JPH11183557A - Insulation degradation examining method for power cable - Google Patents

Insulation degradation examining method for power cable

Info

Publication number
JPH11183557A
JPH11183557A JP35325997A JP35325997A JPH11183557A JP H11183557 A JPH11183557 A JP H11183557A JP 35325997 A JP35325997 A JP 35325997A JP 35325997 A JP35325997 A JP 35325997A JP H11183557 A JPH11183557 A JP H11183557A
Authority
JP
Japan
Prior art keywords
cable
voltage
water tree
vlf
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35325997A
Other languages
Japanese (ja)
Inventor
Motoo Shimada
元生 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP35325997A priority Critical patent/JPH11183557A/en
Publication of JPH11183557A publication Critical patent/JPH11183557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To judge presence of harmful water tree in a power cable insulator and to assure remaining life time by a low frequency power source. SOLUTION: A CV cable 3 which is to be tested is applied with a VLF voltage which is 0.4-1 time of operation voltage through a harmonics removing filter 2 from a VLF power source 1 of 0.05-1 hz, and the current flowing the CV cable 3 and a reference capacitor 4, respectively, is inputted in a loss current measurement bridge 6 for obtaining phase deviation of] a third harmonics of the loss current relative to a basic wave, thus presence of water tree degradation is judged. Related to a power cable judged to contain the harmful water tree, a low frequency voltage of 3-5.5 times of operation voltage is applied for screening. The cable not broken by screening is assured life expectancy of 3-5 years.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電力用CVケーブル
の絶縁劣化の診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing insulation deterioration of a power CV cable.

【0002】[0002]

【従来の技術】電力ケーブルを長期間便用すると、電界
と水分の作用により絶縁体中に水トリーと呼ばれる劣化
部が形成される。この水トリーは時間とともに進展し、
電力ケーブルの絶縁性能を低下させるため、これを放置
すると最終的には運転中の絶縁破壊事故を引き起こす。
この絶縁破壊事故を未然に防止するため、電力ケーブル
の絶縁劣化診断技術が種々開発されている。例えば、絶
縁体中を流れる電流から印加電圧より位相が90°進ん
だ電流成分を除去した電流(損失電流)を検出し、この
電流波形の変歪の様子つまり高調波成分の大きさや重畳
位相を用いて、水トリーの有害レベルを判定する方法と
して、特開平5−80113号公報、特開平7−151
815号公報等に記載される技術が知られている。
2. Description of the Related Art When a power cable is used for a long time, a deteriorated portion called a water tree is formed in an insulator due to the action of an electric field and moisture. This water tree evolves over time,
If left unattended to reduce the insulation performance of the power cable, it will eventually cause a dielectric breakdown accident during operation.
In order to prevent this dielectric breakdown accident, various techniques for diagnosing insulation deterioration of power cables have been developed. For example, a current (loss current) obtained by removing a current component whose phase leads the applied voltage by 90 ° from the current flowing through the insulator (loss current) is detected, and the state of distortion of the current waveform, that is, the magnitude of the harmonic component and the superimposed phase are determined. Japanese Patent Application Laid-Open Nos. Hei 5-80113 and Hei 7-151
A technique described in Japanese Patent Application Laid-Open No. 815 or the like is known.

【0003】また、AC破壊電圧と水トリーの長さの関
係を基にして、耐電圧試験をクリアしたケーブルについ
てその後の寿命は何年といった残存寿命を保証する方法
も検討されている(例えば特願平8−58736号)。
さらに、低周波電源を用い、電力ケーブルの絶縁劣化状
態を監視したり、有害水トリーの存在を検出する方法と
しては、特開昭59−202077号公報、特開昭63
−78061号公報に記載される技術が知られている。
[0003] Further, a method of guaranteeing a remaining life of several years for a cable that has passed a withstand voltage test based on a relationship between an AC breakdown voltage and a length of a water tree has been studied (for example, a special method). No. 8-58736).
Further, as a method of monitoring the insulation deterioration state of the power cable using a low-frequency power supply and detecting the presence of harmful water trees, Japanese Patent Application Laid-Open Nos.
A technique described in Japanese Patent Application Laid-Open No. 78061 is known.

【0004】[0004]

【発明が解決しようとする課題】商用周波(以下ACと
いう)電源を用いて、損失電流を測定し水トリーの有害
レベルを判定する方法は電源が大きくなり可搬性に乏し
く、また、この方法で電力ケーブルの余寿命を判定する
ことはできなかった。また、低周波(以下、VLFとい
う)電源は、上記AC電源に比べて小型であり可搬性に
優れているが、損失電流を測定する電圧レベルが判って
いなかったため、VLF電源を用いて損失電流を測定し
水トリーの有害レベルを判定することができなかった。
本発明は上記した事情に鑑みなされたものであって、そ
の目的とするところは、低周波電圧を印加して電力ケー
ブルの有害な水トリーを把握し、有害水トリーが存在す
る電力ケーブルに運転電圧より高い低周波電圧を印加し
て破壊によるスクリーニングを行うことにより、低周波
電源により、電力ケーブル絶縁体中における有害水トリ
ーの判定および余寿命保証を行うことである。
A method of determining a harmful level of a water tree by measuring a loss current by using a commercial frequency (hereinafter referred to as AC) power supply has a problem that the power supply is large and the portability is poor. The remaining life of the power cable could not be determined. A low-frequency (hereinafter, referred to as VLF) power supply is smaller and more portable than the AC power supply. However, since the voltage level at which the loss current is measured is not known, the loss current using the VLF power supply is low. And no harmful level of the water tree could be determined.
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to grasp a harmful water tree of a power cable by applying a low frequency voltage and to operate the power cable having a harmful water tree. By performing a screening by destruction by applying a low-frequency voltage higher than the voltage, a low-frequency power source is used to determine harmful water trees in a power cable insulator and to guarantee the remaining life.

【0005】[0005]

【課題を解決するための手段】水トリー劣化したケーブ
ルに単一周波数の正弦波電圧を印加した場合、その電流
中に高調波成分が発生し、その基本波成分に対する位相
のずれは水トリー劣化の程度を示す。したがって、ケー
ブルにVLF電圧を印加し、その高調波成分の位相のず
れを測定することにより有害水トリーが存在しているか
否かを診断することができる。
When a sinusoidal voltage of a single frequency is applied to a cable with deteriorated water tree, a harmonic component is generated in the current, and the phase shift with respect to the fundamental wave component is caused by water tree deterioration. Indicates the degree of Therefore, it is possible to diagnose whether or not a harmful water tree exists by applying the VLF voltage to the cable and measuring the phase shift of the harmonic component.

【0006】本発明者らが種々実験を行い検討したとこ
ろ、絶縁体への電圧ストレスが2kV/mm以上であれ
ば、VLFを使用した場合にも損失電流の波形からケー
ブルの劣化の有無を判定できることが明らかとなった。
例えば、66kVCVケーブルの運転電圧により電圧ス
トレスは5kV/mmなので、運転電圧の0.4倍以上
のVLFを印加することにより、CVケーブル絶縁体中
の有害水トリーの判定を行うことができる。また、ケー
ブルの劣化の有無を判定する際には、ケーブルの運転電
圧以下で試験することが望ましいので、VLFを使用し
損失電流の波形からケーブルの劣化の有無を判定する場
合には、運転電圧の0.4〜1倍の電圧を印加して行う
のがよいと考えられる。さらに、水トリー長とACおよ
びVLF破壊電圧の関係を調べたところ、VLFの場合
には、有害水トリーが存在するケーブルはAC運転電圧
の3〜5.5倍の電圧で破壊し、破壊しなかったケーブ
ルは3〜5年の余寿命を保証できることが明らかになっ
た。
[0006] The inventors of the present invention have conducted various experiments and studied. If the voltage stress on the insulator is 2 kV / mm or more, the presence or absence of deterioration of the cable is determined from the waveform of the loss current even when VLF is used. It became clear what we could do.
For example, since the voltage stress is 5 kV / mm depending on the operating voltage of the 66 kVC cable, it is possible to determine the harmful water tree in the CV cable insulator by applying VLF 0.4 times or more of the operating voltage. When determining whether the cable has deteriorated, it is desirable to perform the test at a voltage lower than the operating voltage of the cable. Therefore, when determining whether the cable has deteriorated from the waveform of the loss current using the VLF, It is considered that it is better to apply a voltage of 0.4 to 1 times the above. Furthermore, when the relationship between the water tree length and the AC and VLF breakdown voltage was examined, in the case of VLF, the cable in which the harmful water tree existed was broken at a voltage 3 to 5.5 times the AC operating voltage, and the cable was destroyed. It became clear that the missing cable could guarantee a remaining life of 3-5 years.

【0007】本発明は上記点に着目してなされたもので
あり、次のようにして前記課題を解決する。電力ケーブ
ルに運転電圧の0.4〜1倍の0.05〜1Hzの低周
波電圧を印加して、その時に発生する損失電流の第3高
調波の波形歪みにより水トリー劣化の有無を判定する。
そして、有害水トリーが存在すると判定された電力ケー
ブルについて、運転電圧の3〜5.5倍の低周波電圧を
印加して、水トリー劣化したケーブルを破壊させてスク
リーニングを行う。
The present invention has been made in view of the above points, and solves the above-mentioned problems as follows. A low frequency voltage of 0.05 to 1 Hz, which is 0.4 to 1 times the operating voltage, is applied to the power cable, and the presence or absence of water tree deterioration is determined based on the third harmonic waveform distortion of the loss current generated at that time. .
Then, a screening is performed by applying a low-frequency voltage of 3 to 5.5 times the operating voltage to the power cable determined to have the harmful water tree to destroy the cable deteriorated with the water tree.

【0008】本発明においては、上記のようにして電力
ケーブルの絶縁劣化診断を行っているので、低周波電源
を用いて損失電流の第3高調波の波形の歪み電力ケーブ
ル絶縁体中における有害水トリーの判定を行うことがで
きる。また、有害水トリーの判定を行うために印加する
電圧は運転電圧以下でよいので、被試験ケーブルに余計
なダメージを与えることがなく、最初から高いVLF電
圧を印加するより効率的な診断を行うことができる。ま
た、水トリー劣化があると判定されたCVケーブルにつ
いて、運転電圧の3〜5.5倍の低周波電圧を印加し
て、水トリー劣化したケーブルを破壊させているので、
破壊しなかったケーブルについて3〜5年の余寿命保証
が可能となる。
In the present invention, since the insulation deterioration diagnosis of the power cable is performed as described above, the third harmonic waveform of the loss current is distorted using a low-frequency power supply. Tree decisions can be made. Further, since the voltage to be applied for determining the harmful water tree may be equal to or lower than the operating voltage, more efficient diagnosis can be performed by applying a high VLF voltage from the beginning without causing unnecessary damage to the cable under test. be able to. In addition, since a low frequency voltage of 3 to 5.5 times the operating voltage is applied to the CV cable determined to have water tree deterioration, the cable having deteriorated water tree is destroyed.
The remaining life of the cable which has not been broken can be guaranteed for 3 to 5 years.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。VLFによりCVケーブルの絶縁劣化診断
および寿命判定を行うため、まず、水トリー長と損失電
流の第3高調波の歪みとの関係を調べた。図1は未劣化
の絶縁体シートと水トリー劣化した絶縁シートにAC交
流正弦波電圧を印加した場合の損失電流の第3高調波波
形であり、同図(a)は未劣化絶縁シート、(b)は水
トリー劣化した絶縁シートの場合を示している。同図か
ら明らかなように、水劣化絶縁シートの場合には、位相
が90°(π/2)と270°(3π/2)で波形が歪
む。
Embodiments of the present invention will be described below. First, the relationship between the water tree length and the distortion of the third harmonic of the loss current was investigated in order to diagnose the insulation deterioration and determine the life of the CV cable using the VLF. FIG. 1 is a third harmonic waveform of a loss current when an AC alternating sine wave voltage is applied to an undegraded insulating sheet and a water tree-degraded insulating sheet, and FIG. b) shows the case of an insulating sheet deteriorated with water trees. As is clear from the figure, in the case of the water-deteriorated insulating sheet, the waveform is distorted at phases of 90 ° (π / 2) and 270 ° (3π / 2).

【0010】図2は22kVCVケーブル(絶縁厚=7
mm)の劣化ケーブルでの損失電流の第3高調波波形で
あり、図1に示した絶縁シートの結果と一致しており、
CVケーブルの場合であっても、損失電流の波形から劣
化の有無を判定できることがわかる。図3は水トリー劣
化した絶縁体にAC電圧を印加した場合における水トリ
ー長と第3高調波成分の基本波成分に対する位相のずれ
を示す図であり、横軸は水トリーの長さを絶縁厚で割っ
て100をかけたパーセントを示し、縦軸は位相のずれ
θ3 を示している。図3からわかるように、位相のずれ
θ3 が0に近づくにしたがって水トリー長が長くなる。
すなわち、劣化が進んでいることがわかる。
FIG. 2 shows a 22 k VCV cable (insulation thickness = 7).
mm) of the third harmonic waveform of the loss current in the deteriorated cable, which is consistent with the result of the insulating sheet shown in FIG.
It can be seen that even in the case of a CV cable, the presence or absence of deterioration can be determined from the waveform of the loss current. FIG. 3 is a diagram showing the water tree length and the phase shift of the third harmonic component with respect to the fundamental wave component when an AC voltage is applied to the insulator whose water tree has deteriorated. The horizontal axis indicates the water tree length. The percentage divided by the thickness and multiplied by 100 is shown, and the vertical axis shows the phase shift θ 3 . As can be seen from FIG. 3, the water tree length increases as the phase shift θ 3 approaches zero.
That is, it is understood that the deterioration is progressing.

【0011】図4は、AC破壊電圧と位相のずれθ3
関係を表した図であり、縦軸はAC破壊電圧、横軸は位
相のずれθ3 を示している。同図からわかるように、位
相のずれθ3 が0°に近づくにしたがってAC破壊電圧
が下がり、電気的にも劣化していることを表す結果がで
ている。同図においては、一例として|θ3 |<20°
のとき要注意(有害水トリーが発生している)とした。
以上のことから、水トリー劣化したケーブルに、単一周
波数の正弦波電圧を印加し、その基本波成分に対する高
調波成分の位相のずれを測定することにより有害水トリ
ーが存在しているか否かを診断することができる。
FIG. 4 is a diagram showing the relationship between the AC breakdown voltage and the phase shift θ 3. The vertical axis shows the AC breakdown voltage and the horizontal axis shows the phase shift θ 3 . As can be seen from the figure, AC breakdown voltage is lowered in accordance with the deviation theta 3 phase approaches 0 °, and the result is out indicating that also degrade the electrical. In the figure, as an example, | θ 3 | <20 °
Attention was required at this time (hazardous water tree was generated).
Based on the above, whether a harmful water tree exists by applying a sinusoidal voltage of a single frequency to the cable with deteriorated water tree and measuring the phase shift of the harmonic component with respect to the fundamental component Can be diagnosed.

【0012】上記図1、図2、図3、図4に示したもの
はAC電圧を印加した場合のデータであるが、VLFも
基本的には正弦波であり、ACと同様な結果が得られる
ものと考えられる。そこで、本発明者は、0.05〜1
HzのVLFについて水トリーの判定が可能な印加電圧
を調べた。その結果、電圧ストレスが2kV/mm以上
であれば、有害水トリーの判定を容易に行うことが確認
できた。したがって、例えば、66kVCVケーブル
(絶縁厚=8mm)の場合の運転電圧における電圧スト
レスは〔60×15/√(3)〕/8=5kV/mmな
ので、運転電圧の0.4倍程度の電圧で有害水トリーの
判定を行うことができる。
The data shown in FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are data when an AC voltage is applied. VLF is basically a sine wave, and the same result as AC is obtained. It is thought that it is possible. Therefore, the present inventor has proposed that
With respect to the VLF of Hz, an applied voltage capable of judging a water tree was examined. As a result, when the voltage stress was 2 kV / mm or more, it was confirmed that the determination of the harmful water tree was easily performed. Therefore, for example, the voltage stress at the operating voltage in the case of a 66 kVC cable (insulation thickness = 8 mm) is [60 × 15 / √ (3)] / 8 = 5 kV / mm. A hazardous water tree determination can be made.

【0013】また、CVケーブルにおける有害水トリー
の存在の有無を判定する場合には、CVケーブルにダメ
ージを与えないことが必要である。したがって、有害水
トリーの有無を判定する場合の印加電圧は通常運転電圧
より低いことが望ましい。このことから、本発明におい
てはCVケーブルには運転電圧の0.4〜1倍の0.0
5〜1HzのVLFを印加して、損失電流を測定し第3
高調波の位相ずれから有害水トリーの有無を判定し、有
害水トリーが存在しているCVケーブルのスクリーニン
グを行うこととした。
Further, when determining whether or not a harmful water tree exists in the CV cable, it is necessary not to damage the CV cable. Therefore, it is desirable that the applied voltage when determining the presence or absence of the harmful water tree is lower than the normal operation voltage. From the above, in the present invention, the CV cable has an operating voltage of 0.4 to 1 times 0.0
A VLF of 5 to 1 Hz was applied, and the loss current was measured.
The presence or absence of the harmful water tree was determined from the phase shift of the harmonic, and the screening of the CV cable having the harmful water tree was performed.

【0014】次に、水トリー劣化したケーブルを破壊で
きる0.05〜1HzのVLF電圧を調べた。図5は水
針モデル(22kVCVケーブル)の実験により得られ
た水トリーの伸びと、AC、VLF破壊電圧の関係を示
す図であり、同図の縦軸は破壊電圧〔kV〕を示し、横
軸は、残存絶縁厚(水トリーの先端からの正常部の厚
さ)を示している。
Next, a VLF voltage of 0.05 to 1 Hz at which a cable with water tree deterioration can be broken was examined. FIG. 5 is a diagram showing the relationship between the water tree elongation obtained by the water needle model (22 kVC cable) experiment and the AC and VLF breakdown voltages. The vertical axis of FIG. 5 shows the breakdown voltage [kV], The axis indicates the remaining insulation thickness (the thickness of the normal part from the tip of the water tree).

【0015】図5からわかるように、AC電圧の約3倍
程度のVLF電圧を水トリー劣化したケーブルに印加す
ることにより、有害水トリーの存在するケーブルを破壊
することができる。さらに、22〜33kVCVケーブ
ル(絶縁厚t=6mm)について試験電圧と余寿命の関
係を調べたところ、絶縁厚6mmのケーブルに60kV
の電圧を印加した(60kV/6mm=10kV/m
m)とき、破壊しなかったケーブルの推定余寿命は3
年、また、絶縁厚6mmのケーブルに70kVの電圧を
印加した(70kV/6mm=12kV/mm)とき、
破壊しなかったケーブルの推定余寿命は5年であること
がわかった。60kVの場合は運転電圧(22〜33k
V/√(3)=13kV〜20kV)の3〜4.5倍で
あり、70kVの場合は運転電圧の3.5〜5.5倍で
あるから、運転電圧の3〜5.5倍のVLFを印加する
ことにより、有害水トリーの存在するケーブルのスクリ
ーニングを行うことができる。
As can be seen from FIG. 5, a cable having a harmful water tree can be destroyed by applying a VLF voltage that is about three times the AC voltage to a cable that has been deteriorated by the water tree. Further, the relationship between the test voltage and the remaining life was examined for a 22 to 33 kVCV cable (insulation thickness t = 6 mm).
(60 kV / 6 mm = 10 kV / m)
m), the estimated remaining life of the cable that did not break is 3
When a voltage of 70 kV is applied to a cable having an insulation thickness of 6 mm (70 kV / 6 mm = 12 kV / mm),
The estimated remaining life of the unbroken cable was found to be 5 years. In the case of 60 kV, the operating voltage (22 to 33 k
V / √ (3) = 13 kV to 20 kV), which is 3 to 4.5 times. In the case of 70 kV, the operating voltage is 3.5 to 5.5 times, so that the operating voltage is 3 to 5.5 times. By applying the VLF, it is possible to perform screening of a cable having a harmful water tree.

【0016】なお、上記データは22〜33kVCVケ
ーブルについてのデータであるが、66kVCVケーブ
ルにもトレースできると考えられ、66kVCVケーブ
ルの場合には、運転電圧は60×1.15/√(3)≒
40kVであるので、有害水トリーを持つケーブル(残
存絶縁厚t=3mm)をスクリーリニングするVLF電
圧は40kV×3〜5.5=120〜220kVとな
る。
Although the above data is data for a 22-33 kVCV cable, it is considered that the data can be traced to a 66 kVCV cable. In the case of a 66 kVCV cable, the operating voltage is 60 × 1.15 / {(3)}.
Since it is 40 kV, the VLF voltage for screening the cable having the harmful water tree (remaining insulation thickness t = 3 mm) is 40 kV × 3 to 5.5 = 120 to 220 kV.

【0017】図6は本発明で使用される測定回路の一例
を示す図であり、同図に示す測定回路を用い、CVケー
ブルにVLFを印加して損失電流を第3高調波の位相ず
れθ 3 を測定した。図6において、1は0.05〜1H
zのVLF電源、2はVLF電源に含まれる高調波を除
去するフィルタ、3は被試験ケーブル、4は標準コンデ
ンサ、5は分圧器であり、被試験CVケーブル3、標準
コンデンサ4および分圧器5に対して、VLF電源1か
ら高調波除去フィルタ2を介して被試験CVケーブル3
に運転電圧の0.4〜1倍のVLF電圧を印加した。そ
して、被測定CVケーブル3および標準コンデンサ4の
それぞれに流れる電流を損失電流測定ブリッジ6に入力
し、被測定CVケーブル3に流れる電流から電源電圧位
相より90°位相が進んだ成分を除去し、得られた損失
電流信号を波形解析器7に入力し、基本波に対する損失
電流の第3高調波の位相ずれθ3 を求めた。
FIG. 6 shows an example of the measuring circuit used in the present invention.
FIG. 3 shows a CV cable using the measurement circuit shown in FIG.
Loss current by applying VLF to the
Re θ ThreeWas measured. In FIG. 6, 1 is 0.05 to 1H
z removes harmonics contained in the VLF power supply.
Filter, 3 is the cable under test, 4 is the standard condenser
5 is a voltage divider, CV cable 3 under test, standard
VLF power supply 1 for capacitor 4 and voltage divider 5
CV cable 3 to be tested via the harmonic elimination filter 2
Was applied with a VLF voltage 0.4 to 1 times the operating voltage. So
Then, the measured CV cable 3 and the standard capacitor 4
Input the current flowing to each to the loss current measurement bridge 6
The power supply voltage level is calculated based on the current flowing through the CV cable 3 to be measured.
The loss obtained by removing the component that is 90 ° ahead of the phase
The current signal is input to the waveform analyzer 7 and the loss with respect to the fundamental wave
Phase shift θ of the third harmonic of currentThreeI asked.

【0018】以上のように位相ずれθ3 測定し、位相ず
れθ3 に基づき有害水トリーが存在するCVケーブルを
判定した。そして、これらのCVケーブルに前記したよ
うに運転電圧の3〜5.5倍の電圧を例えば10分間印
加して、スクリーニングを行った。以上のような試験を
行ったところ、本発明の方法により、有害水トリーが存
在するケーブルの判定が可能であること、および、絶縁
劣化診断および耐圧試験により破壊しなかったケーブル
について3〜5年の余寿命が保証できることが確認され
た。
The phase shift θ 3 was measured as described above, and a CV cable having a harmful water tree was determined based on the phase shift θ 3 . As described above, screening was performed by applying a voltage of 3 to 5.5 times the operating voltage to these CV cables, for example, for 10 minutes. As a result of the above test, the method of the present invention makes it possible to determine a cable having a harmful water tree, and for a cable that has not been destroyed by an insulation deterioration diagnosis and a pressure resistance test for 3 to 5 years. It has been confirmed that the remaining life of can be guaranteed.

【0019】[0019]

【発明の効果】以上説明したように本発明においては、
以下の効果を得ることができる。 (1)小型な低周波電源を用いて電力ケーブルの絶縁劣
化診断を行うことができるので、試験装置を安価に構成
することが可能となり、また可搬型とすることもでき
る。 (2)有害水トリーの判定に際しては、運転電圧の0.
4〜1倍の低周波電圧を印加して試験を行っているた
め、被試験ケーブルに余計なダメージを与えることがな
い。また、有害水トリーが存在しているケーブルについ
ては、運転電圧より高い低周波電圧を印加してスクリー
ニングすることができる。このため、有害水トリーの判
定だけでなく、スクリーニングの結果破壊しなかったケ
ーブルについて、余寿命を保証することが可能となる。
As described above, in the present invention,
The following effects can be obtained. (1) Since insulation deterioration diagnosis of a power cable can be performed using a small-sized low-frequency power supply, the test apparatus can be configured at low cost and can be made portable. (2) When judging a harmful water tree, the operating voltage is set to 0.
Since the test is performed by applying a low frequency voltage of 4 to 1 times, no extra damage is given to the cable under test. In addition, a cable having a hazardous water tree can be screened by applying a low-frequency voltage higher than the operation voltage. For this reason, it is possible to guarantee not only the harmful water tree but also the remaining life of the cable that has not been destroyed as a result of the screening.

【図面の簡単な説明】[Brief description of the drawings]

【図1】未劣化シートと劣化シートの損失電流波形を示
す図である。
FIG. 1 is a diagram showing loss current waveforms of an undegraded sheet and a deteriorated sheet.

【図2】劣化ケーブルの損失電流波形を示す図である。FIG. 2 is a diagram showing a loss current waveform of a deteriorated cable.

【図3】水トリー長と第3高調波の位相ずれθ3 の関係
を示す図である。
FIG. 3 is a diagram illustrating a relationship between a water tree length and a phase shift θ 3 of a third harmonic.

【図4】AC破壊性能と第3高調波の位相ずれθ3 の関
係を示す図である。
FIG. 4 is a diagram illustrating a relationship between AC destruction performance and a phase shift θ 3 of a third harmonic.

【図5】残存絶縁厚とAC/VLF破壊電圧の関係を示
す図である。
FIG. 5 is a diagram showing a relationship between a residual insulating thickness and an AC / VLF breakdown voltage.

【図6】本発明で使用される測定回路の一例を示す図で
ある。
FIG. 6 is a diagram illustrating an example of a measurement circuit used in the present invention.

【符号の説明】[Explanation of symbols]

1 低周波電源 2 高調波除去フィルタ 3 被試験ケーブル 4 標準コンデンサ 5 分圧器 6 損失電流測定ブリッジ 7 波形解析器 DESCRIPTION OF SYMBOLS 1 Low frequency power supply 2 Harmonic elimination filter 3 Cable under test 4 Standard capacitor 5 Voltage divider 6 Loss current measurement bridge 7 Waveform analyzer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 0.05〜1Hzの低周波電圧を印加し
て、電力ケーブルの絶縁劣化を診断する方法であって、 電力ケーブルに運転電圧の0.4〜1倍の低周波電圧を
印加して、その時に発生する損失電流の第3高調波の波
形歪みにより水トリー劣化の有無を判定し、 水トリー劣化があると判定された電力ケーブルについ
て、運転電圧の3〜5.5倍の低周波電圧を印加して、
水トリー劣化したケーブルを破壊させてスクリーニング
を行うことを特徴とする電力ケーブル絶縁劣化診断方
法。
1. A method of diagnosing insulation deterioration of a power cable by applying a low frequency voltage of 0.05 to 1 Hz, wherein a low frequency voltage of 0.4 to 1 times the operating voltage is applied to the power cable. Then, the presence or absence of water tree deterioration is determined based on the waveform distortion of the third harmonic of the loss current generated at that time. For the power cable determined to have water tree deterioration, the operating voltage is 3 to 5.5 times the operating voltage. Apply low frequency voltage,
A method for diagnosing deterioration of power cable insulation, characterized in that screening is performed by destroying a cable with water tree deterioration.
JP35325997A 1997-12-22 1997-12-22 Insulation degradation examining method for power cable Pending JPH11183557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35325997A JPH11183557A (en) 1997-12-22 1997-12-22 Insulation degradation examining method for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35325997A JPH11183557A (en) 1997-12-22 1997-12-22 Insulation degradation examining method for power cable

Publications (1)

Publication Number Publication Date
JPH11183557A true JPH11183557A (en) 1999-07-09

Family

ID=18429629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35325997A Pending JPH11183557A (en) 1997-12-22 1997-12-22 Insulation degradation examining method for power cable

Country Status (1)

Country Link
JP (1) JPH11183557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223883B1 (en) * 2012-11-09 2013-01-17 목포해양대학교 산학협력단 Apparatus and method for diagnostic medium voltage cable status using the vlf td measured data
KR101466623B1 (en) * 2014-07-09 2014-11-28 한국전력공사 Apparatus and method for condition diagnosis and predicting remains life of power cable status using the vlf td measured data

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223883B1 (en) * 2012-11-09 2013-01-17 목포해양대학교 산학협력단 Apparatus and method for diagnostic medium voltage cable status using the vlf td measured data
KR101466623B1 (en) * 2014-07-09 2014-11-28 한국전력공사 Apparatus and method for condition diagnosis and predicting remains life of power cable status using the vlf td measured data
WO2016006756A1 (en) * 2014-07-09 2016-01-14 한국전력공사 Apparatus for diagnosing condition and measuring remaining life of power cable by using very low frequency tan delta measured data, and method therefor

Similar Documents

Publication Publication Date Title
Singh et al. Detection of half broken rotor bar fault in VFD driven induction motor drive using motor square current MUSIC analysis
TWI391685B (en) Station for detecting winding products and method for detecting inter-turn short-circuit
Lavrinovich et al. Advanced technology of transformer winding condition control based on nanosecond probing impulse
Grubic et al. Online surge testing applied to an induction machine with emulated insulation breakdown
JPH11183557A (en) Insulation degradation examining method for power cable
CN113295978B (en) Cable detection device, method, terminal device and computer readable storage medium
JP2007271542A (en) Insulation deterioration diagnosis method and insulation deterioration diagnosis device of power cable
JP2004226300A (en) Device and method for diagnosing deterioration of rotary electric machine
JPH09257862A (en) Device for diagnosis of winding insulation
Drif et al. Discriminating rotor cage faults and mechanical load oscillations in three-phase induction motors by the stator instantaneous complex apparent impedance
JPH11202019A (en) Test method for withstand voltage of power cable
JP4101120B2 (en) Test method for solid insulated cable
JP2590232B2 (en) Diagnosis method for electrical equipment insulation
JP3197000B2 (en) Field test method for special high-voltage line using switching surge
JP4802302B2 (en) Diagnosis method for water tree deterioration of power cables
JP3524345B2 (en) Withstand voltage test method for rubber and plastic insulated power cables
JPS60203867A (en) Noise removing method in insulation diagnosis based upon partial discharging phase characteristics
JP4681391B2 (en) Degradation diagnosis method for low-voltage cables
JPH06120315A (en) Test method for semiconductor device
US20240061045A1 (en) Device and method for determining a remaining service life of an electric machine
Polyakov et al. Research of Partial Discharges Intensity Voltage Dependence in XLPE-Insulated Cables
JP2010261735A (en) Method for testing quality of solid insulation cable
JP3832339B2 (en) Power cable life estimation method
JP2542406B2 (en) Insulation deterioration diagnosis method for power cables
Didier et al. Rotor fault detection using the instantaneous power signature