JPH11181624A - Production of polyester fiber and woven or knit fabric - Google Patents

Production of polyester fiber and woven or knit fabric

Info

Publication number
JPH11181624A
JPH11181624A JP9350858A JP35085897A JPH11181624A JP H11181624 A JPH11181624 A JP H11181624A JP 9350858 A JP9350858 A JP 9350858A JP 35085897 A JP35085897 A JP 35085897A JP H11181624 A JPH11181624 A JP H11181624A
Authority
JP
Japan
Prior art keywords
yarn
temperature
stretching
polyester
polyester fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9350858A
Other languages
Japanese (ja)
Inventor
Takashi Ochi
隆志 越智
Masayuki Sato
正幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9350858A priority Critical patent/JPH11181624A/en
Publication of JPH11181624A publication Critical patent/JPH11181624A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simply produce a spontaneously extensible yarn excellent in quality without any dyeing speck, etc., and useful for clothes applications with good productivity by spinning and directly drawing a polyester under specific conditions. SOLUTION: A polyester is melt spun to provide a yarn having 0.020-0.065 degree of birefringence and the resultant yarn is then drawn without being once wound at 1.01-1.35 draw ratio, <=110 deg.C drawing temperature and >=110 deg.C heat-setting temperature (which is the heat-treating temperature of the yarn after drawing and the temperature of the second hot roller 2HR after the drawing in the case of a hot roller drawing machine) to impart the spontaneous extensibility to the resultant yarn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はふくらみ、ソフト、
反発感に優れ、染色斑の少ない織編物を提供できるポリ
エステル繊維の製造方法に関するものである。
The present invention relates to a swelling, soft,
The present invention relates to a method for producing a polyester fiber which is capable of providing a woven or knitted fabric having an excellent resilience and having less stain spots.

【0002】[0002]

【従来の技術】ポリエステルは機械的特性をはじめ様々
な優れた特性を有しているため衣料用途をはじめ各種分
野に利用されている。衣料用途では天然繊維をターゲッ
トとして品質の改良が行われてきているが、特にふくら
み、ソフト感のある風合いの実現のための手段として、
熱による収縮特性の異なる繊維を混繊するいわゆる収縮
差混繊糸が広く用いられている。そして最近、熱により
伸長性を示すいわゆる自発伸長糸を用いた収縮差混繊糸
が注目を集めている。このタイプの収縮差混繊糸を用い
れば織物組織の密度が増しても十分な糸長差を染色加工
後に得ることができ、ふくらみ、ソフト感に優れた布帛
を得ることができるのである。
2. Description of the Related Art Polyester has various excellent properties including mechanical properties, and is therefore used in various fields including clothing. In clothing applications, quality has been improved targeting natural fibers, but especially as a means to realize a swelling and soft texture.
A so-called shrinkage difference mixed yarn which mixes fibers having different shrinkage characteristics due to heat is widely used. Recently, shrinkage-differential mixed yarns using so-called spontaneously elongated yarns exhibiting extensibility by heat have attracted attention. If this type of shrinkage difference mixed yarn is used, a sufficient difference in yarn length can be obtained after the dyeing process even if the density of the woven fabric increases, and a fabric excellent in swelling and softness can be obtained.

【0003】自発伸長糸の製造方法は、例えば特開平4-
352836号公報にポリエステル部分配向糸(以下POYと
省略)を一旦延伸した後弛緩熱処理する方法、特開平2-
293410号公報にPOYをそのまま弛緩熱処理する方法等
が開示されており、弛緩熱処理工程を要するものが一般
的である。ここでいう自発伸長糸とは、熱処理前の原長
を基準として熱処理により伸長する性質を有するものを
いうものである。しかしながら、これらの方法では20〜
50%という高率の弛緩熱処理が必要となり工程安定性が
悪いため、糸斑が発生しやすく、染め斑が発生する等品
質面で問題があった。また、収率が低く、ドッフ後の加
工再スタート成功率も低いため、屑量が多くなるのみな
らずそれの処理のための要員も必要であるという問題が
あった。
A method for producing a spontaneously elongated yarn is disclosed in, for example,
Japanese Patent No. 352836 discloses a method in which a partially oriented polyester yarn (hereinafter abbreviated as POY) is once stretched and then subjected to a relaxation heat treatment.
Japanese Patent No. 293410 discloses a method in which POY is subjected to a relaxation heat treatment as it is, and generally requires a relaxation heat treatment step. The spontaneously elongated yarn referred to herein is one having a property of being elongated by heat treatment based on the original length before heat treatment. However, with these methods 20-
Since a relaxation heat treatment at a high rate of 50% is required and the process stability is poor, there is a problem in quality such as easy occurrence of yarn spots and occurrence of dye spots. In addition, since the yield is low and the success rate of the processing restart after the doff is low, there is a problem that not only the amount of waste is increased but also personnel for processing the waste are required.

【0004】また、加工速度が低いため生産性が低く、
弛緩処理が可能な特別な延伸機が必要であるため設備費
がかさむという問題もあった。すなわち、これらの問題
のためコスト高となっていた。
In addition, productivity is low due to low processing speed,
Since a special stretching machine capable of relaxation treatment is required, there is also a problem that equipment costs increase. That is, the cost was high due to these problems.

【0005】また、特開平9-228167号公報、特開平9-21
060号公報にはPOYの定長(緊張)熱処理による方法
が開示されているが、これらの方法では熱板上または熱
セットローラー上での糸揺れが極端に大きく、やはり弛
緩熱処理による方法と同様な問題が発生するのである。
Also, Japanese Patent Application Laid-Open Nos. 9-228167 and 9-21
No. 060 discloses a method using a fixed-length (tensile) heat treatment of POY. In these methods, however, the yarn sway on a hot plate or a heat setting roller is extremely large, which is also the same as the method using the relaxation heat treatment. Problems arise.

【0006】一方、最近、巻き取り速度の高速化や工程
省略によりコストダウンをはかるため、紡糸と延伸を直
結した紡糸直接延伸法が広く採用されている。また、従
来の一旦未延伸糸を巻き取り、その後それを弛緩熱処理
または定長熱処理する2工程法では、加工前未延伸糸の
経時変化に起因する加工張力変動による工程不安定化、
糸斑が問題となっていた。これに対して、紡糸直接延伸
法では未延伸糸を紡糸後そのまま加工を施せるので前記
問題点が解決できる点も優れており、自発伸長糸の製造
を紡糸直接延伸法で行うことができればコスト的にも品
質的にも非常に有利である。
On the other hand, recently, in order to reduce costs by increasing the winding speed and omitting steps, a spinning direct drawing method in which spinning and drawing are directly connected has been widely used. In addition, in the conventional two-step method in which an undrawn yarn is wound once and then subjected to relaxation heat treatment or fixed-length heat treatment, the process becomes unstable due to a change in processing tension due to a temporal change of the undrawn yarn before processing.
Thread spots were a problem. On the other hand, the direct spinning method is excellent in that the above problem can be solved because the undrawn yarn can be processed as it is after spinning, and it is cost effective if the spontaneous elongation yarn can be produced by the direct spinning method. It is also very advantageous in terms of quality as well.

【0007】しかしながら、前記したように従来自発伸
長糸の製造方法は弛緩熱処理、定長熱処理が一般的であ
るので、加工時の糸速度が高速となる紡糸直接延法には
適用し難いものであった。というのは、従来の2工程法
での加工では弛緩熱処理または定長熱処理時の糸速度が
300m/分以下であるのに対し、紡糸直接延伸では3
000m/分で紡糸した後40%弛緩したとしても糸速
度は2400m/分となりはるかに高速となる。そし
て、糸速度が高速となるだけで慣性力、空気抵抗に起因
する張力が発生する。
However, as described above, the conventional method for producing spontaneously elongated yarn is generally a relaxation heat treatment and a fixed-length heat treatment, so that it is difficult to apply the method to the direct spinning method in which the yarn speed during processing is high. there were. This is because in the conventional two-step processing, the yarn speed during the relaxation heat treatment or the constant-length heat treatment is 300 m / min or less, while in the direct spinning, the yarn speed is 3 m / min.
Even if the yarn is spun at 000 m / min and relaxed by 40%, the yarn speed becomes 2400 m / min, which is much higher. Then, only by increasing the yarn speed, tension due to inertial force and air resistance is generated.

【0008】すなわち、2工程法に比べはるかに高張力
下で弛緩熱処理せざるを得ないのである。そのため、2
工程法の時以上に糸条の走行が不安定となり、非接触ヒ
ーターを用いたとしても実質的には弛緩熱処理はほとん
ど不可能である。仮に弛緩熱処理できたとしても糸切
れ、第1ホットローラーへの巻き付き等のトラブルが多
発し操業性がさらに劣悪となりそれに伴うコストアップ
が甚大となってしまう。しかも、糸条の走行が極度に不
安定となるので糸斑も大きなものとなってしまう。ま
た、糸速度が高速のため熱処理時間が短くなるのみなら
ず、随伴気流の持ち込みにより熱効率が極度に低下し、
非接触ヒーター温度を2工程法の場合よりもはるかに高
温、長尺化する必要もあり大幅な設備投資も必要となる
のである。
That is, the relaxation heat treatment must be performed under a much higher tension than in the two-step method. Therefore, 2
The running of the yarn becomes more unstable than in the process method, and even if a non-contact heater is used, the relaxation heat treatment is practically impossible. Even if the relaxation heat treatment can be performed, troubles such as thread breakage and winding around the first hot roller occur frequently, and the operability is further deteriorated, and the cost increase is accordingly enormous. In addition, since the running of the yarn becomes extremely unstable, the yarn spots become large. In addition, not only the heat treatment time is shortened because the yarn speed is high, but also the thermal efficiency is extremely reduced due to the accompanying airflow,
It is necessary to make the temperature of the non-contact heater much higher and longer than in the case of the two-step method, and a large capital investment is required.

【0009】[0009]

【発明が解決しようとする課題】本発明は、自発伸長糸
の製造に関して弛緩熱処理、定長熱処理で発生する様々
な問題を解決し、より生産性が高く簡易でしかも染め斑
等の品質に優れた自発伸長糸の製造方法を提供するもの
である。
DISCLOSURE OF THE INVENTION The present invention solves various problems caused by relaxation heat treatment and constant-length heat treatment in the production of spontaneously elongated yarns, and is more productive, simpler and more excellent in the quality of dye spots and the like. And a method for producing a spontaneously elongated yarn.

【0010】[0010]

【課題を解決するための手段】上記目的は、ポリエステ
ルを溶融紡糸して複屈折度0.020〜0.065の糸条となし、
一旦巻き取ることなく以下の要件を同時に満たす条件で
延伸することにより自発伸長性を付与することを特徴と
するポリエステル繊維の製造方法、 (1)延伸倍率1.01〜1.35 (2)延伸温度≦110℃ (3)熱セット温度≧110℃ または、ポリエステルを溶融紡糸して複屈折度0.020未
満の糸条となし、一旦巻き取ることなく以下の要件を同
時に満たす条件で延伸することにより自発伸長性を付与
することを特徴とするポリエステル繊維の製造方法、 (1)延伸倍率1.05〜2.30 (2)延伸温度≦110℃ (3)熱セット温度≧110℃ により達成される。
The object of the present invention is to provide a yarn having a birefringence of 0.020 to 0.065 by melt-spinning polyester.
A method for producing polyester fiber, wherein spontaneous elongation is imparted by stretching under conditions that simultaneously satisfy the following requirements without winding up: (1) stretching ratio 1.01 to 1.35 (2) stretching temperature ≦ 110 ° C. (3) Heat setting temperature ≧ 110 ° C or melt-spun polyester to form a yarn with birefringence of less than 0.020, giving spontaneous extensibility by stretching under conditions that simultaneously satisfy the following requirements without winding (1) Stretching ratio: 1.05 to 2.30 (2) Stretching temperature ≦ 110 ° C. (3) Heat setting temperature ≧ 110 ° C.

【0011】[0011]

【発明の実施の形態】本発明では特定の延伸条件の紡糸
直接延伸方法を採用することにより、弛緩熱処理、定長
(緊張)熱処理での種々の問題点を解決し、さらに生産
性を向上できるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, various problems in relaxation heat treatment and constant-length (tensile) heat treatment can be solved by adopting a spinning direct drawing method under specific drawing conditions, and the productivity can be further improved. Things.

【0012】本発明でいうポリエステルとはポリエチレ
ンテレフタレート(以下PETと略す)、ポリプロピレ
ンテレフタレート(以下PPTと略す)、ポリブチレン
テレフタレート(以下PBTと略す)等が挙げられる
が、PETが最も汎用的であり好ましい。また、ジオー
ル成分および酸成分の一部が各々15mol%以下の範囲で他
の共重合可能な成分で置換されたものであってもよい。
また、これらは他ポリマ、艶消剤、難燃剤、帯電防止
剤、顔料などの添加物を含有していてもよい。以下、P
ETを例として自発伸長糸の製造方法を説明する。
The polyester referred to in the present invention includes polyethylene terephthalate (hereinafter abbreviated as PET), polypropylene terephthalate (hereinafter abbreviated as PPT), polybutylene terephthalate (hereinafter abbreviated as PBT) and the like. PET is the most general. preferable. Further, a part of the diol component and a part of the acid component may be substituted with other copolymerizable components in a range of 15 mol% or less.
They may also contain additives such as other polymers, matting agents, flame retardants, antistatic agents, pigments and the like. Hereinafter, P
A method for producing a spontaneously elongated yarn will be described using ET as an example.

【0013】本発明では延伸の際の温度条件が重要であ
る。本発明では延伸温度は延伸直前の糸条の予熱温度、
すなわち紡糸直接延伸法では第1ホットローラー温度を
指すものである。この時、延伸温度は110℃以下とする
ことが必須である。延伸温度が110℃より高くなると延
伸前にPET繊維の結晶化が過度に進むため、熱セット
温度をいかように調節しても延伸糸に自発伸長性を付与
することができなくなる。延伸温度はガラス転移温度〜
95℃であれば延伸が均一となり好ましい。さらに好まし
くは85〜95℃である。なお、ガラス転移温度は、PET
チップをPerkinElmer 社製 DSC 7 を用い試料量10mg、
昇温速度16℃/分で測定したものである。
In the present invention, the temperature condition at the time of stretching is important. In the present invention, the drawing temperature is the preheating temperature of the yarn immediately before drawing,
That is, in the spinning direct drawing method, it indicates the first hot roller temperature. At this time, the stretching temperature must be 110 ° C. or less. If the drawing temperature is higher than 110 ° C., the crystallization of the PET fiber proceeds excessively before drawing, so that spontaneous elongation cannot be imparted to the drawn yarn no matter how the heat setting temperature is adjusted. Stretching temperature is glass transition temperature ~
A temperature of 95 ° C. is preferable because stretching is uniform. The temperature is more preferably 85 to 95 ° C. The glass transition temperature is PET
Using a PerkinElmer DSC 7 chip, a sample amount of 10 mg,
It was measured at a heating rate of 16 ° C./min.

【0014】本発明では熱セット温度は延伸後の糸条の
熱処理温度、すなわちすなわち紡糸直接延伸法では第2
ホットローラー温度を指すものである。この時、熱セッ
ト温度は110℃以上とすることが必須である。熱セット
温度が110℃より低くなると延伸糸の結晶化が進まない
ため配向非晶分子鎖の固定が不十分となり、延伸温度を
いかように調節しても延伸糸に自発伸長性を付与するこ
とができなくなる。熱セット温度は180℃以下であれば
熱セットの際の糸揺れが小さくなり好ましい。さらに好
ましくは150℃、より好ましくは140℃、最も好ましくは
135℃以下である。
In the present invention, the heat setting temperature is the heat treatment temperature of the drawn yarn, that is, the second temperature in the direct spinning method.
It refers to hot roller temperature. At this time, the heat setting temperature must be 110 ° C. or higher. When the heat setting temperature is lower than 110 ° C., the crystallization of the drawn yarn does not proceed, so that the fixation of the oriented amorphous molecular chains becomes insufficient, and spontaneous elongation is imparted to the drawn yarn no matter how the drawing temperature is adjusted. Can not be done. If the heat setting temperature is 180 ° C. or lower, the yarn sway during heat setting is small, which is preferable. More preferably 150 ° C, more preferably 140 ° C, most preferably
135 ° C or less.

【0015】なお、特開昭64-6115号公報にはPOYを
乾熱140〜220℃の加熱状態の下で1〜12%の伸長率を与え
つつ熱処理する方法が開示されている。しかし、該方法
は一旦巻き取った未延伸糸を熱処理するものであり、紡
糸直接延伸法である本発明とは明らかに異なるものであ
る。また、延伸温度も140℃以上となり本発明とは明ら
かに異なるものである。さらに、該公報図1によると、
得られる繊維も定応力伸長領域が実質的に消滅し通常延
伸糸に近い荷重伸長曲線になっており、しかも密度も1.
365g/cm3以上となり、区別されるものである。
JP-A-64-6115 discloses a method in which POY is heat-treated under a heating condition of dry heat of 140 to 220 ° C. while giving an elongation of 1 to 12%. However, this method heat-treats the undrawn yarn once wound, and is clearly different from the present invention which is a direct drawing method of spinning. Also, the stretching temperature is 140 ° C. or higher, which is clearly different from the present invention. Further, according to FIG.
The resulting fiber also has a constant stress elongation region that virtually disappears and has a load elongation curve close to that of a normal drawn yarn, and also has a density of 1.
It becomes 365 g / cm 3 or more and is distinguished.

【0016】また、本発明では延伸の際の温度条件とと
もに延伸倍率が重要であり、第1ホットローラーに入る
直前の未延伸糸の配向度に合わせた延伸倍率とする必要
がある。本発明でいう延伸倍率とは第1ホットローラー
と第2ホットローラーの周速比、すなわち[第2ホット
ローラー周速/第1ホットローラー周速]で定義される
ものである。
In the present invention, the draw ratio is important together with the temperature conditions at the time of drawing, and it is necessary to set the draw ratio in accordance with the degree of orientation of the undrawn yarn immediately before entering the first hot roller. The stretching ratio in the present invention is defined by the peripheral speed ratio of the first hot roller and the second hot roller, that is, [second hot roller peripheral speed / first hot roller peripheral speed].

【0017】未延伸糸の複屈折度が0.020〜0.065の場合
は延伸倍率は1.01〜1.35である。これより低倍率となる
と糸揺れが大きくなり工程安定性が低下する。これより
高倍率では延伸糸の配向結晶化が進みすぎるため自発伸
長性を付与できなくなるのである。好ましくは1.01〜1.
25倍であれば安定して自発伸長糸を得ることができる。
未延伸糸の複屈折度はホットローラー温度を室温とし、
延伸倍率を1.00倍として巻き取った繊維の複屈折度を測
定して決定した。
When the birefringence of the undrawn yarn is 0.020 to 0.065, the draw ratio is 1.01 to 1.35. If the magnification is lower than this, the yarn sway will increase and the process stability will decrease. If the ratio is higher than this, spontaneous elongation cannot be imparted because the oriented crystallization of the drawn yarn proceeds too much. Preferably 1.01-1.
If it is 25 times, a spontaneously elongated yarn can be obtained stably.
The birefringence of the undrawn yarn is the hot roller temperature at room temperature,
It was determined by measuring the birefringence of the wound fiber with a draw ratio of 1.00.

【0018】また、未延伸糸がより低配向度の繊維の場
合は、それに応じて延伸倍率を高くする必要がある。未
延伸糸の複屈折度が0.020未満の低配向未延伸糸の場合
は、延伸倍率は1.05〜2.30倍の範囲にする必要がある。
延伸倍率が2.30倍を越える場合は配向結晶化が過度に進
行するため、他の条件をいかように変化させても自発伸
長性を付与することができない。一方、延伸倍率が1.05
倍より低倍率の場合は繊維の配向結晶化がほとんど進ま
ないため、自発伸長性を付与することができないのであ
る。このように、延伸倍率は未延伸糸の配向度に依存
し、例えば複屈折度0.015の繊維の場合は延伸倍率1.25
〜1.60倍、複屈折度0.007の繊維の場合は延伸倍率1.80
〜2.20倍とすれば自発伸長性を付与することができる。
また、延伸は一段延伸でも、ホットローラーを3つ以上
として多段延伸を行っても良い。
When the undrawn yarn is a fiber having a lower degree of orientation, it is necessary to increase the draw ratio accordingly. In the case of a low-orientation undrawn yarn having a birefringence of less than 0.020, the drawing ratio needs to be in the range of 1.05 to 2.30.
If the stretching ratio exceeds 2.30 times, the orientation crystallization proceeds excessively, so that spontaneous elongation cannot be imparted no matter how other conditions are changed. On the other hand, the draw ratio is 1.05
If the magnification is lower than twice, the oriented crystallization of the fiber hardly proceeds, so that spontaneous elongation cannot be imparted. Thus, the draw ratio depends on the degree of orientation of the undrawn yarn, for example, for a fiber having a birefringence of 0.015, a draw ratio of 1.25
~ 1.60 times, draw ratio of 1.80 for fiber with birefringence 0.007
When it is up to 2.20 times, spontaneous elongation can be imparted.
The stretching may be one-stage stretching or multi-stage stretching using three or more hot rollers.

【0019】未延伸糸の複屈折度は0.025〜0.050であれ
ば、さらに工程が安定化し糸斑も減少し好ましい。より
好ましくは未延伸糸の複屈折度は0.030〜0.045である。
When the birefringence of the undrawn yarn is 0.025 to 0.050, the process is further stabilized and the yarn spots are preferably reduced. More preferably, the birefringence of the undrawn yarn is from 0.030 to 0.045.

【0020】ところで、例えば特開昭57-112428号公報
に開示されているように太細糸の製造をPOYの低倍率
延伸を行う場合があるが、ここでいう低倍率延伸とは延
伸倍率1.4倍程度であり本発明の延伸倍率より明らかに
高いものである。また、該公報および特開昭57-143515
号公報に記載されているように、太細糸を得るために延
伸しただけでは繊維の収縮率が極めて高いものとなり、
低収縮化のため弛緩熱処理が必須となる。そのため、弛
緩熱処理を行わない本発明とは明らかに異なるものであ
る。
In some cases, for example, as disclosed in Japanese Patent Application Laid-Open No. 57-112428, the production of thick and thin yarns is carried out by stretching at a low draw ratio of POY. It is about twice as high as the draw ratio of the present invention. In addition, the publication and JP-A-57-143515
As described in Japanese Patent Application Publication No. H10-157, simply stretching to obtain a thick and thin yarn results in an extremely high fiber shrinkage,
Relaxation heat treatment is essential to reduce shrinkage. Therefore, it is clearly different from the present invention in which the relaxation heat treatment is not performed.

【0021】本発明では自発伸長率および沸騰水収縮率
は下記式により定義されるものである。
In the present invention, the spontaneous elongation rate and the boiling water shrinkage rate are defined by the following equations.

【0022】 自発伸長率(%)=[(L2−L0)/L0)]×100 (1) 沸騰水収縮率(%)=[(L0−L1)/L0)]×100 (2) L0:延伸糸を枷取りし初荷重0.09cN/dtex下で測定した
枷の原長 L1:L0を測定した枷を実質的に荷重フリーの状態で沸
騰水中で15分間処理し、風乾後初荷重0.09cN/dtex下
での枷長 L2:L1を測定した枷をさらに乾熱160℃で荷重フリー
の状態で15分間処理し、風乾後初荷重0.09cN/dtex下
での枷長 そして、本発明でいう自発伸長性とは、自発伸長率が0%
以上の値を示すことをいう。自発伸長率0〜5%であれ
ば、ソフトでふくらみ感に優れたポリエステル織編物を
得ることができる。好ましくは自発伸長率は1.5%以上で
ある。
Spontaneous elongation rate (%) = [(L 2 −L 0 ) / L 0 )] × 100 (1) Boiling water shrinkage rate (%) = [(L 0 −L 1 ) / L 0 )] × 100 (2) L 0 : The original length of the shackle measured under an initial load of 0.09 cN / dtex after shackling the drawn yarn. L 1 : The shackle measuring L 0 is substantially free of load in boiling water for 15 minutes. treated, air-dried initial load 0.09cN / dtex skein length under L 2: L 1 for 15 minutes with the load-free further dry heat 160 ° C. the skein was measured, air-dried initial load 0.09cN / dtex Shackle length below The spontaneous elongation in the present invention means that the spontaneous elongation rate is 0%
It means that the above values are shown. If the spontaneous elongation is 0 to 5%, a soft and swelled polyester woven / knitted fabric can be obtained. Preferably, the spontaneous elongation is at least 1.5%.

【0023】また沸騰水収縮率1%以下であれば、布帛の
精練から乾熱セットでの自発伸長を低く抑えられるので
品位良好な布帛が得られるのである。沸騰水収縮率が1%
を越えると精練から乾熱セットでの自発伸長が大きくな
りすぎ、布帛表面に浮き出る自発伸長糸のループが乱れ
た形となり布帛の品位が低下してしまう。好ましくは沸
騰水収縮率は0%以下である。
If the boiling water shrinkage is 1% or less, spontaneous elongation in a dry heat set from scouring of the fabric can be suppressed to a low level, so that a good quality fabric can be obtained. 1% boiling water shrinkage
If the temperature exceeds the limit, spontaneous elongation in the dry heat setting from scouring becomes too large, and the loop of spontaneously elongated yarn floating on the surface of the fabric is disturbed, resulting in deterioration of the quality of the fabric. Preferably, the boiling water shrinkage is 0% or less.

【0024】紡糸直接延伸装置としてはネルソン型のホ
ットローラー2個を有する公知のものが使用できる。こ
れに、コールドドローローラー、多段延伸のためのホッ
トローラー、熱セット強化のための非接触乾熱またはス
チームヒーター等が付属していても差し支えない。
As the spinning direct stretching apparatus, a known apparatus having two Nelson-type hot rollers can be used. A cold draw roller, a hot roller for multi-stage stretching, a non-contact dry heat or a steam heater for strengthening heat setting, etc. may be attached to this.

【0025】本発明で得られる自発伸長糸では繊維の断
面形状には特に制限は無く、丸断面、三角等の異形断
面、中空断面等を採用することができる。また、単糸繊
度も特に制限はないが収縮差混繊糸の鞘糸に使用するこ
とを考えると、単糸繊度は0.3〜5.0dtexが好ましい。よ
り好ましくは0.6〜3.0dtexである。
In the spontaneously elongated yarn obtained in the present invention, the cross-sectional shape of the fiber is not particularly limited, and a round cross-section, a triangular or other irregular cross-section, a hollow cross-section, or the like can be employed. The single-fiber fineness is also not particularly limited, but is preferably 0.3 to 5.0 dtex in consideration of use for the sheath yarn of the differential shrinkage mixed fiber. More preferably, it is 0.6 to 3.0 dtex.

【0026】本発明では延伸糸の配向結晶化を延伸条件
によりコントロールし、自発伸長性を付与している。そ
のため延伸糸の密度は1.360g/cm3以下とすることが好ま
しい。密度がこれ以上となると、延伸糸の結晶化が過度
に進行しているため自発伸長性発現には不利なのであ
る。より好ましくは密度は1.358g/cm3以下である。ま
た、結晶化の程度が低すぎても繊維の収縮を支配する配
向非晶分子鎖の固定が不十分となるため、好ましくは密
度は1.348g/cm3以上である。また、延伸糸の複屈折度は
実質的に延伸を施しているため、未延伸糸での値よりも
高くなる。
In the present invention, spontaneous elongation is imparted by controlling the oriented crystallization of the drawn yarn by the drawing conditions. Therefore, the density of the drawn yarn is preferably 1.360 g / cm 3 or less. If the density is higher than this, the crystallization of the drawn yarn proceeds excessively, which is disadvantageous for the expression of spontaneous elongation. More preferably, the density is 1.358 g / cm 3 or less. Further, even if the degree of crystallization is too low, the fixation of the oriented amorphous molecular chains which governs the contraction of the fiber becomes insufficient, so that the density is preferably 1.348 g / cm 3 or more. In addition, the birefringence of the drawn yarn is substantially higher than that of the undrawn yarn since the drawing is substantially performed.

【0027】本発明は未延伸糸を特定条件で延伸するこ
とにより自発伸長性を付与するものである。しかしなが
ら特開平9-21028号公報等に記載されているように、従
来は未延伸糸を実質的に延伸すると自発伸長性を付与す
ることはできないとされていた。しかし、本発明では延
伸条件を特定し、配向結晶化をコントロールすることに
より自発伸長性を付与することができるのである。延伸
糸での自発伸長メカニズムはよくわからないが、精練、
中間セット等での熱処理によりPET分子鎖の再配列が
関係しているものと思われる。そのため、前駆体として
の延伸糸を適度な配向結晶化状態にしておくことが必要
である。
In the present invention, spontaneous elongation is imparted by drawing an undrawn yarn under specific conditions. However, as described in Japanese Patent Application Laid-Open No. 9-21028, it has been conventionally considered that spontaneous elongation cannot be imparted when an undrawn yarn is substantially drawn. However, in the present invention, spontaneous elongation can be imparted by specifying stretching conditions and controlling oriented crystallization. The spontaneous elongation mechanism of the drawn yarn is not well understood,
It is considered that the rearrangement of the PET molecular chains is related to the heat treatment in the intermediate set or the like. Therefore, it is necessary to keep the drawn yarn as a precursor in an appropriately oriented and crystallized state.

【0028】また、本発明では未延伸糸の低倍率延伸に
より得られた自発伸長糸は沸騰水収縮率が10%以上であ
るポリエステル収縮糸と交絡混繊し、収縮差混繊糸とし
て用いることが好ましい。ポリエステル収縮糸の沸騰水
収縮率は15%以上であれば、さらにふくらみ感が優れて
いるため好ましい。また、ポリエステル収縮糸の収縮後
自発伸長率が0〜5%であれば、さらにソフトでしかも反
発感のある風合いとなり好ましい。ただし、収縮後自発
伸長率とは[(L2−L1)/L1]×100で定義され
る。そして、自発伸長率の測定と同様の熱処理を収縮糸
に施したとき、沸騰水中で収縮させた後に測定した枷長
をL1、それからさらに乾熱収縮させた後の枷長をL2
する。
In the present invention, the spontaneously stretched yarn obtained by drawing the undrawn yarn at a low magnification is entangled and mixed with a polyester shrink yarn having a boiling water shrinkage of 10% or more, and used as a shrinkage difference mixed yarn. Is preferred. If the boiling water shrinkage of the polyester shrink yarn is 15% or more, it is preferable because the swelling feeling is further excellent. When the spontaneous elongation after shrinkage of the polyester shrinkable yarn is 0 to 5%, the texture becomes softer and more resilient, which is preferable. However, the spontaneous elongation rate after contraction is defined as [(L 2 −L 1 ) / L 1 ] × 100. When the same heat treatment as in the measurement of the spontaneous elongation rate is performed on the shrink yarn, the length of the shackle measured after shrinking in boiling water is L 1 , and the length of the shackle after further shrinking by dry heat is L 2 . .

【0029】また、ポリエステル収縮糸としてPPTや
PBT等のストレッチ性に優れる繊維を使用すると、P
ETとはまた異なったソフトで反発感のある風合いとな
り好ましい。
When a fiber having excellent stretchability such as PPT or PBT is used as the polyester shrink yarn,
ET is also different from ET and has a soft and resilient texture, which is preferable.

【0030】なお、ごく最近、特開平9-273043号公報に
POYをガラス転移温度〜130℃で0.02〜0.12g/dの応力
下で接触熱処理する自発伸長糸の製造方法が開示されて
いる。しかし、該公報でいう自発伸長性とは乾熱収縮率
−沸騰水収縮率≦0%と定義されており、本発明でいう自
発伸長性とは異なるものである。すなわち、該公報では
熱処理前の原長を基準としておらず、実際には熱処理後
は収縮している場合がほとんどである。該公報の実施例
では沸騰水収縮率は全て2%以上、本発明でいう自発伸長
率で考えた場合、ほとんどが-2%以下である。そのた
め、該方法で得られる繊維は、本発明で得られる繊維と
は異なるものである。さらに、熱板を利用した加工のた
め加工速度も100m/分と極度に遅く生産効率も非常に悪
いものであり、また糸切れや糸斑も多発し、本発明に比
べ劣るものである。
Very recently, Japanese Patent Application Laid-Open No. 9-273043 discloses a method for producing a spontaneously elongated yarn in which POY is subjected to a contact heat treatment at a glass transition temperature of 130 ° C. under a stress of 0.02 to 0.12 g / d. However, the spontaneous elongation described in the publication is defined as dry heat shrinkage-boil water shrinkage ≤0%, which is different from the spontaneous elongation described in the present invention. That is, in this publication, the original length before the heat treatment is not used as a reference, and in most cases, the contraction actually occurs after the heat treatment. In the examples of the publication, the boiling water shrinkage rates are all 2% or more, and when considered in the spontaneous elongation rate in the present invention, most are -2% or less. Therefore, the fiber obtained by the method is different from the fiber obtained by the present invention. Furthermore, the processing speed is extremely slow at 100 m / min due to the processing using a hot plate, and the production efficiency is very poor. In addition, thread breakage and spots frequently occur, which is inferior to the present invention.

【0031】このように、本発明はコストダウン、工程
安定化等に非常に優れた方法であるが、得られる自発伸
長糸の糸斑が従来の2工程法で製造したものよりも少な
く染色斑が大幅に改善され品位が向上しているのも利点
である。
As described above, the present invention is a method which is very excellent in cost reduction, process stabilization, and the like, but the resulting spontaneously elongated yarn has less spots than the one produced by the conventional two-step method and has less stain spots. It is also an advantage that the quality has been greatly improved.

【0032】本発明により得られた繊維はブラウス、ス
ーツ、パンツ、コート等の衣料用途に好適に用いられ
る。
The fiber obtained according to the present invention is suitably used for clothing such as blouses, suits, pants, coats and the like.

【0033】[0033]

【実施例】以下、本発明を実施例を用いて詳細に説明す
る。なお、実施例中の測定方法は以下の方法を用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. In addition, the measuring method in the Example used the following method.

【0034】A.極限粘度[η] オルソクロロフェノール中25℃で測定した。A. Intrinsic viscosity [η] Measured in orthochlorophenol at 25 ° C.

【0035】B.自発伸長率および沸騰水収縮率 自発伸長率(%)=[(L2−L0)/L0)]×100 沸騰水収縮率(%)=[(L0−L1)/L0)]×100 L0:延伸糸を枷取りし初荷重0.09cN/dtex下で測定した
枷の原長 L1:L0を測定した枷を実質的に荷重フリーの状態で沸
騰水中で15分間処理し、風乾後初荷重0.09cN/dtex下
での枷長 L2:L1を測定した枷をさらに乾熱160℃で荷重フリー
の状態で15分間処理し、風乾後初荷重0.09cN/dtex下
での枷長 C.強度および伸度 初期試料長=50mm、引っ張り速度=50mm/分とし、JIS L
1013にしたがい荷重−伸長曲線を求めた。次に荷重値を
初期の繊度で割り、それを強度とし、伸びを初期試料長
で割り伸度とした。
B. Spontaneous elongation rate and boiling water shrinkage rate Spontaneous elongation rate (%) = [(L 2 −L 0 ) / L 0 )] × 100 Boiling water shrinkage rate (%) = [(L 0 −L 1 ) / L 0 ) ] × 100 L 0: original length L of the skein was measured at a draw yarn skein up to under initial load of 0.09cN / dtex 1: treated for 15 minutes in boiling water skein was measured L 0 in a substantially it loads free state After air drying, the shackle length under the initial load of 0.09 cN / dtex L 2 : The shackle whose L 1 was measured was further treated at 160 ° C. in dry heat with no load, for 15 minutes, and then under the initial load of 0.09 cN / dtex after air drying. Shackle length at C. Strength and elongation Initial sample length = 50 mm, tensile speed = 50 mm / min, JIS L
The load-elongation curve was determined according to 1013. Next, the load value was divided by the initial fineness, which was taken as the strength, and the elongation was divided by the initial sample length to obtain the elongation.

【0036】D.定応力伸長領域 上記方法で求めた荷重−伸長曲線において、降伏点以後
の一定荷重値を示す領域を定応力伸長領域とし、その一
定荷重値を初期の繊度で割り定応力伸長領域応力、定応
力伸長領域の終了点の伸度を100%で割り、定応力伸長領
域長とした。
D. Constant stress extension area In the load-elongation curve obtained by the above method, the area showing a constant load value after the yield point is defined as the constant stress extension area, and the constant load value is divided by the initial fineness to determine the constant stress extension area stress, constant stress The elongation at the end point of the elongation region was divided by 100% to obtain a constant stress elongation region length.

【0037】E.複屈折度 OLIMPUS BH-2 偏光顕微鏡により単糸のレターデーショ
ンと光路長を測定し、Δnを求めた。
E. Birefringence OLIMPUS BH-2 The retardation and optical path length of a single yarn were measured with a polarizing microscope, and Δn was determined.

【0038】F.密度 ASTM D1505-63T記載のように、臭化ナトリウム水溶液に
よる密度勾配管により25℃で測定を行った。そして、酸
化チタン密度を3.84g/cm3として密度補正を行い、PE
T部分のみの密度を求めた。
F. Density As described in ASTM D1505-63T, the measurement was performed at 25 ° C. using a density gradient tube using an aqueous sodium bromide solution. Then, the density was corrected by setting the titanium oxide density to 3.84 g / cm 3 , and PE
The density of only the T portion was determined.

【0039】実施例1 極限粘度0.63のホモPET(酸化チタン0.4重量%含有)
を285℃で溶融し、絶対濾過径15μのステンレス製不織
布フィルター2を用い濾過を行った後、孔径0.25mm、孔
長0.4mm、孔数24の丸孔口金3から紡糸温度285℃で吐出
した。第1ホットローラー8の周速を3000m/分として糸
条を引き取り、第2ホットローラー9の周速、吐出量を
適宜変更して56dtex、24フィラメントのマルチフィラメ
ントを巻き取った(図2)。この時、第1ホットローラ
ー8の温度90℃、第2ホットローラー9の温度133℃と
し、第2ホットローラー9での熱処理時間は0.15秒であ
った。また、第1ホットローラー8にはいる前の未延伸
糸複屈折度は0.039、密度は1.339g/cm3、定応力伸長領
域長は0.58(図3)であった(実験No.1〜4)。延
伸倍率に対する自発伸長率の変化を図1に示す。また、
物性値を表1に示す。延伸倍率が1.25倍以下であれば延
伸糸は自発伸長性を示すことがわかる。また、実験N
o.3の強伸度曲線を未延伸糸のものと同時に図3に示
すが、降伏点が存在するものの、未延伸糸に比べ定応力
伸長領域が大幅に減少し、定応力伸長領域での応力値も
上昇しており、製織時の寸法安定性にも問題のないもの
であった。また、延伸時の糸揺れ、糸切れ等も無く問題
なく製糸できた。また、染色斑もほとんど無く品位の高
いものであった。
Example 1 Homo PET having an intrinsic viscosity of 0.63 (containing 0.4% by weight of titanium oxide)
Was melted at 285 ° C., filtered using a stainless steel nonwoven fabric filter 2 having an absolute filtration diameter of 15 μm, and then discharged at a spinning temperature of 285 ° C. from a round hole die 3 having a hole diameter of 0.25 mm, a hole length of 0.4 mm and 24 holes. . With the peripheral speed of the first hot roller 8 being 3000 m / min, the yarn was taken out, and the peripheral speed and discharge amount of the second hot roller 9 were appropriately changed to wind up a multifilament of 56 dtex and 24 filaments (FIG. 2). At this time, the temperature of the first hot roller 8 was 90 ° C., the temperature of the second hot roller 9 was 133 ° C., and the heat treatment time in the second hot roller 9 was 0.15 seconds. The undrawn yarn birefringence before entering the first hot roller 8 was 0.039, the density was 1.339 g / cm 3 , and the constant stress elongation region length was 0.58 (FIG. 3) (Experiments Nos. 1 to 4). ). FIG. 1 shows the change in the spontaneous elongation ratio with respect to the stretching ratio. Also,
Table 1 shows the physical property values. When the draw ratio is 1.25 or less, it is understood that the drawn yarn exhibits spontaneous elongation. Experiment N
o. 3 is shown in FIG. 3 at the same time as the unstretched yarn. Although the yield point exists, the constant stress elongation region is significantly reduced as compared with the unstretched yarn, and the stress value in the constant stress elongation region is shown. And the dimensional stability during weaving was satisfactory. In addition, there was no yarn sway or yarn breakage during stretching, and the yarn could be produced without any problem. In addition, it was of high quality with almost no staining spots.

【0040】比較例1 延伸倍率を1.37倍とした以外は実施例1と同様の条件で
紡糸直接延伸を行った(実験No.5)。物性値は表1
に示す。延伸倍率が高すぎるため延伸糸は逆に収縮して
しまい、自発伸長性を付与することはできなかった。
Comparative Example 1 Direct spinning was performed under the same conditions as in Example 1 except that the draw ratio was 1.37 (Experiment No. 5). Table 1 shows the physical properties.
Shown in Since the draw ratio was too high, the drawn yarn shrunk conversely, and it was impossible to impart spontaneous elongation.

【0041】[0041]

【表1】 実施例2 第2ホットローラー9の温度を130℃、延伸倍率1.10
倍、第1ホットローラー8の温度を表2の如く変更した
以外は実施例1と同様の条件で紡糸直接延伸を行った
(実験No.6〜11)。物性値は表2に示す。第1ホ
ットローラー8の温度が110℃以下であれば延伸糸は自
発伸長性を示すことがわかる。また、延伸時の糸揺れ、
糸切れ等も無く問題なく製糸できた。また、染色斑もほ
とんど無く品位の高いものであった。
[Table 1] Example 2 The temperature of the second hot roller 9 was 130 ° C., and the stretching ratio was 1.10.
Direct spinning was performed under the same conditions as in Example 1 except that the temperature of the first hot roller 8 was changed as shown in Table 2 (Experiments Nos. 6 to 11). Table 2 shows the physical property values. If the temperature of the first hot roller 8 is 110 ° C. or lower, it is understood that the drawn yarn exhibits spontaneous elongation. Also, yarn swaying during stretching,
Yarn could be produced without any problems such as thread breakage. In addition, it was of high quality with almost no staining spots.

【0042】ただし、第1ホットローラー8の温度が30
℃の場合は問題になるほどではないが若干染色斑が発生
した。また、第1ホットローラー8の温度が100℃以上
となると若干糸揺れが発生し、自発伸長率も低めとなっ
た。
However, if the temperature of the first hot roller 8 is 30
In the case of ° C., although not so much as to cause a problem, slight staining spots occurred. Further, when the temperature of the first hot roller 8 became 100 ° C. or more, the yarn was slightly shaken, and the spontaneous elongation rate was low.

【0043】比較例2 第1ホットローラー8の温度を120℃とした以外は実施
例2と同様の条件で紡糸直接延伸を行った(実験No.
12)。第1ホットローラー8の温度が高すぎるため過
度に配向結晶化が進行し延伸糸は逆に収縮してしまい、
自発伸長性を付与することはできなかった。
Comparative Example 2 Direct spinning was performed under the same conditions as in Example 2 except that the temperature of the first hot roller 8 was set to 120 ° C. (Experiment No. 2).
12). Since the temperature of the first hot roller 8 is too high, the oriented crystallization proceeds excessively and the drawn yarn shrinks in reverse,
Spontaneous elongation could not be imparted.

【0044】[0044]

【表2】 実施例3 延伸倍率を1.10倍、第2ホットローラー9の温度を表3
の如く変更した以外は実施例1と同様の条件で延伸を行
った(実験No.13〜16)。物性値は表3に示す。
第2ホットローラー9の温度が110℃以上であれば、延
伸糸は自発伸長性を示した。また、延伸時の糸揺れ、糸
切れ等も無く問題なく製糸できた。また、染色斑もほと
んど無く品位の高いものであった。
[Table 2] Example 3 The draw ratio was 1.10 times and the temperature of the second hot roller 9 was as shown in Table 3.
The stretching was performed under the same conditions as in Example 1 except for the changes as described above (Experiments Nos. 13 to 16). Table 3 shows the physical property values.
When the temperature of the second hot roller 9 was 110 ° C. or higher, the drawn yarn exhibited spontaneous elongation. In addition, there was no yarn sway or yarn breakage during stretching, and the yarn could be produced without any problem. In addition, it was of high quality with almost no staining spots.

【0045】比較例3 第2ホットローラー9の温度を100℃とした以外は実施
例3と同様の条件で延伸を行った(実験No.17)。
物性値は表3に示す。熱セット温度が低すぎるため延伸
糸は逆に収縮してしまい、自発伸長性を付与することは
できなかった。
Comparative Example 3 Stretching was performed under the same conditions as in Example 3 except that the temperature of the second hot roller 9 was set to 100 ° C. (Experiment No. 17).
Table 3 shows the physical property values. Since the heat setting temperature was too low, the drawn yarn shrunk conversely, and it was impossible to impart spontaneous elongation.

【0046】[0046]

【表3】 実施例4 第1ホットローラー8の周速を2200m/分、延伸倍率1.32
倍とした以外は実施例1と同様の条件で紡糸直接延伸を
行い、56dtex、24フィラメントの繊維を巻き取った(実
験NO.18)。また、第1ホットローラー8にはいる
前の未延伸糸複屈折度は0.021であった。物性値は表4
に示す。この時も延伸糸は自発伸長性を示すことがわか
る。また、延伸時の糸揺れ、糸切れ等も無く問題なく製
糸できた。また、染色斑もほとんど無く品位の高いもの
であった。
[Table 3] Example 4 The peripheral speed of the first hot roller 8 was 2200 m / min, and the stretching ratio was 1.32.
Direct spinning was performed under the same conditions as in Example 1 except that the number was doubled, and a fiber of 56 dtex and 24 filaments was wound up (Experiment No. 18). The birefringence of the undrawn yarn before entering the first hot roller 8 was 0.021. Table 4 shows physical properties
Shown in At this time, it is also understood that the drawn yarn exhibits spontaneous elongation. In addition, there was no yarn sway or yarn breakage during stretching, and the yarn could be produced without any problem. In addition, it was of high quality with almost no staining spots.

【0047】実施例5 第1ホットローラー8の周速を2000m/分、延伸倍率1.08
倍とした以外は実施例1と同様の条件で紡糸直接延伸を
行い、56dtex、24フィラメントの繊維を巻き取った(実
験No.19)。また、第1ホットローラー8にはいる
前の未延伸糸複屈折度は0.019であった。物性値は表4
に示す。この時も延伸糸は自発伸長性を示すことがわか
る。また、延伸時の糸揺れ、糸切れ等も無く問題なく製
糸できた。また、染色斑もほとんど無く品位の高いもの
であった。
Example 5 The peripheral speed of the first hot roller 8 was 2000 m / min, and the stretching ratio was 1.08.
Direct spinning was performed under the same conditions as in Example 1 except that the number was doubled, and a fiber of 56 dtex and 24 filaments was wound up (Experiment No. 19). The undrawn yarn birefringence before entering the first hot roller 8 was 0.019. Table 4 shows physical properties
Shown in At this time, it is also understood that the drawn yarn exhibits spontaneous elongation. In addition, there was no yarn sway or yarn breakage during stretching, and the yarn could be produced without any problem. In addition, it was of high quality with almost no staining spots.

【0048】比較例4 延伸倍率を1.02倍とした以外は実施例5と同様の条件で
延伸を行った(実験No.20)。物性値は表4に示
す。延伸倍率が低すぎるため配向結晶化が不十分となり
延伸糸は逆に収縮してしまい、自発伸長性を付与するこ
とはできなかった。
Comparative Example 4 Stretching was performed under the same conditions as in Example 5 except that the stretching ratio was changed to 1.02 (Experiment No. 20). Table 4 shows the physical property values. Since the draw ratio was too low, the orientation crystallization was insufficient and the drawn yarn shrunk conversely, failing to impart spontaneous elongation.

【0049】実施例6 第1ホットローラー8の周速を1700m/分、延伸倍率1.45
倍とした以外は実施例1と同様の条件で紡糸直接延伸を
行い、56dtex、24フィラメントの繊維を巻き取った(実
験No.21)。また、第1ホットローラー8にはいる
前の未延伸糸複屈折度は0.015であった。物性値は表4
に示す。この時も延伸糸は自発伸長性を示すことがわか
る。また、延伸時の糸揺れ、糸切れ等も無く問題なく製
糸できた。また、染色斑もほとんど無く品位の高いもの
であった。
Example 6 The peripheral speed of the first hot roller 8 was 1700 m / min, and the stretching ratio was 1.45.
Direct spinning was performed under the same conditions as in Example 1 except that the number was doubled, and a fiber of 56 dtex and 24 filaments was wound up (Experiment No. 21). The birefringence of the undrawn yarn before entering the first hot roller 8 was 0.015. Table 4 shows physical properties
Shown in At this time, it is also understood that the drawn yarn exhibits spontaneous elongation. In addition, there was no yarn sway or yarn breakage during stretching, and the yarn could be produced without any problem. In addition, it was of high quality with almost no staining spots.

【0050】[0050]

【表4】 実施例7 第1ホットローラー8の周速を1000m/分、延伸倍率2.01
倍とした以外は実施例1と同様の条件で紡糸直接延伸を
行い、56dtex、24フィラメントの繊維を巻き取った(実
験No.22)。また、第1ホットローラー8にはいる
前の未延伸糸複屈折度は0.007であった。物性値は表4
に示す。この時も延伸糸は自発伸長性を示すことがわか
る。また、延伸時の糸揺れ、糸切れ等も無く問題なく製
糸できた。また、染色斑もほとんど無く品位の高いもの
であった。ただし、問題になるほどではないが、実施例
1〜3に比べると若干染色斑が発生した。
[Table 4] Example 7 The peripheral speed of the first hot roller 8 was 1000 m / min, and the stretching ratio was 2.01.
Direct spinning was performed under the same conditions as in Example 1 except that the number was doubled, and a fiber of 56 dtex and 24 filaments was wound up (Experiment No. 22). The birefringence of the undrawn yarn before entering the first hot roller 8 was 0.007. Table 4 shows physical properties
Shown in At this time, it is also understood that the drawn yarn exhibits spontaneous elongation. In addition, there was no yarn sway or yarn breakage during stretching, and the yarn could be produced without any problem. In addition, it was of high quality with almost no staining spots. However, although not so much as to cause a problem, staining spots slightly occurred as compared with Examples 1 to 3.

【0051】実施例8 吐出量を変更し、公知のPOY巻き取り装置とした以外
は実施例1と同様の条件で紡糸を行い、61dtex、24フィ
ラメント、複屈折度0.038の未延伸糸を巻き取った。そ
して、それを公知の延伸機により予熱温度85℃、熱セッ
ト温度90℃、延伸倍率1.85倍、延伸速度800m/分で延伸
し、33dtex、24フィラメンント、沸騰水収縮率21.2%、
収縮後自発伸長率1.8%の収縮糸を得た。それを実験N
o.3の自発伸長糸(自発伸長率2.4%)とインターレー
スで交絡を施しつつ混繊し、84dtex、48フィラメントの
収縮差混繊糸を得た。これに300ターン/mのS撚りを施
し、ゾッキでベネシャンを製織した。これに、常法によ
り10%のアルカリ減量を施した後染色、乾熱セットを行
った。得られた布帛は、自発伸長糸が布帛表面に浮き出
て、ソフトでふくらみ感があり、さらに反発感にも優れ
たものであった。
Example 8 Spinning was performed under the same conditions as in Example 1 except that the discharge amount was changed and a known POY winding device was used, and an undrawn yarn having 61 dtex, 24 filaments and a birefringence of 0.038 was wound. Was. Then, it is stretched by a known stretching machine at a preheating temperature of 85 ° C., a heat setting temperature of 90 ° C., a stretching ratio of 1.85 times, and a stretching speed of 800 m / min, 33 dtex, 24 filament, boiling water shrinkage of 21.2%,
A contracted yarn having a spontaneous elongation rate of 1.8% after contraction was obtained. Experiment N
o. The fibers were mixed with the spontaneously elongated yarn of No. 3 (spontaneous elongation ratio of 2.4%) in an interlaced manner to obtain a 84dtex, 48 filament shrinkage differential mixed yarn. This was S-twisted at 300 turns / m, and the Venetian was woven with a zokki. This was subjected to a 10% alkali weight reduction by a conventional method, followed by dyeing and dry heat setting. In the obtained fabric, the spontaneously elongated yarn emerged on the surface of the fabric, was soft, had a swelling feeling, and was excellent in resilience.

【0052】比較例5 吐出量を変更した以外は実施例8と同様の条件で紡糸を
行い、56dtex、24フィラメント、複屈折度0.040、密度
1.339g/cm3の未延伸糸を得た。これを図4に示す装置で
ホットローラー13の温度80℃、延伸速度450m/分、延
伸倍率1.84倍、非接触ヒーター15の温度(有効長500m
m)220℃、第1コールドローラー14/第2コールドロ
ーラー16間でリラックス率35%の弛緩熱処理を行い加
工した。ただし、延伸速度は第1コールドローラー14
の周速、リラックス(%)は[(第1コールドローラー
14の周速−第2コールドローラー16の周速)/第1
コールドローラー14の周速]×100で定義されるも
のである。得られた繊維の自発伸長率は3.8%であった。
しかしながら、加工途中で糸切れが多発し、またドッフ
後の再スタート成功率も低いものであった。さらに、実
質的な加工速度は293m/分であり、本発明に比べる
とはるかに生産性の低いものであった。また、染色斑が
大きく品位の低いものであった。
Comparative Example 5 Spinning was carried out under the same conditions as in Example 8 except that the discharge amount was changed. 56 dtex, 24 filaments, birefringence 0.040, density
1.339 g / cm 3 of an undrawn yarn was obtained. Using the apparatus shown in FIG. 4, the temperature of the hot roller 13 is 80 ° C., the stretching speed is 450 m / min, the stretching ratio is 1.84 times, and the temperature of the non-contact heater 15 (effective length 500 m
m) Processing was performed by performing a relaxation heat treatment at 220 ° C. between the first cold roller 14 and the second cold roller 16 at a relaxation rate of 35%. However, the stretching speed is the first cold roller 14
The peripheral speed and the relaxation (%) are [(the peripheral speed of the first cold roller 14-the peripheral speed of the second cold roller 16) / the first
Peripheral speed of cold roller 14] × 100. The spontaneous elongation of the obtained fiber was 3.8%.
However, thread breakage frequently occurred during processing, and the restart success rate after the doff was low. Further, the substantial processing speed was 293 m / min, which was much lower in productivity than the present invention. In addition, staining spots were large and of low quality.

【0053】[0053]

【発明の効果】本発明のポリエステル繊維の製造方法を
採用することにより、品質の優れた自発伸長糸を簡単に
操業性、生産性良く得ることができ、風合いに優れしか
も高品質の織編物を低コストで提供できるものである。
By adopting the method for producing a polyester fiber of the present invention, a spontaneously elongated yarn having excellent quality can be easily obtained with good operability and productivity, and a woven or knitted fabric having excellent texture and high quality can be obtained. It can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】延伸倍率に対する自発伸長率の変化を表す図で
ある。
FIG. 1 is a diagram showing a change in a spontaneous elongation ratio with respect to a stretching ratio.

【図2】紡糸直接延伸装置を表す図である。FIG. 2 is a diagram illustrating a direct spinning apparatus for spinning.

【図3】強伸度曲線を表す図である。FIG. 3 is a diagram illustrating a strength-elongation curve.

【図4】加工装置を表す図であるFIG. 4 is a diagram showing a processing apparatus.

【符号の説明】[Explanation of symbols]

1:スピンブロック 11:未延伸糸 2:不織布フィルター 12:フィードローラ
ー 3:口金 13:ホットローラー 4:チムニー 14:第1コールドロ
ーラー 5:糸条 15:非接触ヒーター 6:給油ガイド 16:第2コールドロ
ーラー 7:インターレースノズル 17:加工糸 8:第1ホットローラー 9:第2ホットローラー 10:巻き取り糸
1: spin block 11: undrawn yarn 2: non-woven fabric filter 12: feed roller 3: base 13: hot roller 4: chimney 14: first cold roller 5: thread 15: non-contact heater 6: lubrication guide 16: second Cold roller 7: Interlace nozzle 17: Processed yarn 8: First hot roller 9: Second hot roller 10: Winding yarn

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ポリエステルを溶融紡糸して複屈折度0.02
0〜0.065の糸条となし、一旦巻き取ることなく以下の要
件を同時に満たす条件で延伸することにより自発伸長性
を付与することを特徴とするポリエステル繊維の製造方
法。 (1)延伸倍率1.01〜1.35 (2)延伸温度≦110℃ (3)熱セット温度≧110℃
A polyester is melt-spun to obtain a birefringence of 0.02.
A method for producing a polyester fiber, which is characterized in that a spun stretch is imparted by stretching under a condition that simultaneously satisfies the following requirements without being wound up, which is a yarn of 0 to 0.065. (1) Stretching ratio 1.01 to 1.35 (2) Stretching temperature ≦ 110 ° C. (3) Heat setting temperature ≧ 110 ° C.
【請求項2】ポリエステルを溶融紡糸して複屈折度0.02
0未満の糸条となし、一旦巻き取ることなく以下の要件
を同時に満たす条件で延伸することにより自発伸長性を
付与することを特徴とするポリエステル繊維の製造方
法。 (1)延伸倍率1.05〜2.30 (2)延伸温度≦110℃ (3)熱セット温度≧110℃
2. Polyester is melt-spun to obtain a birefringence of 0.02.
A method for producing a polyester fiber, which comprises imparting spontaneous extensibility by drawing under conditions that simultaneously satisfy the following requirements without being wound up, and that the yarn is not wound. (1) Stretching ratio 1.05 to 2.30 (2) Stretching temperature ≤ 110 ° C (3) Heat setting temperature ≧ 110 ° C
【請求項3】下記、式(1)の自発伸長率が0〜5%かつ
式(2)の沸騰水収縮率が1%以下である請求項1または
2記載のポリエステル繊維の製造方法。 自発伸長率(%)=[(L2−L0)/L0)]×100 (1) 沸騰水収縮率(%)=[(L0−L1)/L0)]×100 (2) L0:延伸糸を枷取りし初荷重0.09cN/dtex下で測定した
枷の原長 L1:L0を測定した枷を実質的に荷重フリーの状態で沸
騰水中で15分間処理し、風乾後初荷重0.09cN/dtex下
での枷長 L2:L1を測定した枷をさらに乾熱160℃で荷重フリー
の状態で15分間処理し、風乾後初荷重0.09cN/dtex下
での枷長
3. The method for producing a polyester fiber according to claim 1, wherein the spontaneous elongation rate of the following formula (1) is 0 to 5% and the boiling water shrinkage rate of the formula (2) is 1% or less. Spontaneous elongation rate (%) = [(L 2 −L 0 ) / L 0 )] × 100 (1) Boiling water shrinkage rate (%) = [(L 0 −L 1 ) / L 0 )] × 100 (2) L 0 : The original length of the shackle measured under an initial load of 0.09 cN / dtex by shackling the drawn yarn. L 1 : The shackle measuring L 0 is treated in boiling water for 15 minutes in a substantially load-free state. Shackle length under initial load of 0.09 cN / dtex after air drying L 2 : The shackles whose L 1 was measured were further treated at 160 ° C. in dry heat with no load applied for 15 minutes, and then air-dried under an initial load of 0.09 cN / dtex. Shackle length
【請求項4】延伸糸の密度が1.360g/cm3以下となるよう
に延伸する請求項1〜3のいずれか1項記載のポリエス
テル繊維の製造方法。
4. The method for producing a polyester fiber according to claim 1, wherein the drawing is performed such that the density of the drawn yarn is 1.360 g / cm 3 or less.
【請求項5】請求項1〜4のいずれか1項記載の方法に
より得られる自発伸長性を有するポリエステル繊維と沸
騰水収縮率が10%以上であるポリエステル繊維を交絡混
繊することを特徴とするポリエステル繊維の製造方法。
5. A polyester fiber having spontaneous elongation obtained by the method according to claim 1 and a polyester fiber having a boiling water shrinkage of 10% or more are entangled and mixed. Of producing polyester fibers.
【請求項6】請求項1〜5のいずれか1項記載の方法に
より得られるポリエステル繊維を用いることを特徴とす
るポリエステル織編物。
6. A polyester woven or knitted fabric characterized by using a polyester fiber obtained by the method according to any one of claims 1 to 5.
JP9350858A 1997-12-19 1997-12-19 Production of polyester fiber and woven or knit fabric Pending JPH11181624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9350858A JPH11181624A (en) 1997-12-19 1997-12-19 Production of polyester fiber and woven or knit fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9350858A JPH11181624A (en) 1997-12-19 1997-12-19 Production of polyester fiber and woven or knit fabric

Publications (1)

Publication Number Publication Date
JPH11181624A true JPH11181624A (en) 1999-07-06

Family

ID=18413373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9350858A Pending JPH11181624A (en) 1997-12-19 1997-12-19 Production of polyester fiber and woven or knit fabric

Country Status (1)

Country Link
JP (1) JPH11181624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303266C (en) * 2003-05-08 2007-03-07 中国石化仪征化纤股份有限公司 Manufacture of high tenacity low-stretch polyester filaments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303266C (en) * 2003-05-08 2007-03-07 中国石化仪征化纤股份有限公司 Manufacture of high tenacity low-stretch polyester filaments

Similar Documents

Publication Publication Date Title
KR100901325B1 (en) Polylatic acid fiber
JP3736298B2 (en) Blended yarn
JP3167677B2 (en) Polyester irregular cross section fiber
JPH11181624A (en) Production of polyester fiber and woven or knit fabric
JP2000248425A (en) Highly shrinkable polyester fiber and its production
JP2003293237A (en) Method for polylactic acid fiber
JP2844680B2 (en) Different fineness / different shrinkage mixed fiber and method for producing the same
JPH11181623A (en) Production of polyester fiber and woven or knit fabric
JP3693552B2 (en) Method for producing polyester fiber
JP3815120B2 (en) Slightly shrinkable polyester filament yarn
JP2000199145A (en) Production of polyester fiber
JP3581003B2 (en) Polyester multifilament different shrinkage mixed yarn
JP2000248430A (en) Latent crimp-expressing polyester fiber and production
JPH06136615A (en) Production of polyether ester elastomer yarn
JP2000199125A (en) Production of polyester fiber
JP4059681B2 (en) Process for producing pre-oriented yarn of polytrimethylene terephthalate
JP3303798B2 (en) Polyester fiber
JP3187139B2 (en) Manufacturing method of heat extensible polyester fiber
JPH0748746A (en) Production of polyester thick and thin yarn of wood tone
JP2003293221A (en) Polylactic acid fiber having 31 spiral structure
JP2000328385A (en) Production of polyester fiber
JPH09111564A (en) Polyester combined filament yarn
JP3517494B2 (en) Polyester multifilament yarn, method for producing the same, and mixed fiber yarn
JPH0711513A (en) Production of polyester fiber with self-elongation nature
JP2000328381A (en) Low shrinkage polyester fiber and cloth