JPH11181517A - Method for dehydrogenating steel - Google Patents

Method for dehydrogenating steel

Info

Publication number
JPH11181517A
JPH11181517A JP36328497A JP36328497A JPH11181517A JP H11181517 A JPH11181517 A JP H11181517A JP 36328497 A JP36328497 A JP 36328497A JP 36328497 A JP36328497 A JP 36328497A JP H11181517 A JPH11181517 A JP H11181517A
Authority
JP
Japan
Prior art keywords
steel
hydrogen
temperature
temp
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36328497A
Other languages
Japanese (ja)
Inventor
Koichi Uchino
耕一 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP36328497A priority Critical patent/JPH11181517A/en
Publication of JPH11181517A publication Critical patent/JPH11181517A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively remove hydrogen in a steel without deteriorating the mechanical properties of the steel by heating a steel from an ordinary temp. and executing heating in a specified temp. range for >= specified time. SOLUTION: By holding a steel at 200 to 500 deg.C, at 200 to 300 deg.C and at 400 to 500 deg.C for above the time (t) at least satisfying the relation of (D.t)<1/2> =(1/2 the minimum thickness of the product) (D denotes the diffusion coefficient of hydrogen in each holding temp. in α iron), hydrogen in a relatively movable state trapped in the dislocation of the steel is released at >=200 deg.C, and hydrogen in a state of being strongly trapped in precipitates and grain boundaries is released at >=400 deg.C respectively. The temp. range of 200 to 500 deg.C hardly exerts influence on heat history in heat treatment or the like for maintaining the mechanical properties of the steel product. In consideration of the productivity of the steel, each holding time in each temp. range is preferably regulated to <=(t)+2 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鋼製品の遅れ破壊を
防止し、かつ所定の強度・硬さを維持可能にするための
鋼の脱水素処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dehydrogenating steel to prevent delayed fracture of a steel product and maintain a predetermined strength and hardness.

【0002】[0002]

【従来の技術】鋼中の拡散性水素による製造直後の欠陥
や遅れ破壊を防止するために、従来から溶鋼脱ガス、鋳
造鋼片の徐冷及び鋼製品の徐冷や再加熱・保定による脱
水素が行われてきた。
2. Description of the Related Art In order to prevent defects and delayed fracture immediately after production due to diffusible hydrogen in steel, conventionally, degassing of molten steel, slow cooling of cast steel pieces, slow cooling of steel products, and dehydrogenation by reheating / reheating / holding have been performed. Has been done.

【0003】例えば、特開昭56−163217号公報
には鋳造鋼片を密閉式ピットで500℃まで徐冷する方
法が記載されている。また、特開昭52−117231
号公報には鋳造鋼片を放冷により十分に変態させた後、
Ac1変態点直下まで再加熱し、保定する方法が示され
ている。
For example, Japanese Patent Laid-Open Publication No. Sho 56-163217 discloses a method of gradually cooling a cast steel slab to 500 ° C. in a closed pit. Also, Japanese Patent Application Laid-Open No. Sho 52-117231
In the official gazette, after the cast billet is sufficiently transformed by cooling,
A method is shown in which reheating is performed just below the Ac 1 transformation point and the temperature is maintained.

【0004】一方、鋼製品の脱水素方法に関しては、例
えば、特開昭52−156709号公報に記載されるよ
うに徐冷効果を高めるために鋼板を重ねる方法がある。
On the other hand, as a method for dehydrogenating steel products, there is a method of stacking steel sheets in order to enhance the slow cooling effect as described in Japanese Patent Application Laid-Open No. 52-156709, for example.

【0005】以上のように従来の脱水素方法は、鋼材を
徐冷するか、Ac1直下(約600〜700℃程度)の
比較的高温に再加熱・保定することにあった。
As described above, in the conventional dehydrogenation method, the steel material is gradually cooled or reheated and kept at a relatively high temperature just below Ac 1 (about 600 to 700 ° C.).

【0006】[0006]

【発明が解決しようとする課題】鋼材の脱水素方法とし
て徐冷、Ac1直下の高温再加熱・保定は効果的であ
る。この際、鋳造鋼片での脱水素は鋼材の厚みが厚いこ
と、微小なボイドが存在し、ボイド中にガス化した水素
は鋼から抜け難いことなどから、圧延後の鋼製品の脱水
素の方が効果が大きい。しかしながら、鋼製品の脱水素
に関しては強度や硬さなど機械的性質を同時に満足する
ことが必要であり、言い換えれば、機械的性質を維持す
るための熱処理などの熱履歴を経て来ており、先に述べ
た脱水素処理のみを考慮した熱履歴では、機械的性質を
維持出来ない場合が多い。したがって、機械的性質を維
持しつつ、脱水素を効果的に行うことが課題である。
As a method for dehydrogenating steel, slow cooling and reheating / retaining at high temperature immediately below Ac 1 are effective. At this time, the dehydrogenation of the cast steel slab is because the thickness of the steel material is large, there are minute voids, and gasified hydrogen in the voids is difficult to escape from the steel. The effect is greater. However, with respect to dehydrogenation of steel products, it is necessary to satisfy mechanical properties such as strength and hardness at the same time.In other words, the steel products have undergone thermal histories such as heat treatment to maintain mechanical properties. In many cases, the thermal history considering only the dehydrogenation treatment described above cannot maintain the mechanical properties. Therefore, it is an issue to carry out dehydrogenation effectively while maintaining mechanical properties.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するため、鋼中の脱水素について研究し、鋼中の水素は
転位にトラップされた比較的、移動可能な状態と析出物
や結晶粒界に強くトラップされた状態のものが存在し、
これらの水素は常温より温度を上げていくと転位にトラ
ップされた水素は200℃以上で放出され、さらに温度
を上げると400℃以上で析出物や結晶粒界にトラップ
された水素も放出されることを知見した。すなわち、従
来の脱水素で用いられているAc1直下の600℃以上
の高温でなくても、鋼中にトラップされた水素は上記温
度で移動可能な状態になることを知見した。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention studies dehydrogenation in steel, and the hydrogen in steel is in a relatively mobile state trapped in dislocations and in the form of precipitates and crystals. There are those that are strongly trapped in the grain boundaries,
When the temperature of the hydrogen is increased from room temperature, hydrogen trapped in dislocations is released at 200 ° C. or higher, and when the temperature is further raised, hydrogen trapped in precipitates and grain boundaries is released at 400 ° C. or higher. I found that. That is, the present inventors have found that even if the temperature is not higher than 600 ° C. immediately below Ac 1 used in the conventional dehydrogenation, the hydrogen trapped in the steel can move at the above temperature.

【0008】本発明は上記知見に基づいて完成したもの
で、その要旨は鋼製品を常温より加熱し、200〜50
0℃、200〜300℃または400〜500℃の間
で、少なくとも(D・t)1/2=(製品最小厚みの1/
2)の関係を満足する時間t(ただし、Dはα鉄中の水
素の拡散係数)以上の間、保定することを特徴とする鋼
の脱水素処理にある。200〜500℃の温度範囲で脱
水素処理するため、鋼製品の機械的性質を維持するため
の熱処理などの熱履歴に殆ど影響を与えなくて脱水素が
可能となる。
[0008] The present invention has been completed based on the above findings, and the gist of the present invention is to heat a steel product from normal temperature, and to heat the steel product from 200 to 50.
At 0 ° C., 200 to 300 ° C. or 400 to 500 ° C., at least (D · t) 1/2 = (1/3 of the minimum product thickness)
The dehydrogenation treatment of steel is characterized in that the steel is held for a time t or more that satisfies the relationship 2) (where D is the diffusion coefficient of hydrogen in α-iron). Since the dehydrogenation treatment is performed in a temperature range of 200 to 500 ° C., dehydrogenation can be performed without substantially affecting the heat history such as heat treatment for maintaining the mechanical properties of the steel product.

【0009】[0009]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0010】鋼中の拡散が自由となった水素を鋼の外へ
放出するためにはそれぞれの温度における拡散係数と時
間の積の平方根に相当する距離だけ、移動する必要があ
ることは周知であり、鋼の外へ水素が放出されるために
は、鋼製品中心に存在する水素が両サイドへ移動する、
少なくとも製品厚みの半分の距離移動する必要がある。
したがって、少なくとも(D・t)1/2=(製品最小厚
みの1/2)を満足する時間t、それぞれの時間保持す
る必要がある。このとき、保持時間は、脱水素の効果と
しては長いほど良く上限はないが、生産性を考慮すると
上式のt+2時間以下が好ましい。ここで、Dはα鋼中
のそれぞれの温度における水素の拡散係数である。従来
の脱水素法も基本的には、この拡散に要する時間の効果
を用いた方法である。
It is well known that in order to release hydrogen which has become free from diffusion in steel out of the steel, it must be moved by a distance corresponding to the square root of the product of the diffusion coefficient and time at each temperature. In order for hydrogen to be released out of steel, hydrogen existing in the center of steel products moves to both sides,
It has to move at least half the thickness of the product.
Therefore, it is necessary to hold the time t that satisfies at least (D · t) 1/2 = ( / of the minimum product thickness) for each time. At this time, the longer the retention time, the better the dehydrogenation effect, and there is no upper limit, but considering productivity, the retention time is preferably t + 2 hours or less. Here, D is the diffusion coefficient of hydrogen in the α steel at each temperature. The conventional dehydrogenation method is also basically a method using the effect of the time required for this diffusion.

【0011】ここで、200〜500℃の中でとりわけ
効果的として200〜300℃と400〜500℃に分
けた理由を説明する。すなわち、転位に弱くトラップさ
れた比較的移動可能な水素は200℃以上で固着が外れ
て拡散を始めるが、300℃を超えても効果は同様であ
る。従って前記転位等にトラップされた水素のみを拡散
させる場合は、300℃以下とすることが無駄な加熱を
せずにすみ、経済的に望ましく、また、材料強度低下防
止の点からも好ましい。
Here, the reason why 200-300 ° C. and 400-500 ° C. are particularly effective among 200-500 ° C. will be described. In other words, relatively movable hydrogen trapped weakly by dislocations is dissociated at 200 ° C. or more and starts diffusing, but the effect is the same even at 300 ° C. or more. Therefore, when only hydrogen trapped in the dislocations or the like is diffused, it is preferable to set the temperature to 300 ° C. or less, because unnecessary heating is not required, and it is economically desirable, and also from the viewpoint of preventing a reduction in material strength.

【0012】また、400℃以上では析出物や結晶粒界
に強固にトラップされた水素も固着が外れて拡散をはじ
め、先に述べた効果に重畳する。
At a temperature of 400 ° C. or more, hydrogen firmly trapped in precipitates and crystal grain boundaries is also dissociated and begins to diffuse, overlapping the above-described effects.

【0013】一方、鋼材の強度は焼き戻しにより、低下
することは周知であり、そのために目的とする強度にす
るために、焼き戻しを省いたり、低温で焼き戻すことが
用いられている。このような場合、従来の脱水素法に依
っては、Ac1直下の温度で長時間維持すると目標とす
る強度や硬さが維持できなくなる。このため、本願発明
では上限温度を500℃とした。
On the other hand, it is well known that the strength of a steel material is reduced by tempering. Therefore, in order to obtain a desired strength, tempering is omitted or tempering is performed at a low temperature. In such a case, according to the conventional dehydrogenation method, the target strength and hardness cannot be maintained if the temperature is maintained immediately below Ac 1 for a long time. For this reason, in the present invention, the upper limit temperature is set to 500 ° C.

【0014】したがって、本発明の主旨である、強度あ
るいは硬さの低下に殆ど影響を及ぼさない200〜40
0℃未満、望ましくは200〜300℃、の水素拡散処
理、あるいは低温焼き戻し温度に相当する400〜50
0℃の水素拡散処理は目的とする鋼製品の強度を維持し
つつ、脱水素が可能となる。
Therefore, 200 to 40 hardly affects the reduction in strength or hardness, which is the gist of the present invention.
Hydrogen diffusion treatment at a temperature lower than 0 ° C, preferably 200 to 300 ° C, or 400 to 50 corresponding to a low tempering temperature.
The hydrogen diffusion treatment at 0 ° C. enables dehydrogenation while maintaining the strength of the target steel product.

【0015】なお、ここで、保定とは所定の温度で一定
時間熱処理を行うことである。
Here, the term "holding" refers to performing heat treatment at a predetermined temperature for a predetermined time.

【0016】本発明では、200〜500℃、200〜
300℃または400〜500℃の温度範囲内では、保
定中に温度変化があっても構わない。
In the present invention, 200-500 ° C., 200-500 ° C.
Within the temperature range of 300 ° C. or 400 to 500 ° C., the temperature may change during the holding.

【0017】[0017]

【実施例】本発明の実施例をレール鋼を一例として、従
来法との比較を交えて、以下に示す。
EXAMPLES Examples of the present invention will be described below by taking rail steel as an example and comparing with a conventional method.

【0018】上記レール鋼は、表1に示すA、B2種類
の成分の鋼を用い、常法でAREA132ポンドレール
に圧延変形したものを用いた。
The rail steel used was a steel having two types of components A and B shown in Table 1 and was rolled and deformed into an AREA 132 pound rail by a conventional method.

【0019】このレール(鋼材)の頭部最小厚みは45
mmであった。
The minimum head thickness of this rail (steel) is 45
mm.

【0020】[0020]

【表1】 表2に上記レールの脱水素法の条件及び脱水素前後の鋼
中水素量と、硬さを示す。
[Table 1] Table 2 shows the conditions of the above-mentioned rail dehydrogenation method, the amount of hydrogen in steel before and after dehydrogenation, and the hardness.

【0021】鋼中水素量は、昇温ガスクロマトグラフ法
を用い、また硬さはJIS Z 2244のビッカース
硬さ試験方法により測定した。なお、鋼中の水素の拡散
係数は、例えば日本金属学会編「金属データブック」
(丸善、昭和59年1月30日発行)に掲載の値、すな
わち、自己拡散係数;D0=4.2×10-8(m2/s)
および活性化エネルギ−;Q=3.85(kJ/mo
l)を用い、D=D0exp(−Q/RT)の式より求
めた。このときRは気体常数(=8.3J/deg・m
ol)、そしてTは保定時の絶対温度である。
The amount of hydrogen in the steel was measured by a temperature-raising gas chromatograph method, and the hardness was measured by a Vickers hardness test method of JIS Z 2244. The diffusion coefficient of hydrogen in steel can be found, for example, in “Metal Data Book” edited by the Japan Institute of Metals.
(Maruzen, published on January 30, 1984), that is, the self-diffusion coefficient; D 0 = 4.2 × 10 −8 (m 2 / s)
And activation energy; Q = 3.85 (kJ / mo)
using l), was determined from the equation D = D 0 exp (-Q / RT). At this time, R is a gas constant (= 8.3 J / deg · m)
ol), and T is the absolute temperature at the time of retention.

【0022】表2に示すように、本発明法では、200
〜500℃の範囲内の温度に保定して脱水素処理を行っ
たが、いずれの場合においても脱水素前の水素量と脱水
素後の水素量の数値から明らかなように効果的に水素が
除去された。また、鋼の機械的性質としての脱水素前の
硬さ(Hv10)と脱水素後の硬さ(Hv10)に殆ど
差がなかった。
As shown in Table 2, in the method of the present invention, 200
The dehydrogenation treatment was performed while maintaining the temperature within the range of ~ 500 ° C. In any case, as is clear from the numerical values of the amount of hydrogen before dehydrogenation and the amount of hydrogen after dehydrogenation, hydrogen was effectively removed. Removed. In addition, there was almost no difference between the hardness (Hv10) before dehydrogenation and the hardness (Hv10) after dehydrogenation as mechanical properties of steel.

【0023】これに対して、比較法として650℃の温
度に保定して脱水素を行ったところ、脱水素量は本発明
法と同様に良好であったが、脱水素後の硬さが脱水素前
の硬さと比較して大幅に低下していた。
On the other hand, when dehydrogenation was carried out at a temperature of 650 ° C. as a comparative method, the dehydrogenation amount was as good as in the method of the present invention, but the hardness after dehydrogenation was dehydrated. The hardness was significantly lower than the hardness before bare.

【0024】これらの結果から、本発明法によれば、鋼
の機械的性質を低下させることなく、鋼中の水素を効果
的に除去できることが確認できた。
From these results, it was confirmed that according to the method of the present invention, hydrogen in steel can be effectively removed without deteriorating the mechanical properties of steel.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本願発明では、鋼製品の機械的性質を維
持しつつ、鋼の遅れ破壊などを起因する水素を効果的に
除去できる。
According to the present invention, it is possible to effectively remove hydrogen caused by delayed fracture of steel while maintaining the mechanical properties of the steel product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼材を常温より加熱し、200〜500
℃の間で、下記(式1)を満足する時間t以上、保定す
ることを特徴とする鋼の脱水素処理方法。 (D・t)1/2=h/2 (式1) ただし、D:保定温度におけるα鉄中の水素の拡散係数 h:鋼材の最小厚み
1. A steel material is heated from room temperature, and
A method for dehydrogenating steel, wherein the temperature is maintained at a temperature t or more that satisfies the following (Equation 1). (D · t) 1/2 = h / 2 (Equation 1) where D: diffusion coefficient of hydrogen in α-iron at the holding temperature h: minimum thickness of steel
【請求項2】 鋼材を常温より加熱し、400〜500
℃の間で、下記(式1)を満足する時間t以上、保定す
ることを特徴とする鋼の脱水素処理方法。 (D・t)1/2=h/2 (式1) ただし、D:保定温度におけるα鉄中の水素の拡散係数 h:鋼材の最小厚み
2. A steel material is heated from room temperature to a temperature of 400 to 500.
A method for dehydrogenating steel, wherein the temperature is maintained at a temperature t or more that satisfies the following (Equation 1). (D · t) 1/2 = h / 2 (Equation 1) where D: diffusion coefficient of hydrogen in α-iron at the holding temperature h: minimum thickness of steel
【請求項3】 鋼材を常温より加熱し、200〜300
℃の間で、下記(式1)を満足する時間t以上、保定す
ることを特徴とする鋼の脱水素処理方法。 (D・t)1/2=h/2 (式1) ただし、D:保定温度におけるα鉄中の水素の拡散係数 h:鋼材の最小厚み
3. A steel material is heated from room temperature, and
A method for dehydrogenating steel, wherein the temperature is maintained at a temperature t or more that satisfies the following (Equation 1). (D · t) 1/2 = h / 2 (Equation 1) where D: diffusion coefficient of hydrogen in α-iron at the holding temperature h: minimum thickness of steel
JP36328497A 1997-12-16 1997-12-16 Method for dehydrogenating steel Withdrawn JPH11181517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36328497A JPH11181517A (en) 1997-12-16 1997-12-16 Method for dehydrogenating steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36328497A JPH11181517A (en) 1997-12-16 1997-12-16 Method for dehydrogenating steel

Publications (1)

Publication Number Publication Date
JPH11181517A true JPH11181517A (en) 1999-07-06

Family

ID=18478952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36328497A Withdrawn JPH11181517A (en) 1997-12-16 1997-12-16 Method for dehydrogenating steel

Country Status (1)

Country Link
JP (1) JPH11181517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093453A1 (en) * 2007-01-31 2008-08-07 National Institute Of Advanced Industrial Science And Technology Austenite based stainless steel and method of dehydrogenating the same
WO2009107475A1 (en) * 2008-02-29 2009-09-03 独立行政法人産業技術総合研究所 Austenitic stainless steel and process for hydrogen removal thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093453A1 (en) * 2007-01-31 2008-08-07 National Institute Of Advanced Industrial Science And Technology Austenite based stainless steel and method of dehydrogenating the same
JP2008208451A (en) * 2007-01-31 2008-09-11 National Institute Of Advanced Industrial & Technology Austenitic stainless steel and its hydrogen removal method
WO2009107475A1 (en) * 2008-02-29 2009-09-03 独立行政法人産業技術総合研究所 Austenitic stainless steel and process for hydrogen removal thereof
JPWO2009107475A1 (en) * 2008-02-29 2011-06-30 独立行政法人産業技術総合研究所 Austenitic stainless steel and its hydrogen removal method

Similar Documents

Publication Publication Date Title
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JPS5830937B2 (en) Manufacturing method of AI-killed cold-rolled steel sheet for deep drawing by short-time continuous annealing
US4116729A (en) Method for treating continuously cast steel slabs
JP3149764B2 (en) Prevention method of placing cracks in continuous cast slabs of bearing steel
JPH11181517A (en) Method for dehydrogenating steel
US3486947A (en) Enhanced structural uniformity of aluminum based alloys by thermal treatments
JP4235132B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP2580936B2 (en) Method for producing steel with few surface defects
US3320099A (en) Method of processing steel
EP0653495B1 (en) Process for graphitizing cast iron
JP2825864B2 (en) Manufacturing method of cold rolled steel sheet with excellent ductility
JPS5830934B2 (en) Manufacturing method of cold-rolled steel sheet with good formability by short-time continuous annealing
JPS61110756A (en) Rolling method of titanium alloy plate
JP2618997B2 (en) Manufacturing method of non-aged hot rolled steel sheet
JPH0673686B2 (en) Rolling method for martensitic stainless steel
JPS5856732B2 (en) Manufacturing method for full process non-oriented silicon steel sheet with extremely low iron loss
JPH11124624A (en) Manufacture of thick austenitic stainless steel plate
JP2653948B2 (en) Preparation of Standard Grain Oriented Silicon Steel without Hot Strip Annealing
JPS61124533A (en) Manufacture of nonaging cold rolled steel sheet having good workability by continuous annealing
JP2527582B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPH0217614B2 (en)
JP2612453B2 (en) Method for producing hot-rolled mild steel sheet with excellent drawability
JPH0347601A (en) Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab
JPH0741859A (en) Production of grain-oriented silicon steel sheet
JPS6254017A (en) Production of thin-walled cr stainless steel slab

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301