JPH11176444A - Manufacture of lithium-chrome-manganese oxide, and lithium secondary battery utilizing the same - Google Patents

Manufacture of lithium-chrome-manganese oxide, and lithium secondary battery utilizing the same

Info

Publication number
JPH11176444A
JPH11176444A JP10212854A JP21285498A JPH11176444A JP H11176444 A JPH11176444 A JP H11176444A JP 10212854 A JP10212854 A JP 10212854A JP 21285498 A JP21285498 A JP 21285498A JP H11176444 A JPH11176444 A JP H11176444A
Authority
JP
Japan
Prior art keywords
lithium
chromium
manganese oxide
oxide
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10212854A
Other languages
Japanese (ja)
Inventor
Seikyu Kyo
聖 求 姜
Shunko Cho
舜 浩 張
Kiko Cho
基 鎬 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JPH11176444A publication Critical patent/JPH11176444A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/006Compounds containing, besides chromium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/02Oxides or hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery having superior capacity and performance in high voltage area by subjecting the lithium oxide to heat treatment, the chrome oxide and the manganese oxide for a specified time in a specified temperature area, and thereafter, gradually cooling them so as to form a specified compound. SOLUTION: Heat treatment is conducted in a temperature area at 730-760 deg.C for 40-50 hours, and thereafter gradual cooling is performed to form a compound having a formula LiCrx Mn2-x O4 (0<x<=9) used for a positive electrode of a lithium secondary battery. As a lithium oxide, at least any one of LiOH, Li2 CO3 and LiNO3 is used, and as chrome oxide, Cr2 O3 is used, and as manganese oxide, MnO2 is preferably used. A lithium secondary battery is preferably formed by containing a positive electrode of LiCrx Mn2-x O4 (0<x<=0.5), a negative electrode formed of at least one from among lithium metal, a compound containing lithium and a carbon compound, and one of the liquid electrolyte and high molecular electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、陽極用物質リチウ
ム−クロム−マンガン酸化物の製造方法及びこれを利用
した5V級リチウム2次電池に関し、特に従来のリチウ
ム2次電池陽極用物質であるリチウム−マンガン酸化物
でクロムを置換して、構造的に安定し容量の減少が少な
く高電圧電極物質として有用な陽極用物質を製造する方
法と、これを利用した5V級リチウム2次電池に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lithium-chromium-manganese oxide material for an anode and a 5V-class lithium secondary battery using the same, and more particularly to a conventional lithium secondary battery anode material, lithium. A method for producing a material for an anode which is structurally stable, has a small capacity reduction and is useful as a high voltage electrode material by replacing chromium with a manganese oxide, and a 5V class lithium secondary battery using the same. is there.

【0002】[0002]

【従来の技術】一般にリチウム2次電池は、陽極、電解
質、陰極から構成され、従来のリチウム2次電池の陽極
として使用されたリチウム−マンガン酸化物はスピネル
(spinel)構造を有している。すなわち、八面体
(octahedral)座の半分と四面体(tetr
ahedral)座が立方稠密積(cubic clo
se−packed)酸素配列において空いているため
他のイオンが八面体の空いた座、或いは四面体の空いた
座に入座することができる。
2. Description of the Related Art In general, a lithium secondary battery includes an anode, an electrolyte, and a cathode. A lithium-manganese oxide used as an anode of a conventional lithium secondary battery has a spinel structure. That is, half of the octahedral locus and the tetrahedron (tetra
aedral) is a cubic close
The vacancies in the (se-packed) oxygen array allow other ions to occupy vacant octahedral or tetrahedral vacancies.

【0003】このような八面体の空いた座がスピネル構
造において3次元の空いたトンネルの役割をするためこ
の構造を3次元「1x1」トンネル構造という。LiM
を陽極とした電子の充電はLiMn活物
質からLiイオンが離れることでなり,過充電になると
極端的にλ−MnOと構造が変わり、これを再び放電
させるとLiMn構造への復帰がなされる。
[0003] Such an octahedral vacant locus serves as a three-dimensional vacant tunnel in the spinel structure, and this structure is called a three-dimensional "1x1" tunnel structure. LiM
n 2 O 4 electron charge that the anode and will by the Li ions away from the LiMn 2 0 4 active material, extremely to change the lambda-MnO 2 and structure becomes overcharged, which when the discharged again LiMn 2 0 4 return to the structure is made.

【0004】理論的にLiMnの理論容量は14
8mAh/gでありLiCo0或いはLiNi0
り低いが、価格面で競争力が優れているためリチウム2
次電池の陽極活物質としての期待は大きいものといえ
る。平衡条件のもとでLi/LiMnの電池は放
電時約4VでLiがMnのスピネル骨格に挿入さ
れてLiMnの等方構造を形成する。
[0004] The theoretical capacity of theoretically LiMn 2 0 4 14
8 mAh / g, which is lower than LiCoO 2 or LiNiO 2 , but lithium 2
Expectations as anode active materials for secondary batteries are high. Under Li / LiMn 2 0 4 batteries equilibrium conditions Li at about 4V during discharge is inserted into the spinel framework of Mn 2 0 4 forms an isotropic structure of LiMn 2 0 4.

【0005】充放電曲線で見ると4V近くで滑らかな曲
線が現れ、この時LiMnの電極の表面にはL
1+δMnが形成され、このとき平均的なマン
ガンの酸化数は3.5より小さくなる反面電極内部の平
均的な分子式はLi1−δMnになりマンガンの
酸化数は3.5より大きい。このため電極の表面と内部
の間にはヤーンタラ(Jahn−Taller)効果の
差異が現れ、これはサイクルが反復されるにつれて速い
放電容量の減少をもたらす。
[0005] appear smooth curve near 4V when viewed in the charge-discharge curve, on the surface of the case Li x Mn 2 0 4 electrodes L
i 1 + δ Mn 2 0 4 is formed, the oxidation number of the time average oxidation number of manganese average molecular formula of the internal although electrodes smaller than 3.5 becomes Li 1-δ Mn 2 0 4 Manganese Greater than 3.5. This results in a difference in Jahn-Taller effect between the surface and the interior of the electrode, which results in a fast discharge capacity decrease as the cycle is repeated.

【0006】[0006]

【発明が解決しようとする課題】本発明は陽極としてリ
チウム−クロム−マンガン酸化物を使用してリチウム2
次電池を構成することにより、従来の乾電池とは異なり
高い領域内で容量と性能が向上された5V級リチウム2
次電池を提供することにその目的がある。
SUMMARY OF THE INVENTION The present invention uses lithium-chromium-manganese oxide as the anode to produce lithium 2
By configuring the secondary battery, 5V-class lithium 2 whose capacity and performance are improved in a high region unlike a conventional dry battery
The purpose is to provide a secondary battery.

【0007】[0007]

【課題を解決するための手段】上述した目的を達成する
ための本発明による陽極用物質リチウム−クロム−マン
ガン酸化物の製造方法は、リチウム酸化物−クロム酸化
物−マンガン酸化物を利用して730℃乃至760℃の
温度領域において40時間乃至50時間のあいだ熱処理
した後、徐冷してリチウム2次電池用陽極物質として使
用されるLiCrMn2―x(0<x≦ 0.9)
を形成させることを特徴とする。
According to the present invention, there is provided a method for producing a lithium-chromium-manganese oxide for an anode, which utilizes the lithium-chromium-manganese oxide. after heat treatment during the 730 ° C. to 40 hours to 50 hours in a temperature range of 760 ℃, LiCr x Mn 2- x 0 4 which is used as an anode material for a rechargeable lithium battery and gradually cooled (0 <x ≦ 0. 9)
Is formed.

【0008】更に、5V級リチウム2次電池はLiCr
Mn2―x(0<x≦ 0.5)からなる陽極と、
リチウム金属、リチウムを含有した化合物及び炭素化合
物のうち何れか一つからなることを包含して構成される
ことを特徴とする。
Further, a 5V class lithium secondary battery is LiCr.
an anode consisting of x Mn 2-x 0 4 ( 0 <x ≦ 0.5),
The present invention is characterized in that it is configured to include any one of lithium metal, a compound containing lithium and a carbon compound.

【0009】[0009]

【発明の実施の形態】以下に、添付した図面を参照して
本発明を詳細に説明する。図1は本発明によるリチウム
−クロム−マンガン酸化物の製造工程を図示した工程図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the attached drawings. FIG. 1 is a process diagram illustrating a process of manufacturing a lithium-chromium-manganese oxide according to the present invention.

【0010】リチウム−クロム−マンガン酸化物(Li
CrMn2―x4、x=0、1/8,2/8,3/
8,4/8,5/8,6/8)のスピネル化合物は出発
物質としてLiOH,LiCO及びLiNOのう
ち何れか一つのリチウム酸化物と、Crクロム酸
化物、MnOマンガン酸化物を使用して製造した。
Lithium-chromium-manganese oxide (Li)
Cr x Mn 2-x 0 4 , x = 0,1 / 8,2 / 8,3 /
The 8,4 / 8,5 / 8,6 / 8) spinel compound is a lithium oxide of any one of LiOH, Li 2 CO 3 and LiNO 3 as starting materials, a chromium oxide of Cr 2 O 3 , a MnO 3 It was prepared using 2-manganese oxide.

【0011】化学量論的化合物(stoichiome
tric compound)を製造するためCr
とMnOは正確なモル(mole)比で秤量(1
1)され、LiCOの場合Liの原子量がごく小さ
く蒸気圧が高いため5%程度の過量で混ぜ合わした。
Stoichiometric compounds (stoichiome)
tric compound) to produce Cr 20
3 and MnO 2 are weighed (1) at an exact mole ratio.
1) In the case of Li 2 CO 3 , since the atomic weight of Li was very small and the vapor pressure was high, they were mixed in excess of about 5%.

【0012】上記の粉末は固体状態において混合と粉砕
を併行したあと圧力を加えて試片を製造した。上記の試
片を600℃で約5時間程度か焼(calcinati
on)したあとこれを常温において細かく粉砕して試片
を製造(12)した。上記の試片を700℃乃至800
℃温度範囲において20〜60時間焼結(sinter
ing)してリチウム−クロム−マンガン酸化物(Li
CrxMn2―x)を製造(13,14,15)し
た。
The above powder was mixed and pulverized in a solid state, and then pressure was applied to produce a test piece. The above specimen was calcined at 600 ° C. for about 5 hours.
On), this was finely pulverized at room temperature to produce a test piece (12). 700 ° C to 800
Sintering (sinter) in the temperature range of 20 to 60 hours.
ing) to form a lithium-chromium-manganese oxide (Li
CrxMn 2-x 0 4) were prepared (13, 14, 15).

【0013】各試片の物性を調査した結果焼結温度75
0℃、48時間が最適条件であることが判り、焼結後常
温までの冷却速度は1℃/minが最も良い条件である
ことが判った。
The sintering temperature of 75 was determined by examining the physical properties of each specimen.
It was found that the optimum conditions were 0 ° C. and 48 hours, and that the best cooling rate after sintering to room temperature was 1 ° C./min.

【0014】図2は本発明によるリチウム−クロム−マ
ンガン酸化物のX線回折分析図であり、製造された試料
が空間群(space group)Fd3mを有する
スピネル状であることが確認できた。更に、置換された
クロムの量が増加するほど格子常数(cell par
ameter)が減少することが判り、これは置換され
たクロムの量が増加するほどより良い結晶性を表すこと
を意味するものである。下記表1に置換されたクロムの
量による格子常数を表した。
FIG. 2 is an X-ray diffraction diagram of the lithium-chromium-manganese oxide according to the present invention, and it was confirmed that the manufactured sample was in a spinel shape having a space group Fd3m. Furthermore, as the amount of substituted chromium increases, the lattice constant (cell par) increases.
a), which means that the higher the amount of substituted chromium, the better the crystallinity. Table 1 below shows lattice constants depending on the amount of substituted chromium.

【0015】[0015]

【表1】 [Table 1]

【0016】リチウム−クロム−マンガン酸化物の電極
特性を調べるためLi/LiCrMn2―xの半
分の電池を構成した。陽極はLi/LiCrMn
2―x(wt.89%)に導電体としてアセチレン
ブラック(acetyleneblack;wt.10
%)、バインダーとしてPTFE(poly−tetr
afluoro−ethylene;wt.1%)を利
用し、陰極としてリチウム金属を、電解質にはエチレン
カーボネート(ethylene carbonat
e)及びヂメチルカーボネート(dimethyl c
arbonate)を2:1の容積比で混合した溶媒に
1MLiPFを溶かしたものを使用した。
[0016] Lithium - Chromium - to constitute a half of a battery of Li / LiCr order to examine the electrode characteristics of the manganese oxide x Mn 2-x 0 4. The anode is Li / LiCr x Mn
2-x 0 4 (wt.89% ) acetylene black as a conductor (acetyleneblack; wt.10
%) And PTFE (poly-tetrar) as a binder.
afluoro-ethylene; wt. 1%), lithium metal as a cathode, and ethylene carbonate (ethylene carbonate) as an electrolyte.
e) and dimethyl carbonate (dimethyl c)
1M LiPF 6 dissolved in a solvent obtained by mixing a mixture of arbonate at a volume ratio of 2: 1 was used.

【0017】一般にLiMn(0≦x≦1)は
3.5Vから5Vの領域内で構造内のLiがすべて出て
いき3.5V〜4.3Vで約70%以上のLiが出てい
く。
In general, in Li x Mn 2 O 4 (0 ≦ x ≦ 1), all of the Li in the structure comes out in the range of 3.5 V to 5 V, and about 70% or more of Li in 3.5 V to 4.3 V. Comes out.

【0018】制作された電池の充電試験は電圧と充放電
特性との関係をより具体的に調べるため高電圧(5.3
V〜4.3V)と低電圧(4.3V〜3.5V)領域に
分けて各々測定し高電圧と低電圧領域において各々の試
料が最初の放電時に現れる放電容量の変化と電圧との関
係及び充放電時挿入/抽出されるLiイオンの量を測
定した。測定条件はC/15(〜265μA)の一定し
た電流を流す定電流法を使用して構成された半分の電池
に充放電を反復して実施した。
The charge test of the produced battery is performed in order to more specifically examine the relationship between voltage and charge / discharge characteristics.
V-4.3 V) and low voltage (4.3 V-3.5 V) regions, each of which was measured and the relationship between the change in discharge capacity and voltage at the time of the first discharge of each sample in the high voltage and low voltage regions. And the amount of Li + ions inserted / extracted during charge / discharge. The measurement was carried out by repeatedly charging and discharging a half of the battery constituted by using a constant current method in which a constant current of C / 15 (〜265 μA) was applied.

【0019】図3は本発明によるリチウム−クロム−マ
ンガン酸化物のクロム置換量による高電圧領域内での充
放電特性を測定したグラフ図であり、高電圧領域(4.
3V〜5.2V)においてのLiCrMn2―x
(0≦x≦0.7)に対する充放電特性を測定した結果
クロムの量が増加するほど放電容量の増加と放電電圧の
上昇が現れることが判る。更に、クロムの量が0.5以
上の場合には放電容量が飽和することも判る。
FIG. 3 is a graph showing the charging / discharging characteristics of the lithium-chromium-manganese oxide according to the present invention in the high voltage region depending on the chromium substitution amount.
LiCr x Mn 2-x 0 4 of the 3V~5.2V)
As a result of measuring the charge / discharge characteristics with respect to (0 ≦ x ≦ 0.7), it is found that as the amount of chromium increases, the discharge capacity increases and the discharge voltage increases. Further, it is also found that the discharge capacity is saturated when the amount of chromium is 0.5 or more.

【0020】図4は本発明によるリチウム−クロム−マ
ンガン酸化物のクロム置換による低電圧領域においての
充放電特性を測定したグラフ図であり、低電圧領域
(3.5V〜4.5V)においての上記LiCrMn
2―x(0≦x≦0.7)に対する充放電特性は高
電圧領域とは異なりクロムの量が増加するほど放電容量
が減少することが判る。
FIG. 4 is a graph showing the charging / discharging characteristics of the lithium-chromium-manganese oxide according to the present invention in the low voltage region due to the chromium substitution, in the low voltage region (3.5 V to 4.5 V). The above LiCr x Mn
It can be seen that the charge-discharge characteristics for 2-xO 4 (0 ≦ x ≦ 0.7) are different from the high voltage region, and the discharge capacity decreases as the amount of chromium increases.

【0021】しかしクロムの量が0.25未満の場合充
放電の可逆性(reversibility)が向上す
るものと現れた。クロムが0.12程度置換された試料
に対しては初期放電容量の増加が観察された。
However, when the amount of chromium is less than 0.25, reversibility of charging and discharging has been improved. An increase in the initial discharge capacity was observed for the sample in which chromium was replaced by about 0.12.

【0022】スピネルマンガン酸化物の場合3.5V〜
4.3Vの領域で挿入(intercalation)
されるLiの量を測定した結果0.75〜0.8のLi
が反応に関与する。Liイオンの反応は同数のMn3+
の酸化/還元反応を伴う。
In the case of spinel manganese oxide, 3.5V-
Insertion in 4.3V region (intercalation)
The result of measuring the amount of Li
Are involved in the reaction. The reaction of Li ions is the same number of Mn 3+
With an oxidation / reduction reaction.

【0023】したがって、クロムの量が0.2未満で置
換された場合これは直接的に反応に関与しないマンガン
の量に該当し、このため放電容量の減少が現れないもの
と想定される。しかし、0.2以上のクロムが置換され
ると直接的に反応に関与するマンガンが少なくなるため
放電容量は減少する。
Therefore, if the amount of chromium is replaced by less than 0.2, this corresponds to the amount of manganese which does not directly participate in the reaction, and it is assumed that no reduction in the discharge capacity appears. However, when chromium of 0.2 or more is substituted, manganese directly involved in the reaction decreases, so that the discharge capacity decreases.

【0024】すなわち、結論的にリチウム−クロム−マ
ンガン酸化物に対する高電圧領域と低電圧領域のサイク
ル特性を観察した結果高電圧領域においてはクロムの量
が増加するほど初期放電容量は増加するが速い放電容量
の減少が現れ、低電圧領域においては一般にクロムの量
が増加するほど放電容量の減少が少なくなるものと現わ
れた。特にクロム量が0.12では高電圧と低電圧領域
ともに良好なサイクル特性が観察された。
That is, as a result of observing the cycle characteristics of the lithium-chromium-manganese oxide in the high voltage region and the low voltage region, the initial discharge capacity increases but increases as the amount of chromium increases in the high voltage region. A decrease in the discharge capacity appeared, and in a low voltage region, the decrease in the discharge capacity generally became smaller as the amount of chromium increased. In particular, when the chromium content was 0.12, good cycle characteristics were observed in both the high voltage and low voltage regions.

【0025】[0025]

【発明の効果】上述したように本発明によれば、従来の
リチウム2次電池と異なり陽極でリチウム−クロム−マ
ンガン酸化物を使用するとサイクル反復による容量低下
が少なく、高電圧領域においての容量が大きいため5V
級電池への適用が可能な卓越した効果が在る。
As described above, according to the present invention, unlike the conventional lithium secondary battery, when lithium-chromium-manganese oxide is used at the anode, the capacity decrease due to cycle repetition is small, and the capacity in the high voltage region is reduced. 5V because it is large
There is a remarkable effect that can be applied to class batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるリチウム−クロム−マンガン酸化
物の製造工程の工程図である。
FIG. 1 is a process diagram of a manufacturing process of a lithium-chromium-manganese oxide according to the present invention.

【図2】本発明によるリチウム−クロム−マンガン酸化
物のX−線回折分析図である。
FIG. 2 is an X-ray diffraction diagram of a lithium-chromium-manganese oxide according to the present invention.

【図3】本発明によるリチウム−クロム−マンガン酸化
物のクロム置換量による高電圧領域における充放電特性
を測定したグラフ図である。
FIG. 3 is a graph illustrating charge / discharge characteristics of a lithium-chromium-manganese oxide according to the present invention in a high voltage region depending on the chromium substitution amount.

【図4】本発明によるリチウム−クロム−マンガン酸化
物のクロム置換量による低電圧領域における充放電特性
を測定したグラフ図である。
FIG. 4 is a graph illustrating charge / discharge characteristics of a lithium-chromium-manganese oxide according to the present invention measured in a low voltage region depending on the amount of chromium substitution.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウム酸化物、クロム酸化物及びマン
ガン酸化物を利用して730℃乃至760℃の温度領域
において40時間乃至50時間の間熱処理した後、徐冷
してリチウム2次電池用陽極物質として使用されるLi
CrMn −x(0<x≦0.9)を形成させる
ことを特徴とするリチウム−クロム−マンガン酸化物の
製造方法。
1. An anode for a rechargeable lithium battery using a lithium oxide, a chromium oxide, and a manganese oxide in a temperature range of 730 ° C. to 760 ° C. for 40 hours to 50 hours, and then gradually cooling. Li used as a substance
Cr x Mn 2 -x O 4 lithium, characterized in that to form a (0 <x ≦ 0.9) - chromium - method for producing manganese oxide.
【請求項2】 上記リチウム酸化物はLiOH、Li
CO及びLiNO中少なくとも何れか一つを使用
し、上記クロム酸化物はCrを使用し、上記マン
ガン酸化物はMnOを使用することを特徴とする請求
項1に記載のリチウム−クロム−マンガン酸化物の製造
方法。
2. The lithium oxide is LiOH, Li 2
2. The lithium according to claim 1, wherein at least one of CO 3 and LiNO 3 is used, the chromium oxide uses Cr 2 O 3 , and the manganese oxide uses MnO 2. -A method for producing chromium-manganese oxide.
【請求項3】 LiCrMn2−x(0<x≦
0.5)からなる陽極と、リチウム金属、リチウムを含
有した化合物及び炭素化合物中何れか一つからなる陰極
と、液体電解質及び高分子電解質中何れか一つとを包含
して構成されたことを特徴とする5V級リチウム2次電
池。
3. LiCr x Mn 2-x O 4 (0 <x ≦
0.5), a lithium metal, a cathode comprising any one of a lithium-containing compound and a carbon compound, and a liquid electrolyte and a polymer electrolyte. Characteristic 5V class lithium secondary battery.
JP10212854A 1997-12-03 1998-07-28 Manufacture of lithium-chrome-manganese oxide, and lithium secondary battery utilizing the same Withdrawn JPH11176444A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019970065695A KR19990047338A (en) 1997-12-03 1997-12-03 5 Ⅴ-class lithium secondary battery and its cathode material Lithium-chromium-manganese oxide manufacturing method
KR1997-65695 1997-12-03

Publications (1)

Publication Number Publication Date
JPH11176444A true JPH11176444A (en) 1999-07-02

Family

ID=19526384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10212854A Withdrawn JPH11176444A (en) 1997-12-03 1998-07-28 Manufacture of lithium-chrome-manganese oxide, and lithium secondary battery utilizing the same

Country Status (2)

Country Link
JP (1) JPH11176444A (en)
KR (1) KR19990047338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519122A (en) * 2008-04-07 2011-06-30 カーネギー メロン ユニバーシティ Aqueous electrolyte-based electrochemical secondary energy storage device using sodium ions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467325B1 (en) * 2002-11-29 2005-01-24 한국전자통신연구원 Synthesis of layered lithium-chromium-manganese oxides as cathode material for lithium batteries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519122A (en) * 2008-04-07 2011-06-30 カーネギー メロン ユニバーシティ Aqueous electrolyte-based electrochemical secondary energy storage device using sodium ions

Also Published As

Publication number Publication date
KR19990047338A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
JP4644895B2 (en) Lithium secondary battery
US5700442A (en) Insertion compounds based on manganese oxide usable as the positive electrode active material in a lithium battery
US7309546B2 (en) Positive active material for rechargeable lithium battery
US7608365B1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
US20010024754A1 (en) Positive electrode material and battery for nonaquous electrolyte secondary battery
KR20110031420A (en) Positive electrode material formed from a lamellar-type oxide for a lithium battery
JP2000277116A (en) Lithium secondary battery
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
US6274273B1 (en) Positive active material for rechargeable lithium battery and method of preparing same
KR100946006B1 (en) Nonaqueous Electrolytic Secondary Battery and Method of Manufacturing the Same
JP2003257427A (en) Electrode material for nonaqueous secondary battery
US7771875B2 (en) Positive electrodes for rechargeable batteries
JP3339519B2 (en) Lithium battery
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP3497420B2 (en) Lithium secondary battery
KR100266074B1 (en) Lifemn2-xo4 as positive electrode material for 5v lithium secondary batteries
JP2004356034A (en) Positive active material and lithium ion secondary battery using it
JPH11176444A (en) Manufacture of lithium-chrome-manganese oxide, and lithium secondary battery utilizing the same
JP2002003220A (en) Anode material for lithium ion secondary battery, anode and battery using it
US7829223B1 (en) Process for preparing lithium ion cathode material
JP2002008654A (en) Positive electrode active material and its manufacturing method and non-aqueous electrolyte battery and its manufacturing method
KR100269249B1 (en) Licoxmn2-xo4 as positive electrode material for 5v lithium secondary batteries
JPH10241685A (en) Nonaqueous electrolytic secondary battery
JP3746099B2 (en) Cathode active material for lithium battery and method for producing the same
JP2002184404A (en) Positive electrode material and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004