JPH11172373A - Extremely thick rolled wide flange shape - Google Patents

Extremely thick rolled wide flange shape

Info

Publication number
JPH11172373A
JPH11172373A JP33428897A JP33428897A JPH11172373A JP H11172373 A JPH11172373 A JP H11172373A JP 33428897 A JP33428897 A JP 33428897A JP 33428897 A JP33428897 A JP 33428897A JP H11172373 A JPH11172373 A JP H11172373A
Authority
JP
Japan
Prior art keywords
steel
strength
toughness
extremely thick
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33428897A
Other languages
Japanese (ja)
Inventor
Sadahiro Yamamoto
定弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP33428897A priority Critical patent/JPH11172373A/en
Publication of JPH11172373A publication Critical patent/JPH11172373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an extremely thick rolled wide flange shape combining a low yield ratio, high toughness and excellent weldability and having >=590 MPa tensile strength and >=35 mm flange thickness. SOLUTION: The chemical components of the stock are composed of the ones contg., by weight, 0.010 to 0.040% C, 0.05 to 0.50% Si, 0.60 to 1.60% Mn, 0.005 to 0.100% Nb, 0.003 to 0.030% Ti and 0.0003 to 0.0040% B, also satisfying C>=Nb/7+0.005, moreover contg. one or >= two kinds among 0.05 to 0.60% Mo, 0.05 to 0.70% Cu and 0.05 to l.20% Ni, and the balance iron with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築用鋼材として
要求される低降伏比、狭YPレンジ、高靱性を有し、引
張強度が590MPa以上の柱材に用いられるフランジ
厚さが35mm以上の溶接性に優れた極厚圧延H形鋼に
関する。
The present invention relates to a column material having a low yield ratio, a narrow YP range, a high toughness, and a tensile strength of 590 MPa or more, which is required as a steel material for building, and a flange thickness of 35 mm or more. The present invention relates to an extremely thick rolled H-section steel excellent in weldability.

【0002】[0002]

【従来の技術】鉄骨構造の高層建築物の柱材には、耐震
設計の観点から低降伏比の鋼材が用いられている。この
ような設計手法を用いた高層建築物に用いられる柱材に
は、各断面方向毎の断面係数の変化が少ないボックス
柱、鋼管を用いた円柱、あるいは温間もしくは冷間で加
工されたコラム柱が用いられている。しかし、ボックス
柱の場合は角溶接の施工に技術が要求されること、円柱
の場合は梁材と接続するための仕口部の加工が複雑にな
ること、厚肉コラム柱の場合はコーナー部の低降伏比を
満足するような成形を行うための成形コストが高いこと
などの欠点がある。従って、材料費、施工費等を含めた
トータルコストを削減できる柱材が求められている。
2. Description of the Related Art Steel columns having a low yield ratio are used for columns of high-rise buildings having a steel structure from the viewpoint of seismic design. Column materials used for high-rise buildings using such a design method include box columns, steel columns, or columns that have been worked warm or cold with little change in the section modulus in each section direction. Pillars are used. However, in the case of box columns, technology is required for the construction of square welding, in the case of cylinders, the processing of the connection part to connect to the beam material becomes complicated, in the case of thick column columns, the corner part is required However, there are drawbacks such as high molding cost for performing molding that satisfies the low yield ratio. Therefore, there is a demand for a pillar material capable of reducing the total cost including the material cost and the construction cost.

【0003】H形鋼の場合、断面係数はH方向とI方向
で異なる。しかし、複雑な曲げ加工、溶接施工を行わず
に柱を製作できること、梁材を取り付ける仕口部が炭酸
ガス溶接のみで簡便に施工できることなどの利点が多
い。また断面係数の違いは設計段階で考慮できることは
よく知られている。以上の点から低降伏比(80%以
下)と高靱性(vE0≧47J)を満たし、溶接性に優
れた極厚圧延高強度H形鋼が要求されている。このよう
な、高層建築物に用いられる低降伏比を備えた鋼材につ
いては、フランジ厚さが35mm未満の薄いH形鋼の分
野で特開平9−137218号公報等に開示されてい
る。
[0003] In the case of H-section steels, the section modulus differs between the H direction and the I direction. However, there are many advantages that a pillar can be manufactured without performing complicated bending and welding work, and that a connection part for attaching a beam material can be simply and simply constructed by carbon dioxide welding. It is well known that differences in section modulus can be considered at the design stage. From the above points, there is a demand for an ultra-thick rolled high-strength H-section steel that satisfies a low yield ratio (80% or less) and high toughness (vE0 ≧ 47J) and has excellent weldability. Such a steel material having a low yield ratio used for a high-rise building is disclosed in JP-A-9-137218 in the field of a thin H-section steel having a flange thickness of less than 35 mm.

【0004】[0004]

【発明が解決しようとする課題】上記公報は、900℃
以下の累積圧下率が50%以上確保可能な比較的フラン
ジ厚さが薄いH形鋼に関するものである。しかし、フラ
ンジ厚さが35mm以上の柱材に適した極厚圧延H形鋼
の分野では、圧延条件は主として形状を整え、寸法精度
を満足するために決定されていることから、材質の観点
に基づいて900℃以下50%以上の累積圧下率を加え
るような圧延は難しい。このような柱材向けの極厚圧延
H形鋼におけるTMCP(加工熱処理)技術の適用に関
しては、特開昭53−141119号公報、特開平9−
111397号公報に開示するような加速冷却条件を規
定した提案がなされているが、900℃以下の低温圧延
が十分に行えないフランジ厚さが35mm以上の鋼材の
極厚圧延H形鋼を圧延後放冷で製造することに関しては
全く知られていない。
The above publication discloses that the temperature is 900 ° C.
The present invention relates to an H-section steel having a relatively small flange thickness capable of ensuring the following cumulative reduction ratio of 50% or more. However, in the field of extremely thick rolled H-section steel suitable for a column material having a flange thickness of 35 mm or more, the rolling conditions are determined mainly to adjust the shape and satisfy the dimensional accuracy. On the basis of this, it is difficult to perform rolling such that a cumulative draft of 900% or less and 50% or more is applied. Regarding the application of the TMCP (working heat treatment) technique to such an extremely thick rolled H-section steel for a column material, see JP-A-53-141119 and JP-A-9-141.
Japanese Patent Application Laid-Open No. 111397 proposes an accelerated cooling condition as disclosed in Japanese Patent Application Laid-Open No. 111397. However, it is not possible to sufficiently perform low-temperature rolling at 900 ° C. or less. Nothing is known about production by cooling.

【0005】本発明者は、このような十分に低温圧延が
行えない製造条件においても、低降伏比、高靱性、溶接
性を兼ね備えた高強度(TS≧590MPa)のフラン
ジ厚さ35mm以上の極厚H形鋼を、圧延により製造す
るための方法を検討してきた。各種合金元素を多量に添
加することにより、圧延ままで高強度化できることは自
明であるが、本発明の対象とした極厚H形鋼のようにγ
低温域で十分な圧延が行えない場合は高靱性の確保が難
しい。また、溶接性の観点からも望ましくない。 そこ
で、本発明者は以上の点を考慮し、900℃以下での累
積圧下率が50%未満しか確保できない条件において
も、低降伏比、高靱性、優れた溶接性を兼ね備えた引張
強度が590MPa以上の、しかもフランジ厚さが35
mm以上を有する極厚H形鋼を検討してきた結果、合金
元素の最適化を図ることにより上記特性を有する高靱性
極厚圧延H形鋼を知見するに至った。
The inventor of the present invention has developed a high strength (TS ≧ 590 MPa) flange having a thickness of 35 mm or more that combines low yield ratio, high toughness, and weldability even under such production conditions in which sufficient low-temperature rolling cannot be performed. A method for producing a thick H-section steel by rolling has been studied. It is obvious that the strength can be increased as it is rolled by adding a large amount of various alloying elements.
If sufficient rolling cannot be performed in a low temperature range, it is difficult to secure high toughness. It is not desirable from the viewpoint of weldability. In view of the above, the present inventor has considered that even under the condition that the cumulative rolling reduction at 900 ° C. or less can be less than 50%, the tensile strength having low yield ratio, high toughness, and excellent weldability is 590 MPa. Above, and the flange thickness is 35
As a result of studying an ultra-thick H-section steel having a thickness of not less than 1 mm, a high-toughness extra-thickness rolled H-section steel having the above characteristics has been found by optimizing alloy elements.

【0006】本発明は、かかる知見に基づくものであ
り、低降伏比、高靱性、優れた溶接性を兼ね備え、か
つ、引張強度が590MPa以上、フランジ厚さが35
mm以上の極厚圧延H形鋼を提供することを目的とす
る。
The present invention is based on this finding and has a low yield ratio, high toughness, excellent weldability, a tensile strength of 590 MPa or more, and a flange thickness of 35 mm.
It is an object of the present invention to provide an extremely thick rolled H-section steel of not less than mm.

【0007】[0007]

【課題を解決するための手段】フランジ厚さが35mm
以上の極厚圧延H形鋼は、形状の安定性、寸法精度、お
よび圧延機への負荷荷重の低減の観点から、加熱温度・
圧延仕上温度を高くしているため高靱性の確保が難し
い。また単重が大きいこと、断面形状が複雑であること
から圧延後に熱処理炉等を用いた熱処理を行うことは困
難である。そこで、本発明者は圧延後放冷することを前
提に化学成分の最適化を図り、その結果、常温での降伏
比が低く、かつ高靱性を有し、溶接性にも優れた引張強
度が590MPa以上の建築向け高靱性極厚H形鋼(フ
ランジ厚さ35mm以上)を製造可能な成分を見出し
た。
The flange thickness is 35 mm.
From the viewpoints of shape stability, dimensional accuracy, and reduction of the load applied to a rolling mill, the above-mentioned extremely thick rolled H-section steel has a heating temperature and
It is difficult to secure high toughness because the rolling finishing temperature is high. In addition, it is difficult to perform a heat treatment using a heat treatment furnace or the like after rolling because of a large unit weight and a complicated cross-sectional shape. Therefore, the present inventors have attempted to optimize the chemical components on the assumption that they are allowed to cool after rolling, and as a result, have a low yield ratio at room temperature, have high toughness, and have excellent tensile strength with excellent weldability. A component capable of producing a high toughness extremely thick H-section steel (flange thickness of 35 mm or more) for buildings of 590 MPa or more was found.

【0008】以下に、本発明の高靱性極厚H形鋼におけ
る具体的な成分範囲を示す。 (1)素材の化学成分が、重量%で、C:0.010〜
0.040%、Si:0.05〜0.50%、Mn:
0.60〜1.60%、Nb:0.005〜0.100
%、Ti:0.003〜0.030%、B:0.000
3〜0.0040%を含有し、かつ、C≧Nb/7+
0.005を満足し、加えて、Mo:0.05〜0.6
0%、Cu:0.05〜0.70%、Ni:0.05〜
1.20%を一種または二種以上含み、残部が鉄および
不可避不純物からなるものである。 (2)上記素材に、さらに、V:0.005〜0.20
0%、Cr:0.05〜0.80%、Zr:0.005
〜0.050%、REM:0.0005〜0.0500
%、Ca:0.0005〜0.0100%を一種または
二種以上含むことからなるものである。
The specific component ranges of the high toughness extremely thick H-section steel of the present invention are shown below. (1) The chemical component of the material is C: 0.010 by weight%
0.040%, Si: 0.05 to 0.50%, Mn:
0.60 to 1.60%, Nb: 0.005 to 0.100
%, Ti: 0.003 to 0.030%, B: 0.000
3 to 0.0040%, and C ≧ Nb / 7 +
0.005, and Mo: 0.05 to 0.6
0%, Cu: 0.05-0.70%, Ni: 0.05-
One or two or more kinds are contained, and the balance consists of iron and inevitable impurities. (2) In addition to the above materials, V: 0.005 to 0.20
0%, Cr: 0.05-0.80%, Zr: 0.005
-0.05%, REM: 0.0005-0.0500
%, Ca: 0.0005 to 0.0100%.

【0009】以下、本発明について詳細に説明する。図
1に、0.025C−1.5Mn−0.60Cu−0.
65Ni−Nb−0.015Ti−0.0015B鋼に
おいて、Nb量を変化させた鋼を1300℃に加熱し、
900℃仕上でフランジ厚さ65mmの極厚圧延H形鋼
を圧延した場合のフランジ厚さ中央部の特性を示す。N
b量を含有しない場合は、目標とするTS≧590MP
aに大きく及ばない。これに対し、0.005%以上の
Nbを含有する場合は、目標とするYS≧440MP
a、TS≧590MPaを十分に満たし、靱性も十分に
高い。図中には、B無添加鋼(○印または△印の曲
線)、Ti無添加鋼(◇印の曲線)の結果も併記した
が、いずれも目標とする強度レベルには達していない。
これらの結果より、高強度化には0.005%以上のN
bとTi、Bの複合添加が不可欠であることがわかる。
Hereinafter, the present invention will be described in detail. FIG. 1 shows that 0.025C-1.5Mn-0.60Cu-0.
In 65Ni-Nb-0.015Ti-0.0015B steel, the steel with the Nb content changed is heated to 1300C,
The characteristic of the center part of the flange thickness when the extremely thick rolled H-section steel with a flange thickness of 65 mm is rolled at 900 ° C. finish is shown. N
If the amount of b is not contained, target TS ≧ 590MP
It does not reach a. On the other hand, when 0.005% or more of Nb is contained, the target YS ≧ 440MPa
a, TS ≧ 590 MPa, and sufficiently high toughness. In the figure, the results for the steel without B (curve marked with △ or △) and the steel without added Ti (curve with 併) are also shown, but none of them reached the target strength level.
From these results, it was found that 0.005% or more of N
It turns out that the complex addition of b and Ti and B is indispensable.

【0010】図2に、上記複合添加条件を満たすC−
1.45Mn−0.40Cu−1Ni−Nb−0.02
0Ti−0.0035B鋼を1250℃に加熱し、90
0℃以下30%の累積圧下率を加え、850℃仕上でフ
ランジ厚さ50mmの極厚圧延H形鋼を圧延し、フラン
ジ部にレ型開先を切り、多層炭酸ガス溶接(入熱20k
J/cm)を行った場合の溶接熱影響部の靱性を示す。
C量がNb/7+0.005未満の領域では、粒界破壊
が生じ靱性が著しく低下した。また、C量が0.04%
を超える領域においても良好な靱性が得られなかった。
これに対し、Nb/7+0.005≦C≦0.04の領
域(斜線領域)では、溶接部および熱影響部は優れた靱
性を有している。
FIG. 2 shows that C-
1.45Mn-0.40Cu-1Ni-Nb-0.02
0Ti-0.0035B steel is heated to 1250 ° C.
A rolled H-section steel with a flange thickness of 50 mm is rolled at a finish of 850 ° C. by applying a cumulative rolling reduction of 30% or less at 0 ° C.
J / cm) shows the toughness of the heat affected zone by welding.
In the region where the C content is less than Nb / 7 + 0.005, grain boundary fracture occurred and the toughness was significantly reduced. In addition, C content is 0.04%
Good toughness could not be obtained even in the region exceeding.
On the other hand, in the region of Nb / 7 + 0.005 ≦ C ≦ 0.04 (shaded region), the weld and the heat-affected zone have excellent toughness.

【0011】本発明における化学成分の限定理由を以下
に示す。
The reasons for limiting the chemical components in the present invention are described below.

【0012】C:0.010〜0.040% Cは鋼の強度を安定して確保するために有効な元素であ
る。しかし、0.010%未満では必要とする強度を得
るのは困難であり、また0.040%を超えると母材お
よび溶接部の靱性が劣化する。従って、0.010〜
0.040%の範囲とした。
C: 0.010-0.040% C is an effective element for stably securing the strength of steel. However, if it is less than 0.010%, it is difficult to obtain the required strength, and if it exceeds 0.040%, the toughness of the base metal and the welded part deteriorates. Therefore, 0.010
The range was 0.040%.

【0013】Si:0.05〜0.50% Siは脱酸、強度上昇に有効な元素であり、そのために
は0.05%以上の添加が必要であるが、0.50%を
超えて添加すると溶接性を損なう。従って、0.05〜
0.50%とした。
Si: 0.05 to 0.50% Si is an element effective for deoxidation and increasing the strength. For that purpose, it is necessary to add 0.05% or more of Si. Addition impairs weldability. Therefore, 0.05-
0.50%.

【0014】Mn:0.60〜1.60% Mnは強度確保の上で有効な元素であり、特に高強度化
のためには0.60%以上の添加が必要である。一方、
1.60%を超えて添加すると溶接性を損なう。従っ
て、0.60〜1.60%の範囲とした。
Mn: 0.60 to 1.60% Mn is an effective element for securing the strength. In particular, to increase the strength, it is necessary to add 0.60% or more. on the other hand,
Addition exceeding 1.60% impairs weldability. Therefore, the range is 0.60 to 1.60%.

【0015】Nb:0.005〜0.100% Nbは図1に示したように、微量添加により強度を著し
く上昇させ、本発明のような極厚圧延H形鋼の高強度化
には不可欠である。本効果を発揮するには0.005%
以上の添加が有効である。しかし、0.100%を超え
て添加すると溶接性を損なう。従って、0.005〜
0.100%の範囲とした。
Nb: 0.005 to 0.100% Nb, as shown in FIG. 1, significantly increases the strength by adding a small amount thereof, and is indispensable for increasing the strength of the extremely thick rolled H-section steel as in the present invention. It is. 0.005% to achieve this effect
The above addition is effective. However, if it exceeds 0.100%, the weldability is impaired. Therefore, 0.005
The range was 0.100%.

【0016】Ti:0.003〜0.030% TiはNを固着し、Bによる高強度化を発揮させるには
不可欠である。本効果を発揮するには0.003%以上
の添加が必要であるが、0.030%を超えた添加はT
iCを形成し、溶接性を損なう。従って、0.003〜
0.0030%の範囲とした。
Ti: 0.003 to 0.030% Ti is indispensable for fixing N and exerting high strength by B. To exhibit this effect, 0.003% or more of addition is required.
It forms iC and impairs weldability. Therefore, 0.003 ~
The range was 0.0030%.

【0017】B:0.0003〜0.0040% Bは図1に示したように高強度化を発揮させるには不可
欠な元素である。本効果を発揮するには0.0003%
以上の添加が必要であるが、0.0040%を超えた添
加は靱性を損なう。従って、0.0003〜0.004
0%の範囲とした。
B: 0.0003% to 0.0040% B is an indispensable element for exhibiting high strength as shown in FIG. 0.0003% to achieve this effect
Although the above addition is necessary, addition exceeding 0.0040% impairs toughness. Therefore, 0.0003 to 0.004
The range was 0%.

【0018】本発明では以上の基本成分に加えて、M
o、Cu、Niの一種または二種以上を添加する必要が
ある。また、必要に応じてCr、V、REM、Caのう
ち一種または二種以上を添加することができる。
In the present invention, in addition to the above basic components, M
It is necessary to add one or more of o, Cu, and Ni. If necessary, one or more of Cr, V, REM, and Ca can be added.

【0019】Mo:0.05〜0.60% Moは焼入性の向上、析出強化等により鋼の高強度化に
効果がある。本効果を発揮するためには0.05%以上
の添加が必要であるが、0.60%を超える添加はコス
ト上昇を招くとともに溶接性の劣化を生じる。従って、
0.05〜0.60%の範囲に限定した。
Mo: 0.05 to 0.60% Mo is effective in improving the hardenability, strengthening the precipitation, etc., and increasing the strength of the steel. In order to exhibit this effect, it is necessary to add 0.05% or more. However, if it exceeds 0.60%, the cost increases and the weldability deteriorates. Therefore,
It was limited to the range of 0.05 to 0.60%.

【0020】Cu:0.05〜0.70% Cuは強度上昇に有効な元素であり、そのためには0.
05%以上の添加が必要であるが、0.70%を超える
添加はコストを上昇させるため、0.05〜0.70%
の範囲に限定した。
Cu: 0.05-0.70% Cu is an element effective for increasing the strength.
Addition of not less than 0.05% is necessary, but addition of more than 0.70% increases the cost.
Limited to the range.

【0021】Ni:0.05〜1.20% Niは強度上昇に有効であるとともに靱性の向上にも効
果があるが、そのためには0.05%以上の添加が必要
である。一方1.20%以上の添加は溶接性を損ない、
コストの上昇にもつながる。従って、0.05〜1.2
0%の範囲に限定した。
Ni: 0.05-1.20% Ni is effective not only for increasing the strength but also for improving the toughness, but for this purpose, 0.05% or more must be added. On the other hand, addition of 1.20% or more impairs weldability,
This also leads to higher costs. Therefore, 0.05 to 1.2
The range was limited to 0%.

【0022】Cr:0.05〜0.80% Crは強度の上昇に有効であり、そのためには0.05
%以上の添加が必要である。が、0.80%を超える添
加は溶接性の劣化の原因となる。従って、0.05〜
0.80%の範囲とした。
Cr: 0.05 to 0.80% Cr is effective in increasing the strength, and for that purpose, 0.05 to 0.80%
% Or more is required. However, addition exceeding 0.80% causes deterioration of weldability. Therefore, 0.05-
The range was 0.80%.

【0023】V:0.005〜0.200% Vは微量添加により強度の上昇に有効であり、0.00
5%以上の添加が必要である。一方0.200%を超え
る添加は溶接性を劣化させる。従って、0.005〜
0.200%の範囲に限定した。
V: 0.005 to 0.200% V is effective for increasing the strength by adding a small amount of V.
Addition of 5% or more is required. On the other hand, the addition exceeding 0.200% deteriorates the weldability. Therefore, 0.005
The range was limited to 0.200%.

【0024】Zr:0.005〜0.050% ZrはTiと同様にNを固着し、Bによる高強度化を発
揮させる。本効果を発揮するには0.005%以上の添
加が必要であるが、0.050%を超えた添加は溶接性
を損なう。従って、0.005〜0.050%の範囲と
した。
Zr: 0.005 to 0.050% Zr fixes N similarly to Ti and exerts high strength by B. To exert this effect, 0.005% or more must be added, but if it exceeds 0.050%, the weldability is impaired. Therefore, the range is 0.005 to 0.050%.

【0025】REM:0.0005〜0.0500% REMは介在物の形態を制御し、延性の向上に有効であ
る。本効果を発揮するには0.0005%以上の添加が
必要であるが、0.0500%を超えた添加は靱性を損
なう。従って、0.0005〜0.0500%の範囲と
した。
REM: 0.0005-0.0500% REM controls the form of inclusions and is effective in improving ductility. To exert this effect, 0.0005% or more must be added, but if it exceeds 0.0500%, the toughness is impaired. Therefore, the range is 0.0005 to 0.0500%.

【0026】Ca:0.0005〜0.0100% CaはREMと同様に介在物の形態を制御し、延性の向
上に有効である。本効果を発揮するには0.0005%
以上の添加が必要であるが、0.0100%を超えた添
加は靱性を損なう。従って、0.0005〜0.010
0%の範囲とした。
Ca: 0.0005% to 0.0100% Ca controls the form of inclusions similarly to REM, and is effective in improving ductility. 0.0005% to achieve this effect
Although the above addition is necessary, addition exceeding 0.0100% impairs toughness. Therefore, 0.0005 to 0.010
The range was 0%.

【0027】本発明では、特に製造条件は限定しない
が、900℃以下の累積圧下率が50%未満の条件にお
いても、十分な強度、靱性、溶接性が確保できる。
In the present invention, although the production conditions are not particularly limited, sufficient strength, toughness, and weldability can be ensured even under the condition that the cumulative draft at 900 ° C. or less is less than 50%.

【0028】[0028]

【発明の実施例】以下、本発明の実施例を説明する。 (実施例1)表1に示す化学成分を有する鋼No.1〜
14を用い、1270℃加熱後900℃以下10%の累
積圧下率を加え、800℃仕上でフランジ厚さ80mm
の極厚圧延H形鋼を圧延し、母材および溶接部(炭酸ガ
ス溶接:入熱20kJ/cm)の特性を調べた。
Embodiments of the present invention will be described below. (Example 1) Steel No. 1 having the chemical components shown in Table 1 was used. 1 to
After heating at 1270 ° C and applying a cumulative rolling reduction of 10% or less at 900 ° C or less, a flange thickness of 80 mm
Was rolled, and the characteristics of the base metal and the welded portion (carbon dioxide welding: heat input 20 kJ / cm) were examined.

【0029】[0029]

【表1】 [Table 1]

【0030】本発明条件を満たす鋼No.1〜3、8、
9、11、12はいずれもYS≧440MPa、TS≧
590MPaを十分に満たす高強度、80%以下の低降
伏比およびvE0≧47Jを十分に満たす母材および溶
接部の高靱性を有している。一方、鋼No.4はTi
が、鋼No.5、10はBが、鋼No.6、13はNb
が本発明条件を満たしていないため、目標とするYS≧
440MPa、TS≧590MPaを満たしていない。
さらに、鋼No.7、14は本発明条件であるC≧Nb
/7+0.005を満たしていないため、溶接部の靱性
が著しく低い。
The steel No. satisfying the conditions of the present invention. 1-3, 8,
9, 11, and 12 are all YS ≧ 440 MPa, TS ≧
It has high strength enough to satisfy 590 MPa, a low yield ratio of 80% or less, and high toughness of the base metal and the welded part sufficiently satisfying vE0 ≧ 47J. On the other hand, steel No. 4 is Ti
But steel No. B is steel No. 5 and 10; 6 and 13 are Nb
Does not satisfy the conditions of the present invention, the target YS ≧
It does not satisfy 440 MPa and TS ≧ 590 MPa.
Furthermore, steel No. 7, 14 are the conditions of the present invention C ≧ Nb
/7+0.005, the toughness of the weld is extremely low.

【0031】(実施例2)表2に示す化学成分を有する
鋼No.15〜26を用い、1150℃加熱後900℃
以下30%の累積圧下率を加え、750℃仕上でフラン
ジ厚さ50mmの極厚圧延H形鋼を圧延し、母材および
溶接部(炭酸ガス溶接:入熱20kJ/cm)の特性を
調べた。いずれも本発明条件を満たしているため、YS
≧440MPa、TS≧590MPaを十分に満たす高
強度、80%以下の低降伏比およびvE0≧47Jを十
分に満たす母材および溶接部の高靱性を有している。
(Example 2) Steel No. 2 having the chemical components shown in Table 2 was used. Using 15-26, 900 ℃ after heating at 1150 ℃
A rolled H-section steel having a flange thickness of 50 mm was rolled at a finish of 750 ° C. by applying a cumulative rolling reduction of 30% below, and the characteristics of the base metal and the welded portion (carbon dioxide welding: heat input 20 kJ / cm) were examined. . Since both satisfy the conditions of the present invention, YS
It has high strength enough to satisfy ≧ 440 MPa and TS ≧ 590 MPa, low yield ratio of 80% or less, and high toughness of the base material and the weld part sufficiently satisfying vE0 ≧ 47J.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】以上のように、本発明によれば、化学成
分を限定することにより、900℃以下での累積圧下率
が50%未満しか確保できない条件においても、低降伏
比、高靱性、優れた溶接性を兼ね備えた引張強度が59
0MPa以上のフランジ厚さが35mm以上を有する極
厚H形鋼を製造することが可能となった。
As described above, according to the present invention, by limiting the chemical components, the low yield ratio, high toughness, 59 tensile strength with excellent weldability
It has become possible to manufacture an extremely thick H-section steel having a flange thickness of 0 MPa or more and a thickness of 35 mm or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Nb添加量と母材の機械的性質の関係を示す図
である。
FIG. 1 is a diagram showing the relationship between the amount of Nb added and the mechanical properties of a base material.

【図2】C、Nb量と溶接部の靱性の関係を示す図であ
る。
FIG. 2 is a diagram showing the relationship between the amounts of C and Nb and the toughness of a weld.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 素材の化学成分が、重量%で、 C :0.010〜0.040% Si:0.05〜0.50% Mn:0.60〜1.60% Nb:0.005〜0.100% Ti:0.003〜0.030% B :0.0003〜0.0040% を含有し、かつ、C≧Nb/7+0.005を満足し、
加えて、 Mo:0.05〜0.60% Cu:0.05〜0.70% Ni:0.05〜1.20% を一種または二種以上含み、残部が鉄および不可避不純
物からなる極厚圧延H形鋼。
1. The chemical composition of a raw material is as follows: C: 0.010 to 0.040% Si: 0.05 to 0.50% Mn: 0.60 to 1.60% Nb: 0.005% by weight 0.100% Ti: 0.003 to 0.030% B: 0.0003 to 0.0040%, and satisfies C ≧ Nb / 7 + 0.005,
In addition, an electrode containing one or more of Mo: 0.05 to 0.60% Cu: 0.05 to 0.70% Ni: 0.05 to 1.20%, with the balance being iron and unavoidable impurities Thick rolled H-section steel.
【請求項2】 上記素材に、 V :0.005〜0.200% Cr:0.05〜0.80% Zr:0.005〜0.050% REM:0.0005〜0.0500% Ca:0.0005〜0.0100% を一種または二種以上含むことを特徴とする請求項1記
載の極厚圧延H形鋼。
2. The above-mentioned material, V: 0.005 to 0.200% Cr: 0.05 to 0.80% Zr: 0.005 to 0.050% REM: 0.0005 to 0.0500% Ca : One or two or more of 0.0005 to 0.0100% are contained.
JP33428897A 1997-12-04 1997-12-04 Extremely thick rolled wide flange shape Pending JPH11172373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33428897A JPH11172373A (en) 1997-12-04 1997-12-04 Extremely thick rolled wide flange shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33428897A JPH11172373A (en) 1997-12-04 1997-12-04 Extremely thick rolled wide flange shape

Publications (1)

Publication Number Publication Date
JPH11172373A true JPH11172373A (en) 1999-06-29

Family

ID=18275671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33428897A Pending JPH11172373A (en) 1997-12-04 1997-12-04 Extremely thick rolled wide flange shape

Country Status (1)

Country Link
JP (1) JPH11172373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305850A1 (en) * 2008-07-30 2011-04-06 Nippon Steel Corporation High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305850A1 (en) * 2008-07-30 2011-04-06 Nippon Steel Corporation High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
EP2305850A4 (en) * 2008-07-30 2011-12-28 Nippon Steel Corp High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
US8303734B2 (en) 2008-07-30 2012-11-06 Nippon Steel Corporation High strength thick steel material and high strength giant H-shape excellent in toughness and weldability and methods of production of same
KR101263924B1 (en) * 2008-07-30 2013-05-10 신닛테츠스미킨 카부시키카이샤 High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both

Similar Documents

Publication Publication Date Title
EP0940477B1 (en) Wide-flange beams made from a steel with high toughness and yield strength, and process for manufacturing these products
JP2005068519A (en) Method for producing high strength thick steel plate for building structure, having excellent toughness to super-large heat input welding-affected zone
JP3410241B2 (en) Method for producing ultra-thick H-section steel excellent in strength, toughness and weldability
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP7410438B2 (en) steel plate
JP7243826B2 (en) steel plate
JP7506305B2 (en) High-strength steel plate for large heat input welding
JPH1068016A (en) Production of extra thick wide flange shape
JPH11172373A (en) Extremely thick rolled wide flange shape
JPH1060576A (en) H steel excellent in toughness in fillet part and its production
JP3293378B2 (en) Method for producing high-strength extra-thick rolled H-section steel for construction with a flange thickness of 80 mm or more that has fire resistance, excellent weldability, and little change in strength in the thickness direction
JPH08197102A (en) Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity
JP7410437B2 (en) steel plate
JP7506306B2 (en) High-strength steel plate for large heat input welding
JP7248896B2 (en) High strength steel plate for high heat input welding
JP3371712B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JP7381838B2 (en) steel plate
JP7493138B2 (en) Ultra-low yield ratio high tensile steel plate and its manufacturing method
JP7372577B2 (en) box pillar
JP7260779B2 (en) High strength steel plate for high heat input welding
JPH05125481A (en) High tensile strength steel material having high toughness and low yield ratio and its production
JPS61124524A (en) Manufacture of bar steel for steel reinforced concrete
JPH11323477A (en) Extremely thick wide flange shape having high strength and high toughness
JPH08197104A (en) Manufacture of extremely thick wide-flange steel excellent in strength and toughness
JP4736205B2 (en) Manufacturing method of high strength H-section steel of TS590MPa or more excellent in earthquake resistance and small heat input weldability