JPH06157064A - Optical fiber preform for light-amplifier and its production - Google Patents

Optical fiber preform for light-amplifier and its production

Info

Publication number
JPH06157064A
JPH06157064A JP4162022A JP16202292A JPH06157064A JP H06157064 A JPH06157064 A JP H06157064A JP 4162022 A JP4162022 A JP 4162022A JP 16202292 A JP16202292 A JP 16202292A JP H06157064 A JPH06157064 A JP H06157064A
Authority
JP
Japan
Prior art keywords
core
optical fiber
glass
refractive index
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4162022A
Other languages
Japanese (ja)
Other versions
JP3188309B2 (en
Inventor
Noboru Edakawa
登 枝川
Hisahiro Yoshida
尚弘 吉田
Shinichi Takano
伸一 高野
Kazuo Kamiya
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
KDDI Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Kokusai Denshin Denwa KK filed Critical Shin Etsu Chemical Co Ltd
Priority to JP16202292A priority Critical patent/JP3188309B2/en
Publication of JPH06157064A publication Critical patent/JPH06157064A/en
Application granted granted Critical
Publication of JP3188309B2 publication Critical patent/JP3188309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/29Segmented core fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To provide an optical fiber preform for optical amplifier capable of giving an optical fiber for optical amplification having high optical amplification efficiency and provide a process for the production of the preform. CONSTITUTION:The optical fiber preform for optical amplifier is composed of a 1st core consisting of a quartz glass containing a rare earth element and having a refractive index higher than that of pure quartz glass, a 2nd core consisting of quartz glass free from rare earth element and a clad consisting of quartz glass. The refractive index of the 2nd core is higher than the refractive index of the 1st core and higher than the refractive index of pure quartz glass by 0.6-35%. The preform can be produced by depositing germanium- containing silica soot free from rare earth element at a bulk density of 0.35-0.90g/cm<3> on a 1st core consisting of a quartz glass containing a rare earth element and having a refractive index higher than that of pure quartz glass, dehydrating and sintering the deposited soot layer in a chlorine-containing helium atmosphere to form a 2nd core consisting of a transparent glass and forming a clad layer consisting of a quartz glass on the 2nd core layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光増幅起用光ファイバ母
材、特には光増幅幅効率のすぐれた光増幅器用光ファイ
バ母材およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber preform for optical amplification, and more particularly to an optical fiber preform for optical amplifiers having excellent optical amplification width efficiency and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、ネオジム(Na)、エルビウム(E
r)などの希土類元素をコアに添加した単一モード光フ
ァイバが開発され、これはインライン増幅器などとして
光通信の分野に利用され始めている。希土類元素を添加
した光ファイバを用いた光ファイバレーザー増幅器とし
ては、コアにエルビウムを添加した石英系単一モード光
ファイバを用い、光導体レーザーを励起光源として波長
1.54μmで光増幅を確認した例が報告されているが、こ
のようなレーザー活性化物質を添加した光ファイバを効
率的に利用するためには、光学的に効率よく励起光を入
射させると共に、これらの励起光を効率的に利用するフ
ァイバ構造が必要とされる。
2. Description of the Related Art Recently, neodymium (Na), erbium (E
A single-mode optical fiber in which a rare earth element such as r) is added to the core has been developed, and it is being used in the field of optical communication as an in-line amplifier. As an optical fiber laser amplifier using an optical fiber doped with a rare earth element, a silica single-mode optical fiber doped with erbium in the core is used.
It has been reported that optical amplification was confirmed at 1.54 μm, but in order to efficiently use such an optical fiber doped with a laser activating substance, in addition to making pumping light incident optically efficiently, There is a need for a fiber structure that efficiently utilizes these pump lights.

【0003】[0003]

【発明が解決しようとする課題】この光ファイバの入射
効率を上げる方法をとしては、コアを二重構造とし、そ
の中心部分のみにエルビウムをドープしてコアの中心部
のみに希土類元素を含有させる方法が提案されている
が、この方法では第2のコアに添加する酸化ゲルマニウ
ムの量が不足しているために、第2のコアの屈折率が第
1のコアの屈折率と同等かそれ以下であるためにその効
果は十分でないという欠点があった。
As a method for increasing the incidence efficiency of this optical fiber, the core is made to have a double structure, and only the central part of the core is doped with erbium so that the central part of the core contains a rare earth element. Although a method has been proposed, the refractive index of the second core is equal to or less than that of the first core because the amount of germanium oxide added to the second core is insufficient in this method. Therefore, there is a drawback that the effect is not sufficient.

【0004】[0004]

【課題を解決するための手段】本発明はこのような不利
を解決した光増幅器用光ファイバ母材およびその製造方
法に関するものであり、この光増幅器用光ファイバ母材
は少なくとも1種の希土類元素を含有し、純石英ガラス
より高い屈折率を有する石英ガラスからなる第1コア、
その外側に存在する希土類元素を含有しない石英ガラス
からなる第2コアならびにさらにその外側に存在する石
英ガラスからなるクラッド層とからなる光増幅器用光フ
ァイバ母材において、第2コアの屈折率が第1コアの屈
折率より高く、かつ純石英ガラスの屈折率より 0.6〜
3.5%高い値であることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to an optical fiber preform for an optical amplifier and a method of manufacturing the same for solving the above disadvantages, and the optical fiber preform for an optical amplifier is at least one rare earth element. A first core made of quartz glass, which contains silica and has a higher refractive index than pure quartz glass,
In the optical fiber preform for an optical amplifier, which comprises the second core made of silica glass containing no rare earth element existing outside thereof and the cladding layer made of silica glass existing outside thereof, the refractive index of the second core is Higher than the refractive index of one core, and 0.6 to more than the refractive index of pure quartz glass
It is characterized by a high value of 3.5%.

【0005】そして、この光幅増器用光ファイバ母材の
製造方法は少なくとも1種の希土類元素を含有し、純石
英ガラスより高い屈折率を有する第1コア用石英ガラス
ロッドを回転させつつ、その外周にゲルマニウム化合物
を含有する気体状ガラス原料の火炎加水分解で生成した
ガラス微粒子を堆積させて第2コア用の多孔質ガラス体
を形成し、ついでこれを塩素含有ヘリウム雰囲気中で焼
結し透明ガラス化して第1コアと第2コアを有するガラ
スロッドを作成し、つぎにその外周にクラッド用石英ガ
ラス層を形成させる光増幅器用光ファイバ母材の製造方
法において、該第2コア用多孔質ガラス体のかさ密度を
を 0.35g/cm3 〜 0.90g/cm3 としてなることを特徴と
するものである。
In this method of manufacturing an optical fiber preform for an optical width increasing device, a quartz glass rod for a first core containing at least one rare earth element and having a refractive index higher than that of pure quartz glass is rotated, Glass particles produced by flame hydrolysis of a gaseous glass raw material containing a germanium compound are deposited on the outer periphery to form a porous glass body for the second core, which is then sintered in a chlorine-containing helium atmosphere to be transparent. A glass rod having a first core and a second core is formed by vitrification, and then a quartz glass layer for cladding is formed on the outer periphery of the glass rod. It is characterized in that the bulk density of the glass body is 0.35 g / cm 3 to 0.90 g / cm 3 .

【0006】すなわち、本発明者らは光増幅効率のより
すぐれた光増幅器用光ファイバを開発すべく種々検討し
た結果、希土類元素を含有し、純石英ガラスより高い屈
折率を有する石英ガラスからなる第1コア、希土類元素
を含有しない石英ガラスからなる第2コアおよび石英ガ
ラスからなるクラッド層からなる光増幅器用光ファイバ
母材における第2コアの屈折率を第1コアの屈折率より
高いものとし、この第2コアの屈折率を純石英ガラスの
屈折率より 0.6〜 3.5%高いものとすると、その増幅効
率を向上させることができることを見出し、この光増幅
器用光ファイバの製造方法についての研究を進めて本発
明を完成させた。以下にこれをさらに詳述する。
That is, the present inventors have conducted various studies to develop an optical fiber for an optical amplifier having a higher optical amplification efficiency, and as a result, made of silica glass containing a rare earth element and having a higher refractive index than pure silica glass. The refractive index of the second core in the optical fiber preform for an optical amplifier including the first core, the second core made of silica glass containing no rare earth element, and the cladding layer made of silica glass is set to be higher than the refractive index of the first core. , Found that the amplification efficiency can be improved by setting the refractive index of the second core to be 0.6 to 3.5% higher than the refractive index of pure silica glass, and a study on a method for manufacturing the optical fiber for the optical amplifier is made. Then, the present invention was completed. This will be described in more detail below.

【0007】[0007]

【作用】本発明は光増幅器用光ファイバおよびその製造
方法に関するものであり、これは上記したように希土類
元素を含有し、純石英ガラスより高い屈折率を有する石
英ガラスからなる第1コア、希土類元素を含有しない石
英ガラスからなる第2コアおよび石英ガラスからなるク
ラッド層からなる光増幅器用光ファイバ母材における第
2コアの屈折率を第1コアの屈折率より高く、さらに、
この第2コアの屈折率を純石英ガラスの屈折率より 0.6
〜 3.5%高いものとすることを特徴とするものである
が、これによれば光増幅効率の高いものを得ることがで
きるという有利性が与えられる。
The present invention relates to an optical fiber for an optical amplifier and a method for manufacturing the same, which comprises a rare earth element-containing first core made of silica glass having a higher refractive index than pure silica glass, a rare earth metal. The refractive index of the second core in the optical fiber preform for an optical amplifier, which is composed of the second core made of silica glass containing no element and the cladding layer made of silica glass, is higher than the refractive index of the first core, and
The refractive index of this second core is 0.6 from the refractive index of pure silica glass.
It is characterized by being ~ 3.5% higher, which gives the advantage of being able to obtain a high optical amplification efficiency.

【0008】本発明の光増幅器用光ファイバ母材は希土
類元素を含有し、純石英ガラスより高い屈折率を有する
石英ガラスからなる第1コア、その外側に存在する希土
類元素を含有しない石英ガラスからなる第2コア、およ
びさらにその外周に存在するクラッド層とからなるもの
であるが、この第2コアを形成する石英ガラスは希土類
元素は含んでいないけれども通常は酸化ゲルマニウムを
含有したものとされており、クラッド層を形成する石英
ガラスは通常この酸化ゲルマニウムなども含まない純粋
な石英ガラスカらなるものとされる。
The optical fiber base material for an optical amplifier of the present invention comprises a first core made of silica glass containing a rare earth element and having a higher refractive index than pure silica glass, and a silica glass containing no rare earth element existing outside thereof. The quartz glass forming the second core does not contain a rare earth element, but is usually considered to contain germanium oxide. Therefore, the quartz glass forming the clad layer is usually made of pure quartz glass which does not contain germanium oxide.

【0009】また、本発明の光増幅器用光ファイバ母材
では図2に示したように、希土類元素は含有しないが酸
化ゲルマニウムは含有する石英ガラスからなる第2コア
の屈折率が、希土類元素を含む石英ガラスからなる第1
コアの屈折率より高いものとされ、この第2コアの屈折
率はまたクラッド層を構成する純石英ガラスの屈折率よ
りも 0.6〜 3.5%高い値をもつものとされるが、これに
よれば波長利得特性を平坦化でき、また、この第1コア
の屈折率はさらに光を閉じ込める率を高くするために純
石英ガラスの屈折率より高いものとされるということか
ら従来公知のものに比べて、光増幅効果が上昇した光増
幅器用光ファイバ母材の得られることが確認された。
Further, in the optical fiber preform for an optical amplifier according to the present invention, as shown in FIG. 2, the refractive index of the second core made of quartz glass which does not contain a rare earth element but contains germanium oxide has a rare earth element of First made of quartz glass containing
It is assumed that the refractive index of the second core is higher than that of the pure silica glass that constitutes the cladding layer, and that the refractive index of the second core is 0.6 to 3.5% higher. The wavelength gain characteristic can be flattened, and the refractive index of this first core is higher than that of pure silica glass in order to further increase the light confinement ratio. It was confirmed that an optical fiber base material for an optical amplifier having an improved optical amplification effect can be obtained.

【0010】本発明はまた上記したような光増幅器用光
ファイバ母材およびその製造方法に関するものである
が、これは少なくとも1種の希土類元素を含有し、フッ
素を含有しない石英ガラスロッドを用意し、これを垂直
に保持して回転させ、その外側に四塩化けい素と四塩化
ゲルマニウムの火災加水分解で発生した酸化ゲルマニウ
ムを含有するが希土類元素を含まないシリカ微粒子を堆
積させるここに多孔質ガラス体を形成させたのち、これ
を焼結し透明ガラス化して第2コアとしての石英ガラス
を形成させる。
The present invention also relates to an optical fiber preform for an optical amplifier as described above and a method for producing the same, which comprises a quartz glass rod containing at least one rare earth element and containing no fluorine. , Hold it vertically, rotate it, and deposit silica microparticles containing germanium oxide generated by fire hydrolysis of silicon tetrachloride and germanium tetrachloride but containing no rare earth elements on the outside of the porous glass. After the body is formed, it is sintered and made into vitrified glass to form quartz glass as the second core.

【0011】なお、この多孔質ガラス体の形成は公知の
方法で行なえばよいが、これは例えば図1に示した方法
で行えばよい。図1はこの多孔質ガラス体製造装置の縦
断面図を示したものであるが、これは酸水素火炎バーナ
ー1にガラス原料としての四塩化けい素とドーバントと
なる四塩化ゲルマニウムおよび酸素、水素などの燃料用
制御ガスを送入してここに酸水素火炎5を形成させ、こ
れを第1コア材としての石英ガラスロッドにあてて、こ
こにこの火炎加水分解で発生した酸化ゲルマニウムを含
有するが希土類元素を含まないシリカ微粒子を堆積させ
て多孔質ガラス体8を形成させればよい。
The porous glass body may be formed by a known method, for example, the method shown in FIG. FIG. 1 is a vertical cross-sectional view of this porous glass body manufacturing apparatus. This shows that the oxyhydrogen flame burner 1 uses silicon tetrachloride as a glass raw material, germanium tetrachloride as a dovant, oxygen, hydrogen, etc. Of the fuel control gas is fed to form an oxyhydrogen flame 5, and the oxyhydrogen flame 5 is applied to the quartz glass rod as the first core material, which contains germanium oxide generated by the flame hydrolysis. The porous glass body 8 may be formed by depositing silica fine particles containing no rare earth element.

【0012】しかし、この多孔質ガラス体はそのかさ密
度が 0.35g/cm3 未満では後記する脱水、ガラス工程で
塩素ガスが多孔質ガラス層間に入り易く、酸化ゲルマニ
ウムが塩素ガスと反応しGeCl4 となってGeが揮発し易く
なり、屈折率が第1コアより低下してしまい、 0.90g/c
3 より高いと脱水、ガラス工程で塩素ガスが多孔質ガ
ラス層間に入り難くなって脱水不足、脱水困難となり、
光伝送損失が大きなるので、このカサ密度は0.35〜 0.9
0g/cm3 の範囲のものとすることが必要とされる。
However, when the bulk density of this porous glass body is less than 0.35 g / cm 3 , chlorine gas easily enters the porous glass layer during the dehydration and glass steps described later, and germanium oxide reacts with chlorine gas to react with GeCl 4 Becomes more likely to volatilize Ge, and the refractive index becomes lower than that of the first core. 0.90g / c
If it is higher than m 3 , dehydration and chlorine gas are difficult to enter into the porous glass layer during the glass process, resulting in insufficient dehydration or difficulty in dehydration.
Since the optical transmission loss is large, this bulk density is 0.35 to 0.9.
It is required to be in the range of 0 g / cm 3 .

【0013】またこの多孔質ガラス母材は、ついで焼結
により透明ガラス化されるのであるが、これはこの焼
結、脱水を完全に行なわせるために、塩素を含有したヘ
リウム雰囲気で行なう必要がある。しかし、この塩素含
有ヘリウムガスにおける塩素濃度はこれが 0.7%未満で
は脱水が不完全となり、水酸基による吸収で損失が大き
くなるし、 1.2%より高くするとゲルマニウムの揮発量
が大きくなって第2コアの屈折率をステップ状とするこ
とが困難となるので、これは 0.7〜 1.2%の範囲とする
ことが必要とされる。
The porous glass preform is then made into vitrified glass by sintering, which must be carried out in a helium atmosphere containing chlorine in order to completely carry out the sintering and dehydration. is there. However, if the chlorine concentration in this chlorine-containing helium gas is less than 0.7%, dehydration will be incomplete and the loss due to absorption by the hydroxyl groups will increase, and if it is higher than 1.2%, the volatilization amount of germanium will increase and the refraction of the second core will increase. This is required to be in the range 0.7-1.2% as it is difficult to step the rate.

【0014】なお、この焼結は 1,400〜1,600 ℃で行な
えばよいが、この際の雰囲気を塩素を上記した 0.7〜
1.2%含有ヘリウム雰囲気とすればゲルマニウムの揮発
が少なくなるのでこの脱水、ガラス化で得られる第2コ
アとしての石英ガラス層は信号光を効率よく伝送できる
ものとなる。
The sintering may be carried out at 1,400 to 1,600 ° C., but the atmosphere at this time is 0.7 to above
In a helium atmosphere containing 1.2%, the volatilization of germanium is reduced, so that the silica glass layer as the second core obtained by this dehydration and vitrification can efficiently transmit the signal light.

【0015】このようにしてつくられた第1コア、第2
コアからなる石英ガラス体には、ついでこの第2コアの
外側に石英ガラスからなるクラッド層を設けることによ
って目的とする光増幅器用光ファイバ母材とされるので
あるが、この石英ガラスからなるクラッド層の形成は四
塩化けい素の火災加水分解で発生したシリカ微粒子を第
2コア上に堆積させ、透明ガラス化するという公知の方
法で行なえばよい。
The first core and the second core thus produced
The silica glass body made of a core is then provided with a cladding layer made of silica glass on the outside of the second core to form a target optical fiber preform for an optical amplifier. The layer may be formed by a known method in which fine silica particles generated by fire hydrolysis of silicon tetrachloride are deposited on the second core to form a transparent glass.

【0016】[0016]

【実施例】つぎに本発明の実施例をあげる。 実施例 エルビウム(Er)を800ppm、ゲルマニウム(Ge)を12%
添加した屈折率が1.478 である、直径10mmφ、長さ 200
mmの第1コアとしての希土類元素含有石英ガラスロッド
を図1に示した装置に設置し、この酸水素火炎バーナー
に四塩化けい素0.5 リットル/分、四塩化ゲルマニウム
0.5 リットル/分、酸素ガス 1.2リットル/分、水素ガ
ス 6.5リットル/分、アルゴンガス7リットル/分を送
って酸水素火災を発生させ、この火災加水分解で発生し
た、酸化ゲルマニウムは含有するが希土類元素は含有し
ないシリカ微粒子を希土類元素含有石英ガラスロッドに
堆積させて多孔質ガラス体を形成させたところ、この多
孔質ガラス体のかさ密度は0.40g/cm3 であった。
EXAMPLES Next, examples of the present invention will be given. Example Erbium (Er) 800ppm, Germanium (Ge) 12%
The added refractive index is 1.478, diameter 10mmφ, length 200
A quartz glass rod containing a rare earth element as the first core of mm was installed in the apparatus shown in FIG. 1, and 0.5 liter / min of silicon tetrachloride and germanium tetrachloride were installed in this oxyhydrogen flame burner.
0.5 liters / minute, oxygen gas 1.2 liters / minute, hydrogen gas 6.5 liters / minute, and argon gas 7 liters / minute were sent to generate an oxyhydrogen fire, which was generated by the hydrolysis of the fire but contained germanium oxide but was a rare earth. When silica fine particles containing no element were deposited on a rare earth element-containing quartz glass rod to form a porous glass body, the bulk density of this porous glass body was 0.40 g / cm 3 .

【0017】ついで、この多孔質ガラス体については塩
素を1%含有するヘリウム雰囲気下に 1,450℃で脱水、
焼結し透明ガラス化して第2コアとなる石英ガラスとし
たところ、この第2コアの屈折率は 1,484を示したが、
これは第1コアとしての希土類元素含有石英ガラスの屈
折率より高いものであることから図2に示したような屈
折率分布を有するものであり、これはまた後記する純石
英ガラスからなるクラッド層の屈折率より1.78%屈折率
の高いものであることが確認された。
Then, the porous glass body was dehydrated at 1,450 ° C. in a helium atmosphere containing 1% of chlorine,
When the silica glass that was sintered and made into transparent glass was used as the second core, the refractive index of this second core was 1,484.
Since this is higher than the refractive index of the rare earth element-containing quartz glass as the first core, it has a refractive index distribution as shown in FIG. 2, and this is also the clad layer made of pure quartz glass described later. It was confirmed that the refractive index was higher by 1.78% than that of.

【0018】また、この第1コア、第2コアからなる石
英ガラス体にはつぎに図1に示した装置を使用し、四塩
化けい素だけを使用してこの上にシリカ微粒子を形成さ
せ、これを公知の方法で透明ガラス化してクラッド層を
形成させて、光増幅器用光ファイバ母材を作り、これを
線引きして直径 125μmの光増幅器用光ファイバを作製
してこのもののポンプパワー(mw)と(dB)との関係を
調べたところ、図4のA線に示したとおりの結果が得ら
れ、これは3.29dB/mw というものであった。
For the quartz glass body consisting of the first core and the second core, the apparatus shown in FIG. 1 was used next, and only silica tetrachloride was used to form silica fine particles on the silica glass body. Is made into a transparent glass by a known method to form a clad layer, an optical fiber preform for an optical amplifier is made, and this is drawn to produce an optical fiber for an optical amplifier with a diameter of 125 μm, and the pump power (mw) of this When the relationship between and (dB) was examined, the result as shown by the line A in Fig. 4 was obtained, which was 3.29 dB / mw.

【0019】また、比較のために上記した実施例におけ
るものと同一組成で第2コア作成のための多孔質ガラス
母材を作ったところ、このものはかさ密度が 0.28g/cm
3 のものとなったが、これを実施例と同じ方法で脱水・
焼結して第2コアを作り、さらにこれに公知の方法で石
英ガラスからなるクラッド層を作って光増幅器用光ファ
イバ母材を作成した。
For comparison, a porous glass base material for making the second core was made with the same composition as that in the above-mentioned embodiment, and this one had a bulk density of 0.28 g / cm.
It became 3 but it was dehydrated by the same method as the example.
The second core was sintered to form a second core, and a cladding layer made of quartz glass was formed on the second core by a known method to prepare an optical fiber preform for an optical amplifier.

【0020】しかし、このものは第2コアの屈折率が第
1コアとしての希土類元素含有石英ガラスの屈折率より
低いもので図3に示したような屈折率分布をもつもので
あり、クラッド層としての石英ガラスよりは屈折率が0.
48%高い 1.465というものであることから、この光ファ
イバ母材から実施例と同じ方法で作った光増幅器用光フ
ァイバの光増幅効率は図4のB線のようになり、これが
2.07dB/mwであることから、これは実施例のものにくら
べて光増幅効率のわるいものであった。
However, this has a refractive index of the second core lower than that of the rare earth element-containing quartz glass as the first core, and has a refractive index distribution as shown in FIG. Has a refractive index of 0.
Since it is 48% higher at 1.465, the optical amplification efficiency of the optical fiber for an optical amplifier made from this optical fiber base material by the same method as in the example is as shown by line B in FIG.
Since it was 2.07 dB / mw, the optical amplification efficiency was poorer than that of the example.

【0021】[0021]

【発明の効果】本発明は光増幅器用光ファイバ母材およ
びその製造方法に関するものであり、この光層幅器用光
ファイバ母材は前記したように希土類元素を含有し、純
石英ガラスより高い屈折率を有する石英ガラスからなる
第1コア、希土類元素を含有しない石英ガラスからなる
第2コア、石英ガラスからなるクラッド層とからなる光
増幅器用光ファイバ母材において、第2コアの屈折率を
第1コアの屈折率より高く、かつ純石英ガラスの屈折率
よりも 0.3〜 3.5%高い値をもつものとすること特徴と
するものであり、この製造方法は第1コアとしての希土
類元素含有石英ガラスの上に酸化ゲルマニウムを含むが
希土類元素を含まないシリカ微粒子を堆積して見掛け密
度が0.35〜 0.90g/cm3 の多孔質ガラス体を作り、これ
を塩素含有ヘリウム雰囲気で脱水、焼結して透明ガラス
化したのち、その外周にクラッド用石英ガラスを形成さ
せることを特徴とするものであるが、この光増幅器用光
ファイバ母材は光増幅効率のよい光ファイバを与えるも
のであり、この製造方法によればこの光ファイバ母材を
確実に容易に得ることができるという有利性が与えられ
る。
The present invention relates to an optical fiber preform for an optical amplifier and a method for manufacturing the same, and this optical fiber preform for an optical layer width contains a rare earth element as described above and has a higher refractive index than pure silica glass. In the optical fiber preform for an optical amplifier, which comprises a first core made of silica glass having a refractive index, a second core made of silica glass containing no rare earth element, and a cladding layer made of silica glass, the refractive index of the second core is It is characterized in that it has a refractive index higher than that of one core and higher than that of pure silica glass by 0.3 to 3.5%. This production method is a silica glass containing a rare earth element as the first core. Silica fine particles containing germanium oxide, but not containing rare earth elements, are deposited on the above to make a porous glass body with an apparent density of 0.35 to 0.90 g / cm 3 , and this is made into a chlorine-containing helium atmosphere. It is characterized by forming a quartz glass for cladding on its outer periphery after dehydration and sintering to form a transparent glass, and this optical fiber preform for optical amplifiers uses an optical fiber with good optical amplification efficiency. According to this manufacturing method, there is an advantage that the optical fiber preform can be reliably and easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明により、多孔質ガラス母材を製造する
ための製造装置の縦断面図を示したものである。
FIG. 1 is a vertical cross-sectional view of a manufacturing apparatus for manufacturing a porous glass preform according to the present invention.

【図2】 本発明の実施例で得られた光増幅器用光ファ
イバ母材の屈折率分布図を示したものである。
FIG. 2 is a refractive index distribution chart of an optical fiber preform for an optical amplifier obtained in an example of the present invention.

【図3】 本発明の比較例で得られた光増幅器用光ファ
イバ母材の屈折率分布図を示したものである。
FIG. 3 is a refractive index distribution diagram of an optical fiber preform for optical amplifiers obtained in a comparative example of the present invention.

【図4】 本発明の実施例、比較例で得られた光増幅器
用光ファイバの光増幅効率測定図を示したものである。
FIG. 4 is a diagram showing optical amplification efficiency measurement diagrams of optical fibers for optical amplifiers obtained in Examples and Comparative Examples of the present invention.

【符号の説明】[Explanation of symbols]

1…酸水素火炎バーナー、2…四塩化けい素、3…四塩
化ゲルマニウム、4…燃料用制御ガス、5…酸水素火
炎、 6…石英ガラスロッド、7…シリカ微粒子
体、 8…多孔質ガラス母材
1 ... Oxyhydrogen flame burner, 2 ... Silicon tetrachloride, 3 ... Germanium tetrachloride, 4 ... Control gas for fuel, 5 ... Oxygen flame, 6 ... Quartz glass rod, 7 ... Silica fine particles, 8 ... Porous glass Base material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/17 8934−4M (72)発明者 高野 伸一 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 (72)発明者 神屋 和雄 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H01S 3/17 8934-4M (72) Inventor Shinichi Takano 2-13-1 Isobe, Gunma Prefecture No. Shin-Etsu Chemical Co., Ltd. Precision Materials Research Laboratory (72) Inventor Kazuo Kamiya 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1種の希土類元素を含有し、純
石英ガラスより高い屈折率を有する石英ガラスからなる
第1コア、その外周に存在する希土類元素を含有しない
石英ガラスからなる第2コアおよびさらにその外周に存
在する石英ガラスからなるクラッド層とからなる光増幅
器用光ファイバ母材において、第2コアの屈折率が第1
コアの屈折率より高く、かつ純石英ガラスの屈折率より
0.6〜 3.5%高い値であることを特徴とする光増幅器用
光ファイバ母材。
1. A first core made of silica glass containing at least one rare earth element and having a higher refractive index than pure silica glass, a second core made of silica glass containing no rare earth elements existing on the outer periphery thereof, and Further, in the optical fiber preform for an optical amplifier, which is composed of a cladding layer made of quartz glass and exists on the outer periphery of the optical fiber, the second core has a refractive index of the first
Higher than the refractive index of the core and higher than that of pure silica glass
An optical fiber preform for an optical amplifier, which has a high value of 0.6 to 3.5%.
【請求項2】少なくとも1種の希土類元素を含有し、純
石英ガラスより高い屈折率を有する第1コア用石英ガラ
スロッドを回転させつつ、その外周にゲルマニウム化合
物を含有する気体状ガラス原料の火災加水分解で生成し
たシリカ微粒子を堆積させて第2コア用の多孔質ガラス
体を形成し、ついでこれを塩素含有ヘリウム雰囲気中で
焼結し透明ガラス化して、第1コアと第2コアを有する
ガラスロッドを作成し、つぎにその外周にクラッド用石
英ガラス層を形成させる光幅器用光ファイバ母材の製造
方法において、該第2コア用多孔質ガラス体のかさ密度
を 0.35g/cm3〜 0.90g/cm3 としてなることを特徴と
する請求項1に記載した光増幅器用光ファイバ母材の製
造方法。
2. A fire of a gaseous glass raw material containing a germanium compound on the outer periphery thereof while rotating a first core quartz glass rod containing at least one rare earth element and having a refractive index higher than that of pure quartz glass. Silica fine particles generated by hydrolysis are deposited to form a porous glass body for the second core, which is then sintered in a chlorine-containing helium atmosphere to form a transparent glass, which has a first core and a second core. In a method for producing an optical fiber base material for an optical width device in which a glass rod is formed and then a quartz glass layer for cladding is formed on the outer periphery thereof, the bulk density of the second core porous glass body is 0.35 g / cm 3 to The method for producing an optical fiber preform for an optical amplifier according to claim 1, wherein the optical fiber preform is 0.90 g / cm 3 .
【請求項3】塩素含有ヘリウム雰囲気中における塩素濃
度が 0.7〜 1.2容量%である請求項2に記載した光増幅
器用光ファイバ母材の製造方法。
3. The method for producing an optical fiber preform for an optical amplifier according to claim 2, wherein the chlorine concentration in the chlorine-containing helium atmosphere is 0.7 to 1.2% by volume.
JP16202292A 1992-05-28 1992-05-28 Method for manufacturing optical fiber preform for optical amplifier Expired - Fee Related JP3188309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16202292A JP3188309B2 (en) 1992-05-28 1992-05-28 Method for manufacturing optical fiber preform for optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16202292A JP3188309B2 (en) 1992-05-28 1992-05-28 Method for manufacturing optical fiber preform for optical amplifier

Publications (2)

Publication Number Publication Date
JPH06157064A true JPH06157064A (en) 1994-06-03
JP3188309B2 JP3188309B2 (en) 2001-07-16

Family

ID=15746581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16202292A Expired - Fee Related JP3188309B2 (en) 1992-05-28 1992-05-28 Method for manufacturing optical fiber preform for optical amplifier

Country Status (1)

Country Link
JP (1) JP3188309B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
JP2013513243A (en) * 2009-12-03 2013-04-18 アイピージー フォトニクス コーポレーション Single mode, high power, fiber laser system
WO2014142010A1 (en) * 2013-03-14 2014-09-18 株式会社フジクラ Optical fiber for amplification and fiber laser device using same
WO2021192783A1 (en) * 2020-03-27 2021-09-30 株式会社フジクラ Optical fiber having added active element, base material for optical fiber having added active element, resonator, and fiber laser device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
JP2013513243A (en) * 2009-12-03 2013-04-18 アイピージー フォトニクス コーポレーション Single mode, high power, fiber laser system
WO2014142010A1 (en) * 2013-03-14 2014-09-18 株式会社フジクラ Optical fiber for amplification and fiber laser device using same
JP2014179404A (en) * 2013-03-14 2014-09-25 Fujikura Ltd Optical fiber for amplification and fiber laser device including the same
US9431787B2 (en) 2013-03-14 2016-08-30 Fujikura Ltd. Amplification optical fiber and fiber laser device using the same
WO2021192783A1 (en) * 2020-03-27 2021-09-30 株式会社フジクラ Optical fiber having added active element, base material for optical fiber having added active element, resonator, and fiber laser device
CN114207486A (en) * 2020-03-27 2022-03-18 株式会社藤仓 Active element-added optical fiber, base material for active element-added optical fiber, resonator, and fiber laser device
CN114207486B (en) * 2020-03-27 2024-01-12 株式会社藤仓 Active element-added optical fiber, base material for active element-added optical fiber, resonator, and optical fiber laser device

Also Published As

Publication number Publication date
JP3188309B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
CA1251044A (en) Fluorine doped optical waveguide
AU649845B2 (en) Method for producing glass preform for optical fiber
CN100509672C (en) Nano-quantum point optical fiber and manufacturing method thereof
US4643751A (en) Method for manufacturing optical waveguide
JP2599511B2 (en) Method for producing rare earth element doped quartz glass
US4335934A (en) Single mode fibre and method of making
JP2979329B2 (en) Optical amplification fiber
JP2948656B2 (en) Method of manufacturing active element-doped optical fiber component
JP2669976B2 (en) Erbium-doped fiber for optical amplifier
JP3188309B2 (en) Method for manufacturing optical fiber preform for optical amplifier
US20030084685A1 (en) Method of making an optical fiber or preform having a reduced hydrogen content
JP2931026B2 (en) Method for producing rare earth element doped glass
JP3027075B2 (en) Method for producing rare earth element-doped quartz glass fiber preform
JPH05119222A (en) Optical fiber and production thereof and production of preform of this optical fiber
JP3188304B2 (en) Rare earth element doped silica glass based optical fiber preform and method of manufacturing the same
JP3157000B2 (en) Optical waveguide
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JP3315786B2 (en) Optical amplifier type optical fiber
JP3475109B2 (en) Rare earth element doped glass
JPH0791088B2 (en) Rare-earth element-doped silica glass optical fiber preform and method for producing the same
US5641333A (en) Increasing the retention of Ge02 during production of glass articles
JP3310159B2 (en) Method for producing transparent glass body for Co-doped optical attenuator
JP2766995B2 (en) Manufacturing method of optical fiber preform
JP2831842B2 (en) Manufacturing method of optical fiber base material
JPH0244031A (en) Production of nonlinear optical glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees