JPH11180719A - Production of glass preform for optical fiber - Google Patents

Production of glass preform for optical fiber

Info

Publication number
JPH11180719A
JPH11180719A JP35438897A JP35438897A JPH11180719A JP H11180719 A JPH11180719 A JP H11180719A JP 35438897 A JP35438897 A JP 35438897A JP 35438897 A JP35438897 A JP 35438897A JP H11180719 A JPH11180719 A JP H11180719A
Authority
JP
Japan
Prior art keywords
glass
additive
optical fiber
core
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35438897A
Other languages
Japanese (ja)
Inventor
Shinji Ishikawa
真二 石川
Tadashi Enomoto
正 榎本
Tomonori Kashiwada
智徳 柏田
Mototaka Kadoi
素貴 角井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP35438897A priority Critical patent/JPH11180719A/en
Publication of JPH11180719A publication Critical patent/JPH11180719A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01838Reactant delivery systems, e.g. reactant deposition burners for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the deposited glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment

Abstract

PROBLEM TO BE SOLVED: To provide the producing method of a glass article in which a high concn. additive is uniformly added to a core. SOLUTION: In the production method of the glass article for the optical fiber having the core and a clad, a porous soot body consisting essentially of SiO2 is formed on an inner wall of a glass pipe becoming the clad by a gas phase synthesizing method, and a solution in which particulates of the additive are dispersed is impregnated to the porous soot body, then the material is dried, subjected to heat-clarifying treatment and made into solid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ用ガラ
ス母材の製造方法に関し、より詳しくは溶液を用いて石
英系ガラスファイバプリフォームに添加する液浸法の改
良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a glass preform for an optical fiber, and more particularly to an improvement in an immersion method for adding a silica-based glass fiber preform using a solution.

【0002】[0002]

【従来の技術】従来、石英系ファイバへの希土類元素添
加方法として、気相添加法と溶液含浸法が知られてい
る。気相添加法の一例として、MCVD法により石英パ
イプの内側にコーティング部を合成する際、ガラス原料
であるSiCl4 及びGeCl4の蒸気とともに、10
00℃前後で希土類化合物を加熱し、この蒸気を石英パ
イプに移送し、バーナにて加熱してガラス化を行い、こ
れにより得られたパイプをコラップスして線引きしファ
イバ化する方法がある。溶液含浸法の一例としては、V
AD法やOVD法で作成したコア用スートを利用する方
法がある。この方法では、希土類化合物をアルコールな
いしは水に溶解させ、これにコア用スート母材を浸漬す
る。次にこのスート中のアルコールを室温にて蒸発さ
せ、コア用スート中に希土類化合物を沈着させ、各種ガ
ス雰囲気条件にて焼結、透明ガラス化を行い光ファイバ
母材を得る手法がある(特開昭50−73908号公
報)。また、特開平2−258644号公報に示される
ように、MCVD法でクラッド用のガラス管内壁にSi
2 系ススを堆積させ、そこに添加物の溶液を含浸さ
せ、その後、加熱透明化、中実化することによりプリフ
ォームを得る手法がある。
2. Description of the Related Art Conventionally, a vapor phase addition method and a solution impregnation method are known as methods for adding a rare earth element to a quartz fiber. As an example of the gas phase addition method, when synthesizing a coating portion inside a quartz pipe by the MCVD method, together with vapors of glass raw materials SiCl 4 and GeCl 4 ,
There is a method in which a rare earth compound is heated at about 00 ° C., the vapor is transferred to a quartz pipe, heated by a burner to vitrify, and the resulting pipe is collapsed and drawn to form a fiber. As an example of the solution impregnation method, V
There is a method of using a core soot created by the AD method or the OVD method. In this method, a rare earth compound is dissolved in alcohol or water, and a soot base material for a core is immersed therein. Next, there is a method in which an alcohol in the soot is evaporated at room temperature, a rare earth compound is deposited in the soot for the core, and sintering and vitrification are performed under various gas atmosphere conditions to obtain an optical fiber preform. JP-A-50-73908). Further, as shown in Japanese Patent Application Laid-Open No. Hei 2-258644, the inner wall of a glass tube for cladding is formed by MCVD.
There is a method of obtaining a preform by depositing an O 2 -based soot, impregnating it with an additive solution, and then heat-clearing and solidifying.

【0003】更に、クラッドとなるガラス管の内壁にS
iO2 を主成分としてアルミニウム、希土類元素等のド
ーパント化合物を含み該ガラス管よりも屈折率が高いガ
ラス膜をゾルゲル法により形成した後コラップスしてコ
アを形成することからなる光ファイバ母材の製造方法も
提案されている(特開平5−58664号公報)。同様
にゾルゲル法で希土類元素を添加した膜を形成し、その
後、管中を金属塩化物蒸気雰囲気中で加熱しつつ透明ガ
ラス化する方法も知られている(特開平5−10546
6号公報)。
Further, the inner wall of a glass tube serving as a clad has S
Production of an optical fiber preform comprising forming a glass film containing iO 2 as a main component and containing a dopant compound such as aluminum or a rare earth element and having a higher refractive index than the glass tube by a sol-gel method and then forming a core by collapsing the glass film. A method has also been proposed (JP-A-5-58664). Similarly, a method is known in which a film to which a rare earth element is added is formed by a sol-gel method, and thereafter, the tube is heated in a metal chloride vapor atmosphere to form a transparent glass (Japanese Patent Laid-Open No. 5-10546).
No. 6).

【0004】しかし、上記公知の方法では、溶液への添
加物前駆体(例えば、Al塩、希土類元素塩化物)の溶
液への溶解度に限界があり、これにより最大の添加物が
制限されてしまうという問題がある。また液浸する添加
物の塊が乾燥工程や、加熱処理工程で形成し、屈折率分
布の変動や、プリフォームの欠陥(結晶の形成原因)が
生じ、歩留まりの低下をもたらすという問題もある。こ
れは、乾燥の際に溶質の濃度が上昇し、結晶核が形成し
てそこを起点に溶質(塩)の結晶が成長する現象で、特
に高濃度に添加する塩(Al等)を乾燥する際に生じや
すい。
However, in the above-mentioned known method, the solubility of an additive precursor (for example, an Al salt or a rare earth element chloride) in a solution is limited, which limits the maximum additive. There is a problem. In addition, there is also a problem that a lump of the additive to be immersed is formed in the drying step or the heat treatment step, causing a change in the refractive index distribution or a defect (a cause of crystal formation) of the preform, thereby lowering the yield. This is a phenomenon in which the concentration of a solute increases during drying, crystal nuclei are formed, and crystals of the solute (salt) grow from the nucleus. Particularly, a salt (such as Al) added at a high concentration is dried. It is easy to occur when.

【0005】[0005]

【発明が解決しようとする課題】例えば、希土類元素添
加石英ガラスファイバを光ファイバレーザや光アンプ用
ファイバに応用するためには、添加される希土類元素の
ドーパント化合物の濃度には最適値があり、従来の手法
でも問題がない場合が多いが、屈折率を変えたりする元
素(Al等)の多量の添加を行う場合は、上記従来技術
はこの要請に充分にこたえていない。本発明は上記従来
技術の問題点を解消し、高濃度の添加物、例えばドーパ
ント化合物がコアに均一に添加された石英ガラス物品、
例えば光ファイバ用ガラス母材を製造する方法を提供す
ることにある。
For example, in order to apply a rare earth element-doped quartz glass fiber to an optical fiber laser or an optical amplifier fiber, the concentration of the added rare earth element dopant compound has an optimum value. In many cases, there is no problem with the conventional method. However, when a large amount of an element (such as Al) that changes the refractive index is added, the above-mentioned conventional technology does not sufficiently meet this demand. The present invention solves the above-mentioned problems of the prior art, a quartz glass article in which a high concentration of an additive, for example, a dopant compound is uniformly added to a core,
For example, it is an object of the present invention to provide a method for manufacturing a glass preform for an optical fiber.

【0006】[0006]

【課題を解決するための手段】上記の目的は、以下に要
約した発明及び態様によって解決することができる。 (1)気相合成法で得た多孔質スス体に添加物の微粒子
の分散した混合液を含浸させ、乾燥した後、加熱して透
明ガラス化することを特徴とする添加物を含むガラス物
品の製造方法。 (2)コアとクラッドを有する光ファイバ用ガラス母材
の製造方法において、クラッドとなるガラス管の内壁に
SiO2 を主成分とする多孔質スス体を気相合成法によ
り形成し、該多孔質スス体に添加物の微粒子を分散した
混合液に含浸させ、次いで乾燥し、加熱透明化し、中実
化することを特徴とする光ファイバ用ガラス母材の製造
方法。
The above objects can be attained by the invention and aspects summarized below. (1) A glass article containing an additive, wherein a porous soot obtained by a gas phase synthesis method is impregnated with a mixed solution in which fine particles of the additive are dispersed, dried, and heated to form a transparent glass. Manufacturing method. (2) In a method of manufacturing a glass preform for an optical fiber having a core and a clad, a porous soot body mainly composed of SiO 2 is formed on the inner wall of a glass tube to be a clad by a vapor phase synthesis method. A method for producing a glass preform for an optical fiber, characterized by impregnating a mixed solution in which fine particles of an additive are dispersed in a soot body, and then drying, heating, clearing, and solidifying.

【0007】(3)添加物の微粒子が10〜100nm
の粒子径を有する上記(1)又は(2)に記載の方法。 (4)混合液中の微粒子の濃度が10重量%以上である
上記(1)〜(3)のいずれかに記載の方法。
(3) Fine particles of the additive are 10 to 100 nm
The method according to the above (1) or (2), having a particle size of: (4) The method according to any one of the above (1) to (3), wherein the concentration of the fine particles in the mixture is 10% by weight or more.

【0008】上記発明(1)又は(2)においては、通
常の塩の溶液を用いる液浸法と比較して添加物の高濃度
かつ均質な添加が可能となる。これらの方法によれば従
来多量の添加が困難な元素、例えば、アルミニウムを多
量に添加することができる。発明(1)の方法は、発明
(2)の方法のように光ファイバ用ガラス母材のコアの
調製に適用されるほか、クラッド最外層への添加による
表面改質等の用途にも適用される。
In the above invention (1) or (2), the additive can be added at a higher concentration and more homogeneously than in the immersion method using an ordinary salt solution. According to these methods, it is possible to add a large amount of an element which is conventionally difficult to add, for example, aluminum. The method of the invention (1) is applied not only to the preparation of the core of the glass base material for an optical fiber as in the method of the invention (2), but also to the use of the surface modification by addition to the outermost layer of the clad. You.

【0009】いずれにしても添加物の微粒子の粒子径は
10〜100nmの範囲とするのが好ましい。特に好ま
しい範囲は10〜40nmである。10nmより小さい
と微粒子の安定性がないという問題が生じ、100nm
を超えると屈折率分布の変動やプリフォームの欠陥(結
晶の形成原因)を生じる。また、該微粒子の添加量は、
混合液中に10重量%以上とするのがよく、特に好まし
くは10〜20重量%とする。10重量%未満では微粒
子の添加の所期の目的を達成することができない。
In any case, the particle diameter of the additive fine particles is preferably in the range of 10 to 100 nm. A particularly preferred range is from 10 to 40 nm. If the diameter is smaller than 10 nm, there is a problem that the stability of the fine particles is not obtained.
If it exceeds, the refractive index distribution will fluctuate and the preform will have defects (crystal formation causes). The amount of the fine particles is
The content is preferably 10% by weight or more, more preferably 10 to 20% by weight in the mixed solution. If it is less than 10% by weight, the intended purpose of adding the fine particles cannot be achieved.

【0010】添加物としては、アルミニウム、チタン、
ゲルマニウム、スズ、亜鉛、の酸化物を用いる。一般的
にはこれらのアルコキシドや無機塩類に水、アルコー
ル、酸を加えて加水分解して微粒子状の酸化物(水和
物)とする。または、気相法などで製造した微粒子を水
等の溶媒に分散させることでもコロイドを形成すること
ができる。得られたコロイド状の分散液にドーパント化
合物の溶液を加える。ここで、ドーパント化合物として
は、希土類元素、例えば、Er,Yb,Nd,Pr等の
化合物、例えば塩類を用いる。こうして、液浸用の分散
液が得られる。該分散液は、硫酸、硝酸、塩酸等の酸を
加えて安定化することができる。酸の濃度は添加物の性
状に合わせて決定される。
As additives, aluminum, titanium,
An oxide of germanium, tin, or zinc is used. Generally, water, alcohol, and acid are added to these alkoxides and inorganic salts and hydrolyzed to form fine oxides (hydrates). Alternatively, a colloid can also be formed by dispersing fine particles produced by a gas phase method or the like in a solvent such as water. A solution of the dopant compound is added to the obtained colloidal dispersion. Here, as the dopant compound, a compound such as a rare earth element such as Er, Yb, Nd, or Pr, for example, a salt is used. Thus, a dispersion for immersion is obtained. The dispersion can be stabilized by adding an acid such as sulfuric acid, nitric acid or hydrochloric acid. The concentration of the acid is determined according to the nature of the additive.

【0011】[0011]

【発明の実施の形態】以下本発明を一具体化例によって
詳細に説明する。先ず、石英ガラスパイプ内壁に例えば
GeO2 を15〜25重量%含有するSiO2 ガラス層
を気相内付け法(MCVD法)により複数層、通常は2
〜3層積層する。この場合、順次透明ガラス化し、最内
層のみを多孔質状態でスス付けする。堆積温度は透明化
する際は1650℃以上で、多孔質ススの形成には、1
550〜1600℃の範囲の温度に調整する。次に、該
スス相に含浸させる分散液を次のようにして調製する。
上記の金属アルコキシドをエタノールのようなアルコー
ルに溶解し、HClのような無機酸の希薄な水溶液と混
合して加水分解させ、アルコールを水で置換してAl2
3 のような金属酸化物のコロイド分散液を作製した。
金属酸化物の濃度は10〜20重量%が好ましい。得ら
れた分散液に例えばErCl3 ・6H2 Oのような希土
類元素の無機塩類を溶解して金属と希土類元素を含む分
散液を得る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment. First, a SiO 2 glass layer containing 15 to 25% by weight of GeO 2 , for example, is formed on the inner wall of a quartz glass pipe by a gas-phase internal method (MCVD method).
3 layers are laminated. In this case, the glass is sequentially made into a transparent glass, and only the innermost layer is sooted in a porous state. The deposition temperature is 1650 ° C. or higher when the material is made transparent, and 1 μm is required for forming porous soot.
Adjust to a temperature in the range of 550-1600 ° C. Next, a dispersion liquid to be impregnated into the soot phase is prepared as follows.
The above metal alkoxide dissolved in an alcohol such as ethanol, is mixed with dilute aqueous solution of an inorganic acid such as HCl is hydrolyzed, to replace the alcohol with water Al 2
A colloidal dispersion of a metal oxide such as O 3 was prepared.
The concentration of the metal oxide is preferably from 10 to 20% by weight. The resulting dispersion, for example, by dissolving the inorganic salts of rare earth elements such as ErCl 3 · 6H 2 O to obtain a dispersion containing metal and rare earth elements.

【0012】得られた分散液を、上記形成されたスス体
を含む石英ガラス管の一端を封じて注入静置し、スス層
全体に液が浸透したところで残留分散液を流し出し、乾
燥させて水分を除去し、次いで該スス体を加熱透明化、
中実化してプリフォームを作製する。得られたプリフォ
ームのコア中心部の金属酸化物の添加量は一般的には
0.5〜10重量%の範囲とする。ガラス体中に結晶や
気泡の発生はなく金属酸化物はコア内に均一に分散して
いる。添加物がErの場合は、上記のプリフォームをフ
ァイバ化して光増幅特性の評価も行うと増幅特性の優れ
たEDF(Er−doped fiber)が得られ
る。EDFの増幅特性のAl添加濃度依存性については
1997年電子情報通信学会総合大会(C−3−88)
に報告がある。
The obtained dispersion is injected and allowed to stand by sealing one end of a quartz glass tube containing the soot body formed above, and when the liquid has permeated the entire soot layer, the residual dispersion is poured out and dried. Removing water, and then heat-clearing the soot body,
Solidify to make a preform. The amount of the metal oxide added to the core of the obtained preform is generally in the range of 0.5 to 10% by weight. No crystals or bubbles are generated in the glass body, and the metal oxide is uniformly dispersed in the core. When the additive is Er, if the above preform is made into a fiber and the optical amplification characteristics are evaluated, an EDF (Er-doped fiber) having excellent amplification characteristics can be obtained. Regarding the dependency of the amplification characteristics of EDF on the concentration of Al added, 1997 IEICE General Conference (C-3-88)
Reports.

【0013】本発明によると、液浸溶質を、超微粒子
(10〜100nmの粒子径)が液中に分散したゾルを
用いることで乾燥に伴う塩の結晶成長が実質的に発生し
なくなるとともに、高濃度の成分分散液を用いることが
可能になる。この効果によって、高濃度の添加を行って
も添加物塩の結晶化に伴う凝集を生じさせることなくガ
ラスの形成が可能となる。SiO2 系の多孔質体の粒子
径は500〜1000nmであり、添加物微粒子の粒子
径はそれよりも充分に小さいことが、添加成分の均一性
にとって望ましく、具体的には多孔質体の粒子径の1/
10以下、特に10〜40mmの範囲が好ましい。
According to the present invention, by using a sol in which ultrafine particles (particle diameter of 10 to 100 nm) are dispersed in a liquid, the immersion solute does not substantially cause crystal growth of a salt accompanying drying. It becomes possible to use a high concentration component dispersion. Due to this effect, even when a high concentration is added, glass can be formed without causing aggregation due to crystallization of the additive salt. It is desirable for the uniformity of the additive component that the particle size of the SiO 2 -based porous material is 500 to 1000 nm and the particle size of the additive fine particles is sufficiently smaller than that. 1 / diameter
It is preferably 10 or less, particularly 10 to 40 mm.

【0014】[0014]

【実施例】以下本発明を実施例により更に詳細に説明す
るが限定を意図するものではない。 (実施例1)Al(O(CH3 2 CH)3 〔アルミニ
ウムイソプロキシド〕を出発物質に用いた。アルミニウ
ムイソプロキシドをエタノールに溶解後、0.001規
定(N)のHCl水溶液を攪拌混合し、、加水分解反応
によりAl2 3 微粒子を形成させた。その後エタノー
ルを水で置換してAl2 3 コロイド分散液を作製し
た。分散液中のAl2 3 濃度は15重量%であった。
上記分散液にErCl3・6H2 Oを0.005N溶解
し、ErとAlを含有する液浸用出発分散液とした。液
浸用のスス体は、石英ガラスパイプ内部にGeO2 を2
0重量%含有するSiO2 ガラス層を気相内付け法(M
CVD法)で6層積層後、堆積時の温度を1550℃と
して1層同一組成のスス層を形成して作製した。スス体
への分散液の含浸工程は、堆積したスス体を含むガラス
管の一端を封じて、ErとAlを含有する液浸用出発分
散液を逆端より注入静置し、スス層全体に液が浸透した
ところで残留分散液を流し出し、乾燥気流中で水分を除
去し、その後、Er/Al含有スス体を加熱透明化、中
実化してプリフォームとした。得られたプリフォームの
コア中心部のAl2 3 添加量は20重量%であった。
また、加熱透明化、中実化の熱処理工程でガラス体に結
晶、気泡の発生は見られなかった。
The present invention will be described in more detail with reference to the following examples, which are not intended to limit the present invention. (Example 1) Al (O (CH 3 ) 2 CH) 3 [aluminum isoproxide] was used as a starting material. After dissolving aluminum isoproxide in ethanol, a 0.001 N (N) aqueous HCl solution was stirred and mixed, and Al 2 O 3 fine particles were formed by a hydrolysis reaction. Thereafter, ethanol was replaced with water to prepare an Al 2 O 3 colloidal dispersion. The concentration of Al 2 O 3 in the dispersion was 15% by weight.
The ErCl 3 · 6H 2 O in the dispersion liquid by dissolving 0.005 N, and the immersion starting dispersion containing Er and Al. The soot body for immersion is composed of two pieces of GeO 2 inside a quartz glass pipe.
An SiO 2 glass layer containing 0% by weight is internally vapor-phased (M
After laminating six layers by CVD method, the temperature at the time of deposition was 1550 ° C., and one soot layer having the same composition was formed. In the step of impregnating the soot body with the dispersion, one end of the glass tube containing the deposited soot body is sealed, and the starting dispersion for immersion containing Er and Al is injected from the opposite end and allowed to stand. When the liquid permeated, the residual dispersion liquid was poured out, and water was removed in a dry air flow. Thereafter, the Er / Al-containing soot body was heated to be transparent and solidified to obtain a preform. The amount of Al 2 O 3 added at the center of the core of the obtained preform was 20% by weight.
In addition, no crystal or bubbles were generated in the glass body during the heat treatment steps of heat transparency and solidification.

【0015】(実施例2)市販の酸安定型のコロイド状
Al2 3 を液浸添加に用いた。製品としてはAlfa
社から製品番号625443として、一般に手に入る2
0重量%アルミナコロイド液(HNO3 安定型)を用い
た。上記製品にErCl3 ・6H2 Oを0.005N溶
解し、液浸用出発分散液とした。液浸用のスス体への分
散液の含浸工程は実施例1と同様に行った。得られたプ
リフォームのコア中心部のAl2 3 添加量は30重量
%であった。また、加熱透明化、中実化の熱処理工程で
ガラス体に結晶、気泡の発生は見られなかった。
Example 2 A commercially available acid-stable colloidal Al 2 O 3 was used for immersion addition. The product is Alfa
2 which is generally available from the company as product number 625443
A 0% by weight alumina colloid solution (HNO 3 stable type) was used. The ErCl 3 · 6H 2 O in the above product was dissolved 0.005 N, and the immersion starting dispersion. The step of impregnating the soot for immersion with the dispersion liquid was performed in the same manner as in Example 1. The amount of Al 2 O 3 added at the center of the core of the obtained preform was 30% by weight. In addition, no crystal or bubbles were generated in the glass body during the heat treatment steps of heat transparency and solidification.

【0016】(実施例3)Al2 3 超微粒子を0.0
001Nの濃度のHNO3 水溶液に15重量%分散させ
た分散液を用いた。Al2 3 は気相合成法により製造
された粒子径0.03μm中心のもので、製品としては
デグサ社等からσ−Al2 3 として市販されている。
上記分散液にErCl3 ・6H2 Oを0.005N溶解
し、液浸用出発分散液とした。液浸用のスス体への分散
液の含浸工程は実施例1と同様に行った。得られたプリ
フォームのコア中心部のAl2 3 添加量は25重量%
であった。また、加熱透明化、中実化の熱処理工程でガ
ラス体に結晶、気泡の発生は見られなかった。Al2
3 の添加は、屈折率の調整とEr等希土類元素の会合防
止に有効である。
(Example 3) Al 2 O 3 ultrafine particles were added to 0.0
A dispersion obtained by dispersing 15% by weight in a 001N HNO 3 aqueous solution was used. Al 2 O 3 has a particle diameter of about 0.03 μm manufactured by a gas phase synthesis method, and is commercially available as σ-Al 2 O 3 from Degussa and the like.
The ErCl 3 · 6H 2 O in the dispersion liquid by dissolving 0.005 N, and the immersion starting dispersion. The step of impregnating the soot for immersion with the dispersion liquid was performed in the same manner as in Example 1. The amount of Al 2 O 3 added at the center of the core of the obtained preform was 25% by weight.
Met. In addition, no crystal or bubbles were generated in the glass body during the heat treatment steps of heat transparency and solidification. Al 2 O
The addition of 3 is effective in adjusting the refractive index and preventing association of rare earth elements such as Er.

【0017】(比較例1)Al2 3 原料として、Al
(NO3 3 を用いた。水溶液への溶解度の限界は77
(g/100g水)でこの濃度におけるAl2 3 換算
した濃度は10.9重量%となる。このAl(NO3
3 飽和溶液にErCl3 ・6H2 Oを0.005N溶解
し、液浸用出発分散液とした。液浸用のスス体への分散
液の含浸工程は実施例1と同様に行った。加熱透明化、
中実化の熱処理工程でガラス体に結晶の生成が見られ、
プリフォーム全長の半分程度が中実化不可能となった。
得られたプリフォームのコア中心部のAl2 3 添加量
は10重量%で、コロイド分散液に比較しAlの収率は
低い値となった。
Comparative Example 1 AlTwoOThreeAl as raw material
(NOThree)ThreeWas used. The solubility limit in aqueous solution is 77
(G / 100 g water) at this concentrationTwoOThreeConversion
The resulting concentration is 10.9% by weight. This Al (NOThree)
ThreeErCl to saturated solutionThree・ 6HTwo0.005N dissolved O
Thus, a starting dispersion for immersion was obtained. Dispersion in soot for immersion
The liquid impregnation step was performed in the same manner as in Example 1. Heat clarification,
Crystallization is seen in the glass body during the heat treatment process of solidification,
About half of the total length of the preform cannot be solidified.
Al in the center of the core of the obtained preformTwoO ThreeAmount added
Is 10% by weight, and the yield of Al is lower than that of the colloidal dispersion.
It became a low value.

【0018】以上の例で得られたプリフォームを用い、
ファイバ化して光増幅特性の評価を行った。増幅特性の
評価の比較のため、従来から用いられる液浸法ではAl
2 3 濃度が3〜5重量%のものも特性評価を行った。
図1にAl2 3 濃度とバンド幅との関係を示す。実施
例1〜3ではバンド幅が増加していることが分かる。E
DFは1525〜1565nm帯に利得を持つが、ここ
で規定する帯域は1537nm付近の利得凹みの部分か
ら0.5dBの低い領域全体を考えている。その場合、
利得の凸部分は、増幅後に長周期ファイバグレーティン
グやファイブリペローエタロン等を用いた狭帯域フィル
タを組み合わせて除去することで平坦な利得が実現でき
る。
Using the preform obtained in the above example,
Fibers were used to evaluate the optical amplification characteristics. Amplification characteristics
For comparison of evaluation, the conventional immersion method uses Al
TwoO ThreeProperties having a concentration of 3 to 5% by weight were also evaluated.
FIG.TwoOThreeThe relationship between the density and the bandwidth is shown. Implementation
In Examples 1 to 3, it can be seen that the bandwidth is increased. E
DF has a gain in the 1525-1565 nm band.
Is the band specified in the part of the gain dent around 1537 nm
The entire region as low as 0.5 dB is considered. In that case,
The protruding part of the gain shows the long-period fiber grating after amplification.
Narrow-band fill using fiber or fibre-perot etalons
Can be achieved by combining and removing
You.

【0019】図2としてAl2 3 濃度に対し利得帯域
をプロットした図を示すが、Al23 濃度が高くなる
に従い帯域が拡大し、実施例1〜3にしめされる20〜
30重量%では36〜37nmの帯域とすることが可能
となることがわかる。
[0019] 20 shows a diagram plotting the gain band to the concentration of Al 2 O 3 as 2, the bandwidth expanded according concentration of Al 2 O 3 is increased, as illustrated in the Examples 1-3
It is understood that a band of 36 to 37 nm can be obtained at 30% by weight.

【0020】以上説明した工程は、Er添加光ファイバ
増幅器用ファイバの改良に関するものであるが、本手法
は次に示す実施例のように、別の用途の光ファイバにも
用いることが出来る。光ファイバのコアガラス中に、T
iO2 やSnO2 のような価数の変化しやすい酸化物を
添加することで、紫外光照射による価数の変化を用いて
屈折率を変えることが可能となる。これを応用した例と
して、光ファイバのコア中のGeO2に240nm帯の
光を照射して吸収の変化等による屈折率の変化を生じさ
せて各種デバイスが作製可能となる。一例として、サブ
μmオーダーの周期の屈折率変化を2〜40mmの範囲
で生じさせることでブラッグ回折格子をファイバコアに
形成し、遮断フィルタか波長分岐合波素子として活用で
きる。TiO2 やSnO 2 はGeO2 に比較し基礎吸収
が長波長にあるため、屈折率の変化を生じやすいことが
知られている。TiO2 はTiCl4 のような塩化物の
蒸気圧が比較的高く光ファイバ開発の初期に屈折率上昇
用の酸化物として良く用いられてきた。SnO2 は塩化
物の原料の蒸気圧が低いため先に述べたAl2 3 と同
様に、高濃度の添加は従来困難であった。
The steps described above are based on the Er-doped optical fiber.
This is related to improvement of amplifier fiber.
Can be applied to optical fibers for other uses as shown in the following examples.
Can be used. In the core glass of the optical fiber, T
iOTwoAnd SnOTwoOxides whose valence is easily changed such as
By adding, the change in valence due to ultraviolet light irradiation
It is possible to change the refractive index. An example of applying this
And the GeO in the core of the optical fiberTwoTo 240nm band
Irradiation of light causes a change in the refractive index due to a change in absorption, etc.
Thus, various devices can be manufactured. As an example, the sub
Refractive index change in the order of μm in the range of 2 to 40 mm
To create a Bragg grating in the fiber core
Formed and used as a cut-off filter or wavelength splitter / combiner
Wear. TiOTwoAnd SnO TwoIs GeOTwoBasic absorption compared to
Is at a long wavelength, so it is easy for the refractive index to change.
Are known. TiOTwoIs TiClFourLike chloride
Relatively high vapor pressure, refractive index rising early in optical fiber development
It has been widely used as an oxide for use. SnOTwoIs chloride
Because the vapor pressure of the raw material is lowTwoOThreeSame as
As described above, it has been conventionally difficult to add a high concentration.

【0021】(実施例4)市販のアルカリ安定型のコロ
イド状SnO2 を液浸添加に用いた。製品としてはAl
fa社から製品番号39780として、一般に手に入る
15重量%SnO 2 コロイド液を用いた。なお、この分
散液にはSbが添加されている。上記製品をそのまま、
液浸用出発分散液とした。液浸用のスス体への分散液の
含浸工程は実施例1と同様に行った。得られたプリフォ
ームのコア中心部のSnO2 添加量は25重量%であっ
た。また、加熱透明化、中実化の熱処理工程でガラス体
に結晶、気泡の発生は見られなかった。得られたプリフ
ォームの比屈折率差は、2.2%でこれをコア径3.5
μm、クラッド径125μmで線引して光ファイバとし
た。このファイバを用い、波長247nmのエキシマレ
ーザー光を光源として、波長1.55μm帯反射用のフ
ァイバグレーティングを作製した。この時、ファイバの
水素処理は行っていないが、グレーティング長5mmで
45dBの透過減衰量となった。この時の紫外誘起屈折
率変化量は5.63×10-4と算出された。
Example 4 Commercially available alkali-stable roller
Id SnOTwoWas used for immersion addition. The product is Al
Generally available from fa as product number 39780
15% by weight SnO TwoA colloid solution was used. In addition,
Sb is added to the liquid dispersion. Keep the above products,
This was used as a starting dispersion for immersion. Dispersion into soot for immersion
The impregnation step was performed in the same manner as in Example 1. The obtained prefor
SnO in the center of the coreTwoThe addition amount was 25% by weight.
Was. In addition, the heat treatment process of heat transparency and solidification
No crystals or bubbles were generated. Obtained Prif
The relative refractive index difference of the core is 2.2%, which is equivalent to a core diameter of 3.5.
μm and a cladding diameter of 125 μm to make an optical fiber.
Was. Using this fiber, an excimer
Laser light as a light source and a 1.55 μm wavelength reflection filter.
Created my bug rating. At this time, the fiber
No hydrogen treatment, but with a grating length of 5 mm
The transmission attenuation was 45 dB. UV-induced refraction at this time
The rate of change is 5.63 × 10-FourIt was calculated.

【0022】(比較例2)比較のため、MCVD法によ
りSiO2 クラッド、GeO2 /SiO2 クラッドのプ
リフォームを、比屈折率差が2.2%となるように作製
し、これをコア径3.5μm、クラッド径125μmで
線引して光ファイバとした。このファイバを用い、波長
247nmのエキシマレーザー光を光源として、波長
1.55μm帯反射用のファイバグレーティングを作製
した。ファイバの水素処理は行っていない場合、グレー
ティング長5mmで15dBの透過減衰量となった。こ
の時の、紫外誘起屈折率変化量は2.30×10-4と算
出された。実施例4と比較例2を比べると、同一比屈折
率差で約2.4倍の紫外誘起屈折率変化を生じさせるこ
とが出来ることがわかる。
Comparative Example 2 For comparison, preforms of SiO 2 cladding and GeO 2 / SiO 2 cladding were prepared by MCVD so that the relative refractive index difference was 2.2%, and this was used as a core diameter. An optical fiber was drawn with a diameter of 3.5 μm and a cladding diameter of 125 μm. Using this fiber, a fiber grating for reflection at a wavelength of 1.55 μm was produced using an excimer laser beam having a wavelength of 247 nm as a light source. When the fiber was not subjected to hydrogen treatment, the transmission attenuation was 15 dB at a grating length of 5 mm. At this time, the amount of change in the ultraviolet-induced refractive index was calculated to be 2.30 × 10 −4 . Comparing Example 4 with Comparative Example 2, it can be seen that an ultraviolet-induced refractive index change of about 2.4 times can be produced with the same relative refractive index difference.

【0023】また、TiO2 についてもAlfa社から
製品番号40460で、30重量%水とポリエチルグリ
コールの混合液に分散されたものがあり、この溶液を用
いても実施例と同様の高濃度の添加が可能であった。T
iO2 は圧縮力を付与することによるファイバの静疲労
特性の改良のため、プリフォーム最外層に添加される場
合もある。本手法を、さらに別の化合物にも適用するこ
とも可能である。例えば、La23 、Y2 3 、Zn
OやIn2 3 はAl2 3 の添加と同様に、光増幅帯
域の拡大に効果があると考えられるが、塩や酸化物の分
解が生じやすい場合や、SiO2 に比較して非常に高い
融点を持つなど、SiO2 に添加することは困難であっ
た。しかし、これらの酸化物も本手法を用いて添加が可
能となる。
TiO 2 is also available as a product number 40460 from Alfa, which is dispersed in a mixture of 30% by weight of water and polyethylglycol. Addition was possible. T
iO 2 may be added to the outermost layer of the preform in order to improve the static fatigue characteristics of the fiber by applying a compressive force. This technique can be applied to still another compound. For example, La 2 O 3 , Y 2 O 3 , Zn
O and In 2 O 3, like the addition of Al 2 O 3, it is considered to be effective in expansion of the optical amplification band, and if the decomposition of the salt or oxide is likely to occur, very compared to SiO 2 It is difficult to add to SiO 2 because of its high melting point. However, these oxides can also be added using this technique.

【0024】(実施例5)ZnO超微粒子を純水に15
重量%分散させた分散液を用いた。ZnOは金属蒸発、
酸化合成法により製造された粒子径0.02μm中心の
もので、製品としてはナノフェーズ社等から超微粒Zn
Oとして市販されている。上記分散液にErCl3 ・6
2 Oを0.005N溶解し、液浸用出発分散液とし
た。液浸用のスス体への分散液の含浸工程は実施例1と
同様に行った。得られたプリフォームのコア中心部のZ
nO添加量は30重量%であった。また、加熱透明化、
中実化の熱処理工程でガラス体に結晶、気泡の発生は見
られなかった。得られたプリフォームの比屈折率差は、
2%でこれをコア径4μm、クラッド径125μmで線
引して光ファイバとした。このファイバを用い、実施例
1、2、3と同様にErによる光増幅帯域の測定を行っ
た。なお励起波長は1.48μmである。得られたスペ
クトルから、実施例1、2、3と同様に帯域を求めたと
ころ、37nmと、Al2 3 と同等の効果が得られ
た。また、Y2 3 も同様に添加が確認された。
Example 5 Ultrafine ZnO particles were added to pure water for 15 minutes.
A dispersion having a weight% dispersion was used. ZnO is metal evaporation,
It has a particle diameter of 0.02 μm center manufactured by the oxidative synthesis method.
Commercially available as O. ErCl to the dispersion liquid 3 - 6
Of H 2 O was dissolved 0.005 N, and the immersion starting dispersion. The step of impregnating the soot for immersion with the dispersion liquid was performed in the same manner as in Example 1. Z at the center of the core of the obtained preform
The amount of nO added was 30% by weight. Also, heat transparency,
No crystals and bubbles were generated in the glass body during the heat treatment step of solidification. The relative refractive index difference of the obtained preform is
An optical fiber was drawn at 2% with a core diameter of 4 μm and a clad diameter of 125 μm. Using this fiber, the optical amplification band was measured by Er in the same manner as in Examples 1, 2, and 3. The excitation wavelength is 1.48 μm. When the band was determined from the obtained spectrum in the same manner as in Examples 1, 2, and 3 , the effect was 37 nm, which was equivalent to that of Al 2 O 3 . The addition of Y 2 O 3 was also confirmed.

【0025】[0025]

【発明の効果】本発明により超微粒子が液中に分散した
分散液(ゾル)をスス体の含浸に用いることで、高濃度
の成分分散液を用いることが可能となり、乾燥に伴う塩
の結晶成長が実質的になくなる。これにより、高濃度の
添加を行っても添加物塩の結晶化に伴う凝集を生じさせ
ることがなくガラスの形成を行うことができる。
According to the present invention, a dispersion (sol) in which ultrafine particles are dispersed in a liquid is used for impregnation of a soot body, so that a high-concentration component dispersion can be used, and salt crystals accompanying drying can be used. Growth is virtually eliminated. Thereby, even if high concentration is added, glass formation can be performed without causing aggregation due to crystallization of the additive salt.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施例と従来例について比較す
るためのAl2 3 濃度とバンド幅との関係を示すグラ
フ。
FIG. 1 is a graph showing a relationship between an Al 2 O 3 concentration and a bandwidth for comparing an example of the present invention with a conventional example.

【図2】本発明の効果を明らかにするためにAl2 3
濃度(20〜30重量%)での利得帯域をプロットした
グラフ。
FIG. 2 shows Al 2 O 3 to clarify the effect of the present invention.
The graph which plotted the gain band at the density | concentration (20-30 weight%).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角井 素貴 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Motoki Tsunoi 1 Tayacho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 気相合成法で得た多孔質スス体に添加物
の微粒子の分散した混合液を含浸させ、乾燥した後、加
熱して透明ガラス化することを特徴とする添加物を含む
ガラス物品の製造方法。
1. A porous soot obtained by a gas phase synthesis method is impregnated with a mixed solution in which fine particles of an additive are dispersed, dried, and then heated to produce a vitrified transparent material. A method for manufacturing a glass article.
【請求項2】 コアとクラッドを有する光ファイバ用ガ
ラス母材の製造方法において、クラッドとなるガラス管
の内壁にSiO2 を主成分とする多孔質スス体を気相合
成法により形成し、該多孔質スス体に添加物の微粒子を
分散した混合液を含浸させ、次いで乾燥し、加熱透明化
し、中実化することを特徴とする光ファイバ用ガラス母
材の製造方法。
2. A method of manufacturing a glass preform for an optical fiber having a core and a clad, comprising forming a porous soot mainly composed of SiO 2 on an inner wall of a glass tube to be a clad by a gas phase synthesis method. A method for producing a glass preform for an optical fiber, comprising impregnating a mixed solution in which fine particles of an additive are dispersed in a porous soot body, and then drying, heating, clearing, and solidifying.
【請求項3】 添加物の微粒子が10〜100nmの粒
子径を有する請求項1又は2に記載の方法。
3. The method according to claim 1, wherein the additive fine particles have a particle size of 10 to 100 nm.
【請求項4】 混合液中の微粒子の濃度が10重量%以
上である請求項1〜3のいずれかに記載の方法。
4. The method according to claim 1, wherein the concentration of the fine particles in the mixture is 10% by weight or more.
JP35438897A 1997-12-24 1997-12-24 Production of glass preform for optical fiber Pending JPH11180719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35438897A JPH11180719A (en) 1997-12-24 1997-12-24 Production of glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35438897A JPH11180719A (en) 1997-12-24 1997-12-24 Production of glass preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH11180719A true JPH11180719A (en) 1999-07-06

Family

ID=18437232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35438897A Pending JPH11180719A (en) 1997-12-24 1997-12-24 Production of glass preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH11180719A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043281A1 (en) * 1999-04-09 2000-10-11 Spectran Corporation Method of fabricating preforms doped with rare earth metal for optical fibers
WO2003033423A1 (en) * 2001-10-18 2003-04-24 Council Of Scientific And Industrial Research A process of making rare earth doped optical fibre
JP2008503433A (en) * 2004-06-24 2008-02-07 ベネク・オサケユキテュア Method for doping materials and doped materials
WO2013047834A1 (en) 2011-09-29 2013-04-04 住友電気工業株式会社 Methods for manufacturing glass fine particle deposit and glass base material
DE112011103154T5 (en) 2010-09-21 2013-07-18 Sumitomo Electric Industries, Ltd. Method for producing a glass base material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043281A1 (en) * 1999-04-09 2000-10-11 Spectran Corporation Method of fabricating preforms doped with rare earth metal for optical fibers
WO2003033423A1 (en) * 2001-10-18 2003-04-24 Council Of Scientific And Industrial Research A process of making rare earth doped optical fibre
KR100816010B1 (en) 2001-10-18 2008-03-21 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 A process of making rare earth doped optical fibre
JP2008503433A (en) * 2004-06-24 2008-02-07 ベネク・オサケユキテュア Method for doping materials and doped materials
DE112011103154T5 (en) 2010-09-21 2013-07-18 Sumitomo Electric Industries, Ltd. Method for producing a glass base material
WO2013047834A1 (en) 2011-09-29 2013-04-04 住友電気工業株式会社 Methods for manufacturing glass fine particle deposit and glass base material
US9630872B2 (en) 2011-09-29 2017-04-25 Sumitomo Electric Industries, Ltd. Method for manufacturing glass-fine-particle-deposited body and method for manufacturing glass base material
US10604439B2 (en) 2011-09-29 2020-03-31 Sumitomo Electric Industries, Ltd. Method for manufacturing glass-fine-particle-deposited body and method for manufacturing glass base material

Similar Documents

Publication Publication Date Title
US5123940A (en) Sol-gel doping of optical fiber preform
JP3040278B2 (en) Method for producing product made of high silica glass
US3775075A (en) Method of forming optical waveguide fibers
CA1311127C (en) Glass body formed from a vapor-derived gel and process for producing same
EP1167308B1 (en) Sol-gel process for fabricating germanium-doped silica article
US6360564B1 (en) Sol-gel method of preparing powder for use in forming glass
JPH11180719A (en) Production of glass preform for optical fiber
KR940004209B1 (en) Optical fiber component optical coupler and method of producing thereof
JPS60108338A (en) Manufacture of base material for optical fiber
US5196383A (en) Method for producing rare earth element-doped glass by sol-gel process
CN106517764A (en) Synthesis method of rare earth doped quartz glass raw material powder
JP2524174B2 (en) Method for producing quartz glass having optical functionality
JP5384133B2 (en) Rare earth element-doped fiber doped with BF3 and manufacturing method thereof
JPH0476936B2 (en)
WO2001068544A1 (en) Erbium-doped multicomponent glasses manufactured by the sol-gel method
JPH0244031A (en) Production of nonlinear optical glass
JP3315786B2 (en) Optical amplifier type optical fiber
JPS60108325A (en) Production of glass
Morse et al. Aerosol transport for optical fiber core doping: a new technique for glass formation
JPH05105466A (en) Production of base material for optical fiber
JPH06157064A (en) Optical fiber preform for light-amplifier and its production
JPS6259059B2 (en)
JPH03177328A (en) Production of optical fiber preform
JPS63195147A (en) Optical fiber
JPS62246828A (en) Production of optical glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060810

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619