JPH11172375A - High strength bent pipe excellent in toughness in weld metal zone, and its production - Google Patents

High strength bent pipe excellent in toughness in weld metal zone, and its production

Info

Publication number
JPH11172375A
JPH11172375A JP34346997A JP34346997A JPH11172375A JP H11172375 A JPH11172375 A JP H11172375A JP 34346997 A JP34346997 A JP 34346997A JP 34346997 A JP34346997 A JP 34346997A JP H11172375 A JPH11172375 A JP H11172375A
Authority
JP
Japan
Prior art keywords
low
weld metal
toughness
temperature toughness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34346997A
Other languages
Japanese (ja)
Other versions
JP3466451B2 (en
Inventor
Yoshio Terada
好男 寺田
Hiroshi Tamehiro
博 為広
Takuya Hara
卓也 原
Kunio Koyama
邦夫 小山
Hitoshi Asahi
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34346997A priority Critical patent/JP3466451B2/en
Publication of JPH11172375A publication Critical patent/JPH11172375A/en
Application granted granted Critical
Publication of JP3466451B2 publication Critical patent/JP3466451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve productivity, strength, and toughness in weld zone at low temperature by providing a weld metal zone having a specific composition which consists of C, Si, Mn, P, S, Ni, Cr, Mo, Nb, Ti, Al, N, O, and the balance Fe with inevitable impurities and in which respective component values satisfy a specific relation and further having a microstructure containing specific amounts of bainite. SOLUTION: The weld metal zone has a composition consisting of, by weight, 0.03-0.10% C, <=0.6% Si, 1.5-2.2% Mn, <=0.015% P, <=0.010% S, 0.80-2.5% Ni, 0.20-1.5% Cr, 0.20-1.5% Mo, 0.01-0.10% Nb, 0.005-0.030% Ti, <=0.06% Al, 0.001-0.010% N, <=0.050% O, and the balance Fe with inevitable impurities. Moreover, the value of P defined by equation is regulated to 0.23-0.40. Further, this weld metal zone has a microstructure containing bainite of <=10 μm average grain size, transformed from austenite, by >=70% by volume fraction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、米国石油協会(A
PI)規格でX100以上(降伏強さで約690N/mm
2 以上)の高強度と溶接金属部の靭性に優れたベンド管
(曲がり管)およびその製造法に関するものである。
The present invention relates to the American Petroleum Institute (A)
PI) standard X100 or more (yield strength about 690 N / mm
Bend tube (bent tube) having high strength ( 2 or more) and excellent toughness of a weld metal part, and a method for producing the same.

【0002】[0002]

【従来の技術】原油や天然ガスを長距離輸送するための
パイプラインに使用されるラインパイプ(直管)や異形
管(ベンド管、エルボー管、T字管など)は、(1) 高圧
化による輸送効率の向上や、(2) 薄肉化による現地での
溶接能率向上のため、ますます高張力化する傾向にあ
る。これまでにAPI規格でX80までのラインパイプ
の実用化が進行中であるが、さらに高強度のラインパイ
プや異形管に対するニーズがでてきた。
2. Description of the Related Art Line pipes (straight pipes) and deformed pipes (bend pipes, elbow pipes, T-shaped pipes, etc.) used in pipelines for transporting crude oil and natural gas over long distances are: (1) High pressure In order to improve the transport efficiency due to heat treatment and (2) to improve the welding efficiency in the field by reducing the thickness, the tension tends to be higher and higher. Up to now, practical application of line pipes up to X80 according to the API standard is in progress, but there is a need for higher strength line pipes and deformed pipes.

【0003】従来、ベンド管などは直管に比較して、鋼
管の機械的性質(強度、低温靭性など)が劣化するた
め、特開昭62−10212号公報、特開平4−154
913号公報、特開平7−3330号公報、特開平5−
279743号公報、特開昭59−232225号公報
など、ベンド管の機械的性質を改善する方法が種々開示
されている。
Conventionally, the mechanical properties (strength, low-temperature toughness, etc.) of a steel pipe are deteriorated in a bent pipe or the like as compared with a straight pipe.
913, JP-A-7-3330, JP-A5-
Various methods for improving the mechanical properties of a bend tube, such as 279743 and JP-A-59-232225, are disclosed.

【0004】例えば、特開昭62−10212号公報、
特開平4−154913号公報、特開平7−3330号
公報、特開平5−279743号公報には、鋼管を加熱
後、曲げ加工しながら焼入れした後、冷却後特定の範囲
内で焼戻し処理する方法が開示されている。しかしなが
らこれらの方法は、焼戻し処理が必須であるため、生産
性や製造コストの観点から問題があった。
[0004] For example, Japanese Patent Application Laid-Open No. Sho 62-10212,
JP-A-4-154913, JP-A-7-3330 and JP-A-5-279743 disclose a method in which a steel pipe is heated, quenched while being bent, and then tempered within a specific range after cooling. Is disclosed. However, these methods have a problem from the viewpoint of productivity and manufacturing cost because a tempering treatment is essential.

【0005】一方、特開昭59−232225号公報に
は、生産性の向上や製造コストの低減を図るために、焼
戻し処理を省略して高強度と良好な低温靭性を確保する
ためのベンド管の製造法が記載されている。また、特開
昭61−117223号公報には、特定の成分の溶接金
属を有する鋼管から、焼戻し処理を省略してベンド管を
製造する方法が記載されている。さらに特開平1−44
769号公報には、低炭素−Nb系鋼管を、加熱後、曲
げ加工しながら焼入れ処理することにより高強度と良好
な低温靭性を確保できることが開示されている。しかし
ながらこれらの方法では、せいぜいX70(降伏強さ4
90N/mm2 )ベンド管の製造が限界と考えられる。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 59-232225 discloses a bend pipe for securing high strength and good low-temperature toughness by omitting a tempering treatment in order to improve productivity and reduce manufacturing costs. Are described. Japanese Patent Application Laid-Open No. 61-117223 discloses a method of manufacturing a bent pipe from a steel pipe having a weld metal of a specific component by omitting a tempering treatment. Further, JP-A 1-444
No. 769 discloses that high strength and good low-temperature toughness can be secured by quenching a low-carbon-Nb-based steel pipe while heating it while bending. However, in these methods, at most X70 (yield strength 4
90N / mm 2 ) The production of bend tubes is considered to be the limit.

【0006】X100以上の強度を満足させるために
は、さらなる合金元素の添加が必要となり、上述した方
法では加熱〜曲げ加工〜水冷後の組織中に、粗大な上部
ベイナイトや、MA(Martensite-Austenite Constituen
t)いわゆるマルテンサイトとオーステナイトが共存した
組織が生成するため、低温靭性を安定的に確保すること
は不可能であると考えられる。
[0006] In order to satisfy the strength of X100 or more, it is necessary to further add an alloy element. In the above-described method, coarse upper bainite and MA (Martensite-Austenite) are contained in the structure after heating, bending, and water cooling. Constituen
t) Since a structure in which so-called martensite and austenite coexist is generated, it is considered impossible to ensure stable low-temperature toughness.

【0007】また合金元素の多量な添加により、敷設現
地での中継ぎ溶接の時に、鋼管長手方向溶接(シーム溶
接)と現地での中継ぎ溶接が交差した部分(T−クロス
部)の硬さが高くなり、割れ等の問題が生じる。そこ
で、生産性に優れ、高強度でかつ低温での優れた溶接金
属部靭性を有するベンド管の開発が強く望まれていた。
[0007] Further, due to the addition of a large amount of alloying elements, the hardness of the portion (T-cross portion) where the longitudinal welding (seam welding) of the steel pipe and the local welding at the site intersect at the time of the intermediate welding at the site of the installation is high. Problems such as cracks occur. Therefore, it has been strongly desired to develop a bend pipe having excellent productivity, high strength, and excellent weld metal toughness at low temperatures.

【0008】[0008]

【発明が解決しようとする課題】本発明は、生産性に優
れ、高強度でかつ低温での優れた溶接部靭性を有するベ
ンド管およびその製造法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a bend pipe having excellent productivity, high strength and excellent weld toughness at low temperatures, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明ベンド管は、溶接金属部が、重量%にて、C:
0.03〜0.10%、Si:0.6%以下、Mn:
1.5〜2.2%、P:0.015%以下、S:0.0
10%以下、Ni:0.80〜2.5%、Cr:0.2
0〜1.5%、Mo:0.20〜1.5%、Nb:0.
01〜0.10%、Ti:0.005〜0.030%、
Al:0.06%以下、N:0.001〜0.010
%、O:0.050%以下を含有し残部がFeおよび不
可避的不純物からなり、かつ下記(1)式で定義される
P値が0.23〜0.40の範囲の成分組成であり、さ
らに平均粒径で10μm以下のオーステナイトから変態
したベイナイトを体積分率で70%以上含有するミクロ
組織を有していることを特徴とする溶接金属部の靭性に
優れた高強度ベンド管である。 P=C+0.11Si+0.03Mn+0.02Ni +0.04Cr+0.07Mo+1.46Nb ・・・(1)
In order to achieve the above object, a bent pipe according to the present invention has a weld metal portion containing C:
0.03 to 0.10%, Si: 0.6% or less, Mn:
1.5 to 2.2%, P: 0.015% or less, S: 0.0
10% or less, Ni: 0.80 to 2.5%, Cr: 0.2
0 to 1.5%, Mo: 0.20 to 1.5%, Nb: 0.
01 to 0.10%, Ti: 0.005 to 0.030%,
Al: 0.06% or less, N: 0.001 to 0.010
%, O: 0.050% or less, the balance being Fe and unavoidable impurities, and a P value defined by the following formula (1) having a component composition in the range of 0.23 to 0.40; Further, it is a high-strength bend pipe excellent in toughness of a weld metal part, characterized by having a microstructure containing 70% or more in volume fraction of bainite transformed from austenite having an average particle diameter of 10 μm or less. P = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb (1)

【0010】そして、金属溶接部が、重量%にてさら
に、Cu:0.1〜1.0%、V:0.01〜0.10
%、B:0.0003〜0.0030%、Ca:0.0
01〜0.005%のうち1種または2種以上を含有す
る成分組成であることが好ましい。
[0010] Then, the metal welding portion further contains Cu: 0.1 to 1.0% and V: 0.01 to 0.10.
%, B: 0.0003 to 0.0030%, Ca: 0.0
It is preferable that the composition of the composition contains one or more of 01 to 0.005%.

【0011】また本発明法は、金属溶接部が上記本発明
ベンド管において記載された成分組成である鋼管を、7
80〜880℃に加熱後、曲げ加工し直ちに10℃/秒
以上の冷却速度で水冷することを特徴とする溶接金属部
の靭性に優れた高強度ベンド管の製造法である。
Further, according to the method of the present invention, a steel pipe whose metal weld portion has the component composition described in the above-described bend pipe of the present invention can be used as a steel pipe.
This is a method for producing a high-strength bend pipe excellent in toughness of a weld metal part, characterized in that after being heated to 80 to 880 ° C., it is bent and immediately cooled with water at a cooling rate of 10 ° C./sec or more.

【0012】[0012]

【発明の実施の形態】前述のとおり、低炭素−Nb系鋼
管を、加熱後、曲げ加工しながら焼入れ処理することに
より高強度と良好な低温靭性を確保できることが、特開
平1−44769号公報により知られている。しかしな
がら、X100以上の強度を満足させるためにはさらに
合金元素の添加が必要となる。そして、単に溶接金属部
の合金元素量を増加させただけでは低温靭性が劣化し、
鋼管長手方向のシーム溶接と現地での中継ぎ溶接が交差
した部位、すなわちT−クロス部の硬さが上昇すること
により割れの感受性が高まる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, it is disclosed in Japanese Patent Application Laid-Open No. 1-4769 that high strength and good low temperature toughness can be secured by quenching a low carbon-Nb steel pipe while heating it while bending. Is known by: However, in order to satisfy the strength of X100 or more, it is necessary to further add an alloy element. And simply increasing the amount of alloying elements in the weld metal deteriorates the low-temperature toughness,
The susceptibility to cracking is increased by increasing the hardness of the portion where the seam welding in the longitudinal direction of the steel pipe intersects the relay welding on site, that is, the T-cross portion increases in hardness.

【0013】したがって、X100以上の強度と良好な
溶接金属部の低温靭性さらにはT−クロス部の耐割れ性
を確保するためには、溶接金属部について、新たな成分
組成とミクロ組織の適正化が必要となる。そしてミクロ
組織適正化のための製造条件が必要となる。
Therefore, in order to secure the strength of X100 or more and the good low-temperature toughness of the weld metal part and the crack resistance of the T-cross part, a new component composition and microstructure optimization of the weld metal part are required. Is required. Then, manufacturing conditions for microstructure optimization are required.

【0014】そこで、高強度ベンド管溶接部の低温靭性
を改善するために鋭意研究した結果、本発明に至った。
すなわち、本発明ベンド管の特徴は、(1) 溶接金属部の
成分組成が低C−高Mn−Ni−Cr−Mo−微量Ti
系で、上記のような限定された量の元素を含み、かつ
(2) 上記(1)式で定義されるP値が0.23〜0.4
0の範囲であること、および(3) 溶接金属部のミクロ組
織が平均粒径で10μm以下のオーステナイトから変態
したベイナイトを体積分率で70%以上含有することで
ある。そしてこのようなミクロ組織は、後述の本発明法
により得られる。これによってX100以上の高強度と
良好な溶接金属部の低温靭性を有するベンド管が得られ
る。
Accordingly, as a result of diligent research for improving the low-temperature toughness of a high-strength bend pipe weld, the present invention has been achieved.
That is, the characteristics of the bend pipe of the present invention are as follows.
The system contains a limited amount of elements as described above, and
(2) The P value defined by the above equation (1) is 0.23 to 0.4
0, and (3) the microstructure of the weld metal portion contains 70% or more by volume fraction of bainite transformed from austenite having an average grain size of 10 μm or less. Such a microstructure is obtained by the method of the present invention described later. Thereby, a bend pipe having high strength of X100 or more and good low-temperature toughness of a weld metal portion can be obtained.

【0015】鋼管長手方向の溶接金属部の低温靭性は、
(1) 結晶粒のサイズ、(2) MAなどの硬化相の分散状態
など、種々の冶金学的要因に支配される。特に高強度化
するほど合金元素添加量が大きくなるため、靭性に有害
な粗大な上部ベイナイトおよびMAが生成して低温靭性
が劣化する。上部ベイナイト組織が生成する場合には、
結晶粒を微細化させて低温靭性を向上させることが必要
である。
The low-temperature toughness of the weld metal in the longitudinal direction of the steel pipe is as follows:
It is governed by various metallurgical factors, such as (1) the size of crystal grains, and (2) the dispersed state of the hardened phase such as MA. In particular, the higher the strength, the greater the amount of alloying elements added, so that coarse upper bainite and MA, which are harmful to toughness, are formed, and the low-temperature toughness is degraded. When the upper bainite structure is formed,
It is necessary to refine crystal grains to improve low-temperature toughness.

【0016】本発明者らの研究結果、平均粒径で10μ
m以下のオーステナイトから変態したベイナイトであれ
ば、有効結晶粒径が小さいために良好な低温靭性が得ら
れる。この時、ベイナイト組織を70%以上含有しない
と必要とするX100以上の強度が得られない。しかし
ながら、上述のように、溶接金属部のミクロ組織を厳密
に制御しても目的とする特性を有する鋼材は得られな
い。このためにはミクロ組織と同時に成分組成を限定す
る必要がある。
As a result of the study by the present inventors, the average particle size was 10 μm.
If bainite is transformed from austenite of m or less, good low-temperature toughness can be obtained because the effective crystal grain size is small. At this time, unless the bainite structure contains 70% or more, the required strength of X100 or more cannot be obtained. However, as described above, even if the microstructure of the weld metal portion is strictly controlled, a steel material having desired characteristics cannot be obtained. For this purpose, it is necessary to limit the component composition simultaneously with the microstructure.

【0017】以下に本発明の成分元素の限定理由につい
て説明する。Cは0.03〜0.10%に限定する。C
は母材および溶接部の強度向上に有効な元素であり、ベ
イナイトを主体とする組織において目的の強度を得るた
めには、最低0.03%は必要である。またこの量はN
b,V添加による析出硬化、結晶粒の微細化効果の発現
のための最小量でもある。しかしC量が多すぎると低温
靭性、T−クロス部での耐割れ性(現地溶接性)の著し
い劣化を招くので、その上限を0.10%とした。
The reasons for limiting the component elements of the present invention will be described below. C is limited to 0.03 to 0.10%. C
Is an element effective for improving the strength of the base metal and the welded portion, and at least 0.03% is necessary for obtaining the desired strength in a structure mainly composed of bainite. This amount is N
It is also the minimum amount for the precipitation hardening by the addition of b and V and the manifestation of the effect of refining crystal grains. However, if the C content is too large, the low-temperature toughness and the crack resistance (on-site weldability) at the T-cross portion are significantly deteriorated, so the upper limit is set to 0.10%.

【0018】Siは脱酸や強度向上のため添加する元素
であるが、多く添加すると低温靭性、現地溶接性を著し
く劣化させるので、上限を0.6%とした。鋼の脱酸は
TiあるいはAlでも十分可能であり、Siは必ずしも
添加する必要はない。Mnは強度、低温靭性を確保する
上で不可欠な元素であり、その下限は1.5%である。
しかしMnが多すぎると鋼の焼入性が増加して低温靭
性、現地溶接性を劣化させるのでその上限を2.2%と
した。
[0018] Si is an element added for deoxidation and to improve the strength, but when added in a large amount, the low-temperature toughness and on-site weldability are significantly deteriorated, so the upper limit was made 0.6%. Steel can be sufficiently deoxidized with Ti or Al, and Si need not always be added. Mn is an element indispensable for securing strength and low-temperature toughness, and its lower limit is 1.5%.
However, if the Mn content is too large, the hardenability of the steel increases and the low-temperature toughness and the on-site weldability deteriorate, so the upper limit was made 2.2%.

【0019】Niを添加する目的は、本発明における低
炭素成分系の強度を低温靭性や現地溶接性を劣化させる
ことなく向上させるためである。Ni添加は、MnやC
r,Mo添加に比較して低温靭性に有害な硬化組織を形
成することが少なく、Ni添加が低温靭性の改善にも有
効である。この効果を発揮させるためには、0.80%
以上の添加が必要である。しかし添加量が多すぎると、
経済性だけでなく、HAZ靭性や現地溶接性を劣化させ
るので、その上限を2.5%とした。
The purpose of adding Ni is to improve the strength of the low-carbon component system in the present invention without deteriorating low-temperature toughness or on-site weldability. Ni is added by Mn or C
Compared with the addition of r and Mo, the formation of a hardened structure harmful to the low-temperature toughness is less, and the addition of Ni is effective for improving the low-temperature toughness. To achieve this effect, 0.80%
The above addition is necessary. However, if the amount is too large,
Since not only economic efficiency but also HAZ toughness and on-site weldability are deteriorated, the upper limit is set to 2.5%.

【0020】Crは鋼の強度を増加させる効果があり、
この効果を発揮させるためには0.20%以上の添加が
必要である。しかし、多すぎると低温靭性や現地溶接性
を著しく劣化させる。このためCr量の上限を1.5%
とした。Moを添加する理由は、鋼の焼入性を向上さ
せ、目的とするベイナイトイ主体の組織を得るためであ
る。このような効果を得るためには、Moは最低0.2
0%必要である。しかし過剰なMo添加は低温靭性、現
地溶接性を劣化させるので、その上限を1.5%とし
た。
Cr has the effect of increasing the strength of steel,
In order to exhibit this effect, it is necessary to add 0.20% or more. However, if the content is too large, the low-temperature toughness and on-site weldability are significantly deteriorated. Therefore, the upper limit of the amount of Cr is 1.5%.
And The reason for adding Mo is to improve the hardenability of steel and obtain the desired bainite-based structure. In order to obtain such an effect, Mo should be at least 0.2.
0% is required. However, excessive addition of Mo deteriorates low-temperature toughness and on-site weldability, so the upper limit was made 1.5%.

【0021】また本発明では、必須の元素としてNb:
0.01〜0.10%、Ti:0.005〜0.030
%を含有する。NbはMoと共存して結晶粒の微細化や
析出硬化に寄与し、鋼を強靭化する作用を有する。この
効果を発揮させるための最小量として、その下限を0.
01%とした。しかしNbを0.10%超添加すると、
低温靭性や現地溶接性に悪影響をもたらすので、その上
限を0.10%とした。
In the present invention, Nb:
0.01 to 0.10%, Ti: 0.005 to 0.030
%. Nb coexists with Mo and contributes to refinement of crystal grains and precipitation hardening, and has an effect of toughening steel. The lower limit is set to 0.
01%. However, when Nb exceeds 0.10%,
Since the low-temperature toughness and on-site weldability are adversely affected, the upper limit is set to 0.10%.

【0022】一方、Ti添加は微細なTiNを形成し、
加熱時のオーステナイト粒の粗大化を抑制してミクロ組
織を微細化し、低温靭性を改善する。このようなTi添
加効果を発現させるためには、最低0.005%のTi
添加が必要である。しかしTi量が多すぎると、TiN
の粗大化やTiCによる析出硬化が生じ、低温靭性が劣
化するので、その上限は0.030%に限定した。
On the other hand, the addition of Ti forms fine TiN,
It suppresses coarsening of austenite grains during heating, refines the microstructure, and improves low-temperature toughness. In order to exhibit such a Ti addition effect, at least 0.005% Ti
Addition is required. However, if the amount of Ti is too large, TiN
, And precipitation hardening due to TiC occurs, and the low-temperature toughness deteriorates. Therefore, the upper limit thereof is limited to 0.030%.

【0023】Alは通常脱酸材として鋼に含まれる元素
で、組織の微細化にも効果を有する。しかしAl量が
0.06%を超えると、Al系非金属介在物が増加して
鋼の清浄度を害するので、上限を0.06%とした。脱
酸はTiあるいはSiでも可能であり、Alは必ずしも
添加する必要はない。
Al is an element usually contained in steel as a deoxidizing material, and also has an effect on refining the structure. However, if the amount of Al exceeds 0.06%, Al-based nonmetallic inclusions increase and impair the cleanliness of the steel, so the upper limit was made 0.06%. Deoxidation can be performed with Ti or Si, and Al need not always be added.

【0024】NはTiNを形成して加熱時のオーステナ
イト粒の粗大化を抑制し、低温靭性を向上させる。この
ために必要な最小量は0.001%である。しかし、多
すぎると固溶Nによる低温靭性の劣化の原因となるの
で、その上限は0.010%に抑える必要がある。
N forms TiN and suppresses austenite grains from being coarsened during heating, and improves low-temperature toughness. The minimum required for this is 0.001%. However, if the amount is too large, it causes the deterioration of low-temperature toughness due to solid solution N, so its upper limit must be suppressed to 0.010%.

【0025】さらに本発明では、不純物元素であるP,
S,O量をそれぞれ、0.015%以下、0.010%
以下、0.050%以下とする。この主たる理由は、低
温靭性をより一層向上させるためである。P量の低減は
粒界破壊を防止し低温靭性を向上させる。またS量の低
減は延靭性を向上させる効果がある。O量の低減は鋼中
の酸化物を少なくして、低温靭性の改善に効果がある。
Further, in the present invention, P, which is an impurity element,
S and O contents are 0.015% or less and 0.010%, respectively.
Hereinafter, it is set to 0.050% or less. The main reason for this is to further improve the low-temperature toughness. Reduction of the P content prevents grain boundary fracture and improves low temperature toughness. Also, the reduction of the S content has the effect of improving the ductility. Reducing the amount of O is effective in reducing low-temperature toughness by reducing oxides in steel.

【0026】つぎに、好ましい条件としてCu,V,
B,Caを添加する理由について説明する。基本となる
成分に加えて、さらにこれらの元素を添加する主たる目
的は、本発明ベンド管の優れた特長を損なうことなく、
製造可能な板厚の拡大や母材の強度・靭性などの特性の
向上をはかるためである。したがって、その添加量は自
ら制限されるべき性質のものである。
Next, preferable conditions are Cu, V,
The reason for adding B and Ca will be described. The main purpose of adding these elements in addition to the basic components is to maintain the excellent characteristics of the bend tube of the present invention,
This is for the purpose of increasing the manufacturable plate thickness and improving properties such as strength and toughness of the base material. Therefore, the amount of addition is of a nature that should be restricted.

【0027】Cuを添加する目的は、低炭素の本発明ベ
ンド管の強度を低温靭性や現地溶接性を劣化させること
なく向上させるためである。Cu添加は、MnやCr,
Mo添加に比較して低温靭性に有害な硬化組織を形成す
ることが少なく、Cu添加が低温靭性の改善にも有効で
ある。この効果を発揮させるためには0.1%以上の添
加が必要である。しかし過剰に添加すると析出硬化によ
り低温靭性の低下が生じるので、その上限を1.0%と
した。
The purpose of adding Cu is to improve the strength of the low carbon bend pipe of the present invention without deteriorating low-temperature toughness and on-site weldability. Cu addition is Mn, Cr,
As compared with Mo addition, a hardened structure harmful to low-temperature toughness is less formed, and addition of Cu is also effective in improving low-temperature toughness. In order to exhibit this effect, it is necessary to add 0.1% or more. However, if added in excess, precipitation hardening causes a decrease in low-temperature toughness, so the upper limit was made 1.0%.

【0028】Vは、ほぼNbと同様の効果を有するが、
その効果はNbに比較して弱い。しかし、高強度鋼にお
けるV添加の効果は大きい。この効果を発揮させるため
には0.01%以上の添加が必要である。その上限は低
温靭性や現地溶接性の点から0.10%まで許容でき
る。
V has almost the same effect as Nb,
The effect is weaker than Nb. However, the effect of V addition on high strength steel is significant. In order to exhibit this effect, 0.01% or more must be added. The upper limit is allowable up to 0.10% from the viewpoint of low-temperature toughness and on-site weldability.

【0029】Bは、極微量で鋼の焼入性を飛躍的に高め
て目的とするベイナイトを主体とする組織を得ることが
できる。さらにBは、Moの焼入性向上効果を高めると
ともにNbと共存して相乗的に焼入性を増す。このよう
な効果を得るためには、Bは最低でも0.0003%必
要である。一方、過剰に添加すると、低温靭性を劣化さ
せるだけでなく、かえってBの焼入性向上効果を消失せ
しめることもあるので、その上限を0.0030%とし
た。
B can drastically enhance the hardenability of steel in a trace amount to obtain a target structure mainly composed of bainite. Further, B enhances the hardenability improving effect of Mo and synergistically increases the hardenability in combination with Nb. In order to obtain such an effect, B must be at least 0.0003%. On the other hand, if it is added excessively, it not only deteriorates the low-temperature toughness but may also lose the effect of improving the hardenability of B, so the upper limit was made 0.0030%.

【0030】Caは硫化物(MnS)の形態を制御し、
低温靭性を向上(シャルピー試験における吸収エネルギ
ーの増加など)させる。しかしCa量が0.001%未
満では実用上効果がなく、また0.005%を超えて添
加すると、CaO−CaSが大量に生成して、クラスタ
ー、大型介在物となり、鋼の清浄度を害するだけでな
く、現地溶接性にも悪影響をおよぼす。このためCa添
加量を0.001〜0.005%に制限した。
Ca controls the form of sulfide (MnS),
Improve low-temperature toughness (increase in absorbed energy in Charpy test, etc.). However, if the Ca content is less than 0.001%, there is no practical effect, and if the Ca content exceeds 0.005%, CaO—CaS is generated in large quantities, forming clusters and large inclusions, impairing the cleanliness of the steel. In addition, it has an adverse effect on local weldability. For this reason, the amount of Ca added was limited to 0.001 to 0.005%.

【0031】以上の個々の添加元素の限定に加えて、本
発明ベンド管ではさらに、溶接金属部の成分組成を、
(1)式で定義されるP値が0.23以上かつ0.40
以下の範囲となるように制限する必要がある。これは低
温靭性、現地溶接性を損なうことなく、目的とする強度
・低温靭性のバランスを達成するためである。P値の下
限を0.23とした理由はX100以上の強度と優れた
低温靭性を得るためである。またP値の上限を0.40
としたのは優れた低温靭性、現地溶接性を維持するため
である。
[0031] In addition to the above-mentioned limitation of the individual additive elements, the bend pipe of the present invention further includes a component composition of a weld metal portion,
The P value defined by the equation (1) is 0.23 or more and 0.40
It is necessary to limit it to the following range. This is to achieve the desired balance of strength and low-temperature toughness without impairing low-temperature toughness and on-site weldability. The reason for setting the lower limit of the P value to 0.23 is to obtain a strength of X100 or more and excellent low-temperature toughness. The upper limit of the P value is 0.40
The reason for this is to maintain excellent low-temperature toughness and on-site weldability.

【0032】つぎに本発明法について説明する。本発明
法では、上述した成分組成からなる溶接金属部を有する
鋼管を、780〜880℃の温度範囲に加熱後、曲げ加
工し直ちに10℃/秒以上の冷却速度で水冷する必要が
ある。
Next, the method of the present invention will be described. According to the method of the present invention, it is necessary to heat a steel pipe having a weld metal part having the above-mentioned component composition to a temperature range of 780 to 880 ° C., then bend and immediately water-cool at a cooling rate of 10 ° C./second or more.

【0033】鋼管の加熱温度を780℃以上とする理由
は、加熱時に一部オーステナイト化させて、組織を微細
化すること、および曲げ加工後の水冷により所定の強度
を得るためである。鋼管の加熱温度が780℃未満の場
合、加熱前の旧オーステナイト粒界でのみオーステナイ
ト化され、この領域にCが拡散、濃縮すると、曲げ加工
後の水冷時に粗大かつ列状のMAが生成して低温靭性が
劣化する。このため加熱温度の下限は780℃とした。
しかし加熱温度が880℃を超えると、加熱時のオース
テナイト粒が成長し、変態後の組織が粗大化して低温靭
性の劣化を招いてしまう。このため加熱温度の上限は8
80℃とした。
The reason why the heating temperature of the steel pipe is set to 780 ° C. or higher is to make the structure finer by partially austenitizing during heating and to obtain a predetermined strength by water cooling after bending. When the heating temperature of the steel pipe is lower than 780 ° C., austenite is formed only at the former austenite grain boundaries before heating, and when C is diffused and concentrated in this region, coarse and row-like MA is generated during water cooling after bending. Low temperature toughness deteriorates. Therefore, the lower limit of the heating temperature was set to 780 ° C.
However, when the heating temperature exceeds 880 ° C., austenite grains during heating grow, the structure after transformation becomes coarse, and the low-temperature toughness is deteriorated. Therefore, the upper limit of the heating temperature is 8
80 ° C.

【0034】加熱後、鋼管を曲げ加工し直ちに10℃/
秒以上の冷却速度で水冷する必要がある。これは水冷す
ることにより70%以上の微細なベイナイト組織を生成
させて、高強度と優れた低温靭性を得るためである。冷
却速度が10℃/秒未満の場合、微細なベイナイト組織
が得られず、高強度と良好な低温靭性が同時に得られな
い。このため水冷時の冷却速度の下限を10℃/秒とし
た。曲げ加工後、直ちに水冷しないと鋼管の温度が低下
して、フェライトなどの生成により高強度化が達成でき
ない。なお水冷開始は、曲げ加工に支障を来さない範囲
であれば曲げ加工完了前であってもよい。
After heating, the steel pipe was bent and immediately heated to 10 ° C. /
It is necessary to perform water cooling at a cooling rate of at least seconds. This is because a fine bainite structure of 70% or more is formed by cooling with water to obtain high strength and excellent low-temperature toughness. If the cooling rate is less than 10 ° C./sec, a fine bainite structure cannot be obtained, and high strength and good low-temperature toughness cannot be obtained at the same time. For this reason, the lower limit of the cooling rate during water cooling was set to 10 ° C./sec. If the steel pipe is not cooled immediately after the bending, the temperature of the steel pipe decreases, and high strength cannot be achieved due to the formation of ferrite and the like. The water cooling may be started before the completion of the bending process as long as the range does not hinder the bending process.

【0035】[0035]

【実施例】表1に示すような一定の鋼成分の鋼管から、
表2に示すような種々の溶接金属成分を有するベンド管
を製造して、諸性質を調査した結果を表3に示す。機械
的性質は圧延と直角方向で調査した。本発明例No.1〜
No.6の本発明ベンド管の溶接金属部はX100以上の
高い強度と良好な低温靭性を有する。これに対して比較
例No.7〜No.19のベンド管は、成分組成またはミク
ロ組織が適切でなく、いずれかの特性が劣る。
EXAMPLE From a steel pipe having a constant steel composition as shown in Table 1,
Table 3 shows the results of manufacturing bend pipes having various weld metal components as shown in Table 2 and examining various properties. The mechanical properties were investigated in the direction perpendicular to the rolling. Invention Example No. 1 to
No. The weld metal part of the bend tube of the present invention No. 6 has high strength of X100 or more and good low-temperature toughness. In contrast, Comparative Example No. 7-No. The 19 bend tubes are not suitable in component composition or microstructure, and are inferior in either property.

【0036】また本発明例No.1〜No.6は、本発明ベ
ンド管の成分組成からなり、かつ本発明法の条件を満た
しているので、適切なミクロ組織を有し、所定の高い強
度と良好な低温靭性を有する。これに対して比較例No.
17〜No.19は、成分組成は適切だが本発明法の条件
から外れているので特性が劣る。
In the present invention example No. 1 to No. No. 6 is composed of the component composition of the bend tube of the present invention and satisfies the conditions of the method of the present invention, has an appropriate microstructure, has a predetermined high strength and good low-temperature toughness. In contrast, Comparative Example No.
17-No. No. 19 is inferior in characteristics because the composition of the component is appropriate but out of the conditions of the method of the present invention.

【0037】No.7はC量が多すぎるため、低温靭性が
悪い。No.8はNi量が少ないため強度・低温靭性バラ
ンスが悪い。No.9はCr量が少ないため、強度・低温
靭性バランスが悪い。No.10はCr量が多すぎるため
低温靭性が悪い。No.11はMo量が少ないため低温靭
性が悪い。No.12はMo量が多すぎるため低温靭性が
悪い。No.13はP値が小さいためX100以上の強度
が得られない。No.14はP値が高すぎるため低温靭性
が悪い。No.15は旧オーステナイト粒径が大きいため
低温靭性が悪い。No.16はベイナイト分率が低いため
X100以上の強度を満足しない。
No. Sample No. 7 has an inferior low-temperature toughness because the C content is too large. No. No. 8 has a low balance of strength and low-temperature toughness due to a small amount of Ni. No. Sample No. 9 has a low Cr content, so the strength-low temperature toughness balance is poor. No. In No. 10, the low-temperature toughness is poor because the amount of Cr is too large. No. No. 11 has low Mo toughness due to low Mo content. No. In No. 12, the low temperature toughness is poor because the Mo content is too large. No. No. 13 cannot obtain an intensity of X100 or more because the P value is small. No. No. 14 has poor low temperature toughness because the P value is too high. No. No. 15 has poor low-temperature toughness due to a large prior austenite grain size. No. No. 16 does not satisfy the strength of X100 or more because the bainite fraction is low.

【0038】No.17は曲げ加工時の加熱温度が低いた
め、旧オーステナイト粒径が大きくなり低温靭性が悪
い。No.18は同加熱温度が高いため、旧オーステナイ
ト粒径が大きくなり低温靭性が悪い。No.19は曲げ加
工後の冷却速度が遅いため、ベイナイト分率が低下して
低温靭性が悪い。
No. In No. 17, since the heating temperature at the time of bending is low, the prior austenite grain size is large and the low-temperature toughness is poor. No. Sample No. 18 had a high heating temperature, so the prior austenite grain size was large, and the low-temperature toughness was poor. No. In No. 19, since the cooling rate after bending was low, the bainite fraction was low and the low-temperature toughness was poor.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【発明の効果】本発明ベンド管は、溶接金属部がAPI
規格X100以上(降伏強さで約690N/mm2 以上)
の高強度を有しかつ低温靭性に優れている。そして本発
明法により、このような高強度かつ高温靭のベンド管が
安定して製造できるようになった。その結果、パイプラ
インの安全性が著しく向上するとともに、パイプライン
の輸送効率の向上が可能となった。
According to the bend pipe of the present invention, the weld metal portion has an API.
Standard X100 or more (about 690N / mm 2 or more in the yield strength)
And has excellent low-temperature toughness. According to the method of the present invention, such a high-strength and high-temperature tough bend pipe can be stably manufactured. As a result, the safety of the pipeline has been significantly improved, and the transportation efficiency of the pipeline has been improved.

フロントページの続き (72)発明者 小山 邦夫 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 朝日 均 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内Continued on the front page (72) Inventor Kunio Koyama 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Hitoshi Asahi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶接金属部が、重量%にて、 C :0.03〜0.10%、 Si:0.6%以下、 Mn:1.5〜2.2%、 P :0.015%以下、 S :0.010%以下、 Ni:0.80〜2.5%、 Cr:0.20〜1.5%、 Mo:0.20〜1.5%、 Nb:0.01〜0.10%、 Ti:0.005〜0.030%、 Al:0.06%以下、 N :0.001〜0.010%、 O :0.050%以下 を含有し残部がFeおよび不可避的不純物からなり、か
つ下記(1)式で定義されるP値が0.23〜0.40
の範囲の成分組成であり、さらに平均粒径で10μm以
下のオーステナイトから変態したベイナイトを体積分率
で70%以上含有するミクロ組織を有していることを特
徴とする溶接金属部の靭性に優れた高強度ベンド管。 P=C+0.11Si+0.03Mn+0.02Ni +0.04Cr+0.07Mo+1.46Nb ・・・(1)
C. 0.03 to 0.10%, Si: 0.6% or less, Mn: 1.5 to 2.2%, P: 0.015% by weight in a weld metal part. %: S: 0.010% or less, Ni: 0.80 to 2.5%, Cr: 0.20 to 1.5%, Mo: 0.20 to 1.5%, Nb: 0.01 to 0.10%, Ti: 0.005 to 0.030%, Al: 0.06% or less, N: 0.001 to 0.010%, O: 0.050% or less, with the balance being Fe and inevitable And the P value defined by the following equation (1) is 0.23 to 0.40
Having a microstructure containing 70% or more by volume fraction of bainite transformed from austenite having an average particle size of 10 μm or less, and having excellent toughness of a weld metal portion. High strength bend tube. P = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb (1)
【請求項2】 金属溶接部が、重量%にてさらに、 Cu:0.1〜1.0%、 V :0.01〜0.10%、 B :0.0003〜0.0030%、 Ca:0.001〜0.005% のうち1種または2種以上を含有する成分組成であるこ
とを特徴とする請求項1記載の溶接金属部の靭性に優れ
た高強度ベンド管。
2. The metal weld further comprises, by weight%, Cu: 0.1 to 1.0%, V: 0.01 to 0.10%, B: 0.0003 to 0.0030%, Ca: The high-strength bend pipe having excellent toughness of a weld metal part according to claim 1, characterized in that it has a component composition containing one or more of 0.001 to 0.005%.
【請求項3】 金属溶接部が請求項1または2に記載さ
れた成分組成である鋼管を、780〜880℃に加熱
後、曲げ加工し直ちに10℃/秒以上の冷却速度で水冷
することを特徴とする溶接金属部の靭性に優れた高強度
ベンド管の製造法。
3. A steel pipe whose metal composition has the composition described in claim 1 or 2 is heated to 780 to 880 ° C., bent, and immediately cooled with water at a cooling rate of 10 ° C./sec or more. A method for manufacturing high-strength bend pipes with excellent weld metal toughness.
JP34346997A 1997-12-12 1997-12-12 High-strength bend pipe with excellent toughness of weld metal and method of manufacturing the same Expired - Fee Related JP3466451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34346997A JP3466451B2 (en) 1997-12-12 1997-12-12 High-strength bend pipe with excellent toughness of weld metal and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34346997A JP3466451B2 (en) 1997-12-12 1997-12-12 High-strength bend pipe with excellent toughness of weld metal and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11172375A true JPH11172375A (en) 1999-06-29
JP3466451B2 JP3466451B2 (en) 2003-11-10

Family

ID=18361775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34346997A Expired - Fee Related JP3466451B2 (en) 1997-12-12 1997-12-12 High-strength bend pipe with excellent toughness of weld metal and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3466451B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096510A1 (en) * 2010-02-04 2011-08-11 新日本製鐵株式会社 High-strength welded steel pipe and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096510A1 (en) * 2010-02-04 2011-08-11 新日本製鐵株式会社 High-strength welded steel pipe and method for producing the same
JP4837807B2 (en) * 2010-02-04 2011-12-14 新日本製鐵株式会社 High strength welded steel pipe and manufacturing method thereof
CN102741443A (en) * 2010-02-04 2012-10-17 新日本制铁株式会社 High-strength welded steel pipe and method for producing the same
US8974610B2 (en) 2010-02-04 2015-03-10 Nippon Steel & Sumitomo Metal Corporation High-strength welded steel pipe and method for producing the same

Also Published As

Publication number Publication date
JP3466451B2 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP3290247B2 (en) Method for manufacturing high tensile strength and high toughness bent pipe with excellent corrosion resistance
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP3466450B2 (en) High strength and high toughness bend pipe and its manufacturing method
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JPS6367525B2 (en)
JP3785376B2 (en) Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JP2002129288A (en) High strength pipe bend and its manufacturing method
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JP4133566B2 (en) Manufacturing method of high strength bend pipe with excellent low temperature toughness
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JP3244986B2 (en) Weldable high strength steel with excellent low temperature toughness
JP3466451B2 (en) High-strength bend pipe with excellent toughness of weld metal and method of manufacturing the same
JP4369555B2 (en) High strength steel pipes and pipelines with excellent weld toughness
JP3764593B2 (en) High strength steel pipe with excellent toughness of weld heat affected zone
JP3752078B2 (en) High strength steel plate excellent in sour resistance and manufacturing method thereof
JPH0535204B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030729

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees