JPH111762A - Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance - Google Patents

Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance

Info

Publication number
JPH111762A
JPH111762A JP15231497A JP15231497A JPH111762A JP H111762 A JPH111762 A JP H111762A JP 15231497 A JP15231497 A JP 15231497A JP 15231497 A JP15231497 A JP 15231497A JP H111762 A JPH111762 A JP H111762A
Authority
JP
Japan
Prior art keywords
cemented carbide
coating layer
hard coating
cutting tool
coated cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15231497A
Other languages
Japanese (ja)
Other versions
JP3536593B2 (en
Inventor
Toshikatsu Sudo
俊克 須藤
Tetsuya Tanaka
徹也 田中
Keiichi Sakurai
恵一 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP15231497A priority Critical patent/JP3536593B2/en
Publication of JPH111762A publication Critical patent/JPH111762A/en
Application granted granted Critical
Publication of JP3536593B2 publication Critical patent/JP3536593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cemented carbide, having a hard coating layer excellent in wear resistance. SOLUTION: The cutting tool made of surface coated cemented carbide is produced by forming, by physical vapor deposition, a hard coating layer composed of (Ti, Al)N having a composition formula, for arc ion plating formation, of (Ti1-x Alx )N [where (x) stands for 0.3-0.7 by atomic ratio] to 1-10 μm average layer thickness on the surface of a base material of tungsten-carbide- base cemented carbide or a base material of titanium carbonitride type cermet. At this time, in the X-ray diffraction of the cutting tool made of surface coated cemented carbide using a Cukα ray as a radiation source, an X-ray diffraction pattern, where the maximum diffraction peak height occurs at the diffraction angle (2θ) in the range of 42.5 to 44.5 degrees among the diffraction peaks of the (Ti, Al)N constituting the hard coating layer, is exhibited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、硬質被覆層がす
ぐれた耐摩耗性を有し、したがって例えば鋼などの連続
切削や断続切削で長期に亘ってすぐれた切削性能を発揮
し、工具寿命の延命化を可能ならしめる表面被覆超硬合
金製切削工具(以下、被覆超硬工具と云う)に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a hard coating layer having excellent wear resistance, and therefore, exhibits excellent cutting performance over a long period of time in continuous cutting or interrupted cutting of, for example, steel, and has a long tool life. The present invention relates to a cutting tool made of a surface-coated cemented carbide (hereinafter, referred to as a coated cemented carbide tool) capable of extending the life.

【0002】[0002]

【従来の技術】従来、一般に、例えば図3に概略説明図
で示される物理蒸着装置の1種であるアークイオンプレ
ーティング装置を用い、ヒータで装置内を、例えば雰囲
気を20mtorrの真空として、500℃の温度に加
熱した状態で、アノード電極と所定組成を有するTi−
Al合金がセットされたカソード電極(蒸発源)との間
に、例えば電圧:35V、電流:90Aの条件でアーク
放電を発生させ、同時に装置内に反応ガスとして窒素ガ
スを導入し、一方炭化タングステン(以下、WCで示
す)基超硬合金または炭窒化チタン(以下、TiCNで
示す)基サーメットからなる基体(以下、これらを総称
して超硬基体と云う)には、例えばー200Vのバイア
ス電圧を印加した条件で、前記超硬合金基体の表面に、
例えば特開昭62−56565号公報に記載されるよう
に、TiとAlの複合窒化物[以下、(Ti,Al)N
で示す]で構成された硬質被覆層を2〜20μmの平均
層厚で蒸着することにより被覆超硬工具を製造すること
が知られている。また、これらの被覆超硬工具が、例え
ば鋼などの連続切削や断続切削に用いられることも良く
知られるところである。
2. Description of the Related Art Conventionally, an arc ion plating apparatus, which is a kind of physical vapor deposition apparatus schematically shown in FIG. 3, is generally used, and the inside of the apparatus is heated to 500 mtorr, for example, by a heater. In the state heated to a temperature of ° C., the anode electrode and Ti-
An arc discharge is generated between the cathode electrode (evaporation source) on which the Al alloy is set, for example, under the conditions of a voltage: 35 V and a current: 90 A. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas, while tungsten carbide is introduced. A substrate made of a base cemented carbide (hereinafter, referred to as WC) or a cermet based on titanium carbonitride (hereinafter, referred to as TiCN) (hereinafter, these are collectively referred to as a cemented carbide substrate) has a bias voltage of -200 V, for example. Under the conditions of applying, the surface of the cemented carbide substrate,
For example, as described in JP-A-62-56565, a composite nitride of Ti and Al [hereinafter, (Ti, Al) N
It is known to produce a coated superhard tool by depositing a hard coating layer constituted by the following formula] with an average layer thickness of 2 to 20 μm. It is also well known that these coated carbide tools are used for continuous cutting or interrupted cutting of steel, for example.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削装置
のFA化はめざましく、かつ切削加工の低コスト化に対
する要求も強く、これに伴い、切削工具には使用寿命の
延命化が強く望まれているが、上記の従来被覆超硬工具
は、これらの要求に十分満足に対応できるだけの耐摩耗
性を具備するものではなく、したがってより一段と長い
使用寿命を示す被覆超硬工具の開発が望まれている。
On the other hand, in recent years, the use of FA in cutting devices has been remarkable, and there has been a strong demand for lowering the cost of cutting. Accordingly, it has been strongly desired that cutting tools have a longer service life. However, the above-mentioned conventional coated carbide tools do not have sufficient wear resistance to meet these requirements, and therefore, there is a demand for the development of a coated carbide tool having a longer service life. ing.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬工具を構成
する硬質被覆層に着目し、特にこれの耐摩耗性向上を図
るべく研を行った結果、 (a)一般に上記の従来被覆超硬工具の硬質被覆層を構
成する(Ti,Al)Nは、上記の通り図3に例示され
るアークイオンプレーティング装置を用い、 雰囲気圧力(真空度):5〜30mtorr、 雰囲気温度:300〜700℃、 アーク放電電流:80〜100A、 アーク放電電圧:10〜50V、 基体へのバイアス電圧:−150〜−300V、 とした条件で形成されていること。 (b)上記(a)の蒸着手段で形成された(Ti,A
l)N層が硬質被覆層を構成する被覆超硬工具は、Cu
kα線を線源として用いたX線回折で、図2に例示され
るX線回折パターンを示し、図2に示される通り35.
5〜37.5度、42.5〜44.5度、および61.
54.5度のそれぞれの範囲内の回折角(2θ)に回折
ピークが現れるが、これらの回折ピークのうちの35.
5〜37.5度の範囲内の回折角(2θ)に最高回折ピ
ーク高さが現れること。 (c)同じく図3に例示されるアークイオンプレーティ
ング装置において、これのカソード電極(蒸発源)にセ
ットされるTi−Al合金の組成を、組成式:(Ti
1-x Alx )N(ただし、xは原子比で0.3〜0.7
を示す)を満足する硬質被覆層が得られる組成に特定し
た上で、上記(a)の蒸着条件のうち、アーク放電電流
およびバイアス電圧をいずれも上げて、それぞれ200
〜250Aおよび−30〜−80Vとし、その他の条件
は同じとした条件、すなわち、 雰囲気圧力(真空度):5〜30mtorr、 雰囲気温度:300〜700℃、 アーク放電電流:200〜250A、 アーク放電電圧:10〜50V、 基体へのバイアス電圧:−30〜−−80V、 とした条件で、超硬基体の表面に1〜10μmの平均層
厚で(Ti,Al)N層の形成を行うと、この(Ti,
Al)N層が形成された被覆超硬工具は切削加工できわ
めいすぐれた耐摩耗性を長期に亘って発揮すること。 (d)上記(c)の蒸着条件で形成された(Ti,A
l)N層を硬質被覆層とする被覆超硬工具を、上記
(b)におけると同じくCukα線を線源として用いた
X線回折で観察すると、図1に例示されるX線回折パタ
ーンを示し、図1に示される通り硬質被覆層を構成する
(Ti,Al)Nは42.5〜44.5度の範囲内の回
折角(2θ)に最高回折ピーク高さが現れるようになる
こと。以上(a)〜(d)に示される研究結果を得たの
である。
Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, attention was paid to the hard coating layer constituting the above-mentioned conventional coated carbide tool, and in particular, the grinding was carried out to improve the wear resistance of the hard coating layer. (Ti, Al) N constituting the hard coating layer of the tool is obtained by using the arc ion plating apparatus illustrated in FIG. 3 as described above, the atmospheric pressure (degree of vacuum): 5 to 30 mtorr, and the atmospheric temperature: 300 to 700. C., arc discharge current: 80 to 100 A, arc discharge voltage: 10 to 50 V, bias voltage to the substrate: -150 to -300 V. (B) (Ti, A) formed by the vapor deposition means of (a) above
l) The coated carbide tool in which the N layer constitutes the hard coating layer is Cu
2 shows an X-ray diffraction pattern exemplified in FIG. 2 by X-ray diffraction using kα ray as a radiation source, and as shown in FIG.
5-37.5 degrees, 42.5-44.5 degrees, and 61.
Diffraction peaks appear at diffraction angles (2θ) within the respective ranges of 54.5 degrees, and 35.5 of these diffraction peaks.
The highest diffraction peak height appears at a diffraction angle (2θ) within the range of 5 to 37.5 degrees. (C) In the arc ion plating apparatus also illustrated in FIG. 3, the composition of the Ti—Al alloy set in the cathode electrode (evaporation source) of the apparatus is represented by a composition formula: (Ti
1-x Al x ) N (where x is an atomic ratio of 0.3 to 0.7)
Is specified, and the arc discharge current and the bias voltage are increased by 200% in each of the vapor deposition conditions (a).
~ 250 A and -30 to -80 V, and other conditions were the same, namely, atmosphere pressure (degree of vacuum): 5 to 30 mtorr, atmosphere temperature: 300 to 700 ° C, arc discharge current: 200 to 250 A, arc discharge When a (Ti, Al) N layer is formed on the surface of the super hard substrate with an average layer thickness of 1 to 10 μm under the following conditions: voltage: 10 to 50 V, bias voltage to the substrate: −30 to −80 V , This (Ti,
The coated carbide tool on which the Al) N layer is formed exhibits excellent wear resistance over a long period of time by cutting. (D) (Ti, A) formed under the vapor deposition conditions of (c) above.
1) When the coated carbide tool having the N layer as the hard coating layer is observed by X-ray diffraction using the Cukα ray as the radiation source as in (b) above, an X-ray diffraction pattern exemplified in FIG. 1 is obtained. As shown in FIG. 1, (Ti, Al) N constituting the hard coating layer has a maximum diffraction peak height at a diffraction angle (2θ) within the range of 42.5 to 44.5 degrees. The research results shown in (a) to (d) above were obtained.

【0005】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、アークイオン
プレーティング形成の組成式:(Ti1-x Alx )N
(ただし、xは原子比で0.3〜0.7を示す)を有す
る(Ti,Al)Nからなる硬質被覆層を1〜10μm
の平均層厚で物理蒸着してなる被覆超硬工具にして、C
ukα線を線源として用いた上記被覆超硬工具のX線回
折で、上記硬質被覆層を構成する上記(Ti,Al)N
の回折ピークのうち、42.5〜44.5度の範囲内の
回折角(2θ)に最高回折ピーク高さが現れるX線回折
パターンを示してなる、硬質被覆層がすぐれた耐摩耗性
を有する被覆超硬工具に特徴を有するものである。
The present invention has been made based on the results of the above research, and has a composition formula for forming an arc ion plating on the surface of a cemented carbide substrate: (Ti 1-x Al x ) N
(Where x represents an atomic ratio of 0.3 to 0.7), a hard coating layer of (Ti, Al) N having a thickness of 1 to 10 μm.
Coated carbide tools made by physical vapor deposition with an average layer thickness of
X-ray diffraction of the coated cemented carbide tool using ukα ray as a radiation source, the (Ti, Al) N constituting the hard coating layer
The hard coating layer exhibits excellent wear resistance, which shows an X-ray diffraction pattern in which the highest diffraction peak height appears at a diffraction angle (2θ) in the range of 42.5 to 44.5 degrees among the diffraction peaks. The coated carbide tool has a feature.

【0006】なお、この発明の被覆超硬工具において、
硬質被覆層を構成する(Ti,Al)NのAlはTiC
Nに対して硬さを高め、もって耐摩耗性を向上させるた
めに固溶するものであり、したがって組成式:(Ti
1-x Alx )NのX値が0.3未満では所望の耐摩耗性
を確保することができず、一方その値が0.7を越える
と、切刃に欠けやチッピングが発生し易くなると云う理
由によりX値を0.3〜0.7(原子比)と定めたので
ある。また、同じく硬質被覆層の平均層厚を1〜10μ
mとしたのは、その層厚が1μm未満では所望のすぐれ
た耐摩耗性を確保することができず、一方その層厚が1
0μmを越えると切刃に欠けやチッピングが発生し易く
なると云う理由によるものである。さらに、この発明の
被覆超硬工具に、これの使用前および使用後の識別を容
易にするために、最表面層として金色の色調を有する窒
化チタン(TiN)層を0.1〜1μmの平均層厚で蒸
着してもよい。
[0006] In the coated carbide tool of the present invention,
Al of (Ti, Al) N constituting the hard coating layer is TiC
N to form a solid solution in order to increase the hardness with respect to N and thereby improve the wear resistance.
If the X value of 1-x Al x ) N is less than 0.3, the desired wear resistance cannot be ensured. On the other hand, if the value exceeds 0.7, chipping and chipping of the cutting edge are liable to occur. For this reason, the X value was determined to be 0.3 to 0.7 (atomic ratio). Also, the average thickness of the hard coating layer is 1 to 10 μm.
When the thickness of the layer is less than 1 μm, the desired excellent wear resistance cannot be secured, while the thickness of the layer is 1 μm.
This is because if it exceeds 0 μm, chipping and chipping of the cutting edge are likely to occur. Further, in order to facilitate the discrimination before and after use of the coated carbide tool of the present invention, a titanium nitride (TiN) layer having a golden color tone as an outermost surface layer has an average thickness of 0.1 to 1 μm. It may be deposited with a layer thickness.

【0007】[0007]

【発明の実施の形態】ついで、この発明の被覆超硬工具
を実施例により具体的に説明する。原料粉末として、い
ずれも1〜3μmの平均粒径を有するWC粉末、TiC
粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉
末、Cr3 2 粉末、TiN粉末、TaN粉末、および
Co粉末を用意し、これら原料粉末を、表1に示される
配合組成に配合し、ボールミルで72時間湿式混合し、
乾燥した後、1.5ton/cm2 の圧力で圧粉体にプ
レス成形し、この圧粉体を真空中、温度:1400℃に
1時間保持の条件で焼結し、焼結後、切刃部分にR:
0.05のホーニング加工を施してISO規格・SPG
A120408のチップ形状をもったWC基超硬合金製
の超硬基体A1〜A10を形成した。また、原料粉末と
して、いずれも0.5〜2μmの平均粒径を有するTi
CN(重量比でTiC/TiN=50/50)粉末、M
2 C粉末、ZrC粉末、NbC粉末、TaC粉末、W
C粉末、Co粉末、およびNi粉末を用意し、これら原
料粉末を、表2に示される配合組成に配合し、ボールミ
ルで24時間湿式混合し、乾燥した後、1ton/cm
2 の圧力で圧粉体にプレス成形し、この圧粉体を10t
orrの窒素雰囲気中、温度:1540℃に1時間保持
の条件で焼結し、焼結後、切刃部分にR:0.03のホ
ーニング加工を施してISO規格・SEKN1203A
FEN1のチップ形状をもったTiCN系サーメット製
の超硬基体B1〜B6を形成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide tool of the present invention will be specifically described with reference to examples. WC powder, TiC having an average particle diameter of 1 to 3 μm,
Powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder were prepared, and these raw material powders were blended in the composition shown in Table 1 to form a ball mill. For 72 hours,
After drying, it is pressed into a green compact at a pressure of 1.5 ton / cm 2 , and the green compact is sintered in a vacuum at a temperature of 1400 ° C. for 1 hour, and after sintering, the cutting edge is cut. R in part:
Honing process of 0.05 and ISO standard / SPG
Carbide substrates A1 to A10 made of a WC-based cemented carbide having a chip shape of A120408 were formed. In addition, as raw material powder, Ti having an average particle size of 0.5 to 2 μm is used.
CN (TiC / TiN = 50/50 by weight ratio) powder, M
o 2 C powder, ZrC powder, NbC powder, TaC powder, W
A C powder, a Co powder, and a Ni powder were prepared, and these raw material powders were blended in the blending composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and then dried at 1 ton / cm.
Press molding into a green compact at a pressure of 2
In a nitrogen atmosphere of orr, sintering is performed at a temperature of 1540 ° C. for 1 hour, and after sintering, a honing process of R: 0.03 is performed on a cutting edge portion, and ISO standard SEKN1203A is applied.
Carbide substrates B1 to B6 made of TiCN-based cermet having a chip shape of FEN1 were formed.

【0008】ついで、これら超硬基体A1〜A10およ
びB1〜B6を、アセトン中で超音波洗浄し、乾燥した
状態で、それぞれ第3図に例示される通常のアークイオ
ンプレーティング装置に装入し、一方カソード電極(蒸
発源)として種々の成分組成をもったTi−Al合金を
装着し、装置内を排気して1×10-5torrの真空に
保持しながら、ヒーターで装置内を500℃に加熱した
後、Arガスを装置内に導入して1×10-3torrの
Ar雰囲気とし、この状態で超硬基体に−800vのバ
イアス電圧を印加して超硬基体表面をArガスボンバー
ト洗浄し、ついで装置内に反応ガスとして窒素ガスを導
入して、それぞれ表3、4に示される反応雰囲気温度を
保持しながら、同じく表3、4に示される反応雰囲気
(真空度)とすると共に、前記超硬基体に印加するバイ
アス電圧を下げて、表3、4に示される電圧とし、かつ
アーク放電電流およびアーク放電電圧をそれぞれ同じく
表3、4に示される条件として、前記カソード電極とア
ノード電極との間にアーク放電を発生させ、もって前記
超硬基体A1〜A10およびB1〜B6のそれぞれの表
面に、同じく表3、4に示されるX値および平均層厚を
もった(Ti,Al)Nからなる硬質被覆層を蒸着する
ことにより本発明被覆超硬工具1〜16および従来被覆
超硬工具1〜16をそれぞれ製造した。この結果得られ
た各種の被覆超硬工具について、その硬質被覆層表面を
Cukα線を線源として用いたX線回折で観察したとこ
ろ、蒸着条件のうちのアーク放電電流およびバイアス電
圧を相対的に高くして(Ti,Al)N層を形成した本
発明被覆超硬工具1〜16は、いずれも(Ti,Al)
Nの回折ピークのうち、42.5〜44.5度の範囲内
の回折角(2θ)に最高回折ピーク高さが現れるX線回
折パターンを示し、一方蒸着条件のうちのアーク放電電
流およびバイアス電圧が相対的に低い、従来蒸着条件で
(Ti,Al)N層を形成した従来被覆超硬工具1〜1
6は、いずれも(Ti,Al)Nの回折ピークのうち、
35.5〜37.5度の範囲内の回折角(2θ)に最高
回折ピーク高さが現れるX線回折パターンを示した。な
お、図1が本発明被覆超硬工具 のX線回折パターン
を示し、図2が従来被覆超硬工具 のX線回折パター
ンを示すものである。
Next, these super-hard substrates A1 to A10 and B1 to B6 are ultrasonically cleaned in acetone, dried, and charged into a usual arc ion plating apparatus illustrated in FIG. On the other hand, Ti-Al alloys having various component compositions are mounted as a cathode electrode (evaporation source), and the inside of the apparatus is evacuated and kept at a vacuum of 1 × 10 -5 torr while the inside of the apparatus is heated to 500 ° C. Then, Ar gas was introduced into the apparatus to form an Ar atmosphere of 1 × 10 −3 torr, and in this state, a −800 V bias voltage was applied to the super hard substrate to clean the surface of the super hard substrate with an Ar gas bombardment. Then, nitrogen gas was introduced into the apparatus as a reaction gas, and while maintaining the reaction atmosphere temperature shown in Tables 3 and 4, respectively, the reaction atmosphere (degree of vacuum) shown in Tables 3 and 4 was obtained. Then, the bias voltage applied to the cemented carbide substrate is lowered to the voltages shown in Tables 3 and 4, and the arc discharge current and the arc discharge voltage are also set to the conditions shown in Tables 3 and 4, respectively, under the conditions shown in Tables 3 and 4. An arc discharge was generated between the anode and the anode electrode, and the surface of each of the cemented carbide substrates A1 to A10 and B1 to B6 had the X value and average layer thickness shown in Tables 3 and 4 (Ti, The coated superhard tools 1 to 16 of the present invention and the conventionally coated superhard tools 1 to 16 were produced by depositing a hard coating layer made of Al) N. When the surface of the hard coating layer of each of the coated carbide tools obtained as a result was observed by X-ray diffraction using a Cukα ray as a radiation source, the arc discharge current and the bias voltage among the deposition conditions were relatively determined. Each of the coated carbide tools 1 to 16 of the present invention in which the (Ti, Al) N layer was formed by raising the height was (Ti, Al).
7 shows an X-ray diffraction pattern in which the highest diffraction peak height appears at a diffraction angle (2θ) within the range of 42.5 to 44.5 degrees among the diffraction peaks of N, while the arc discharge current and the bias among the deposition conditions are shown. Conventional coated carbide tools 1 to 1 having a (Ti, Al) N layer formed under conventional deposition conditions with relatively low voltage
6 is a diffraction peak of (Ti, Al) N
The X-ray diffraction pattern showed the highest diffraction peak height at a diffraction angle (2θ) within the range of 35.5 to 37.5 degrees. FIG. 1 shows the X-ray diffraction pattern of the coated carbide tool of the present invention, and FIG. 2 shows the X-ray diffraction pattern of the conventionally coated carbide tool.

【0009】つぎに、この結果得られた本発明被覆超硬
工具1〜10および従来被覆超硬工具1〜10について
は、 被削材:SCM440(硬さ:HB 220)の角材、 切削速度:120m/min.、 切込み:2.5mm、 送り:0.25mm/刃、 の条件での合金鋼の乾式断続切削(フライス切削)試験
を行ない、また本発明被覆超硬工具11〜16および従
来被覆超硬工具11〜16については、 被削材:SNCM440(硬さ:HB 220)の角材、 切削速度:300m/min.、 切込み:2mm.、 送り:0.15mm/刃、 の条件での合金鋼の乾式断続切削(フライス切削)試験
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅が
0.2mmに至るまでの切削時間を測定した。これらの
測定結果を表3、4に示した。
Next, the resulting coated carbide tools 1 to 10 of the present invention and the conventional coated carbide tools 1 to 10 obtained as described above are as follows: work material: square material of SCM440 (hardness: HB 220); cutting speed: 120 m / min. , Depth of cut: 2.5 mm, feed: 0.25 mm / tooth, a dry interrupted cutting (milling) test of alloy steel was performed, and the coated carbide tools 11 to 16 of the present invention and the conventionally coated carbide tools 11 -16: work material: square material of SNCM440 (hardness: HB 220), cutting speed: 300 m / min. , Depth of cut: 2 mm. , Feed: 0.15 mm / tooth, a dry intermittent cutting (milling) test of alloy steel was performed under the following conditions. In any cutting test, the cutting time until the flank wear width of the cutting edge reached 0.2 mm was determined. It was measured. Tables 3 and 4 show the measurement results.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 [Table 4]

【0014】[0014]

【発明の効果】表3、4に示される結果から、本発明被
覆超硬工具1〜16は、いずれも従来被覆超硬工具1〜
16に比してすぐれた耐摩耗性を発揮し、長い使用寿命
を示すことが明らかである。上述のように、この発明の
被覆超硬工具は、この種の従来被覆超硬工具に比して長
い使用寿命を示すので、切削装置のFA化および切削加
工の低コスト化に十分満足に対応することができるもの
である。
According to the results shown in Tables 3 and 4, all of the coated carbide tools 1 to 16 of the present invention are the same as those of the conventional coated carbide tools 1 to 16.
It is clear that it exhibits excellent wear resistance as compared with No. 16 and has a long service life. As described above, the coated carbide tool of the present invention has a longer service life than this type of conventional coated carbide tool, and therefore sufficiently satisfies the use of FA in a cutting device and a reduction in the cost of cutting. Is what you can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明被覆超硬工具 のX線回折パターンを
示す図である。
FIG. 1 is a view showing an X-ray diffraction pattern of a coated carbide tool of the present invention.

【図2】従来被覆超硬工具 のX線回折パターンを示
す図である。
FIG. 2 is a view showing an X-ray diffraction pattern of a conventional coated carbide tool.

【図3】アークイオンプレーティング装置の概略説明図
である。
FIG. 3 is a schematic explanatory view of an arc ion plating apparatus.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン系サーメット基体の表面に、アークイオン
プレーティング形成の組成式:(Ti1-x Alx )N
(ただし、xは原子比で0.3〜0.7を示す)を有す
るTiとAlの複合窒化物からなる硬質被覆層を1〜1
0μmの平均層厚で物理蒸着してなる表面被覆超硬合金
製切削工具にして、Cukα線を線源として用いた上記
表面被覆超硬合金製切削工具のX線回折で、上記硬質被
覆層を構成する上記TiとAlの複合窒化物の回折ピー
クのうち、42.5〜44.5度の範囲内の回折角(2
θ)に最高回折ピーク高さが現れるX線回折パターンを
示すことを特徴とする硬質被覆層がすぐれた耐摩耗性を
有する表面被覆超硬合金製切削工具。
1. A composition formula for forming an arc ion plating on the surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate: (Ti 1-x Al x ) N
(Where x represents an atomic ratio of 0.3 to 0.7), a hard coating layer made of a composite nitride of Ti and Al having a thickness of 1 to 1
A surface-coated cemented carbide cutting tool formed by physical vapor deposition with an average layer thickness of 0 μm, and the hard-coated layer was subjected to X-ray diffraction of the surface-coated cemented carbide cutting tool using a Cukα ray as a radiation source. Of the diffraction peaks of the composite nitride of Ti and Al constituting the above, the diffraction angle (22.5 to 44.5 degrees)
A cutting tool made of a surface-coated cemented carbide having a hard coating layer with excellent wear resistance, which shows an X-ray diffraction pattern in which the highest diffraction peak height appears at θ).
JP15231497A 1997-06-10 1997-06-10 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer Expired - Fee Related JP3536593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15231497A JP3536593B2 (en) 1997-06-10 1997-06-10 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15231497A JP3536593B2 (en) 1997-06-10 1997-06-10 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer

Publications (2)

Publication Number Publication Date
JPH111762A true JPH111762A (en) 1999-01-06
JP3536593B2 JP3536593B2 (en) 2004-06-14

Family

ID=15537823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15231497A Expired - Fee Related JP3536593B2 (en) 1997-06-10 1997-06-10 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer

Country Status (1)

Country Link
JP (1) JP3536593B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537133A (en) * 1999-02-17 2002-11-05 ユナキス・バルツェルス・アクチェンゲゼルシャフト Protective coating method for cutting tools and tool sets
JP2006181653A (en) * 2004-12-27 2006-07-13 Mitsubishi Materials Corp Surface coated thermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in intermittent heavy cutting
JP2006181654A (en) * 2004-12-27 2006-07-13 Mitsubishi Materials Corp Surface coated cubic boron nitride-base sintered material-made cutting tool having hard coating layer exhibiting excellent chipping resistance in intermittent heavy cutting for high-hardness steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537133A (en) * 1999-02-17 2002-11-05 ユナキス・バルツェルス・アクチェンゲゼルシャフト Protective coating method for cutting tools and tool sets
JP2010179458A (en) * 1999-02-17 2010-08-19 Oerlikon Trading Ag Truebbach Process for protective coating of machining tool and tool set
JP2006181653A (en) * 2004-12-27 2006-07-13 Mitsubishi Materials Corp Surface coated thermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in intermittent heavy cutting
JP2006181654A (en) * 2004-12-27 2006-07-13 Mitsubishi Materials Corp Surface coated cubic boron nitride-base sintered material-made cutting tool having hard coating layer exhibiting excellent chipping resistance in intermittent heavy cutting for high-hardness steel

Also Published As

Publication number Publication date
JP3536593B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
JP3052586B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP3451877B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP4461407B2 (en) Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting
JP2009166193A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP3536593B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer
JP3454148B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer
JP2800571B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP2932853B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance
JP3451878B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP3397058B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP2001162411A (en) Surface-coated cutting tool of cemented carbide provided with excellent abrasion resistance and chipping resistance
JP3451857B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JPH111764A (en) Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance
JP2000158206A (en) Surface-covering cemented carbide alloy cutting tool having its surface covering layer exhibiting excellent chipping resistance and wear resistance
JP3368794B2 (en) Surface-coated cermet throw-away type cutting insert with a hard coating layer with excellent fracture resistance
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3858256B2 (en) Cemented carbide end mill with excellent wear resistance and chipping resistance
JP3543255B2 (en) Surface coated cemented carbide end mill with hard coating layer showing excellent adhesion
JP3397060B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP3463502B2 (en) Surface-coated cermet throw-away type cutting insert with a hard coating layer with excellent fracture resistance
JP3397063B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP3397054B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JPH11804A (en) Cutting tool made of surface-coated hard sintered material excellent in pitching resistance
JPH10251830A (en) Surface coated cemented carbide-cutting tool having excellent chipping resistance in physical vapor-deposited coating layer
JPH10140328A (en) Cutting tool made of surface coated cemented carbide excellent in wear resistance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees