関数にて界磁温度の演算を行う。
以上の操作を行うことで不可逆減磁が発生しても正確に温度を検出することができる。なおオフセット補償は温度推定についてだけ行い、減磁判定に関してはオフセット補償しないでおけば減磁判定は不可逆減磁まで含めて行われ安全性は確保できる。
(Correction method for field temperature estimation)
However, when irreversible demagnetization occurs, an offset error occurs and the temperature is calculated to be higher than the actual temperature. This error can be resolved by compensating for the offset if the irreversible demagnetization amount is known. Therefore, the initial KV at the standard temperature is obtained and stored before operation, the KV is measured again at the standard temperature as needed during operation, and the difference from the KV at the initial standard temperature is the irreversible demagnetization component. And add to the intercept of the function.
Therefore, during operation, the motor is set to the standard temperature, KV is measured, the intercept of the function is corrected based on this, the offset due to irreversible demagnetization is compensated, and the field temperature is calculated by the corrected function.
By performing the above operation, the temperature can be detected accurately even if irreversible demagnetization occurs. Note that offset compensation is performed only for temperature estimation, and if offset compensation is not performed for demagnetization determination, demagnetization determination is performed including irreversible demagnetization, and safety can be ensured.

図6のフローチャートを参照しながら減磁判定ルーチンの一例について説明する。以下の一連の手順で拡張誘起電圧定数KVを検出し、減磁判定することができる。尚、拡張誘起電圧定数閾値KVthは予め設定されているものとする。コイル電圧測定はADコンバータを使用する。電気角周期の測定はタイマーでもよいが、本例ではサンプリング周期の回数から求めている。 An example of the demagnetization determination routine will be described with reference to the flowchart of FIG. The extended induced voltage constant KV can be detected and demagnetized can be determined by the following series of procedures. It is assumed that the extended induced voltage constant threshold value KVth is set in advance. An AD converter is used for coil voltage measurement. The electric angle cycle may be measured by a timer, but in this example, it is obtained from the number of sampling cycles.

減磁判定ルーチンを開始する。先ず、コイル出力をオフにし、モータを惰性回転させる。このとき、コイル通電遮断によるスパイクノイズが収束するまで待つ(惰性回転:STEP1)。次に、電気角周期の測定を開始する。1回目のコイル電圧測定を行い初回値としてMPU51に記憶する。AD変換時間は数usであり以後ほぼこの周期で測定する(コイル電圧測定1:STEP2)。2回目のコイル電圧測定を行い2回目の値としてMPU51に記憶する(コイル電圧測定2:STEP3)。 Start the demagnetization determination routine. First, the coil output is turned off and the motor is coasted. At this time, wait until the spike noise due to the coil energization cutoff converges (inertial rotation: STEP1). Next, the measurement of the electric angle period is started. The first coil voltage measurement is performed and stored in the MPU 51 as the initial value. The AD conversion time is several us, and the measurement is performed in this cycle thereafter (coil voltage measurement 1: STEP2). The second coil voltage measurement is performed and stored in the MPU 51 as the second value (coil voltage measurement 2: STEP3).

初回コイル電圧測定値と2回目のコイル電圧測定値から初回勾配符号を求めMPU51に記憶する(2−1勾配検出:STEP4)。3回目以降のコイル電圧測定を行って測定値をMPU51に記憶する(コイル電圧測定n:STEP5)。前回コイル電圧測定値(n−1)と今回コイル電圧測定値(n)を比較し差分をとって勾配符号を検出する(勾配検出:STEP6)。今回コイル電圧測定値が初回のコイル電圧測定値及び勾配符号と一致するか否かを判定する(測定完了判定:STEP7)。不一致ならまだ電気角分のコイル電圧測定が済んでいないのでSTEP5に戻る。一致していれば電気角分の測定が完了したのでSTEP8に進む。 The first gradient code is obtained from the first coil voltage measurement value and the second coil voltage measurement value and stored in the MPU 51 (2-1 gradient detection: STEP4). The coil voltage is measured from the third time onward, and the measured value is stored in the MPU 51 (coil voltage measurement n: STEP5). The previous coil voltage measurement value (n-1) is compared with the current coil voltage measurement value (n), and the difference is taken to detect the gradient code (gradient detection: STEP6). This time, it is determined whether or not the coil voltage measurement value matches the initial coil voltage measurement value and the gradient code (measurement completion determination: STEP7). If there is a discrepancy, the coil voltage for the electric angle has not been measured yet, so the process returns to STEP5. If they match, the measurement of the electric angle is completed, and the process proceeds to STEP8.

次に通電区間である電気角周期tを演算する(周期演算:STEPS8)。具体的には、電気角周期=サンプリング周期×測定回数で算出する。次いで全コイル電圧測定値から最大値Vmaxと最小値Vminiを抽出する(振幅抽出:STEP9)。次いでコイル電圧測定値の振幅(コイル電圧変動幅)ΔVをΔV=Vmax−Vminiから算出する(振幅演算:STEP10)。次いで、拡張誘起電圧定数KVをKV=ΔV×tから算出する(KV演算:STEP11)。 Next, the electric angle period t, which is the energized section, is calculated (cycle calculation: STEPS8). Specifically, it is calculated by the electrical angle period = sampling period x number of measurements. Next, the maximum value Vmax and the minimum value Vmini are extracted from the measured values of all coil voltages (amplitude extraction: STEP9). Next, the amplitude (coil voltage fluctuation width) ΔV of the coil voltage measurement value is calculated from ΔV = Vmax−Vmini (amplitude calculation: STEP10). Next, the extended induced voltage constant KV is calculated from KV = ΔV × t (KV calculation: STEP11).

次に、拡張誘起電圧定数KVとその閾値KVthを大小比較して減磁判定する(減磁判定:STEP12)。拡張誘起電圧定数KVが閾値KVthより大きければ、必要に応じてブレーキ操作などの出力復帰動作を行って、メインルーチンへ戻る(出力復帰動作:STEP13)。拡張誘起電圧定数KVが閾値KVthより小さければ減磁(磁気的寿命)と判定し、減磁処理へ移行する(STEP14)。 Next, the demagnetization determination is made by comparing the magnitude of the extended induced voltage constant KV and the threshold value KVth (demagnetization determination: STEP12). If the extended induced voltage constant KV is larger than the threshold value KVth, an output return operation such as a brake operation is performed as necessary, and the process returns to the main routine (output return operation: STEP13). If the extended induced voltage constant KV is smaller than the threshold value KVth, it is determined that the demagnetization (magnetic life) is performed, and the process proceeds to the demagnetization process (STEP 14).

以上の手順により拡張誘起電圧定数KVが求められ、閾値KVthとの大小比較により減磁判定が行われる。減磁判定ルーチンの実行のタイミングは任意であるが回転数が高いほどコイル電圧も大きくなるので高速回転時が有利である。拡張誘起電圧定数KVの検出回数はオンサイクルあたり最低限1回であるが例えば熱的時定数周期で複数回繰り返してもよい。
減磁発生時の減磁処理(STEP14)は特に規定しないが、警告表示、メモリーへエラーコード記憶、等が考えられる。さらに重篤さを考慮して出力を停止することなども考えられる。
なお、モータ駆動回路の構成や制御プログラム構成は様々考えられ、本実施例に開示された態様に限定されるものではなく、本案主旨を逸脱しない範囲で電子回路技術者あるいはプログラマー(当業者)であれば当然なし得る回路構成の変更やプログラム構成の変更も含まれる。
The extended induced voltage constant KV is obtained by the above procedure, and the demagnetization determination is performed by comparing the magnitude with the threshold value KVth. The execution timing of the demagnetization determination routine is arbitrary, but the higher the rotation speed, the larger the coil voltage, which is advantageous at high speed rotation. The number of detections of the extended induced voltage constant KV is at least once per on-cycle, but it may be repeated a plurality of times in, for example, a thermal time constant period.
The demagnetization process (STEP14) when demagnetization occurs is not particularly specified, but warning display, error code storage in memory, and the like can be considered. Furthermore, it is possible to stop the output in consideration of the seriousness.
The configuration of the motor drive circuit and the configuration of the control program can be considered in various ways, and are not limited to the modes disclosed in the present embodiment. It also includes changes in the circuit configuration and program configurations that can be made if there is one.

以下では、ブラシレスDCモータのコイル電圧実測波形を示す。
図7は未減磁の例であり、三相ブラシレスDCモータを標準温度20℃にて定速回転させ途中で非通電状態とした時の1相のコイル電圧波形である。電気角周期t1=2.08ms、開放時のコイル電圧変動幅ΔV1=8.18Vである。
図8は減磁時の例であり、上記モータを120℃に昇温し定速回転させ途中で非通電状態とした時の1相のコイル電圧波形である。電気角周期t2=2.08ms、開放時のコイル電圧変動幅ΔV2=7.58Vと図7に比べ0.6V小さくなっている。
Below, the coil voltage measured waveform of the brushless DC motor is shown.
FIG. 7 shows an example of non-demagnetization, which is a one-phase coil voltage waveform when a three-phase brushless DC motor is rotated at a constant speed at a standard temperature of 20 ° C. and is turned off in the middle. The electric angle period t1 = 2.08 ms, and the coil voltage fluctuation width ΔV1 = 8.18 V at the time of opening.
FIG. 8 shows an example at the time of demagnetization, which is a one-phase coil voltage waveform when the motor is heated to 120 ° C., rotated at a constant speed, and turned off in the middle. The electric angle period t2 = 2.08 ms and the coil voltage fluctuation width when opened is ΔV2 = 7.58 V, which is 0.6 V smaller than that in FIG.

以上の実測値を使って具体的な演算例を示す。
20℃時のKV KV1 =ΔV1・t1=17.04mV・s
85℃の閾値 KVth=16.19mV・s(5%減磁相当)
120℃時のKV KV2=ΔV2・t2=15.77mV・s
測定値KV2は閾値KVthより小さいから減磁或いは高温と判定される。
A concrete calculation example is shown using the above measured values.
KV at 20 ° C KV1 = ΔV1 · t1 = 17.04 mV · s
85 ° C threshold KVth = 16.19 mV · s (equivalent to 5% demagnetization)
KV at 120 ° C. KV2 = ΔV2 ・ t2 = 15.77 mV ・ s
Since the measured value KV2 is smaller than the threshold value KVth, it is determined to be demagnetized or high temperature.

実測値から温度分解能を検討する。ADコンバータの入力レンジ=12V、分解能は3mV(12bit)とする。コイル電圧変動幅は100℃あたりで0.6V変化しているので直線近似として6mV/℃である。よって温度分解能=3mV/(6mV/℃)=0.5℃である。
更に位相分解能を検討する。ADコンバータ(ADC54)サンプリング周期を5usとする。実測値では電気角周期は約2.08msだから2.08ms/5us=400サンプリング/電気角となる。よって位相分解能=360°/400=0.9°但しモータ回転速度28.8krpmである。標本化誤差0.9°により発生する電圧軸の量子化誤差は非常に小さく無視できる。なお、モータが低速回転になるほどサンプリング数は増加し標本化誤差は小さくなる。
以上の検討から本例では0.5℃程度の温度分解能が可能である。ちなみに電動自動車の主モータの界磁温度検出精度としては例えば±15℃あるいは50℃乖離といった値が報告されておりそれと比べて本検出方法は十分高精度であると言える。
Examine the temperature resolution from the measured values. The input range of the AD converter is 12V, and the resolution is 3 mV (12 bits). Since the coil voltage fluctuation width changes by 0.6 V per 100 ° C., it is 6 mV / ° C. as a linear approximation. Therefore, the temperature resolution = 3 mV / (6 mV / ° C.) = 0.5 ° C.
Further examine the phase resolution. The sampling period of the AD converter (ADC54) is 5 us. Since the electric angle period is about 2.08 ms in the measured value, 2.08 ms / 5us = 400 samplings / electric angle. Therefore, the phase resolution = 360 ° / 400 = 0.9 °, but the motor rotation speed is 28.8 krpm. The quantization error of the voltage axis caused by the sampling error of 0.9 ° is very small and can be ignored. As the motor rotates at a lower speed, the number of samples increases and the sampling error decreases.
From the above examination, a temperature resolution of about 0.5 ° C. is possible in this example. Incidentally, as the field temperature detection accuracy of the main motor of the electric vehicle, for example, a value such as ± 15 ° C. or 50 ° C. deviation has been reported, and it can be said that this detection method has sufficiently high accuracy.

(実施例2:ステッピングモータ)
次に永久磁石界磁を備えるステッピングモータへの適用例を説明する。拡張誘起電圧定数KVを検出するために惰性回転する必要があり、オープンループ位置決め動作には適用できない。図9はステッピングモータの駆動回路を示すブロック構成図である。図5と共通部分は符号を援用し説明を省略する。MOTORは2相ハイブリッド型バイポーラステッピングモータを想定している。出力回路(INV52)はフルブリッジ×2組で構成され2相コイル(A+とA−、B+とB−)をPWM駆動しロータを所定の角度で歩進する。分圧回路(DIV)はどのコイル出力線に接続してもよい。
(Example 2: Stepping motor)
Next, an application example to a stepping motor provided with a permanent magnet field will be described. It needs to coast to detect the extended induced voltage constant KV and is not applicable to open loop positioning operations. FIG. 9 is a block configuration diagram showing a drive circuit of a stepping motor. Reference numerals are used for the parts common to FIG. 5, and the description thereof will be omitted. MOTOR assumes a two-phase hybrid bipolar stepping motor. The output circuit (INV52) is composed of two sets of full bridges, PWM-drives two-phase coils (A + and A−, B + and B−), and advances the rotor at a predetermined angle. The voltage divider circuit (DIV) may be connected to any coil output line.

図10はステッピングモータのコイル電圧実測波形である。出力を遮断すると実測に用いた駆動回路では中性点がGND側に低下する特性を持っており出力オフの直後しか期待する波形は観測できていないが減磁検出は可能であることが判る。
このように非通電時のコイル電圧波形は出力段の特性の影響を大きく受ける。出力段ブリッジのハイサイドとローサイドのインピーダンスを整合させれば電源電圧/2を中性点とするコイル電圧波形を観測可能である。
FIG. 10 is a measured waveform of the coil voltage of the stepping motor. When the output is cut off, the drive circuit used for the actual measurement has the characteristic that the neutral point drops to the GND side, and the expected waveform can be observed only immediately after the output is turned off, but it can be seen that demagnetization detection is possible.
In this way, the coil voltage waveform when not energized is greatly affected by the characteristics of the output stage. If the high-side and low-side impedances of the output stage bridge are matched, the coil voltage waveform with the power supply voltage / 2 as the neutral point can be observed.

(実施例3:ブラシ付きDCモータ)
次にブラシ付きDCモータへの適用例を説明する。コイル端子は2端子でHブリッジ等の駆動回路を用いる場合について例示する。ブラシの寿命は短く磁気的な寿命のほうがはるかに長い。しかし車載補機用モータのように停止状態での極寒酷暑あるいは想定外の極端な過負荷運転などにより不可逆減磁が発生する場合がある。
(Example 3: DC motor with brush)
Next, an application example to a brushed DC motor will be described. The case where a drive circuit such as an H bridge is used with two coil terminals will be illustrated. Brush life is short and magnetic life is much longer. However, irreversible demagnetization may occur due to extremely cold heat in a stopped state or unexpected extreme overload operation as in the case of an in-vehicle auxiliary motor.

図11はブラシ付きDCモータの駆動回路を示すブロック構成図である。図5と共通部分は符号を援用し説明を省略する。MOTORは三相コイルを備えたブラシ付きDCモータで、P端子とN端子に電圧を印加するとモータ内部のブラシにより整流され120°矩形波通電される。出力回路(INV52)はフルブリッジ構成でP端子及びN端子をPWM駆動し連続回転させる。分圧回路(DIV)はどちらの出力線に接続してもよい。 FIG. 11 is a block configuration diagram showing a drive circuit of a brushed DC motor. Reference numerals are used for the parts common to FIG. 5, and the description thereof will be omitted. MOTOR is a brushed DC motor equipped with a three-phase coil. When a voltage is applied to the P terminal and N terminal, it is rectified by the brush inside the motor and a 120 ° square wave is energized. The output circuit (INV52) has a full bridge configuration and PWM drives the P terminal and N terminal to continuously rotate them. The voltage divider circuit (DIV) may be connected to either output line.

図12はブラシ付きDCモータのコイル電圧実測波形である。波形変動幅が小さいためオフセットをつけて変動部を拡大表示している。出力を遮断すると三相サイン波を整流した120°通電と同様の波形が観測される。整流波形のピークとボトム間をコイル電圧変動幅ΔVとして演算すれば減磁検出が可能である。しかしコイル電圧変動幅ΔVはサイン波に比べて小さくなるため高速で惰性回転させる必要がある。
120°通電波形は6区間でほぼ同じ波形が観測されるので、コイル電圧変動幅ΔVの検出は1区間だけで行っても構わない。これにより測定時間を1/6に短縮できる。区間ごとの電圧と時間の偏差によるばらつきは、同一の通電区間で出力を遮断して測定すれば改善でき、繰り返し精度が大幅に向上する。
FIG. 12 is a measured waveform of the coil voltage of the brushed DC motor. Since the waveform fluctuation range is small, the fluctuation part is enlarged and displayed with an offset. When the output is cut off, a waveform similar to the 120 ° energization that rectifies the three-phase sine wave is observed. Demagnetization detection is possible by calculating the distance between the peak and bottom of the rectified waveform as the coil voltage fluctuation width ΔV. However, since the coil voltage fluctuation width ΔV is smaller than that of the sine wave, it is necessary to perform inertial rotation at high speed.
Since almost the same waveform is observed in 6 sections of the 120 ° energization waveform, the coil voltage fluctuation width ΔV may be detected in only one section. As a result, the measurement time can be reduced to 1/6. The variation due to the deviation of voltage and time for each section can be improved by cutting off the output in the same energized section and measuring, and the repeatability is greatly improved.

(実施例4:ブラシレスDCモータ)
次に三相センサレスBLDCモータの一相を電源ラインに短絡して減磁を検出する方法について説明する。尚、実施例4と後述する実施例5は三相センサレスBLDCモータの変形例であり、ステッピングモータやブラシ付きDCモータへの適用は想定していない。
図13に例示したスター結線された三相センサレスBLDCモータを、駆動回路出力をリレーで遮断して惰性回転させるとコイル線間には2相の誘起電圧の合成波形が観測される。図16にコイルを駆動回路から切り離し惰性回転させたときのコイル電圧波形を示す。V相端子を基準電位としたときのU相端子に現れる線間誘起電圧波形であり、U相とV相との合成誘起電圧が観測されている。この波形の基準電位(中性点)とピーク電位との差を一般的に線間誘起電圧(0toPEAK)と呼び、図中に矢印Eで示す。ここで重要なことは、線間誘起電圧(PEAKtoPEAK)は回転数が高いと電源電圧を超えてしまうことである。駆動時は電源とGNDを適宜選択して半波整流通電することから線間誘起電圧は(0toPEAK)となり電源電圧内に収まるが、出力を遮断したフリー回転時は(PEAKtoPEAK)となり2倍の誘起電圧が発生し、駆動回路が接続されていると電源電圧を超えた分はFETのボディーダイオードにより電源レールにクランプされ回生電流が流れる。
(Example 4: Brushless DC motor)
Next, a method of detecting demagnetization by short-circuiting one phase of a three-phase sensorless BLDC motor to the power supply line will be described. Note that Example 4 and Example 5 described later are modified examples of the three-phase sensorless BLDC motor, and are not intended to be applied to a stepping motor or a DC motor with a brush.
When the star-connected three-phase sensorless BLDC motor illustrated in FIG. 13 is coasted by interrupting the drive circuit output with a relay, a combined waveform of two-phase induced voltages is observed between the coil wires. FIG. 16 shows a coil voltage waveform when the coil is separated from the drive circuit and inertially rotated. It is a line-induced voltage waveform that appears at the U-phase terminal when the V-phase terminal is used as a reference potential, and a combined induced voltage between the U-phase and the V-phase is observed. The difference between the reference potential (neutral point) and the peak potential of this waveform is generally called the line-induced voltage (0toPEAK), and is indicated by an arrow E in the figure. What is important here is that the line-induced voltage (PEAKtoPEAK) exceeds the power supply voltage when the rotation speed is high. During drive, the power supply and GND are appropriately selected and half-wave rectified and energized, so the line-induced voltage becomes (0toPEAK) and falls within the power supply voltage, but during free rotation when the output is cut off, it becomes (PEAKtoPEAK) and is doubled. When a voltage is generated and the drive circuit is connected, the amount exceeding the power supply voltage is clamped to the power supply rail by the body diode of the FET and a regenerative current flows.

一方、すでに述べてきた一相コイルの電圧変動幅ΔV及び電気角周期tを測定する際に、任意の一相を接地電位あるいは電源電位に接続し、他相は非通電として惰性回転させて測定しても線間誘起電圧(0toPEAK)を観測可能である。
以下では、例えば図5の駆動回路を用いて三相センサレスBLDCモータのコイル電圧変動幅ΔV及び電気角周期tを測定する実施例について説明する。駆動回路についての説明はすでに済んでいるので省略する。前記コイル電圧変動幅ΔV及び電気角周期tの測定に際しては、V相のローサイドアームのみをオンしてV相をGNDに接続し、その他のすべての出力素子はオフとする。するとU相にはU相とV相、W相にはW相とV相の合成誘起電圧がGNDを基準に正負に発生する。その際、負電圧側の半サイクルはFETのボディーダイオードを介してGNDにクランプされるため回生電流が流れ正しい誘起電圧は測定できない。
On the other hand, when measuring the voltage fluctuation width ΔV and the electric angle period t of the one-phase coil described above, any one phase is connected to the ground potential or the power supply potential, and the other phase is coasted and rotated as non-energized. Even so, the line-induced voltage (0toPEAK) can be observed.
Hereinafter, an example of measuring the coil voltage fluctuation width ΔV and the electric angle period t of the three-phase sensorless BLDC motor using, for example, the drive circuit of FIG. 5 will be described. Since the description of the drive circuit has already been completed, it will be omitted. When measuring the coil voltage fluctuation width ΔV and the electric angle period t, only the low side arm of the V phase is turned on to connect the V phase to the GND, and all other output elements are turned off. Then, the combined induced voltage of the U phase and the V phase is generated in the U phase, and the combined induced voltage of the W phase and the V phase is generated in the W phase with reference to the GND. At that time, since the half cycle on the negative voltage side is clamped to the GND via the body diode of the FET, a regenerative current flows and the correct induced voltage cannot be measured.

しかしながらU相もW相も正電圧となる期間ではクランプされないためコイルには回生電流が流れず正しい誘起電圧を検出できる。その期間は電気角で約120°であり、モータの構造上その期間内にU相及びW相のピーク誘起電圧が必ず存在する。この時の基準電圧はGND電位であり、0Vを最小値としピーク値を最大値とするコイル電圧変動幅ΔVは、正確な線間誘起電圧(0toPEAK)となる。U相及びW相の電圧波形は半波整流波形となることから電源電圧を超えることはなく高速回転でも測定可能である。
電気角周期tはU相あるいはW相の立ち上がりエッジ間を測定すれば求められる。以上の測定はU相の代わりにW相でも可能であり、電源に短絡する相もU〜Wのいずれでも可能である。
However, since neither the U phase nor the W phase is clamped during the period when the positive voltage is obtained, the regenerative current does not flow in the coil and the correct induced voltage can be detected. The period is about 120 ° in terms of electrical angle, and due to the structure of the motor, peak induced voltages of U phase and W phase always exist within that period. The reference voltage at this time is the GND potential, and the coil voltage fluctuation width ΔV with 0V as the minimum value and the peak value as the maximum value is an accurate line-induced voltage (0toPEAK). Since the U-phase and W-phase voltage waveforms are half-wave rectified waveforms, they do not exceed the power supply voltage and can be measured even at high speed rotation.
The electric angle period t can be obtained by measuring between the rising edges of the U phase or the W phase. The above measurement can be performed in the W phase instead of the U phase, and the phase short-circuited to the power supply can be any of U to W.

図17はモータ出力をオンからオフに切り替えて惰性回転させたきにV相をGNDに短絡した三相のコイル電圧の実測波形を示す。上段波形はモータオン信号で測定開始タイミングを矢印OFFで示す。測定時間は最小1電気角でよいが説明上6電気角分を測定期間として表示してある。図中にコイル名U〜Wと、ピーク電圧を矢印Vpkで、電気角を矢印tで、ピーク検出可能な期間を矢印Thで示す。
V相電圧がわずかに変動しているのは回生電流を反映したものでありこれがGNDレベルとなったときが回生電流ゼロ時でピーク測定可能な期間である。
図17からピーク電圧の測定相としては開放相であるU相とW相のいずれでも検出可能であることが判る。尚、負の半サイクルはクランプ電圧の約−0.7Vとなっている。また、クランプ電流のためにピーク検出可能期間Thの約120°以外ではコイル電圧波形は歪んでいるが、ピーク近傍ではクランプ電流が流れず従ってピーク電圧は正しく観測できることが判る。
尚、一般的に線間誘起電圧は、理想的なサイン波着磁のとき相間誘起電圧×3(1/2)である。矩形波着磁の場合はそれより大きくなり、二乗波形に近い着磁の場合は小さくなる。実際のモータでは着磁波形の歪や相間ばらつきがあることから線間誘起電圧から厳密な相間誘起電圧を演算することはできない。従ってコモン線が無いモータは厳密な誘起電圧定数Keを測定できない。しかしながら減磁は誘起電圧定数の相対的変化であることから、線間誘起電圧によって減磁を検出しても正確な減磁率が得られる。
以上の方法によれば測定相の電圧を小さくしてADコンバータの測定レンジにマッチングするための分圧抵抗2本と1チャンネルのADコンバータ(ADC)があれば実現できる。通常MPUはADCを内蔵しており実質的には抵抗2本の追加のみで線間誘起電圧定数(0toPEAK)及び減磁率を正確に測定できるようになる。図5の駆動回路例では何も部品追加することなくそのままで実施することができる。
FIG. 17 shows an actually measured waveform of a three-phase coil voltage in which the V phase is short-circuited to GND after the motor output is switched from on to off and inertially rotated. The upper waveform is a motor-on signal, and the measurement start timing is indicated by an arrow OFF. The minimum measurement time may be 1 electric angle, but for the sake of explanation, 6 electric angles are displayed as the measurement period. In the figure, the coil names U to W, the peak voltage is indicated by an arrow Vpk, the electric angle is indicated by an arrow t, and the period during which a peak can be detected is indicated by an arrow Th.
The slight fluctuation of the V-phase voltage reflects the regenerative current, and the peak measurable period when the regenerative current reaches the GND level is zero.
From FIG. 17, it can be seen that either the U phase or the W phase, which is an open phase, can be detected as the peak voltage measurement phase. The negative half cycle is about −0.7V of the clamp voltage. Further, it can be seen that the coil voltage waveform is distorted except for the peak detectable period Th of about 120 ° due to the clamp current, but the clamp current does not flow in the vicinity of the peak, and therefore the peak voltage can be observed correctly.
In general, the line-induced voltage is the phase-to-phase induced voltage × 3 (1/2) at the time of ideal sine wave magnetization. In the case of rectangular wave magnetism, it becomes larger, and in the case of magnetism close to the square waveform, it becomes smaller. In an actual motor, it is not possible to calculate an exact interphase induced voltage from the line induced voltage because there is distortion of the magnetized waveform and interphase variation. Therefore, a motor without a common wire cannot measure the exact induced voltage constant Ke. However, since demagnetization is a relative change of the induced voltage constant, an accurate demagnetization rate can be obtained even if demagnetization is detected by the line induced voltage.
According to the above method, it can be realized if there are two voltage dividing resistors and a one-channel AD converter (ADC) for reducing the voltage of the measurement phase and matching the measurement range of the AD converter. Normally, the MPU has an ADC built-in, and the line-induced voltage constant (0toPEAK) and demagnetization rate can be accurately measured by adding only two resistors. In the drive circuit example of FIG. 5, it can be carried out as it is without adding any parts.

(実施例5:ブラシレスDCモータ)
次にモータ駆動回路の外部に測定回路を追加し減磁を検出する場合について述べる。図18に三相センサレスBLDCモータ(MOTOR)とその駆動回路(ECU(Electronic Control Unit)56)及び外付け接続された外部測定回路57のブロック構成図を示し、以下これらの構成について説明する。
(Example 5: Brushless DC motor)
Next, a case where a measurement circuit is added to the outside of the motor drive circuit to detect demagnetization will be described. FIG. 18 shows a block configuration diagram of a three-phase sensorless BLDC motor (MOTOR), a drive circuit (ECU (Electronic Control Unit) 56) thereof, and an external measurement circuit 57 connected externally, and these configurations will be described below.

駆動回路(ECU56)は図5に示すブロック構成図とほぼ同様の回路構成であり、分圧回路DIV及びADC54が省略されモータオン信号出力(MOTOR−ON)が追加されている。このモータオン信号(MOTOR−ON)は、モータ出力がオンのときはH、オフのときはLとなり、いずれも外部測定回路57へ出力される。なお、コイル出力部にはゼロクロス検出手段(ZERO55)の他にもFETプリドライブ用のチャージポンプやノイズフィルタやコイル電流検出手段などが設けられる場合が多い。 The drive circuit (ECU 56) has almost the same circuit configuration as the block configuration diagram shown in FIG. 5, and the voltage dividing circuits DIV and ADC 54 are omitted, and a motor-on signal output (MOTOR-ON) is added. This motor on signal (MOTOR-ON) is H when the motor output is on and L when the motor output is off, and both are output to the external measurement circuit 57. In addition to the zero cross detection means (ZERO55), the coil output unit is often provided with a charge pump for FET predrive, a noise filter, a coil current detection means, and the like.

外部測定回路57は、測定や演算を行う制御部(CPU57a)と、測定相電圧を分圧する分圧部(DIV57b)と、短絡相をFETによりGNDに短絡させるスイッチ部(SW57c)を備える。本例ではU相を測定相、V相を短絡相としているが、接続相は任意に選べる。外部測定回路57の制御部(CPU57a)は、駆動回路(ECU56)からのモータオン信号(MOTOR−ON)の入力部と、分圧後の測定相信号を入力しAD変換するユニポーラ型AD変換器(ADC57d)と、測定時にスイッチ部(SW57c)をオンする信号MEASの出力部とを備える。
駆動回路(ECU56)からモータ(MOTOR)へは出力U〜Wの3線が接続される。外部測定回路57へはモータ出力UとV及び駆動回路(ECU56)からモータオン信号(MOTOR−ON)とGNDラインの4線が接続される。尚、制御部(CPU57a)への制御用電源は、駆動回路(ECU56)からあるいは別途DC電源から供給すればよく、また上位コントローラ等と通信することなども当然に想定されるが、煩雑化をさけるためこれらの記載は省略した。
The external measurement circuit 57 includes a control unit (CPU57a) that performs measurement and calculation, a voltage division unit (DIV57b) that divides the measurement phase voltage, and a switch unit (SW57c) that short-circuits the short-circuit phase to GND by FET. In this example, the U phase is the measurement phase and the V phase is the short circuit phase, but the connection phase can be selected arbitrarily. The control unit (CPU57a) of the external measurement circuit 57 is a unipolar AD converter (CPU 57a) that inputs a motor-on signal (MOTOR-ON) input unit from the drive circuit (ECU 56) and a measurement phase signal after voltage division and performs AD conversion. The ADC 57d) and the output unit of the signal MEAS that turns on the switch unit (SW57c) at the time of measurement are provided.
Three wires of outputs U to W are connected from the drive circuit (ECU 56) to the motor (MOTOR). The motor outputs U and V and the drive circuit (ECU 56) connect the motor on signal (MOTOR-ON) and the four lines of the GND line to the external measurement circuit 57. The control power supply to the control unit (CPU57a) may be supplied from the drive circuit (ECU 56) or separately from the DC power supply, and communication with the host controller or the like is naturally assumed, but it is complicated. To avoid this, these descriptions are omitted.

測定手順は、まず駆動回路(ECU56)がモータ(MOTOR)を回転させその後、出力をオフにして惰性回転させる。外部測定回路57は、モータオン信号(MOTOR−ON)がLになると測定を開始し、MEAS信号を出力してV相をGNDに短絡し、切り換えが安定する時間だけ待ったのちU相電圧の測定を開始する。ADC57dによりサイクリックにU相電圧をAD変換しコイル電圧を測定する。U相電圧値から1電気角周期分の測定完了を検出したら、MEAS信号をオフとしV相を元通りに開放し、電気角内の測定したU相電圧データから最大値と最小値を抽出しコイル電圧変動幅ΔVを求める。ユニポーラ型AD変換器ADC57dは負電圧が0Vと測定されることから、得られるコイル電圧変動幅ΔVは0Vとピーク値の差電圧となる。従ってコイル電圧変動幅ΔVは線間誘起電圧(0toPEAK)と等しくなる。さらにコイル電圧変動幅ΔVと電気角周期tから拡張誘起電圧係数KVを求め、それ以前のKV値と比較することで減磁を検出する。得られる減磁率は負荷電流やコイル直流抵抗値の影響を受けないため、非常に正確な減磁率を検出可能である。またモータ(MOTOR)の最高回転数まで測定でき、駆動回路(ECU56)の出力部周辺の付随部品の影響を受けにくいため汎用性が高い。 In the measurement procedure, the drive circuit (ECU 56) first rotates the motor (MOTOR), and then the output is turned off and the motor is coasted. The external measurement circuit 57 starts the measurement when the motor-on signal (MOTOR-ON) becomes L, outputs the MEAS signal, short-circuits the V phase to the GND, waits for a time for the switching to stabilize, and then measures the U-phase voltage. Start. The U-phase voltage is cyclically AD-converted by the ADC 57d and the coil voltage is measured. When the completion of measurement for one electric angle cycle is detected from the U-phase voltage value, the MEAS signal is turned off, the V-phase is opened again, and the maximum and minimum values are extracted from the measured U-phase voltage data within the electric angle. Obtain the coil voltage fluctuation width ΔV. Since the negative voltage of the unipolar AD converter ADC57d is measured as 0V, the obtained coil voltage fluctuation width ΔV is the difference voltage between 0V and the peak value. Therefore, the coil voltage fluctuation width ΔV becomes equal to the line-induced voltage (0toPEAK). Further, the extended induced voltage coefficient KV is obtained from the coil voltage fluctuation width ΔV and the electric angle period t, and demagnetization is detected by comparing with the KV value before that. Since the obtained demagnetization rate is not affected by the load current or the coil DC resistance value, a very accurate demagnetization rate can be detected. Further, it is highly versatile because it can measure up to the maximum rotation speed of the motor (MOTOR) and is not easily affected by auxiliary parts around the output portion of the drive circuit (ECU 56).

なお、モータ駆動回路の構成や制御プログラム構成は様々考えられ、本実施例に開示された態様に限定されるものではなく、本案主旨を逸脱しない範囲で電子回路技術者あるいはプログラマー(当業者)であれば当然なし得る回路構成の変更やプログラム構成の変更も含まれる。 The configuration of the motor drive circuit and the configuration of the control program can be considered in various ways, and are not limited to the modes disclosed in the present embodiment. It also includes changes in the circuit configuration and program configurations that can be made if there is one.

1 回転子軸 2 回転子 3 永久磁石 4 固定子 50 上位コントローラ 51 MPU(制御回路) 52 ハーフブリッジ型インバータ回路(INV) 53 PWM制御回路 54 ADコンバータ(測定回路:ADC) 55 ゼロクロスコンパレータ 56 ECU(駆動回路) 57 外部測定回路 57a CPU(制御部)57b DIV(分圧部)57c SW(スイッチ部)57d ADC(ユニポーラ型AD変換器) 1 Rotor shaft 2 Rotor 3 Permanent magnet 4 Steader 50 Upper controller 51 MPU (control circuit) 52 Half-bridge type inverter circuit (INV) 53 PWM control circuit 54 AD converter (measurement circuit: ADC) 55 Zero cross comparator 56 ECU ( Drive circuit) 57 External measurement circuit 57a CPU (control unit) 57b DIV (pressure dividing unit) 57c SW (switch unit) 57d ADC (unipolar AD converter)

永久磁石界磁を備えた回転子と電機子コイルを有する固定子を備えた電動機と、前記回転子の回転を付勢するように前記電機子コイルへ通電する出力回路と上位コントローラからの指令を受けて前記出力回路による前記電機子コイルへの通電を制御する制御回路と、前記電機子コイルに発生したコイル電圧を測定して前記制御回路へ送出する測定回路と、を有する電動機の減磁検出方法であって、前記制御回路は、前記電動機を通電制御された回転状態から非通電として惰性回転させて多相コイルのうち任意の一相のコイルを接地電位あるいは電源電位に接続し他相を開放としてから、開放相の一相のコイル電圧変動幅ΔV及び電気角周期tを測定し、得られた電気角周期t内のコイル電圧変動幅ΔVと電気角周期tを乗算して得られた値を拡張誘起電圧定数KVとして記憶し、予め所望の一つ或いは複数の拡張誘起電圧定数を閾値KVthとして設定しておき、電動機を惰性回転させて得られた拡張誘起電圧定数KVが前記閾値KVth以下なら減磁発生と判定することを特徴とする。 A command from an electric motor equipped with a rotor having a permanent magnet field and a stator having an armature coil, an output circuit for energizing the armature coil so as to urge the rotation of the rotor, and a command from an upper controller. Demagnetization detection of an electric motor having a control circuit that receives and controls energization of the armature coil by the output circuit, and a measurement circuit that measures the coil voltage generated in the armature coil and sends it to the control circuit. In the method, the control circuit coasts the electric motor from a rotating state in which the electric power is controlled to be de-energized, and connects any one-phase coil of the multi-phase coils to the ground potential or the power supply potential to connect the other phase. After opening, the coil voltage fluctuation width ΔV and the electric angle period t of one phase of the open phase were measured, and the coil voltage fluctuation width ΔV within the obtained electric angle period t was multiplied by the electric angle period t. The value is stored as the extended induced voltage constant KV, one or more desired extended induced voltage constants are set in advance as the threshold KVth, and the extended induced voltage constant KV obtained by coasting the electric motor is the threshold KVth. If the following, it is determined that demagnetization has occurred.

Claims (6)

永久磁石界磁を備えた回転子と電機子コイルを有する固定子を備えた電動機と、前記回転子の回転を付勢するように前記電機子コイルへ通電する出力回路と上位コントローラからの指令を受けて前記出力回路による前記電機子コイルへの通電を制御する制御回路と、前記電機子コイルに発生したコイル電圧を測定して前記制御回路へ送出する測定回路と、を有する電動機の減磁検出方法であって、
前記制御回路は、前記電動機を通電制御された回転状態から非通電として惰性回転させて一相のコイル電圧変動幅ΔV及び電気角周期tを測定し、得られた電気角周期t内のコイル電圧変動幅ΔVと電気角周期tを乗算して得られた値を拡張誘起電圧定数KVとして記憶し、予め所望の一つ或いは複数の拡張誘起電圧定数を閾値KVthとして設定しておき、電動機を惰性回転させて得られた拡張誘起電圧定数KVが前記閾値KVth以下なら減磁発生と判定することを特徴とする電動機の減磁検出方法。
An electric motor equipped with a rotor having a permanent magnet field and a stator having an armature coil, an output circuit for energizing the armature coil to urge the rotation of the rotor, and a command from a host controller. Demagnetization detection of an electric motor having a control circuit that receives and controls energization of the armature coil by the output circuit, and a measurement circuit that measures the coil voltage generated in the armature coil and sends it to the control circuit. It's a method
The control circuit coasts the electric motor from the energized and controlled rotation state as non-energized to measure the one-phase coil voltage fluctuation width ΔV and the electric angle period t, and the coil voltage within the obtained electric angle period t. The value obtained by multiplying the fluctuation width ΔV by the electric angle period t is stored as the extended induced voltage constant KV, and one or more desired extended induced voltage constants are set in advance as the threshold KVth to allow the electric motor to coast. A method for detecting demagnetization of an electric motor, wherein if the extended induced voltage constant KV obtained by rotation is equal to or less than the threshold value KVth, it is determined that demagnetization has occurred.
前記電動機を非通電として惰性回転させ、多相コイルのうち任意の一相のコイルを接地電位あるいは電源電位に接続し他相を開放としてから、開放相の一相のコイル電圧変動幅ΔV及び電気角周期tを測定する請求項1記載の電動機の減磁検出方法。 The motor is coasted with no electricity, and any one-phase coil of the multi-phase coil is connected to the ground potential or power supply potential to open the other phase, and then the coil voltage fluctuation width ΔV and electricity of the open phase one phase The demagnetization detection method for an electric motor according to claim 1, wherein the angular period t is measured. 未減磁状態で標準温度時の拡張誘起電圧定数KVあるいは前記閾値KVthと、今回測定した拡張誘起電圧定数KVとの差分から減磁量を検出する請求項1又は請求項2記載の電動機の減磁検出方法。 The reduction of the motor according to claim 1 or 2, wherein the demagnetization amount is detected from the difference between the extended induced voltage constant KV or the threshold KVth at the standard temperature in the unmagnetized state and the extended induced voltage constant KV measured this time. Magnetic detection method. 前記電動機の設計段階で使用最高温度を設定し、電動機運用前に前記永久磁石界磁が使用最高温度のときの拡張誘起電圧定数KVを推定若しくは測定し、前記制御回路は得られた値を閾値KVthとして記憶しておく請求項1乃至請求項3のいずれかに記載の電動機の減磁検出方法。 The maximum operating temperature is set at the design stage of the motor, the extended induced voltage constant KV when the permanent magnet field is at the maximum operating temperature is estimated or measured before the operation of the motor, and the control circuit sets the obtained value as a threshold value. The demagnetization detection method for an electric motor according to any one of claims 1 to 3, which is stored as KVth. 前記制御回路は、電動機運用前に少なくとも3点以上の複数の界磁温度にて拡張誘起電圧定数KVを推定若しくは測定して記憶しておき、前記界磁温度と前記拡張誘起電圧定数KVとの関係を表す関数(近似式)を求めて前記制御回路に記憶し、電動機運用時において拡張誘起電圧定数KVの測定時に前記関数を用いて界磁温度を推定する請求項1乃至請求項4のいずれかに記載の電動機の減磁検出方法。 In the control circuit, the extended induced voltage constant KV is estimated or measured and stored at a plurality of field temperatures of at least three points or more before the operation of the motor, and the field temperature and the extended induced voltage constant KV are stored. Any of claims 1 to 4 in which a function (approximate formula) representing the relationship is obtained and stored in the control circuit, and the field temperature is estimated using the function when measuring the extended induced voltage constant KV during operation of the motor. The demagnetization detection method for the electric motor described in. 前記制御回路は、電動機運用前に永久磁石界磁の標準温度にて拡張誘起電圧定数KVを推定若しくは測定して記憶しておき、電動機運用時に再び前記標準温度で拡張誘起電圧定数KVを測定し、今回測定値と運用前に記憶した拡張誘起電圧定数KVとの差分に基づいて請求項5で求めた関数の切片が補正された新たな関数を求めて前記制御回路に記憶し、拡張誘起電圧定数KVの測定時に前記補正された新たな関数を用いて界磁温度を推定する請求項5記載の電動機の減磁検出方法。 The control circuit estimates or measures and stores the extended induced voltage constant KV at the standard temperature of the permanent magnet field before the motor is operated, and measures the extended induced voltage constant KV again at the standard temperature when the motor is operated. Based on the difference between the measured value this time and the extended induced voltage constant KV stored before operation, a new function obtained by correcting the section of the function obtained in claim 5 is obtained and stored in the control circuit, and the extended induced voltage is stored. The method for detecting demagnetization of an electric motor according to claim 5, wherein the field temperature is estimated by using the corrected new function when measuring the constant KV.
JP2019120821A 2019-05-14 2019-06-28 Motor demagnetization detection method Expired - Fee Related JP6651188B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019091432 2019-05-14
JP2019091432 2019-05-14

Publications (2)

Publication Number Publication Date
JP6651188B1 JP6651188B1 (en) 2020-02-19
JP2020191769A true JP2020191769A (en) 2020-11-26

Family

ID=69568428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019120821A Expired - Fee Related JP6651188B1 (en) 2019-05-14 2019-06-28 Motor demagnetization detection method

Country Status (1)

Country Link
JP (1) JP6651188B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325344B (en) * 2021-04-29 2022-04-01 东风博泽汽车系统有限公司 Automobile radiator electric fan demagnetization test device and method
CN114487830B (en) * 2022-03-21 2022-10-25 山东交通学院 Rapid detection method and system for demagnetization of permanent magnet synchronous motor of electric vehicle
CN114785225B (en) * 2022-05-06 2024-01-26 重庆美的通用制冷设备有限公司 Permanent magnet motor detection method and device, readable storage medium and permanent magnet motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06253581A (en) * 1993-02-24 1994-09-09 Toshiba Corp Inverter and air-conditioner employing it
JPH1118496A (en) * 1997-06-18 1999-01-22 Hitachi Ltd Controller and control method for electric vehicle
JP2005012914A (en) * 2003-06-19 2005-01-13 Koyo Seiko Co Ltd Driver for motor
US20150367734A1 (en) * 2013-04-11 2015-12-24 Mitsubishi Electric Corporation Cooling control apparatus and cooling control method for an electric vehicle motor
JP2017108568A (en) * 2015-12-11 2017-06-15 株式会社エクセディ Motor control device, and drive control device for hybrid type vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06253581A (en) * 1993-02-24 1994-09-09 Toshiba Corp Inverter and air-conditioner employing it
JPH1118496A (en) * 1997-06-18 1999-01-22 Hitachi Ltd Controller and control method for electric vehicle
JP2005012914A (en) * 2003-06-19 2005-01-13 Koyo Seiko Co Ltd Driver for motor
US20150367734A1 (en) * 2013-04-11 2015-12-24 Mitsubishi Electric Corporation Cooling control apparatus and cooling control method for an electric vehicle motor
JP2017108568A (en) * 2015-12-11 2017-06-15 株式会社エクセディ Motor control device, and drive control device for hybrid type vehicle

Also Published As

Publication number Publication date
JP6651188B1 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
CN112292809B (en) Driving device, driving system and driving method for permanent magnet synchronous motor
Kim et al. Commutation torque ripple reduction in a position sensorless brushless DC motor drive
KR101904366B1 (en) Electric drive unit
JP6651188B1 (en) Motor demagnetization detection method
US7427841B2 (en) Driving method and driver of brushless DC motor
EP3078974A2 (en) Apparatus for correcting offset of current sensor
CN110535378B (en) High-precision phase change control method and system for brushless direct current motor
US20190173413A1 (en) Motor module, motor controller, temperature inferring device, and temperature inference method
WO2017126639A1 (en) Abnormality detection device for current sensor
WO2013005472A1 (en) Motor drive device, and fan control device and heat pump device utilizing same
Takeshita et al. Sensorless control and initial position estimation of salient-pole brushless DC motor
JP6854404B2 (en) Inverter controller
JP6463966B2 (en) Motor driving device, motor driving module and refrigeration equipment
JP2010226842A (en) Control method and control apparatus for brushless dc motor
EP3654520B1 (en) Motor driving apparatus
US20230142956A1 (en) Motor controller, motor system and method for controlling motor
JP2013146155A (en) Winding temperature estimating device and winding temperature estimating method
JP6012211B2 (en) Motor drive device and air conditioner equipped with the same
JP7077032B2 (en) Control device for three-phase synchronous motor
US11228271B2 (en) Control device for three-phase synchronous motor and electric power steering device using the same
JP2001327186A (en) Current detecting device for three-phase synchronous motor
JP2001008488A (en) Abnormality detector for brushless dc motor
JPWO2019207754A1 (en) Electric motor control device
JP2015126555A (en) Motor control apparatus
US20230111291A1 (en) Motor controller, motor system and method for controlling motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190719

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200110

R150 Certificate of patent or registration of utility model

Ref document number: 6651188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees