JPH11172385A - Nonoriented silicon steel sheet with low iron loss after magnetic annealing - Google Patents

Nonoriented silicon steel sheet with low iron loss after magnetic annealing

Info

Publication number
JPH11172385A
JPH11172385A JP9350165A JP35016597A JPH11172385A JP H11172385 A JPH11172385 A JP H11172385A JP 9350165 A JP9350165 A JP 9350165A JP 35016597 A JP35016597 A JP 35016597A JP H11172385 A JPH11172385 A JP H11172385A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
annealing
magnetic
magnetic annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9350165A
Other languages
Japanese (ja)
Other versions
JP3766745B2 (en
Inventor
Yoshihiko Oda
善彦 尾田
Nobuo Yamagami
伸夫 山上
Akira Hiura
昭 日裏
Yoshihiko Ono
義彦 小野
Yasushi Tanaka
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP35016597A priority Critical patent/JP3766745B2/en
Publication of JPH11172385A publication Critical patent/JPH11172385A/en
Application granted granted Critical
Publication of JP3766745B2 publication Critical patent/JP3766745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce iron loss after magnetic annealing without increasing costs by providing a specific composition consisting of C, Si, Mn, P, N, Al, S, Sb, Ti, and the blalance essentially Fe. SOLUTION: This steel sheet has a composition consisting of, by weight, <=0.005% C. <=1.7% Si, 0.05-1.0% Mn, <=0.2% P, $0.005% (including 0%) N. 0.1-1.0% Al, <=0.01%(including 0%) S, 0.001-0.05% Sb, 0.0005 0.01% Ti, and the balance essentially Fe. By combinedly adding Ti and Sb in particular among the elements in the composition, grain growth characteristic is improved and resultingly iron loss is reduced. The steel sheet can be produced by a method similar to the method for production of the ordinary nonoriented silicon steel sheet, on condition that respective contents of the elements are within the above ranges, respectively. Accordingly, finish annealing temp. and coiling temp. at the time of hot rolling are not particularly specified, and a hot rolled steel plate is cold rolled to prescribed sheet thickness, and the resultant steel sheet is subjected to final annealing and further to magnetic annealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性焼鈍後の鉄損
の低い無方向性電磁鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having a low iron loss after magnetic annealing.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、面内の磁気異方性
が小さいという特徴を活かして、各種モータの鉄心材料
として多量に使用されている。無方向性電磁鋼板は、フ
ルプロセス材とセミプロセス材に分けられる。このう
ち、フルプロセス材は、鉄鋼メーカ側の仕上焼鈍により
所定の磁気特性を得るものである。セミプロセス材は、
需要家において打ち抜き加工後に歪取り焼鈍(Stress-R
elief Annealing,略してSRA)を行うことにより、所
定の磁気特性を得るものである。セミプロセス材では、
SRA時に、加工歪みの除去と同時に結晶粒も成長する
ことから、より一層の鉄損低減が可能となる。このた
め、SRAは「磁性焼鈍」とも呼ばれている。
2. Description of the Related Art Non-oriented electrical steel sheets are used in large quantities as iron core materials for various motors, taking advantage of their small in-plane magnetic anisotropy. Non-oriented electrical steel sheets are divided into full-process materials and semi-process materials. Among them, the full process material obtains predetermined magnetic properties by finish annealing on the steel manufacturer side. Semi-process materials are
After punching at the customer, the strain relief annealing (Stress-R
By performing elief annealing (abbreviated as SRA), predetermined magnetic characteristics are obtained. For semi-processed materials,
At the time of SRA, since the crystal grains grow simultaneously with the removal of the processing strain, it is possible to further reduce the iron loss. For this reason, SRA is also called “magnetic annealing”.

【0003】従来、この磁性焼鈍時の粒成長性を良好に
するために、介在物、析出物の形態制御が行われてい
る。たとえば、特開昭63−195217号公報には、
Si=0.1〜1.0%、sol.Al=0.001〜0.005%の鋼板におい
て、鋼中のSiO2 MnO、Al23の3種の介在物の総重量
に対するMnOの重量割合を15%以下とすることにより、
介在物の形態を制御し、磁性焼鈍時の粒成長性を良好に
する技術が開示されている。
Conventionally, in order to improve the grain growth during the magnetic annealing, the morphology of inclusions and precipitates has been controlled. For example, JP-A-63-195217 discloses that
Si = 0.1 to 1.0%, in sol. Al = 0.001 to 0.005% of the steel plate, SiO 2 in the steel, MnO, and 15% or less by weight ratio of MnO with respect to the total weight of the three inclusions Al 2 O 3 By doing
A technique has been disclosed in which the form of inclusions is controlled to improve grain growth during magnetic annealing.

【0004】また、特開平8−3699号公報には、Si
=1.0%以下、Al=0.2〜1.5%において、REMを2〜8
0ppm添加することにより、磁性焼鈍時の粒成長性を
向上させる技術が開示されている。
Japanese Patent Laid-Open Publication No. Hei 8-3699 discloses that Si
= 1.0% or less, Al = 0.2-1.5%, REM is 2-8
There is disclosed a technique for improving grain growth during magnetic annealing by adding 0 ppm.

【0005】さらに、特開平5−234736号公報に
は、Si=0.1〜2.0%、Al=0.1〜1.0%、S<0.003%、S
n=0.01〜0.03%の鋼板において、鋼中のSiO2 MnO、A
l23の3種の介在物の総重量に対するMnOの重量割合
を10%以下とすることにより、介在物の形態を制御し、
熱延加熱温度を900〜1100℃とし、熱延後のバッチ焼鈍
を700〜900℃で実施することにより、粒成長性を良好に
する技術が開示されている。
Further, Japanese Patent Application Laid-Open No. Hei 5-234736 discloses that Si = 0.1 to 2.0%, Al = 0.1 to 1.0%, S <0.003%,
In a steel sheet of n = 0.01 to 0.03%, SiO 2 , MnO, A
By controlling the weight ratio of MnO to the total weight of the three kinds of inclusions of l 2 O 3 to 10% or less, the form of the inclusions is controlled,
A technique for improving the grain growth property by setting the hot rolling heating temperature to 900 to 1100 ° C and performing batch annealing after hot rolling at 700 to 900 ° C is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開昭
63−195217号公報に開示される技術において
は、磁性焼鈍後の鉄損の値は、4.44〜4.75W/kgであ
り、満足できるものではない。特開平8−3699号公
報に開示される技術においては、REMを使用するた
め、コストアップが避けられないという問題点がある。
また、特開平5−234736号公報に記載される技術
においては、バッチ焼鈍が必須であるため、コストアッ
プが避けられないという問題点がある。
However, in the technique disclosed in Japanese Patent Application Laid-Open No. 63-195217, the value of iron loss after magnetic annealing is 4.44 to 4.75 W / kg, which is not satisfactory. Absent. In the technique disclosed in Japanese Patent Application Laid-Open No. H8-3699, there is a problem that an increase in cost is inevitable because REM is used.
Further, in the technique described in Japanese Patent Application Laid-Open No. 5-234736, there is a problem that an increase in cost cannot be avoided because batch annealing is essential.

【0007】本発明は、このような問題点を解決するた
めになされたものであり、コストアップを伴うことなく
生産できる、磁性焼鈍後の鉄損の低い無方向性電磁鋼板
を提供することを課題とする。
The present invention has been made in order to solve such problems, and it is an object of the present invention to provide a non-oriented electrical steel sheet having a low iron loss after magnetic annealing, which can be produced without increasing the cost. Make it an issue.

【0008】[0008]

【課題を解決するための手段および作用】本発明の骨子
は、無方向性電磁鋼板において、TiとSbの複合添加によ
り、粒成長を大幅に向上させ、それによって鉄損を低下
させることである。
The gist of the present invention is to significantly improve grain growth and reduce iron loss in a non-oriented electrical steel sheet by adding Ti and Sb in combination. .

【0009】すなわち、前記課題は、重量%で、C:0.
005%以下、Si:1.7%以下、Mn:0.05〜1.0%、P:0.2
%以下、N:0.005%以下(0を含む)、Al:0.1〜1.0
%、S:0.01%以下(0を含む)、Sb:0.001〜0.05
%、Ti:0.0005〜0.01%を含有し、残部が実質的にFeで
あることを特徴とする磁性焼鈍後の鉄損の低い無方向性
電磁鋼板により解決される。
[0009] That is, the above-mentioned problem is that, by weight%, C: 0.
005% or less, Si: 1.7% or less, Mn: 0.05 to 1.0%, P: 0.2
%, N: 0.005% or less (including 0), Al: 0.1 to 1.0
%, S: 0.01% or less (including 0), Sb: 0.001 to 0.05
%, Ti: 0.0005 to 0.01%, and the balance is substantially Fe, and the problem is solved by a non-oriented electrical steel sheet having low iron loss after magnetic annealing.

【0010】ここで「残部が実質的にFeである」とは、
本発明の作用効果を無くさない限り、不可避不純物を始
め、他の微量元素を含有するものが本発明の範囲に含ま
れることを意味するものである。
Here, "the balance is substantially Fe" means that
As long as the effects of the present invention are not lost, those containing other trace elements including unavoidable impurities are included in the scope of the present invention.

【0011】(発明に至る経緯とTi、Sbの限定理由)発
明者らは、無方向性電磁鋼板の鉄損低減手法について鋭
意研究を行った。最初に、鉄損に及ぼすSbの影響を調査
するため、C:0.0020%、Si:0.25%、Mn:0.50%、
P:0.10%、Al:0.25%、S:0.003%、N:0.0018%と
し、(1)Ti free、Sb freeとした鋼(2)Ti free、S
b:0.004%とした鋼(3)Ti:0.004%、Sb freeとした
鋼(4)Ti :0.004%、Sb:0.004%とした鋼の4種類の
材料を実験室にて真空溶解し、熱延後、酸洗を行った。
引き続き板厚0.5mmまで冷間圧延し、25%H2−75%N2
雰囲気で750℃×2min間の仕上焼鈍を行い、その後、10
0%N2中にて750℃×2hrの磁性焼鈍を施した。
(Circumstances leading to the invention and the reasons for limiting Ti and Sb) The present inventors have conducted intensive studies on a method for reducing iron loss of a non-oriented electrical steel sheet. First, to investigate the effect of Sb on iron loss, C: 0.0020%, Si: 0.25%, Mn: 0.50%,
P: 0.10%, Al: 0.25%, S: 0.003%, N: 0.0018%, (1) Ti free, Sb free steel (2) Ti free, S
b: 0.004% steel (3) Ti: 0.004%, Sb free steel (4) Four kinds of steel materials: Ti: 0.004%, Sb: 0.004% After the elongation, pickling was performed.
Continuously cold-rolled to a thickness of 0.5 mm, 25% H 2 -75% N 2
Finish annealing at 750 ° C for 2 minutes in the atmosphere
Magnetic annealing at 750 ° C. for 2 hours was performed in 0% N 2 .

【0012】表1に、このようにして得られたサンプル
の磁気特性を示す。ここで、磁気測定は25cmエプスタイ
ン法により行った。
Table 1 shows the magnetic properties of the samples thus obtained. Here, the magnetic measurement was performed by a 25 cm Epstein method.

【0013】[0013]

【表1】 [Table 1]

【0014】表1より、磁束密度にはSbおよびTi添加の
影響は認められないことがわかる。鉄損はSb単独添加で
はほとんど変化せず、Ti単独添加鋼では増加することが
わかる。これに対し、Ti、Sbを複合添加した場合には大
幅に低下することがわかる。
From Table 1, it can be seen that the influence of the addition of Sb and Ti is not recognized on the magnetic flux density. It can be seen that iron loss hardly changes when Sb is added alone, and increases when Ti is added alone. On the other hand, it can be seen that when Ti and Sb are added in combination, the content is significantly reduced.

【0015】この鉄損低下の原因を調査するため光学顕
微鏡にて組織観察を行った。その結果、無添加材に比
べ、Sb単独添加鋼では結晶粒径は変化せず、Ti単独添加
鋼では細粒となっていた。これに対し、Ti、Sb複合添加
鋼の結晶粒は無添加材に比べ粗大化していることが明ら
かとなった。
In order to investigate the cause of the decrease in iron loss, the structure was observed with an optical microscope. As a result, the crystal grain size was not changed in the steel with only Sb added, and the grain was fine in the steel with Ti alone, as compared with the non-added material. On the other hand, it became clear that the crystal grains of the Ti- and Sb-composite-added steel were coarser than the non-added material.

【0016】このようにTi、Sbの複合添加により粒成長
性が向上する理由は明確でないが、析出物形態に何らか
の影響を及ぼしているものと考えられる。このような、
Ti、Sbの複合添加により粒成長性が向上し、鉄損が低下
することは従来知られておらず、全く新規な知見であ
る。
Although the reason why the grain growth is improved by the combined addition of Ti and Sb is not clear, it is considered that this has some influence on the precipitate morphology. like this,
It is not heretofore known that the grain growth property is improved and the iron loss is reduced by the composite addition of Ti and Sb, which is a completely new finding.

【0017】次にSbの最適添加量を調査するため、C:
0.0026%、Si:0.25%、Mn:0.50%、P:0.10%、Al:
0.25%、S:0.003%、N:0.0020%、Ti:0.004%と
し、Sb量をtr.〜600ppmの範囲で変化させた鋼を実験室
真空溶解し、熱延後、酸洗を行った。引き続き、板厚0.
5mmまで冷間圧延し、25%H2−75%N2雰囲気で750℃×
2min間の仕上焼鈍を行い、その後、100%N2中にて750
℃×2hrの磁性焼鈍を施した。 図1に、Sb量と磁性焼
鈍後の鉄損W15/50の関係を示す。図1より、Sb添加量
が10ppm以上の領域で鉄損が低下することがわかる。し
かし、Sbをさらに添加し、Sb>100ppmとなった場合に
は、鉄損は再び増大することもわかる。
Next, in order to investigate the optimum amount of Sb, C:
0.0026%, Si: 0.25%, Mn: 0.50%, P: 0.10%, Al:
Steel in which 0.25%, S: 0.003%, N: 0.0020%, Ti: 0.004%, and the Sb content was varied in the range of tr. To 600 ppm was melted in a laboratory under vacuum, hot rolled, and then pickled. Continue with a sheet thickness of 0.
And cold rolled to 5 mm, 750 ° C. × in 25% H 2 -75% N 2 atmosphere
Perform finish annealing between 2min, in then in 100% N 2 750
Magnetic annealing was performed at 2 ° C. × 2 hours. FIG. 1 shows the relationship between the amount of Sb and the iron loss W 15/50 after magnetic annealing. FIG. 1 shows that iron loss is reduced in a region where the amount of Sb added is 10 ppm or more. However, it is also found that when Sb is further added and Sb> 100 ppm, iron loss increases again.

【0018】このSb>100ppmの領域での鉄損増大原因を
調査するため、光学顕微鏡による組織観察を行った。そ
の結果、平均結晶粒径が若干小さくなっていた。この原
因は明確ではないが、Sbが粒界に偏析しやすい元素であ
るため、Sbの粒界ドラッグ効果により粒成長性が低下し
たものと考えられる。但し、Sbを500ppmまで添加しても
鉄損はSbフリー鋼よりも低いことがわかる。
In order to investigate the cause of the increase in iron loss in the region where Sb> 100 ppm, the structure was observed with an optical microscope. As a result, the average crystal grain size was slightly smaller. Although the cause is not clear, it is considered that since Sb is an element that is easily segregated at the grain boundary, the grain growth property is reduced by the grain boundary drag effect of Sb. However, even if Sb is added up to 500 ppm, the iron loss is lower than that of Sb-free steel.

【0019】以上のことよりSbは10ppm以上とし、コス
トの観点より上限を500ppmとする。また、鉄損の観点よ
り20ppm以上100ppm以下とすることが望ましい。
From the above, Sb is set to 10 ppm or more, and the upper limit is set to 500 ppm from the viewpoint of cost. Further, from the viewpoint of iron loss, it is desirable to set the content to 20 ppm or more and 100 ppm or less.

【0020】次にTiの最適添加量を調査するため、C:
0.0023%、Si:0.24%、Mn:0.55%、P:0.11%、Al:
0.26%、S:0.003%、N:0.0020%、Sb:0.004%と
し、Ti量をtr.〜120ppmの範囲で変化させた鋼を実験室
真空溶解し、熱延後、酸洗を行った。引き続き、板厚0.
5mmまで冷間圧延し、25%H2−75%N2雰囲気で750℃×
2min間の仕上焼鈍を行い、その後、100%N2中にて750
℃×2hrの磁性焼鈍を施した。
Next, in order to investigate the optimum amount of Ti, C:
0.0023%, Si: 0.24%, Mn: 0.55%, P: 0.11%, Al:
Steel in which 0.26%, S: 0.003%, N: 0.0020%, Sb: 0.004%, and the Ti amount was changed in the range of tr. To 120 ppm was melted in a laboratory under vacuum, hot rolled, and then pickled. Continue with a sheet thickness of 0.
And cold rolled to 5 mm, 750 ° C. × in 25% H 2 -75% N 2 atmosphere
Perform finish annealing between 2min, in then in 100% N 2 750
Magnetic annealing was performed at 2 ° C. × 2 hours.

【0021】図2に、Ti量と鉄損W15/50の関係を示
す。図2より、Ti添加量が5ppm以上の領域で鉄損が低
下することがわかる。しかし、Tiをさらに添加し、Ti>
100ppmとなった場合には、鉄損は再び増大することもわ
かる。
FIG. 2 shows the relationship between the Ti content and the iron loss W 15/50 . FIG. 2 shows that iron loss is reduced in the region where the amount of Ti added is 5 ppm or more. However, if Ti is further added, Ti>
It can also be seen that when the concentration becomes 100 ppm, the iron loss increases again.

【0022】このTi>100ppmの領域での鉄損増大原因を
調査するため、光学顕微鏡による組織観察を行った。そ
の結果、平均結晶粒径が若干小さくなっていた。この原
因はTi量の増大にともないfree Tiのドラッグ効果が大
きくなるためと考えられる。
In order to investigate the cause of the increase in iron loss in the region where Ti> 100 ppm, the structure was observed with an optical microscope. As a result, the average crystal grain size was slightly smaller. It is considered that this is because the drag effect of free Ti increases as the Ti amount increases.

【0023】以上のことより、Tiは5ppm以上とし上限
を100ppmとする。また、鉄損の観点より10ppm以上60ppm
以下とすることが望ましい。
From the above, Ti is set to 5 ppm or more and the upper limit is set to 100 ppm. Also, from the viewpoint of iron loss, 10 ppm or more and 60 ppm
It is desirable to make the following.

【0024】(その他の成分の限定理由)次に、その他
の成分の限定理由について説明する。 C: Cは磁気時効の問題があるため0.005%以下とす
る。 Si: Siは鋼板の固有抵抗を上げるために有効な元素で
あるが、1.7%を超えると飽和磁束密度の低下に伴い磁
束密度が低下するため上限を1.7%とする。 Mn: Mnは熱間圧延時の赤熱脆性を防止するために、0.
05%以上必要であるが、1.0%以上になると磁束密度を
低下させるので0.05〜1.0%とする。 P: Pは鋼板の打ち抜き性を改善するために必要な元
素であるが、0.2%を超えて添加すると鋼板が脆化する
ため0.2%以下とする。 N: Nは、含有量が多い場合にはAlNの析出量が多く
なり、粒成長性が低下しするため0.005%以下とする。
(Reasons for Limiting Other Components) Next, reasons for limiting other components will be described. C: C is 0.005% or less because of the problem of magnetic aging. Si: Si is an element effective for increasing the specific resistance of the steel sheet. However, if it exceeds 1.7%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density, so the upper limit is set to 1.7%. Mn: Mn is 0.1% to prevent red hot brittleness during hot rolling.
It is required to be not less than 05%, but if it is not less than 1.0%, the magnetic flux density is reduced. P: P is an element necessary for improving the punching property of the steel sheet, but if added in excess of 0.2%, the steel sheet will be embrittled, so that the content is set to 0.2% or less. N: If the content of N is large, the precipitation amount of AlN increases, and the grain growth property is reduced.

【0025】Al: Alは微量に添加すると微細なAlNを
生成し磁気特性を劣化させる。このため、下限を0.1%
以上とし、AlNを粗大化する必要がある。一方、1.0%
以上になると磁束密度を低下させるため上限は1.0%以
下とする。 S: Sは含有量が多い場合にはMnSの析出量が多くな
り、粒成長性が低下するため0.01%以下とする。
Al: When Al is added in a small amount, fine AlN is generated and the magnetic characteristics are deteriorated. Therefore, the lower limit is 0.1%
As described above, it is necessary to coarsen AlN. On the other hand, 1.0%
Above this, the upper limit is set to 1.0% or less in order to lower the magnetic flux density. S: When the content of S is large, the precipitation amount of MnS increases, and the grain growth is reduced, so that the content of S is set to 0.01% or less.

【0026】(製造方法)本発明においては、Sb、Tiを
はじめ、前記各成分が所定の範囲内であれば、製造方法
は通常の無方向性電磁鋼板を製造する方法でかまわな
い。すなわち、転炉で吹練した溶鋼を脱ガス処理し所定
の成分に調整し、引き続き鋳造、熱間圧延を行う。熱間
圧延時の仕上焼鈍温度、巻取り温度は特に規定する必要
はなく、通常の範囲でかまわない。また、熱延後の熱延
板焼鈍は行っても良いが必須ではない。次いで一回の冷
間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧
延により所定の板厚とした後に、最終焼鈍を行い、さら
に磁性焼鈍を行う。
(Manufacturing method) In the present invention, as long as each of the above components including Sb and Ti is within a predetermined range, the manufacturing method may be a method of manufacturing a normal non-oriented electrical steel sheet. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, and subsequently casting and hot rolling are performed. The finish annealing temperature and the winding temperature at the time of hot rolling do not need to be particularly specified, and may be in a normal range. In addition, hot-rolled sheet annealing after hot-rolling may be performed, but is not essential. Next, after a predetermined thickness is obtained by one cold rolling or two or more cold rollings with intermediate annealing, final annealing is performed, and further magnetic annealing is performed.

【0027】[0027]

【実施例】表2に示す鋼を用い、転炉で吹練した後に脱
ガス処理を行うことにより所定の成分に調整後鋳造し、
スラブを1200℃で1hr加熱した後、板厚2.0mmまで熱間
圧延を行った。熱延仕上げ温度は800℃とした。巻取り
温度は670℃とし、酸洗後、板厚0.5mmまで冷間圧延を行
い、表2に示す仕上焼鈍条件で焼鈍を行い、その後、10
0%N2雰囲気にて750℃×2hrの磁性焼鈍を施した。磁
気測定は25cmエプスタイン試験片を用いて行った。各鋼
板の磁気特性を表2に併せて示す。
EXAMPLES The steel shown in Table 2 was used, and after being degassed after being blown in a converter, the steel was adjusted to a predetermined component and cast.
After the slab was heated at 1200 ° C. for 1 hour, hot rolling was performed to a thickness of 2.0 mm. The hot rolling finishing temperature was 800 ° C. The take-up temperature was 670 ° C., after pickling, cold rolling was performed to a sheet thickness of 0.5 mm, and annealing was performed under the finish annealing conditions shown in Table 2.
Magnetic annealing was performed at 750 ° C. for 2 hours in a 0% N 2 atmosphere. Magnetic measurements were performed using 25 cm Epstein specimens. Table 2 also shows the magnetic properties of each steel sheet.

【0028】[0028]

【表2】 [Table 2]

【0029】表2より、備考欄に本発明鋼と記載した、
全ての成分値が本発明の範囲内である鋼板は、他の鋼板
に比して、鉄損W15/50が低く、磁束密度B50が高い。
From Table 2, the steel of the present invention was described in the remarks column.
A steel sheet having all component values within the range of the present invention has a lower iron loss W 15/50 and a higher magnetic flux density B 50 than other steel sheets.

【0030】これに対して、No.8の鋼板は、SbとTiの含
有量が本発明の範囲を下回っているので、鉄損が高い。
No.9の鋼板は、Sbの含有量が本発明の範囲を下回ってお
り、No.10の鋼板は、Sbの含有量が本発明の範囲を超え
ているので、共に鉄損が高い。No.11の鋼板は、Tiの含
有量が本発明の範囲を下回っており、No.12の鋼板は、T
iの含有量が本発明の範囲を超えているので、共に鉄損
が高い。
On the other hand, the steel sheet No. 8 has a high iron loss since the contents of Sb and Ti are below the range of the present invention.
The No. 9 steel sheet has an Sb content below the range of the present invention, and the No. 10 steel sheet has a high iron loss since the Sb content exceeds the range of the present invention. The steel sheet No. 11 has a Ti content below the range of the present invention, and the steel sheet No. 12
Since the content of i exceeds the range of the present invention, both have high iron loss.

【0031】No.13の鋼板は、Cの含有量が本発明の範
囲を超えているので、鉄損が高くなっているのみなら
ず、磁気時効の問題を有している。No.14の鋼板は、Si
の含有量が本発明の範囲を超えているので、鉄損は低く
なっているものの、磁束密度が低くなっている。No.15
の鋼板は、Mnの含有量が本発明の範囲を超えているの
で、鉄損が高く磁束密度が低くなっている。
The steel sheet No. 13 has not only a high iron loss but also a problem of magnetic aging since the C content exceeds the range of the present invention. No. 14 steel sheet is Si
Is out of the range of the present invention, the iron loss is low, but the magnetic flux density is low. No.15
Since the Mn content exceeds the range of the present invention, the steel sheet has high iron loss and low magnetic flux density.

【0032】No.16の鋼板は、Alの含有量が本発明の範
囲を下回っているので、鉄損が高く、かつ、磁束密度が
低くなっている。逆に、No.17の鋼板は、Alの含有量が
本発明の範囲を超えているので、鉄損は低いものの、磁
束密度が低くなっている。No.18の鋼板は、Nの含有量
が本発明の範囲を超えているので、鉄損が高くなってい
る。
The steel sheet No. 16 has a high iron loss and a low magnetic flux density because the Al content is below the range of the present invention. Conversely, the steel sheet No. 17 has a low iron loss but a low magnetic flux density because the Al content exceeds the range of the present invention. The steel sheet No. 18 has a high iron loss since the N content exceeds the range of the present invention.

【0033】[0033]

【発明の効果】以上説明したように、本発明は、重量%
で、C:0.005%以下、Si:1.7%以下、Mn:0.05〜1.0
%、P:0.2%以下、N:0.005%以下(0を含む)、A
l:0.1〜1.0%、S:0.01%以下(0を含む)、Sb:0.0
01〜0.05%、Ti:0.0005〜0.01%を含有し、残部が実質
的にFeであることを特徴とするものであるので、磁性焼
鈍後の鉄損の低い無方向性電磁鋼板が、コストアップを
伴うことなく得られる。本発明に係る無方向性電磁鋼板
は、モータやトランスの鉄心等、低い鉄損が必要とされ
る電気材料に広く使用することができる。
As described above, according to the present invention, the weight%
And C: 0.005% or less, Si: 1.7% or less, Mn: 0.05 to 1.0
%, P: 0.2% or less, N: 0.005% or less (including 0), A
l: 0.1 to 1.0%, S: 0.01% or less (including 0), Sb: 0.0
Non-oriented electrical steel sheet with low iron loss after magnetic annealing, which is characterized by containing 01-0.05% and Ti: 0.0005-0.01%, with the balance being substantially Fe Is obtained without accompanying. INDUSTRIAL APPLICABILITY The non-oriented electrical steel sheet according to the present invention can be widely used for electrical materials requiring low iron loss, such as motor and transformer cores.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Sb量と磁性焼鈍後の鉄損との関係を示す図で
ある。
FIG. 1 is a graph showing the relationship between the amount of Sb and iron loss after magnetic annealing.

【図2】 Ti量と磁性焼鈍後の鉄損との関係を示す図で
ある。
FIG. 2 is a diagram showing the relationship between the amount of Ti and iron loss after magnetic annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 義彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 田中 靖 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshihiko Ono 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Yasushi Tanaka 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Sun Honko Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.005%以下、Si:1.7%
以下、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Al:0.1〜1.0%、S:0.01%以下
(0を含む)、Sb:0.001〜0.05%、Ti:0.0005〜0.01
%を含有し、残部が実質的にFeであることを特徴とする
磁性焼鈍後の鉄損の低い無方向性電磁鋼板。
C .: 0.005% or less by weight, Si: 1.7% by weight
Mn: 0.05 to 1.0%, P: 0.2% or less, N: 0.005%
Or less (including 0), Al: 0.1 to 1.0%, S: 0.01% or less (including 0), Sb: 0.001 to 0.05%, Ti: 0.0005 to 0.01
%, And the balance is substantially Fe. A non-oriented electrical steel sheet having low iron loss after magnetic annealing.
JP35016597A 1997-12-05 1997-12-05 Non-oriented electrical steel sheet with low iron loss after magnetic annealing Expired - Fee Related JP3766745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35016597A JP3766745B2 (en) 1997-12-05 1997-12-05 Non-oriented electrical steel sheet with low iron loss after magnetic annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35016597A JP3766745B2 (en) 1997-12-05 1997-12-05 Non-oriented electrical steel sheet with low iron loss after magnetic annealing

Publications (2)

Publication Number Publication Date
JPH11172385A true JPH11172385A (en) 1999-06-29
JP3766745B2 JP3766745B2 (en) 2006-04-19

Family

ID=18408673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35016597A Expired - Fee Related JP3766745B2 (en) 1997-12-05 1997-12-05 Non-oriented electrical steel sheet with low iron loss after magnetic annealing

Country Status (1)

Country Link
JP (1) JP3766745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101119960B1 (en) 2004-12-28 2012-03-13 주식회사 포스코 Method for manutacturing non-Oriented Electrical steel sheet having good properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101119960B1 (en) 2004-12-28 2012-03-13 주식회사 포스코 Method for manutacturing non-Oriented Electrical steel sheet having good properties

Also Published As

Publication number Publication date
JP3766745B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
KR101499371B1 (en) Method for producing non-oriented magnetic steel sheet
US4439251A (en) Non-oriented electric iron sheet and method for producing the same
KR20060134154A (en) Nonoriented electromagnetic steel sheet excellent in blankability and magnetic characteristics after strain removal annealing, and method for production thereof
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JPH1192891A (en) Silicon steel sheet for electric automobile motor
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JPH11172385A (en) Nonoriented silicon steel sheet with low iron loss after magnetic annealing
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JPS59157259A (en) Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JPH1046245A (en) Manufacture of nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
JPH07216516A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JPH1088297A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JPH07305114A (en) Production of nonoriented silicon steel sheet excellent in surface property and magnetic property
JPH10183247A (en) Production of nonorieneted silicon steel sheet high in magnetic flux density in low magnetizing force
JPH10237606A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
US20230021013A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JPH11315326A (en) Manufacture of nonoriented silicon steel sheet with low iron loss, and nonoriented silicon steel sheet with low iron loss
JPH0814017B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JPH11189824A (en) Production of nonoriented silicon steel sheet with low iron loss
JPH11124626A (en) Production of nonoriented silicon steel sheet reduced in iron loss

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees