KR19990047338A - 5 Ⅴ-class lithium secondary battery and its cathode material Lithium-chromium-manganese oxide manufacturing method - Google Patents

5 Ⅴ-class lithium secondary battery and its cathode material Lithium-chromium-manganese oxide manufacturing method Download PDF

Info

Publication number
KR19990047338A
KR19990047338A KR1019970065695A KR19970065695A KR19990047338A KR 19990047338 A KR19990047338 A KR 19990047338A KR 1019970065695 A KR1019970065695 A KR 1019970065695A KR 19970065695 A KR19970065695 A KR 19970065695A KR 19990047338 A KR19990047338 A KR 19990047338A
Authority
KR
South Korea
Prior art keywords
lithium
chromium
manganese oxide
secondary battery
lithium secondary
Prior art date
Application number
KR1019970065695A
Other languages
Korean (ko)
Inventor
장순호
강성구
장기호
Original Assignee
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정선종, 한국전자통신연구원 filed Critical 정선종
Priority to KR1019970065695A priority Critical patent/KR19990047338A/en
Priority to JP10212854A priority patent/JPH11176444A/en
Publication of KR19990047338A publication Critical patent/KR19990047338A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/006Compounds containing, besides chromium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/02Oxides or hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 5 Ⅴ급 리튬 2차 전지 및 그 양극용 물질 리튬-크롬-망간 산화물 제조 방법에 관한 것으로, 특히 종래의 리튬 2차 전지 양극용 물질인 리튬-망간 산화물에 크롬을 치환하여, 구조적으로 안정하고 용량 감소가 적어 고전압 전극 물질로 유용한 양극용 물질을 제조하는 방법과 이를 이용한 5 V급 리튬 2차 전지에 관한 것이다.The present invention relates to a 5-V class lithium secondary battery and a method for preparing the lithium-chromium-manganese oxide material for the positive electrode, and more particularly, to a lithium secondary battery comprising a lithium- And a 5 V lithium secondary battery using the same. BACKGROUND OF THE INVENTION 1. Field of the Invention < RTI ID = 0.0 > [0002] < / RTI >

종래의 4 V급 양극 물질로 알려진 리튬-망간 산화물은 가격이 저렴하고 실제 용량이 110 mAh/g 정도로 비교적 높으나, 화학량론적인 화합물의 제조가 어렵고, 사이클의 반복에 따른 결정 구조 변형에 의해 용량 감소 등의 전극 특성이 열화되는 단점이 있다.Lithium-manganese oxide, which is known as a conventional 4 V anode material, is inexpensive and has a relatively high capacity of 110 mAh / g. However, it is difficult to produce a stoichiometric compound, and capacity reduction And the like.

본 발명에서는 망간 대신 크롬을 치환한 리튬-크롬-망간 화합물을 제조하여 구조적으로 안정하여 사이클 반복에 따른 용량 감소가 적으며, 높은 전압 영역에서 용량이 높아 고전압 전극 물질로 사용 가능하도록 하는 방법을 제시한다.In the present invention, a lithium-chromium-manganese compound substituted for chromium instead of manganese is prepared, and the structure is stable, so that the capacity decrease due to cyclic repetition is small and the capacity is high in a high voltage range. do.

Description

5 Ⅴ급 리튬 2차 전지 및 그 양극용 물질 리튬-크롬-망간 산화물 제조 방법5 Ⅴ-class lithium secondary battery and its cathode material Lithium-chromium-manganese oxide manufacturing method

본 발명은 5 V급 리튬 2차 전지 및 그 양극용 물질 리튬-크롬-망간 산화물 제조 방법에 관한 것으로, 특히 종래의 리튬 2차 전지 양극용 물질인 리튬-망간 산화물에 크롬을 치환하여, 구조적으로 안정하고 용량 감소가 적어 고전압 전극 물질로 유용한 양극용 물질을 제조하는 방법과 이를 이용한 5 V급 리튬 2차 전지에 관한 것이다.The present invention relates to a 5-V lithium secondary battery and a lithium-chromium-manganese oxide material for the positive electrode. More particularly, the present invention relates to a lithium-manganese oxide which is a lithium- And a 5 V lithium secondary battery using the same. BACKGROUND OF THE INVENTION 1. Field of the Invention < RTI ID = 0.0 > [0002] < / RTI >

일반적으로 리튬 2차 전지는 양극, 전해질, 음극으로 구성되는데, 종래의 리튬 2차 전지의 양극으로 사용된 리튬-망간 산화물은 스피넬(spinel) 구조를 가지고 있다. 즉 팔면체(octahedral) 자리의 반과 사면체(tetrahedral)자리가 입방조밀쌓임(cubic close-packed) 산소 배열에서 비어있기 때문에 다른 이온들이 팔면체 자리의 빈자리, 또는 사면체 자리의 빈자리에 충당될 수 있다. 이러한 팔면체 자리의 빈자리가 스피넬 구조에서 3 차원의 비어있는 터널 구실을 하기때문에 이 구조를 3 차원 [1×1] 터널 구조라고 한다. LiMn2O4를 양극으로 한 전지의 충전은 LiMn2O4활물질로 부터 Li 이온이 빠져 나오므로 이루어지고, 과 충전이 일어나면 극단적으로 λ-MnO2로 구조가 변하게 되며, 이를 다시 방전시키면 LiMn2O4구조로의 복귀가 이루어진다. 이론적으로 LiMn2O4의 이론 용량은 148 mAh/g으로 LiCoO2나 LiNiO2보다 낮으나, 가격면에서 경쟁력이 뛰어나기 때문에 리튬 2차 전지의 양극 활물질로의 기대는 매우 크다. 평형 조건에서 Li/LiMn2O4의 전지는 방전시 약 4 V에서 Li이 Mn2O4의 스피넬 골격으로 삽입되어 LiMn2O4의 등방구조를 형성한다. 충방전 곡선에서 보면 4 V근처에서 평평한 곡선이 나타나는데 이때 LixMn2O4전극의 표면은 Li1+δMn2O4가 형성되며, 이때의 평균적인 망간의 산화수는 3.5보다 작게 되는 반면에 전극 내부의 평균적인 분자식은 Li1-δMn2O4가 되어 망간의 산화수는 3.5보다 크다. 이로 인해 전극의 표면과 내부 사이에는 얀-텔러(Jahn-Taller) 효과의 차이가 나타나며 이는 싸이클이 반복됨에 따라 빠른 방전 용량의 감소를 가져온다.Generally, a lithium secondary battery is composed of a positive electrode, an electrolyte, and a negative electrode. The lithium-manganese oxide used as a positive electrode of a conventional lithium secondary battery has a spinel structure. That is, half of the octahedral and tetrahedral sites are empty in the cubic close-packed oxygen arrangement, so that other ions can be assigned to vacancies in octahedral or tetrahedral spaces. This structure is referred to as a three-dimensional [1 × 1] tunnel structure because the vacant space of the octahedral site is a three-dimensional empty tunnel structure in the spinel structure. LiMn 2 is charged in the battery for O 4 as the positive electrode is LiMn 2 O 4 is made so out active material Li ions away from, and occurs the filling is extremely change the structure to a λ-MnO 2, when this discharge again LiMn 2 The return to the O 4 structure is made. Theoretically, the theoretical capacity of LiMn 2 O 4 is 148 mAh / g, which is lower than that of LiCoO 2 or LiNiO 2 , but it is highly competitive in terms of price, so the expectation of lithium secondary battery as a cathode active material is very high. Under equilibrium conditions, Li / LiMn 2 O 4 cells are inserted into the spinel framework of Mn 2 O 4 at about 4 V during discharge to form an isotropic structure of LiMn 2 O 4 . In the charge / discharge curve, a flat curve appears at about 4 V, where Li 1 + δ Mn 2 O 4 is formed on the surface of the Li x Mn 2 O 4 electrode, where the average oxidation number of manganese is less than 3.5 The average molecular formula inside the electrode is Li 1 -? Mn 2 O 4 , and the oxidation number of manganese is greater than 3.5. As a result, there is a difference in the Jahn-Taller effect between the surface and the interior of the electrode, which leads to a rapid decrease in the discharge capacity as the cycle repeats.

본 발명은 양극으로 리튬-크롬-망간 산화물을 사용하여 리튬 2차 전지를 구성함으로써, 종래의 전지들과는 달리 높은 영역에서의 용량과 성능이 향상된 5V급 리튬 2차 전지를 제공하는데 그 목적이 있다.An object of the present invention is to provide a 5V-class lithium secondary battery having improved capacity and performance in a high region, unlike conventional batteries, by constituting a lithium secondary battery using lithium-chromium-manganese oxide as an anode.

상술한 목적을 달성하기 위한 본 발명에 따른 5 V급 리튬 2차 전지 및 그 양극용 물질 리튬-크롬-망간 산화물 제조 방법은, 리튬 산화물, 크롬 산화물 및 망간 산화물을 이용하여 730℃ 내지 760 ℃의 온도 영역에서 40 시간 내지 50 시간 동안 열처리한 후, 서냉하여 리튬 2차 전지용 양극물질로 사용되는 LiCrxMn2-xO4(0<x≤0.9)를 형성시키는 것을 특징으로 한다.In order to accomplish the above object, the present invention provides a 5 V lithium secondary battery and a cathode material lithium-chromium-manganese oxide production method using the lithium oxide, chromium oxide, and manganese oxide at a temperature of 730 ° C. to 760 ° C. Treated in a temperature range of 40 to 50 hours, and then slowly cooled to form LiCr x Mn 2-x O 4 (0 < x &lt; = 0.9) used as a positive electrode material for a lithium secondary battery.

또한 5 V급 리튬 2차 전지는 LiCrxMn2-xO4(0<x≤0.5)로 이루어진 양극과, 리튬 금속, 리튬을 함유한 화합물 및 탄소 화합물 중 어느 하나로 이루어진 음극과, 액체 전해질 및 고분자 전해질 중 어느 하나로 이루어진 것을 포함하여 구성된 것을 특징으로 한다.Further, the 5 V class lithium secondary battery comprises a positive electrode made of LiCr x Mn 2-x O 4 (0 < x ? 0.5), a negative electrode made of a lithium metal, a compound containing lithium or a carbon compound, A polymer electrolyte, and a polymer electrolyte.

도 1은 본 발명에 따른 리튬-크롬-망간 산화물의 제조 공정을 도시한 흐름도.FIG. 1 is a flow chart showing a process for producing a lithium-chromium-manganese oxide according to the present invention. FIG.

도 2는 본 발명에 따른 리튬-크롬-망간 산화물의 X-선 회절 분석도.2 is an X-ray diffraction analysis of a lithium-chromium-manganese oxide according to the present invention.

도 3(a)는 본 발명에 따른 리튬-크롬-망간 산화물의 크롬 치환량에 따른 고전압 영역에서의 충방전 특성을 측정한 그래프도.FIG. 3 (a) is a graph showing the charge / discharge characteristics of a lithium-chromium-manganese oxide according to the present invention measured in a high voltage region according to the amount of chromium substitution.

도 3(b)는 본 발명에 따른 리튬-크롬-망간 산화물의 크롬 치환량에 따른 저전압 영역에서의 충방전 특성을 측정한 그래프도.FIG. 3 (b) is a graph showing the charge / discharge characteristics of the lithium-chromium-manganese oxide according to the present invention measured in a low voltage region according to the amount of chromium substitution. FIG.

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 리튬-크롬-망간 산화물의 제조 공정을 도시한 흐름도이다.1 is a flow chart illustrating a process for producing a lithium-chromium-manganese oxide according to the present invention.

리튬-크롬-망간 산화물(LiCrxMn2-xO4, x=0, 1/8, 2/8, 3/8, 4/8, 5/8, 6/8)의 스피넬 화합물은 출발물질로 LiOH, Li2Co3및 LiNo3중 어느 하나의 리튬 산화물과, Cr2O3크롬 산화물, MnO2망간 산화물을 사용하여 제조하였다. 화학량론적 화합물(stoichiometric compound)을 제조하기 위하여 Cr2O3와 MnO2는 정확한 몰비로 평량(11)하였으며, Li2CO3의 경우 Li의 원자량이 매우 작고 증기압이 높기 때문에 5 % 정도 과량으로 섞어주었다. 상기의 분말들은 고체 상태에서 혼합과 갈기를 병행한 후 압력을 가하여 시편으로 제조하였다. 상기의 시편을 600 ℃에서 약 5시간 정도 하소(calcination)한 후 이를 상온에서 곱게 갈고 시편으로 제조(12)하였다. 상기의 시편을 700 ℃∼800 ℃ 온도 범위에서 20 ∼ 60 시간 소결(sintering)하여 리튬-크롬-망간 산화물(LiCrxMn2-xO4)을 제조(13, 14, 및 15)하였다. 각 시편의 물성을 조사한 결과 소결 온도 750 ℃, 48 시간이 최적 조건임을 알 수 있었으며, 소결 후 상온까지의 냉각속도는 1 ℃/min이 가장 좋은 것으로 나타났다.The spinel compound of lithium-chromium-manganese oxide (LiCr x Mn 2-x O 4 , x = 0, 1/8, 2/8, 3/8, 4/8, 5/8, 6/8) , Lithium oxide of any one of LiOH, Li 2 Co 3 and LiNo 3 , Cr 2 O 3 chromium oxide, and MnO 2 manganese oxide. In order to produce a stoichiometric compound, Cr 2 O 3 and MnO 2 were weighed at an exact molar ratio (11). In the case of Li 2 CO 3 , the atomic mass of Li was very small and the vapor pressure was high. gave. The above powders were mixed in a solid state, followed by mixing and grinding, and then subjected to pressure to prepare specimens. The above specimens were calcined at 600 ° C for about 5 hours and finely ground at room temperature (12). The samples were sintered at a temperature of 700 ° C. to 800 ° C. for 20 to 60 hours to prepare lithium-chromium-manganese oxide (LiCr x Mn 2-x O 4 ) (13, 14 and 15). As a result of investigating the physical properties of each specimen, it was found that the optimum conditions were sintering temperature of 750 ℃ for 48 hours and the cooling rate to room temperature after sintering was 1 ℃ / min.

도 2는 본 발명에 따른 리튬-크롬-망간 산화물의 X-선 회절 분석도로써, 제조된 시료가 공간군(space group) Fd3m을 갖는 스피넬(spinel) 상임을 확인할 수 있다. 또한 치환된 크롬의 양이 증가할수록 격자상수(cell parameter)가 감소되는 것을 알 수 있는데, 이는 치환된 크롬의 양이 증가할수록 더 좋은 결정성을 나타냄을 의미한다. 하기 표 1에 치환된 크롬의 양에 따른 격자상수를 나타내었다.FIG. 2 is an X-ray diffraction chart of a lithium-chromium-manganese oxide according to the present invention. As a result, it can be confirmed that the prepared sample is a spinel having a space group Fd3m. It can be seen that as the amount of substituted chromium increases, the cell parameter decreases. This means that the higher the amount of substituted chromium, the better the crystallinity. Table 1 shows the lattice constant according to the amount of substituted chromium.

치환된 크롬의 양(x)The amount of substituted chromium (x) 격자상수(Å)Lattice constant (A) x=0.00x=0.12x=0.25x=0.37x=0.50x=0.62x=0.70x = 0.00x = 0.12x = 0.25x = 0.37x = 0.5x = 0.62x = 0.70 8.2368.2318.2168.2078.1968.1948.1938.2368.2318.2168.2078.1968.1948.193

리튬-크롬-망간 산화물의 전극특성을 알아보기 위하여 Li/LiCrxMn2-xO4의 반쪽 전지를 구성하였다. 양극은 LiCrxMn2-xO4(wt. 89 %)에 도전제로 아세틸렌 블랙(acetylene black ; wt. 10%), 바인더로 PTFE(poly-tetrafluoro-ethylene ; wt. 1%)를 이용하였고, 음극으로는 리튬 금속을, 전해질로는 에틸렌 카보네이트(ethylene carbonate) 및 디메틸 카보나이트(dimethyl carbonate)를 2:1의 부피비로 혼합한 용매에 1M LiPF6를 녹인 것을 사용하였다.To investigate the electrode characteristics of lithium-chromium-manganese oxide, a half cell of Li / LiCr x Mn 2-x O 4 was constructed. The anode was prepared by using acetylene black (wt. 10%) as a conductive agent and polytetrafluoro-ethylene (PTFE) 1 wt% as a binder in LiCr x Mn 2-x O 4 (wt. Lithium metal was used as a cathode, and 1M LiPF 6 was dissolved in a solvent in which ethylene carbonate and dimethyl carbonate were mixed in a volume ratio of 2: 1 as an electrolyte.

일반적으로 LixMn2O4(0≤x≤1)은 3.5 V부터 5.0 V의 영역에서 구조 내의 Li이 모두 빠져나오며 3.5 V ∼ 4.3 V에서 약 70 %이상의 Li이 빠져 나온다. 제작된 전지의 충방전 실험은 전압과 충방전 특성과의 관계를 좀더 구체적으로 알아보기 위해 고전압(5.3 V ∼ 4.3 V)과 저전압(4.3 V ∼ 3.5 V)영역으로 나누어 각각 측정하였으며 고전압과 저전압 영역에서 각각의 시료가 첫 번째 방전시 나타내는 방전용량의 변화와 전압과의 관계 및 충방전시 삽입/추출되는 Li+이온의 양을 측정하였다. 측정 조건은 C/15(∼265 μA)의 일정한 전류를 흘려주는 정전류법을 사용하여 구성된 반쪽 전지에 충방전을 반복 실시하였다.Generally, Li x Mn 2 O 4 (0 ≤ x ≤ 1) exits all Li in the structure in the region of 3.5 V to 5.0 V and more than 70% of Li escapes from 3.5 V to 4.3 V. The charge and discharge tests of the fabricated battery were divided into high voltage (5.3V ~ 4.3V) and low voltage (4.3V ~ 3.5V) areas in order to investigate the relationship between voltage and charge / discharge characteristics. The relationship between the change in discharge capacity and the voltage of each sample during the first discharge and the amount of Li + ions inserted / extracted during charging / discharging were measured. The measurement condition was repeatedly charged and discharged in a half cell constituted by using a constant current method of flowing a constant current of C / 15 (~ 265 μA).

도 3(a)는 본 발명에 따른 리튬-크롬-망간 산화물의 크롬 치환량에 따른 고전압 영역에서의 충방전 특성을 측정한 그래프도로써, 고전압 영역(4.3 V ∼ 5.2 V)에서의 LiCrxMn2-xO4(0≤x≤0.7)에 대한 충방전 특성을 측정한 결과 크롬의 양이 증가할수록 방전 용량의 증가와 방전 전압의 상승이 나타남을 알 수 있다. 또한 크롬의 양이 0.5 이상에서는 방전 용량이 포화됨을 알 수 있다.FIG. 3 (a) is a graph showing the charge / discharge characteristics of a lithium-chromium-manganese oxide according to the present invention measured in a high-voltage region according to the amount of chromium substitution. As shown in FIG. 3, LiCr x Mn 2 As a result of measurement of the charge / discharge characteristics of -x O 4 (0? x? 0.7), it can be seen that as the amount of chromium increases, the discharge capacity increases and the discharge voltage increases. Also, when the amount of chromium is 0.5 or more, the discharge capacity is saturated.

도 3(b)는 본 발명에 따른 리튬-크롬-망간 산화물의 크롬 치환량에 따른 저전압 영역에서의 충방전 특성을 측정한 그래프도로써, 저전압 영역(3.5 V ∼ 4.3 V)에서의 상기 LiCrxMn2-xO4(0≤x≤0.7)에 대한 충방전 특성은 고전압 영역과는 달리 크롬의 양이 증가할수록 방전 용량이 감소함을 알 수 있다. 그러나 크롬의 양이 0.25 미만일 경우 충방전의 가역성(reversibility)이 향상되는 것으로 나타났다. 크롬이 0.12 만큼 치환된 시료에 대하여는 초기 방전 용량의 증가가 관찰된다. 스피넬 망간 산화물의 경우 3.5 V ∼ 4.3 V의 영역에서 삽입(intercalation)되는 리튬의 양을 측정하여 본 결과 0.75 ∼ 0.8의 리튬이 반응에 관여한다. 리튬 이온의 반응은 같은 수의 Mn3+의 산화/환원 반응을 수반하게 된다. 따라서 크롬의 양이 0.2 미만으로 치환되었을 경우 이는 직접적으로 반응에 관여하지 않는 망간의 양에 해당하며, 따라서 방전 용량의 감소가 나타나지 않는 것으로 예상된다. 그러나 0.2이상의 크롬이 치환되면 직접적으로 반응에 관여하는 망간이 적어지므로 방전 용량은 감소한다.FIG. 3 (b) is a graph illustrating the charge / discharge characteristics of the lithium-chromium-manganese oxide according to the present invention in the low voltage region according to the amount of chromium substitution. The LiCr x Mn 2-x O 4 (0 ? X? 0.7), the discharge capacity decreases as the amount of chromium increases, unlike the high voltage region. However, when the amount of chromium is less than 0.25, reversibility of charge and discharge is improved. An increase in the initial discharge capacity is observed for samples in which chromium is replaced by 0.12. In the case of spinel manganese oxide, the amount of lithium intercalated in the range of 3.5 V to 4.3 V is measured. As a result, lithium of 0.75 to 0.8 is involved in the reaction. The reaction of lithium ions involves the same number of Mn 3+ oxidation / reduction reactions. Therefore, when the amount of chromium is changed to less than 0.2, it corresponds to the amount of manganese which is not directly involved in the reaction, and therefore, the reduction of the discharge capacity is not expected to occur. However, when chromium of 0.2 or more is substituted, the manganese which is directly involved in the reaction is decreased, so the discharge capacity is decreased.

즉, 결론적으로 리튬-크롬-망간 산화물에 대한 고전압 영역과 저전압 영역의 싸이클 특성을 관찰한 결과 고전압 영역에서는 크롬의 양이 증가할수록 초기 방전용량은 증가하지만 빠른 방전 용량의 감소를 나타내었으며 저전압 영역에서는 일반적으로 크롬의 양이 증가할수록 방전 용량의 감소가 적어지는 것으로 나타났다. 특히 크롬 양이 0.12에서는 고전압과 저전압 영역 모두에서 좋은 싸이클 특성이 관찰되었다.In conclusion, as a result of observing the cycle characteristics of the high-voltage region and the low-voltage region for the lithium-chromium-manganese oxide, as the amount of chromium increases in the high voltage region, the initial discharge capacity increases but the discharge capacity decreases rapidly. Generally, as the amount of chromium increases, the decrease in discharge capacity decreases. Particularly, in the case of chromium amount of 0.12, good cycle characteristics were observed in both high voltage and low voltage regions.

상술한 바와 같이 본 발명에 의하면, 종래의 리튬 2차 전지와 달리 양극으로 리튬-크롬-망간 산화물을 사용하면 사이클 반복에 따른 용량 저하가 작으며, 고전압 영역에서의 용량이 크므로 5V 급 전지로의 적용이 가능한 탁월한 효과가 있다.As described above, according to the present invention, when the lithium-chromium-manganese oxide is used as the anode in contrast to the conventional lithium secondary battery, the capacity decrease due to cycle repetition is small and the capacity in the high voltage region is large. It is possible to apply the present invention.

Claims (3)

리튬 산화물, 크롬 산화물 및 망간 산화물을 이용하여 730℃ 내지 760 ℃의 온도 영역에서 40 시간 내지 50 시간 동안 열처리한 후, 서냉하여 리튬 2차 전지용 양극물질로 사용되는 LiCrxMn2-xO4(0<x≤0.9)를 형성시키는 것을 특징으로 하는 리튬 2차 전지 양극용 물질 리튬-크롬-망간 산화물 제조 방법.Treated with lithium oxide, chromium oxide and manganese oxide in a temperature range of 730 ° C to 760 ° C for 40 to 50 hours and then gradually cooled to obtain LiCr x Mn 2-x O 4 ( 0 < x &lt; / = 0.9). &Lt; / RTI &gt; 제 1 항에 있어서,The method according to claim 1, 상기 리튬 산화물은 LiOH, Li2Co3및 LiNo3중 적어도 어느 하나를 사용하고, 상기 크롬 산화물은 Cr2O3을 사용하며, 상기 망간 산화물은 MnO2를 사용하는 것을 특징으로 하는 리튬 2차 전지 양극용 물질 리튬-크롬-망간 산화물 제조 방법.Wherein the lithium oxide uses at least one of LiOH, Li 2 Co 3, and LiNo 3 , the chromium oxide uses Cr 2 O 3 , and the manganese oxide uses MnO 2 . Method for preparing a lithium-chromium-manganese oxide material for a cathode. LiCrxMn2-xO4(0<x≤0.5)로 이루어진 양극과,A positive electrode made of LiCr x Mn 2-x O 4 (0 < x ? 0.5) 리튬 금속, 리튬을 함유한 화합물 및 탄소 화합물 중 어느 하나로 이루어진 음극과,A negative electrode made of any one of lithium metal, lithium-containing compound, and carbon compound; 액체 전해질 및 고분자 전해질 중 어느 하나로 이루어진 것을 포함하여 구성된 것을 특징으로 하는 5 V급 리튬 2차 전지.A lithium ion secondary battery, a liquid electrolyte, and a polymer electrolyte.
KR1019970065695A 1997-12-03 1997-12-03 5 Ⅴ-class lithium secondary battery and its cathode material Lithium-chromium-manganese oxide manufacturing method KR19990047338A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019970065695A KR19990047338A (en) 1997-12-03 1997-12-03 5 Ⅴ-class lithium secondary battery and its cathode material Lithium-chromium-manganese oxide manufacturing method
JP10212854A JPH11176444A (en) 1997-12-03 1998-07-28 Manufacture of lithium-chrome-manganese oxide, and lithium secondary battery utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970065695A KR19990047338A (en) 1997-12-03 1997-12-03 5 Ⅴ-class lithium secondary battery and its cathode material Lithium-chromium-manganese oxide manufacturing method

Publications (1)

Publication Number Publication Date
KR19990047338A true KR19990047338A (en) 1999-07-05

Family

ID=19526384

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970065695A KR19990047338A (en) 1997-12-03 1997-12-03 5 Ⅴ-class lithium secondary battery and its cathode material Lithium-chromium-manganese oxide manufacturing method

Country Status (2)

Country Link
JP (1) JPH11176444A (en)
KR (1) KR19990047338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467325B1 (en) * 2002-11-29 2005-01-24 한국전자통신연구원 Synthesis of layered lithium-chromium-manganese oxides as cathode material for lithium batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5431452B2 (en) * 2008-04-07 2014-03-05 カーネギー メロン ユニバーシティ Aqueous electrolyte-based electrochemical secondary energy storage device using sodium ions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467325B1 (en) * 2002-11-29 2005-01-24 한국전자통신연구원 Synthesis of layered lithium-chromium-manganese oxides as cathode material for lithium batteries
US6908708B2 (en) 2002-11-29 2005-06-21 Electronics And Telecommunications Research Institute Method of preparing layered lithium-chromium-manganese oxides for lithium batteries

Also Published As

Publication number Publication date
JPH11176444A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
Fey et al. Synthesis, characterization and cell performance of inverse spinel electrode materials for lithium secondary batteries
Gao et al. Novel LiNi1− x Ti x/2Mg x/2 O 2 Compounds as Cathode Materials for Safer Lithium‐Ion Batteries
CN108923044B (en) Compositions containing doped nickelate compounds
TWI437753B (en) Metal oxide coated positive electrode materials for lithium-based batteries
EP1130663B1 (en) Positive electrode material for battery and nonaqueous electrolyte secondary battery
US5700442A (en) Insertion compounds based on manganese oxide usable as the positive electrode active material in a lithium battery
CN112262109A (en) O3/P2 mixed phase sodium-containing doped layered oxide material
EP1132985A2 (en) Positive electrode material for nonaqueous electrolyte secondary battery and battery using the same
KR20020031322A (en) Method for producing cathode active material and method for manufacturing nonaqueous electrolyte battery
US7771875B2 (en) Positive electrodes for rechargeable batteries
US10516156B2 (en) Chlorinated lithium manganese oxide spinel cathode material with charge transfer catalyst coating, method of preparing the same, and Li electrochemical cell containing the same
JP2023093555A (en) Cathode active material for lithium-ion secondary batteries, method for manufacturing cathode active material for lithium-ion secondary batteries, and lithium-ion secondary battery
KR100262852B1 (en) A positive active material lixmymn-2-yo4 and its manufacturing method
KR100266074B1 (en) Lifemn2-xo4 as positive electrode material for 5v lithium secondary batteries
KR20010063879A (en) Mn-based positive active material for Li-ion battery and method of preparing the same
Lu et al. Chromium-ion doped spinel lithium manganate nanoparticles derived from the sol-gel process.
KR19990047338A (en) 5 Ⅴ-class lithium secondary battery and its cathode material Lithium-chromium-manganese oxide manufacturing method
KR100269249B1 (en) Licoxmn2-xo4 as positive electrode material for 5v lithium secondary batteries
Mancini et al. Long cycle life Li–Mn–O defective spinel electrodes
JP3746099B2 (en) Cathode active material for lithium battery and method for producing the same
JP2002184404A (en) Positive electrode material and nonaqueous electrolyte battery
KR100346546B1 (en) A positive electrode plate for a lithium secondary battery
JP7173275B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, lithium ion secondary battery
JP7164006B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, lithium ion secondary battery
JPH09241026A (en) Lithium nickel multiple oxide, its production and it use

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application