JPH11181504A - Core rod for forming bearing surface of dynamic pressure type porous oil impregnated bearing - Google Patents

Core rod for forming bearing surface of dynamic pressure type porous oil impregnated bearing

Info

Publication number
JPH11181504A
JPH11181504A JP34809197A JP34809197A JPH11181504A JP H11181504 A JPH11181504 A JP H11181504A JP 34809197 A JP34809197 A JP 34809197A JP 34809197 A JP34809197 A JP 34809197A JP H11181504 A JPH11181504 A JP H11181504A
Authority
JP
Japan
Prior art keywords
dynamic pressure
core rod
bearing
forming
bearing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34809197A
Other languages
Japanese (ja)
Other versions
JP3842415B2 (en
Inventor
Natsuhiko Mori
夏比古 森
Makoto Shiranami
誠 白波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP34809197A priority Critical patent/JP3842415B2/en
Publication of JPH11181504A publication Critical patent/JPH11181504A/en
Application granted granted Critical
Publication of JP3842415B2 publication Critical patent/JP3842415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the precise formation of a bearing surface having dynamic pressure grooves on the inner peripheral surface of a cylindrical sintered metallic base stock formed into the bearing body of a dynamic pressure type porous oil impregnated bearing with a small man-hour. SOLUTION: On the outer peripheral surface 1a of a core rod 1 made of a cemented carbide, a forming part 1b having a first range 1b1 for forming the dynamic pressure groove on the bearing surface and a second range 1b2 for forming the range except the dynamic pressure groove, is arranged. The forming part 1b is formed by an etching. This core rod 1 is inserted into the inner diameter part of the sintered metallic base stock and the pressing force is applied on the sintered metallic base stock and the inner peripheral surface is pressurized to the forming part 1b of the core rod 1 to form the bearing surface having the shape corresponding to the forming part 1b on the inner peripheral surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒状の焼結合金
からなる軸受本体の内周面に、軸方向に傾斜した動圧溝
を有する軸受面を成形するためのコアロッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a core rod for forming a bearing surface having a dynamic pressure groove inclined in an axial direction on an inner peripheral surface of a cylindrical bearing body made of a sintered alloy.

【0002】[0002]

【従来の技術】情報機器関連の小型スピンドルモータで
は、回転性能のより一層の向上や低コスト化が求められ
ており、そのための手段として、スピンドルの軸受を転
がり軸受から多孔質含油軸受に置き換えることが検討さ
れている。しかし、多孔質含油軸受は、真円軸受の一種
であるため、軸の偏心が小さいところでは、不安定な振
動が発生しやすく、回転速度の1/2の速度で振れ回る
いわゆるホワールが発生しやすい。そこで、軸受面にへ
リングボーン型やスパイラル型の動圧溝を設け、軸の回
転に伴う動圧作用によって軸受隙間に動圧油膜を形成し
て軸を浮上支持すると共に、不安定振動を防止すること
が従来より試みられている。
2. Description of the Related Art Smaller spindle motors related to information equipment are required to have further improved rotational performance and lower cost. As a means for achieving this, the bearings of spindles are replaced with rolling oil bearings instead of rolling bearings. Is being considered. However, since a porous oil-impregnated bearing is a kind of a perfect circular bearing, unstable vibration is likely to occur where the eccentricity of the shaft is small, and so-called whirling occurs at half the rotational speed. Cheap. Therefore, a herringbone type or spiral type dynamic pressure groove is provided on the bearing surface, and a dynamic pressure oil film is formed in the bearing gap by the dynamic pressure effect accompanying the rotation of the shaft to support the shaft floating and prevent unstable vibration. Has been attempted in the past.

【0003】[0003]

【発明が解決しようとする課題】従来、軸受面における
動圧溝の成形方法として、軸受素材よりも硬質の複数個
のボールを円周等間隔に配列保持した軸状の治具を黄銅
やアルミ合金などの軟質金属からなる軸受素材の内周面
に挿入し、治具の回転と送りによってボールに螺旋運動
を与えながらボールを素材内周面に加圧して動圧溝を塑
性加工する方法が知られているが(特許第2541208
号)、この方法では、成形時に動圧溝に隣接する領域で
素材隆起が起こるので、これを旋盤やリーマで除去加工
する必要があり(特開平8-232958号)、工数が増加する
不具合がある。
Conventionally, as a method of forming a dynamic pressure groove in a bearing surface, a shaft-shaped jig in which a plurality of balls harder than a bearing material are arranged and arranged at equal circumferential intervals is made of brass or aluminum. A method of plastically forming a dynamic pressure groove by inserting a ball into the inner peripheral surface of a bearing material made of a soft metal such as an alloy and applying a spiral motion to the ball by rotating and feeding the jig while pressing the ball against the inner peripheral surface of the material. It is known (Patent No. 2541208)
However, in this method, the material rises in the area adjacent to the dynamic pressure groove at the time of molding, and it is necessary to remove the material with a lathe or a reamer (Japanese Patent Laid-Open No. Hei 8-232958), which increases the man-hour. is there.

【0004】本発明は、焼結金属からなる動圧型多孔質
含油軸受の軸受面を少ない工数で精度よく成形すること
ができ、かつ耐久性に優れ、しかも軸受面の形状に対応
した成形部を容易に加工することのできるコアロッドを
提供するものである。
SUMMARY OF THE INVENTION The present invention is directed to a molded portion that can accurately mold the bearing surface of a hydrodynamic porous oil-impregnated bearing made of sintered metal with a small number of man-hours, has excellent durability, and has a shape corresponding to the shape of the bearing surface. It is to provide a core rod that can be easily processed.

【0005】[0005]

【課題を解決するための手段】本発明にかかる軸受面成
形用コアロッドは、動圧型多孔質含油軸受の軸受本体と
なる円筒状の焼結金属素材の内周面に、軸方向に傾斜し
た動圧溝を有する軸受面を成形するためのコアロッドで
あって、超硬合金からなり、上記軸受面における動圧溝
の形成領域を成形するための第1領域、および動圧溝以
外の領域を成形するための第2領域を有する成形部を外
周面に設けたものである。
According to the present invention, a core rod for forming a bearing surface is provided on an inner peripheral surface of a cylindrical sintered metal material serving as a bearing body of a hydrodynamic porous oil-impregnated bearing. A core rod for forming a bearing surface having a pressure groove, comprising a cemented carbide, forming a first region for forming a dynamic pressure groove forming region on the bearing surface, and a region other than the dynamic pressure groove. A molded portion having a second region for performing the process is provided on the outer peripheral surface.

【0006】このコアロッドの外径部に円筒状の焼結金
属素材を供給し、焼結金属素材に圧迫力を加えると、そ
の内周面がコアロッドの成形部に加圧され、塑性流動を
起こして成形部に食い付く。これにより、成形部の形状
が焼結金属素材の内周面に転写され、軸方向に傾斜した
動圧溝をもつ軸受面が成形される。軸受面における動圧
溝の形成領域は、成形部の第1領域によって、動圧溝以
外の領域は成形部の第2領域によってそれぞれ同時に成
形される。したがって、従来のような軸受面の後加工
(素材隆起を除去するための加工)が不要となるので、
工数の削減を図ることができ、しかも軸受面の成形精度
を高くすることができる。軸受面の成形後は、圧迫力を
除去することによる焼結金属素材のスプリングバックを
利用することにより、動圧溝を崩すことなくコアロッド
を焼結金属素材の内径部から離型することができる。
When a cylindrical sintered metal material is supplied to the outer diameter portion of the core rod and a pressing force is applied to the sintered metal material, the inner peripheral surface thereof is pressed against the core rod forming portion, causing plastic flow. Bites into the molded part. As a result, the shape of the molded portion is transferred to the inner peripheral surface of the sintered metal material, and the bearing surface having the dynamic pressure groove inclined in the axial direction is formed. The formation region of the dynamic pressure groove on the bearing surface is formed simultaneously by the first region of the forming portion, and the region other than the dynamic pressure groove is formed by the second region of the forming portion at the same time. This eliminates the need for conventional post-processing of the bearing surface (processing to remove material bumps),
The number of steps can be reduced, and the molding accuracy of the bearing surface can be increased. After forming the bearing surface, the core rod can be released from the inner diameter of the sintered metal material without breaking the dynamic pressure groove by utilizing the springback of the sintered metal material by removing the pressing force. .

【0007】ところで、上記コアロッドの成形部は軸受
面の成形時に素材から大きな力を受け、またコアロッド
は繰り返し使用されるものである。従って、軸受面の成
形精度を維持する上でも、コアロッドは耐荷重変形性、
耐摩耗性に優れたものであることが望ましい。そこで、
本発明では、コアロッドを耐荷重変形性、耐摩耗性に優
れる超硬合金で形成することとした。軸側に動圧溝を形
成したタイプの動圧型軸受では、動圧溝のエッチング加
工を可能にし、加工性を高めるため、軸の素材としてS
US系材料(SUS420J2等)を用いるのが一般的
であるが、SUS系材料では、本発明に要求される上記
特性が得られない。
By the way, the molding portion of the core rod receives a large force from the material when molding the bearing surface, and the core rod is used repeatedly. Therefore, in order to maintain the molding accuracy of the bearing surface, the core rod is load-resistant,
It is desirable that the material has excellent wear resistance. Therefore,
In the present invention, the core rod is formed of a cemented carbide having excellent load deformation resistance and wear resistance. In a dynamic pressure bearing of a type in which a dynamic pressure groove is formed on the shaft side, S is used as a material for the shaft in order to enable etching of the dynamic pressure groove and enhance workability.
It is common to use a US-based material (such as SUS420J2), but the SUS-based material does not provide the above properties required for the present invention.

【0008】コアロッドを超硬合金で形成した場合、そ
の成形部の加工方法が問題となる。すなわち、超硬合金
は硬度が高いため、通常の機械加工では加工が困難で、
また加工精度もでない。さらに、一般に超硬合金材に
は、耐腐食性を向上させるための添加材が含まれている
場合が多く、エッチング加工ができない場合が多い。軸
受面の成形用のコアロッドを超硬合金で形成した例もあ
るが、それは動圧溝を有しない軸受面(真円軸受)を成
形するためのものである。
When the core rod is formed of a cemented carbide, there is a problem in a method of processing the formed portion. In other words, cemented carbide has a high hardness, so it is difficult to machine with normal machining,
Also, there is no processing accuracy. Further, in general, cemented carbide materials often contain additives for improving corrosion resistance, and in many cases etching cannot be performed. Although there is an example in which a core rod for forming a bearing surface is formed of a cemented carbide, it is for forming a bearing surface (a perfect circular bearing) having no dynamic pressure grooves.

【0009】そこで本発明では、コアロッドを耐腐食性
を向上させるための添加材を含まない超硬合金で形成
し、その成形部をエッチング加工で加工することによ
り、成形部の加工性を高めることとした。
Therefore, in the present invention, the workability of the formed part is improved by forming the core rod from a cemented carbide containing no additive for improving the corrosion resistance and processing the formed part by etching. And

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図1乃
至図9に基いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0011】図1に本発明にかかる軸受面成形用コアロ
ッド1を示す。
FIG. 1 shows a core rod 1 for forming a bearing surface according to the present invention.

【0012】コアロッド1の外周面1aの2箇所には、動
圧型多孔質含油軸受の軸受本体(2:図4参照)の内周
面2aに軸受面2bを成形するための成形部1bが軸方向に離
隔して形成される。この成形部1bは、図2に示すよう
に、軸受面2bにおける動圧溝2b1の形成領域を成形する
第1領域1b1と、軸受面2bにおける動圧溝2b1以外の領
域、すなわち動圧溝2b1間の背の部分2b2および軸受面
2bの軸方向中間部の環状平滑部2b3を成形する第2領域
1b2(図1にクロスハッチングで示す)とで構成され
る。第1領域1b1は、軸受面2bの動圧溝パターンに対応
させて形成され、図面ではいわゆるへリングボーン型の
動圧溝2b1に対応させた場合を例示している。第2領域
1b2は、第1領域1b1に対して所定量だけ凹み、その凹
み量は動圧溝2b1の深さにほぼ等しく、例えば2〜4μ
mである。動圧溝2b1の形状は、軸方向に対して傾斜し
たものである限り任意であり、スパイラル型等の他の傾
斜溝とする場合には、第1領域1b1を当該溝形状に対応
した形状に形成する。なお、図2では成形部1bの凹凸を
かなり誇張して描いている。
At two locations on the outer peripheral surface 1a of the core rod 1, a forming portion 1b for forming the bearing surface 2b on the inner peripheral surface 2a of the bearing body (2: see FIG. 4) of the hydrodynamic porous oil-impregnated bearing is provided. It is formed to be spaced apart in the direction. As shown in FIG. 2, the forming portion 1b includes a first region 1b1 for forming a formation region of the dynamic pressure groove 2b1 on the bearing surface 2b, and a region other than the dynamic pressure groove 2b1 on the bearing surface 2b, that is, a dynamic pressure groove 2b1. Back part 2b2 between and bearing surface
The second region 1b2 (shown by cross-hatching in FIG. 1) forms the annular smooth portion 2b3 at the axially intermediate portion of 2b. The first region 1b1 is formed so as to correspond to the dynamic pressure groove pattern of the bearing surface 2b, and the drawing illustrates a case where the first region 1b1 corresponds to the so-called herringbone type dynamic pressure groove 2b1. The second region 1b2 is recessed by a predetermined amount with respect to the first region 1b1, and the recess amount is substantially equal to the depth of the dynamic pressure groove 2b1, for example, 2 to 4 μm.
m. The shape of the dynamic pressure groove 2b1 is arbitrary as long as it is inclined with respect to the axial direction. When another inclined groove such as a spiral type is used, the first region 1b1 has a shape corresponding to the groove shape. Form. In FIG. 2, the irregularities of the molded portion 1b are drawn in an exaggerated manner.

【0013】コアロッド1は、耐荷重変形性、耐摩耗性
に優れた超硬合金(例えばK20クラス)で成形され
る。この超硬合金としては、後述するエッチング加工を
可能にするため、耐腐食性を向上させる添加材を含まな
いもの、例えば東京タングステン株式会社製のG20等
が使用される。
The core rod 1 is formed of a cemented carbide (for example, K20 class) having excellent load deformation resistance and wear resistance. As the cemented carbide, an alloy containing no additive for improving corrosion resistance, for example, G20 manufactured by Tokyo Tungsten Co., Ltd., is used in order to enable an etching process described later.

【0014】上記成形部1bは以下の手順(エッチング加
工)で形成することができる。
The molded part 1b can be formed by the following procedure (etching).

【0015】図面をもとに軸受面2bのフォトマスクを
製作する(フォトマスクの製作)。
A photomask of the bearing surface 2b is manufactured based on the drawings (production of a photomask).

【0016】超硬合金製コアロッド1を脱脂し、これ
に市販のレジストをコーティングする(レジストコーテ
ィング)。
The cemented carbide core rod 1 is degreased and coated with a commercially available resist (resist coating).

【0017】レジストを乾燥後、フォトマスクを超硬
合金製コアロッド1に巻き付け、しかる後紫外線を照射
してフォトマスクにより遮光された第2領域1b1以外の
部分(第1領域1b1に相当する)のレジストを硬化させ
る(焼付け)。
After the resist is dried, a photomask is wound around the core rod 1 made of cemented carbide, and thereafter, a portion other than the second region 1b1 (corresponding to the first region 1b1) which is irradiated with ultraviolet rays and is shielded from light by the photomask. The resist is cured (baked).

【0018】現像液を用い、硬化していないレジス
ト、すなわち第2領域1b2に相当する部分のレジストを
溶解して取り除く(現像)。
Using a developing solution, the uncured resist, that is, the resist corresponding to the second region 1b2 is dissolved and removed (development).

【0019】苛性ソーダ等のエッチング液内に所定時
間(通常1〜10分)浸漬し、第2領域1b2の母材表面
を溶解除去して第2領域1b2を形成する。この際、エッ
チング液に通電して電解エッチングとしてもよい(エッ
チング)。
The base material surface of the second region 1b2 is immersed in an etching solution such as caustic soda for a predetermined period of time (usually 1 to 10 minutes) to dissolve and remove it, thereby forming the second region 1b2. At this time, the etching solution may be energized to perform electrolytic etching (etching).

【0020】有機溶剤等を用いて残った硬化レジスト
を剥離し、第1領域1b1を現出させる(レジスト剥
離)。
The remaining hardened resist is stripped off using an organic solvent or the like, and the first region 1b1 is exposed (resist stripping).

【0021】図5は、上記エッチング加工で製作したコ
アロッド1の軸方向での母線形状を示す。図5より、第
2領域1b2の深さにばらつきがなく、従って軸方向に均
等にエッチングされており、しかもエッチング部(第2
領域1b2)と非エッチング部(第1領域1b1)の境界が
鋭角に形成されていることが理解できる。
FIG. 5 shows the bus shape in the axial direction of the core rod 1 manufactured by the above-mentioned etching process. As shown in FIG. 5, the depth of the second region 1b2 does not vary, and is therefore etched uniformly in the axial direction.
It can be understood that the boundary between the region 1b2) and the non-etched portion (the first region 1b1) is formed at an acute angle.

【0022】図6乃至図9は、エッチング加工で製作し
たコアロッド1の円周方向での形状(a〜d、X〜Z)
を示す。図1に示すように、a〜dは、第1領域1b1を
含む4つの円周方向の領域での形状を表す。また、Yは
エッチングを施していない部分の形状(真円度)、Xお
よびZはエッチングが施された部分の形状(真円度)を
それぞれ表す。円周方向の形状(a〜d)および真円度
(X〜Z)はいずれもタリロンド(真円度測定器)で測
定した。
6 to 9 show circumferential shapes (ad, X to Z) of the core rod 1 manufactured by etching.
Is shown. As shown in FIG. 1, a to d represent shapes in four circumferential regions including the first region 1b1. In addition, Y represents the shape of the unetched portion (roundness), and X and Z represent the shape of the etched portion (roundness). The circumferential shape (ad) and the roundness (X to Z) were all measured with a Talylond (roundness measuring device).

【0023】図6乃至図9の円周方向の形状(a〜d)
より、第1領域1b1は円周方向に正確に等配(8等配)
され、かつ第2領域1b2の深さのばらつきが少ないこと
が理解できる。また、XおよびZとYとの比較より、エ
ッチング部と非エッチング部で真円度の差が少ないこと
も理解できる。従って、コアロッド1は円周方向で均等
にエッチングされていると判断される。
FIGS. 6 to 9 show circumferential shapes (a to d).
Thus, the first region 1b1 is precisely evenly distributed in the circumferential direction (8 equally distributed).
It can be understood that the variation in the depth of the second region 1b2 is small. It can also be understood from the comparison between X, Z and Y that the difference in roundness between the etched portion and the non-etched portion is small. Therefore, it is determined that the core rod 1 is uniformly etched in the circumferential direction.

【0024】なお、成形部1bの加工法としては、上記エ
ッチング加工(電解エッチング加工も含む)に限らず、
超硬合金に精密加工を行ない得る他の加工法、例えばレ
ーザ加工や放電加工等を採用することもできる。
The method of processing the molded portion 1b is not limited to the above-mentioned etching (including electrolytic etching).
Other processing methods capable of performing precision processing on cemented carbide, such as laser processing and electric discharge processing, can also be employed.

【0025】以上の手順で製作されたコアロッド1は、
例えば図3に示す成形装置の軸受面成形型として使用さ
れる。軸受面の成形は、銅系や鉄系等を主成分とする金
属粉を圧粉成形し、さらに焼成して得られた円筒状の焼
結金属素材2'の内径部にコアロッド1を挿入し、これを
ダイ5に圧入した状態で、焼結金属素材2'を上下のパン
チ6、7で軸方向両側から加圧することにより行われ
る。上パンチ6とコアロッド1を連動して降下させる
と、焼結金属素材2'に両パンチ6、7およびダイ5から
圧迫力が付与され、この圧迫力によって焼結金属素材2'
の上下端部が内径側に肉移動し、それぞれ対向する成形
部1bに押付けられる。これにより、成形部1bの形状が焼
結金属素材2'の内周面の上下端部に転写される。成形部
1bの第1領域1b1で所定形状の動圧溝2b1が、第2領域
1b2で背の部分2b2および平滑部2b3が同時成形され
る。
The core rod 1 manufactured by the above procedure is
For example, it is used as a bearing surface forming die of the forming device shown in FIG. The bearing surface is formed by compacting metal powder mainly composed of copper or iron, and then inserting the core rod 1 into the inner diameter of a cylindrical sintered metal material 2 'obtained by firing. The pressing is performed by pressing the sintered metal material 2 ′ from both sides in the axial direction with the upper and lower punches 6 and 7 in a state where this is pressed into the die 5. When the upper punch 6 and the core rod 1 are lowered in conjunction with each other, a pressing force is applied to the sintered metal material 2 ′ from both the punches 6, 7 and the die 5, and the pressing force is applied to the sintered metal material 2 ′.
The upper and lower ends move toward the inner diameter side and are pressed against the opposing molded portions 1b. As a result, the shape of the molded portion 1b is transferred to the upper and lower ends of the inner peripheral surface of the sintered metal material 2 '. Molding part
A dynamic pressure groove 2b1 having a predetermined shape is formed in the first region 1b1 of the first region 1b, and a back portion 2b2 and a smooth portion 2b3 are formed in the second region 1b2 at the same time.

【0026】その後、上下のパンチ6、7およびコアロ
ッド1を連動して上昇させ、成形した焼結金属素材2'を
ダイ5から抜き出す。焼結金属素材2'はダイ5から抜き
出されると同時にスプリングバックし、その内径面が僅
かに拡径するので、その後焼結金属素材2'をコアロッド
1から引き抜いても動圧溝2b1が成形部1bの第1領域1
b1と干渉して崩れることはない。
After that, the upper and lower punches 6 and 7 and the core rod 1 are raised in conjunction with each other, and the formed sintered metal material 2 ′ is extracted from the die 5. The sintered metal material 2 ′ is spring-backed at the same time as it is pulled out of the die 5, and its inner diameter surface is slightly enlarged. Therefore, even if the sintered metal material 2 ′ is pulled out from the core rod 1, the dynamic pressure groove 2 b 1 is formed. 1st area 1 of part 1b
It does not collide with b1.

【0027】こうして得られた軸受本体2の内周面2aに
は、図4に示すように、中央部に環状の平滑部2b3を有
し、その両側に相反する向きの動圧溝2b1を有する軸受
面2bが軸方向2箇所に形成される。この軸受本体2を洗
浄・乾燥した後、これに潤滑油や潤滑グリースを含浸さ
せれば、内周面に動圧溝を有する動圧型焼結含油軸受が
製造される。
As shown in FIG. 4, the inner peripheral surface 2a of the bearing body 2 thus obtained has an annular smooth portion 2b3 at the center and has opposing dynamic pressure grooves 2b1 on both sides. Bearing surfaces 2b are formed at two locations in the axial direction. After the bearing body 2 is washed and dried, it is impregnated with lubricating oil or lubricating grease to produce a hydrodynamic sintered oil-impregnated bearing having a hydrodynamic groove on the inner peripheral surface.

【0028】[0028]

【発明の効果】以上のように、本発明にかかるコアロッ
ドによれば、少ない工数で精度よく動圧溝を有する軸受
面を成形することが可能となる。コアロッドを超硬合金
製とすれば、耐摩耗性を向上させて耐久性を高め、ま
た、耐荷重変形性を向上させて軸受面の成形精度を高め
ることができる。成形部をエッチング加工で成形すれ
ば、軸受面の動圧溝パターンに対応する形状の成形部を
容易に形成することができ、動圧溝パターンを変更する
場合にも容易に対応可能となる。また、成形部の加工精
度も高い。
As described above, according to the core rod of the present invention, it is possible to accurately form a bearing surface having a dynamic pressure groove with a small number of man-hours. If the core rod is made of a cemented carbide, it is possible to improve the wear resistance to enhance the durability, and also to improve the load deformability to improve the molding accuracy of the bearing surface. If the formed portion is formed by etching, a formed portion having a shape corresponding to the dynamic pressure groove pattern on the bearing surface can be easily formed, and it is possible to easily cope with a case where the dynamic pressure groove pattern is changed. In addition, the processing accuracy of the molded part is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる動圧型多孔質含油軸受の軸受面
成形用コアロッドの側面図である。
FIG. 1 is a side view of a core rod for forming a bearing surface of a hydrodynamic porous oil-impregnated bearing according to the present invention.

【図2】上記コアロッドの部分拡大側面図である。FIG. 2 is a partially enlarged side view of the core rod.

【図3】上記コアロッドを使用したサイジング工程を示
す断面図である。
FIG. 3 is a sectional view showing a sizing step using the core rod.

【図4】上記コアロッドを用いて成形された軸受本体の
断面図である。
FIG. 4 is a cross-sectional view of a bearing main body formed using the core rod.

【図5】成形部を有するコアロッドの軸方向での母線形
状を示す図である。
FIG. 5 is a diagram showing a generatrix shape in the axial direction of a core rod having a formed portion.

【図6】成形部を有するコアロッドの円周方向での形状
を示す図である。
FIG. 6 is a diagram showing a shape in a circumferential direction of a core rod having a molded portion.

【図7】成形部を有するコアロッドの円周方向での形状
を示す図である。
FIG. 7 is a view showing a shape in a circumferential direction of a core rod having a molded portion.

【図8】成形部を有するコアロッドの円周方向での形状
を示す図である。
FIG. 8 is a view showing a shape in a circumferential direction of a core rod having a molded portion.

【図9】成形部を有するコアロッドの円周方向での形状
を示す図である。
FIG. 9 is a diagram showing a shape in a circumferential direction of a core rod having a molded portion.

【符号の説明】[Explanation of symbols]

1 コアロッド 1a 外周面 1b 成形部 1b1 第1領域 1b2 第2領域 2 軸受本体 2a 内周面 2b 軸受面 2b1 動圧溝 DESCRIPTION OF SYMBOLS 1 Core rod 1a Outer peripheral surface 1b Molded part 1b1 1st area 1b2 2nd area 2 Bearing body 2a Inner peripheral surface 2b Bearing surface 2b1 Dynamic pressure groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 動圧型多孔質含油軸受の軸受本体となる
円筒状の焼結金属素材の内周面に、軸方向に傾斜した動
圧溝を有する軸受面を成形するためのコアロッドであっ
て、 超硬合金からなり、上記軸受面における動圧溝の形成領
域を成形するための第1領域、および動圧溝以外の領域
を成形するための第2領域を有する成形部を外周面に設
けた動圧型多孔質含油軸受の軸受面成形用コアロッド。
1. A core rod for forming a bearing surface having a dynamic pressure groove inclined in an axial direction on an inner peripheral surface of a cylindrical sintered metal material which is a bearing body of a dynamic pressure type porous oil-impregnated bearing. A molding portion made of cemented carbide and having a first region for molding a dynamic pressure groove forming region on the bearing surface and a second region for molding a region other than the dynamic pressure groove is provided on the outer peripheral surface; Core rod for forming the bearing surface of a hydrodynamic porous oil-impregnated bearing.
【請求項2】 成形部がエッチング加工で形成されてい
る請求項1記載の動圧型多孔質含油軸受の軸受面成形用
コアロッド。
2. The core rod for forming a bearing surface of a hydrodynamic porous oil-impregnated bearing according to claim 1, wherein the formed portion is formed by etching.
JP34809197A 1997-12-17 1997-12-17 Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing Expired - Lifetime JP3842415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34809197A JP3842415B2 (en) 1997-12-17 1997-12-17 Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34809197A JP3842415B2 (en) 1997-12-17 1997-12-17 Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JPH11181504A true JPH11181504A (en) 1999-07-06
JP3842415B2 JP3842415B2 (en) 2006-11-08

Family

ID=18394685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34809197A Expired - Lifetime JP3842415B2 (en) 1997-12-17 1997-12-17 Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP3842415B2 (en)

Also Published As

Publication number Publication date
JP3842415B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP3954695B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP4245897B2 (en) Method for manufacturing hydrodynamic bearing device
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP3842415B2 (en) Core rod for forming bearing surface of hydrodynamic porous oil-impregnated bearing
US7789565B2 (en) Fluid dynamic bearing apparatus
JPH11104781A (en) Method and device for processing bearing with groove
JP4420339B2 (en) Manufacturing method of hydrodynamic bearing
JP3602320B2 (en) Manufacturing method of hydrodynamic sintered oil-impregnated bearing
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP3625637B2 (en) Manufacturing method of hydrodynamic bearing
JP2005155655A (en) Sliding bearing manufacturing method
JP2004340385A (en) Dynamic pressure type bearing unit
JP3782900B2 (en) Hydrodynamic bearing and hydrodynamic bearing unit
JP3744082B2 (en) Dynamic pressure generating groove machining method and apparatus
JPS63242422A (en) Manufacture of fluid bearing
JP2001056028A (en) Manufacture of bearing
JP2001116047A (en) Fluid bearing device and manufacturing method therefor
KR100191003B1 (en) Groove forming method for bearing of dynamic press
JP2004308921A (en) Dynamic pressure type bearing unit
JP2005106105A (en) Bearing machining method and its machining device
JP2001012470A (en) Manufacture of bearing
JPH11182550A (en) Manufacture of hydrodynamic porous oil retaining bearing
JP2004308917A (en) Manufacturing method for hydrodynamic porous oil impregnated bearing
JP2001012471A (en) Manufacture of bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term