JP4736205B2 - Manufacturing method of high strength H-section steel of TS590MPa or more excellent in earthquake resistance and small heat input weldability - Google Patents

Manufacturing method of high strength H-section steel of TS590MPa or more excellent in earthquake resistance and small heat input weldability Download PDF

Info

Publication number
JP4736205B2
JP4736205B2 JP2001058460A JP2001058460A JP4736205B2 JP 4736205 B2 JP4736205 B2 JP 4736205B2 JP 2001058460 A JP2001058460 A JP 2001058460A JP 2001058460 A JP2001058460 A JP 2001058460A JP 4736205 B2 JP4736205 B2 JP 4736205B2
Authority
JP
Japan
Prior art keywords
steel
section steel
heat input
earthquake resistance
small heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001058460A
Other languages
Japanese (ja)
Other versions
JP2002256341A (en
Inventor
尚史 前田
泰康 横山
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001058460A priority Critical patent/JP4736205B2/en
Publication of JP2002256341A publication Critical patent/JP2002256341A/en
Application granted granted Critical
Publication of JP4736205B2 publication Critical patent/JP4736205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築用として耐震性(低降伏比)、狭YPレンジおよび高靭性に優れる圧延H形鋼の製造方法に関し、特にフランジ厚さが32mm以上の590MPa級の大型で、組立溶接や補修溶接などの小入熱溶接時のHAZ硬化性が小さく、柱材に適したものに関する。
【0002】
【従来の技術】
高層建築物の柱材には、ボックス柱、鋼管を用いた円柱および温間もしくは冷間で加工されるコラム柱があり、ボックス柱は各方向毎の断面係数の変化は少ないものの、角溶接の施工が難しくまた高層建築物に用いられる厚肉コラム柱ではコーナ部で低降伏比を満足させる成形コストが高価になるという欠点があった。
【0003】
また、円柱の場合は、梁材と接続するための仕口部の加工が複雑になる欠点があり、コラム柱は大型化が困難という寸法上の制約があった。
【0004】
これに対し、圧延H形鋼を柱材に用いた場合は、断面係数がH方向とI方向で異なるものの、その違いは設計段階で対応可能で、圧延ままで柱材としての基本形状を有していることから、曲げ、溶接などによる組立加工が不要で、梁材を取り付ける仕口部が炭酸ガス溶接で簡便に施工できる等、利点が多く、材料費、施工費などを含めたコストが削減される。
【0005】
そして、柱材として必要となる付属金物を取り付ける際の小入熱溶接性と耐震性を備えた大型の圧延H形鋼製造技術の確立が望まれていた。
【0006】
特開平8−197105号公報は炭素当量を0.40%以下に低減した溶接性に優れたH形鋼の製造方法が開示されている。しかし、HAZ硬さについては考慮されておらず、強度も490MPa級と低い。
【0007】
特開平11−193440号公報は、HAZ硬化の少ない590MPa級の大型H形鋼が開示されているが、C添加量を極端に低減し、Cu,Ni等の高価な合金元素添加を行うもので経済性に劣っていた。
【0008】
【発明が解決しようとする課題】
本発明は、以上の点に鑑みなされたもので、耐震性(YR≦80%)を備え、高強度(TS≧590MPa)で、且つ小入熱溶接性に優れたフランジ厚さ32mm以上の圧延H形鋼の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
圧延H形鋼で、フランジ厚さ32mm以上の大型とすると、形状の安定性、寸法精度、及び圧延機への負荷を考慮し、加熱温度・圧延仕上温度を高温とせざる得ず、加熱時のオーステナイト粒の細粒化とその後の再結晶オーステナイト域圧延によるオーステナイト粒の細粒化を十分利用することができない。
【0010】
そこで、本発明者等は、炭素当量を0.47%以下とすることを前提に、化学成分、制御圧延および加速冷却条件を検討し、耐震性、溶接性に優れた590MPa級大型圧延H形鋼の製造条件を見出した。
【0011】
本発明は以上の検討をもとになされたもので、すなわち本発明は、
1.質量%で、C:0.05〜0.12%、Si:0.05〜0.5%、Mn:0.6〜1.6%、Mo:0.2〜0.5%、V:0.02〜0.06%、B:0.0003%以下に規制し、且つCeq≦0.47%、残部Feおよび不可避的不純物からなる鋼を、1100〜1350℃に加熱後、1100℃以下で累積圧下率20%以上、圧延終了温度800〜1000℃で熱間圧延し、その後直ちに冷却速度が11℃/s以上で水冷停止温度が600〜300℃の加速冷却を行うことを特徴とする耐震性および小入熱溶接性に優れたTS590MPa以上の高強度H形鋼の製造方法。
【0012】
2.更に、Cu:0.05〜0.5%、Ni:0.05〜0.5%、Cr:0.05〜0.1%、Nb:0.005〜0.05%の一種又は二種以上を含有することを特徴とする1記載の耐震性および小入熱溶接性に優れたTS590MPa以上の高強度H形鋼の製造方法。
【0013】
【発明の実施の形態】
本発明の、成分組成、製造条件の限定理由について説明する。
【0014】
1.成分組成

Cは、鋼の強度を安定して確保するために有効な元素であり、その効果を得るため、0.05%以上添加する。一方、0.12%を超えると溶接性が劣化するとともに、小入熱溶接時のHAZ硬さを著しく上昇させるため、0.05〜0.12%(0.05%以上、0.12%以下)とする。
【0015】
Si
Siは脱酸剤、強度上昇に有効な元素であり、その効果を得るため、0.05%以上添加する。一方、0.5%を超えると強度上昇が飽和し、溶接性を損なうため、0.05〜0.5%とする。
【0016】
Mn
Mnは、強度を確保するため0.6%以上添加する。一方、1.6%を超えて添加すると溶接性を損ない、偏析部が著しく硬化するため、0.6〜1.6%とする。
【0017】
Mo
Moは、焼入れ性を向上させ、析出強化等により鋼の高強度化に有効であり、0.2%以上添加する。一方、0.5%を超えるとコストが上昇し溶接部の靭性を劣化させるため、0.2〜0.5%とする。
【0018】

Vは、微量添加で強度上昇に有効で、大型圧延H形鋼のYPを上昇させるため、0.02%以上添加する。一方、0.06%を超えると、粗大なVの炭窒化物を生成し、靭性を劣化させるため、0.02〜0.06%とする。
【0019】

Bは、HAZ部の硬度を著しく高めるため、本発明では不純物として3ppm以下に規制する。
【0020】
尚、靭性確保の観点からNを0.0050%以下とすることが望ましい。
【0021】
図1に、炭素当量(Ceq)が0.47%以下の鋼(表1に化学成分を示す)における溶接熱影響部(HAZ)の最高硬さ(JIS Z3101)を示す。炭素当量の増加に伴い,最高硬さは上昇するが、本発明範囲外のC,Bを含有する場合、著しく硬化する。
【0022】
Ceq
Ceqは、小入熱溶接時のHAZ硬さを低くするため、0.47%以下とする。
【0023】
本発明では以上の基本成分に加えて必要に応じて、Cu,Ni,Cr,Nbの一種または二種以上を添加することができる。
【0024】
Cu
Cuは強度上昇に有効な元素であり、その効果を得る場合0.05%以上添加する。一方、0.5%を超えると、生産原価が上昇し、板厚方向の強度の不均質性、表面キズが発生するため、0.05〜0.5%とする。
【0025】
Ni
Niは、強度及び靭性向上に有効で、その効果を得る場合0.05%以上添加する。一方、0.5%を超えると、溶接性を損ない、生産原価が上昇するため、0.05〜0.5%とする。
【0026】
Cr
Crは、強度上昇に有効で、その効果を得る場合0.05%以上添加する。一方、0.1%を超えると溶接性を劣化させるため、0.05〜0.1%とする。
【0027】
Nb
Nbは、強度上昇に有効で、その効果を得る場合、0.005%以上添加する。一方、0.05%を超えると靭性が劣化するため、0.005〜0.05%とする。
【0028】
2.製造条件
スラブ加熱温度:1100〜1350℃
圧延H形鋼の寸法が大きくなるに従い、圧延時の変形抵抗、寸法精度を考慮して、圧延を高温域で終了させることが望ましい。加熱温度1100℃未満では、圧延時の温度低下が著しく、靭性は優れるものの寸法精度が低下する。
【0029】
一方、1350℃を超えると、加熱時のオーステナイト粒径が著しく粗大化し、建築用鋼として靭性が不足し、加熱炉の炉体を損傷させるため、1100〜1350℃とする。
【0030】
1100℃以下の累積圧下率20%以上
1100℃以下で且つオーステナイト再結晶域での累積圧下率が20%未満の場合、粗大なオーステナイト粒により、フェライト粒の微細化が困難となり、靭性が劣化するため、20%以上とする。
【0031】
加速冷却の冷却速度:2℃/s以上
TS≧590MPa級とするため、加速冷却の冷却速度を板厚中央部で2℃/s以上とする。尚、加速冷却は、圧延後、直ちに行う。
【0032】
図2に、炭素当量0.47%以下の鋼(表1に化学成分を示す)を1230℃に加熱し、1100℃以下で累積圧下率20%以上、仕上温度900℃の圧延を終了後、種々の冷却速度で約500℃まで冷却し、その後放冷した場合の機械的性質を示す。冷却速度を2℃/s以上とした場合、TS≧590MPa級となっている。
【0033】
更に本発明では、耐震性(YR≦80%)および高靭性のため冷却停止温度を600〜300℃とすることが望ましい。
【0034】
図3は、炭素当量0.47%以下の鋼(表1に化学成分を示す)を1230℃に加熱後、1100℃以下で累積圧下率20%以上、仕上温度900℃の圧延で板厚50mmとし、その後、直ちに2℃/s以上で加速冷却し、種々の温度で水冷を停止した場合の機械的性質を示す。
【0035】
停止温度の低下に伴い、降伏比が低下し、冷却停止温度600℃以下でYR≦80%の耐震性に優れた圧延H形鋼が得られている。冷却停止温度を600〜300℃とした場合、耐震性と共に高靭性が得られている。
【0036】
【表1】

Figure 0004736205
【0037】
【実施例】
表1に示す成分組成の鋼を用い、種々の条件で圧延H形鋼を製造した。表2に製造条件および得られた機械的特性を示す。
【0038】
尚、表1、2の鋼No.1〜10は共通とし、表2中、末尾の英記号は製造条件が変化していることを示す。また、表1中、最高硬さはHAZ最高硬さを示し、JIS Z3101により求めた。
【0039】
鋼番1の鋼を用いた実施例において、鋼1Aは、冷却速度が2℃/s未満で、590MPa級の強度が得られず、0℃でのシャルピー衝撃試験の吸収エネルギーも低く比較例となっている。
【0040】
一方、鋼1B、1C、1Dは、冷却速度が2℃/s以上で、590MPa級の建築用大型圧延H形鋼として十分な機械的性質が得られている。
【0041】
尚、鋼番1の鋼の最高硬さは270と低く優れた硬度が得られている。
【0042】
鋼番2の鋼を用いた実施例において、鋼2Aは、冷却速度が2℃/s未満で、590MPa級の強度が得られず、0℃でのシャルピー衝撃試験の吸収エネルギーも低く比較例となっている。
【0044】
尚、鋼番2の鋼の最高硬さは310と低く優れた硬度が得られている。
【0045】
鋼番3の鋼を用いた実施例において、鋼3Aは、590MPa級の建築用大型圧延H形鋼として十分な機械的性質が得られている。
【0046】
鋼3Bは、3Aの圧延仕上温度を更に低下させたもので、590MPa級の建築用大型圧延H形鋼として更に優れた機械的性質が得られている。
【0047】
鋼番4〜7の鋼の最高硬さは低C系のため263〜280と低くHAZ硬化性が低い。
【0048】
鋼4A〜鋼7Aは、590MPa級の建築用大型圧延H形鋼として十分な機械的性質が得られている。
【0049】
鋼番8は、Mo添加量が本発明範囲外で、最高硬さは258と低いが、強度が590MPa級としては劣る。
【0050】
鋼番9は、Bが添加され、鋼番10はC添加量が0.13%と高く、本発明範囲外であり、590MPa級の建築用大型圧延H形鋼として十分な機械的性質が得られているものの、最高硬さが350を超え、小入熱溶接性に劣っている。
【0051】
【表2】
Figure 0004736205
【0052】
【発明の効果】
本発明によれば、柱材として使用が可能で、且つ付属物を取り付ける際の小入熱溶接性に優れたフランジ厚さ32mm以上の590MPa級高強度圧延H形鋼が生産性良く得られ、産業上極めて優れた効果を有する。
【図面の簡単な説明】
【図1】最高硬さ(JISZ3101)に及ぼす炭素当量の影響を示す図
【図2】圧延H形鋼の機械的性質に及ぼす加速冷却条件(冷却速度)の影響を示す図
【図3】圧延H形鋼の機械的性質に及ぼす加速冷却条件(冷却停止温度)の影響を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of rolled H-section steel excellent in earthquake resistance (low yield ratio), narrow YP range and high toughness for use in construction. Particularly, it is a large 590 MPa class flange with a thickness of 32 mm or more, assembly welding and repair. The present invention relates to a material having small HAZ curability at the time of small heat input welding such as welding and suitable for a column material.
[0002]
[Prior art]
Column materials for high-rise buildings include box columns, cylinders using steel pipes, and column columns that are processed warmly or coldly. Construction is difficult, and thick column columns used for high-rise buildings have the disadvantage that the molding cost to satisfy the low yield ratio at the corners is expensive.
[0003]
Further, in the case of a cylinder, there is a drawback that the processing of the joint for connecting to the beam material becomes complicated, and the column pillar has a dimensional restriction that it is difficult to increase the size.
[0004]
In contrast, when rolled H-section steel is used for the column material, the section modulus differs between the H direction and the I direction, but the difference can be dealt with at the design stage and has a basic shape as a column material as it is rolled. As a result, there is no need for assembly work such as bending and welding, and there are many advantages, such as that the joint part to which the beam material is attached can be easily constructed by carbon dioxide welding, and costs including material costs and construction costs are low. Reduced.
[0005]
And establishment of the manufacturing technology of the large-sized rolling H-section steel provided with the small heat input weldability and the earthquake resistance at the time of attaching the attachment required as a pillar material was desired.
[0006]
Japanese Patent Application Laid-Open No. 8-197105 discloses a method for producing an H-section steel excellent in weldability with a carbon equivalent reduced to 0.40% or less. However, HAZ hardness is not considered, and the strength is as low as 490 MPa.
[0007]
Japanese Patent Application Laid-Open No. 11-193440 discloses a large H-section steel of 590 MPa class with little HAZ hardening. However, the amount of C addition is extremely reduced, and expensive alloy elements such as Cu and Ni are added. It was inferior in economic efficiency.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and has a flange thickness of 32 mm or more, which has earthquake resistance (YR ≦ 80%), high strength (TS ≧ 590 MPa), and excellent small heat input weldability. It aims at providing the manufacturing method of H-section steel.
[0009]
[Means for Solving the Problems]
Rolled H-shaped steel with a flange thickness of 32 mm or larger, the stability of the shape, dimensional accuracy, and the load on the rolling mill must be taken into consideration, and the heating temperature and the finishing temperature of the rolling mill have to be high. Austenite grain refinement and subsequent austenite grain refinement by recrystallization austenite region rolling cannot be fully utilized.
[0010]
Therefore, the present inventors have studied the chemical composition, controlled rolling and accelerated cooling conditions on the premise that the carbon equivalent is 0.47% or less, and the 590 MPa class large-sized rolled H-form excellent in earthquake resistance and weldability. The production conditions of steel were found.
[0011]
The present invention has been made on the basis of the above study, that is, the present invention
1. In mass%, C: 0.05 to 0.12%, Si: 0.05 to 0.5%, Mn: 0.6 to 1.6%, Mo: 0.2 to 0.5%, V: 0.02 to 0.06%, B: 0.0003% or less and steel composed of Ceq ≦ 0.47%, remaining Fe and inevitable impurities, heated to 1100 to 1350 ° C., and then 1100 ° C. or less And hot rolling at a rolling reduction temperature of 800 to 1000 ° C. at a rolling reduction temperature of 800 to 1000 ° C., and then immediately performing accelerated cooling with a cooling rate of 11 ° C./s or more and a water cooling stop temperature of 600 to 300 ° C. A method for producing a high-strength H-section steel of TS590 MPa or more that is excellent in earthquake resistance and small heat input weldability.
[0012]
2. Further, Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%, Cr: 0.05 to 0.1%, Nb: 0.005 to 0.05%, one or two kinds 2. The method for producing a high strength H-section steel of TS590 MPa or more which is excellent in earthquake resistance and small heat input weldability according to 1, which contains the above .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The reasons for limiting the component composition and production conditions of the present invention will be described.
[0014]
1. Ingredient composition C
C is an element effective for ensuring the strength of the steel stably, and 0.05% or more is added to obtain the effect. On the other hand, if it exceeds 0.12%, the weldability deteriorates and the HAZ hardness during small heat input welding is remarkably increased, so 0.05 to 0.12% (0.05% or more, 0.12% The following.
[0015]
Si
Si is an element effective for increasing the strength of the deoxidizer and is added in an amount of 0.05% or more in order to obtain the effect. On the other hand, if it exceeds 0.5%, the increase in strength is saturated and the weldability is impaired, so the content is made 0.05 to 0.5%.
[0016]
Mn
Mn is added in an amount of 0.6% or more to ensure strength. On the other hand, if added over 1.6%, the weldability is impaired, and the segregated portion is markedly cured, so the content is made 0.6 to 1.6%.
[0017]
Mo
Mo improves the hardenability and is effective for increasing the strength of the steel by precipitation strengthening and is added in an amount of 0.2% or more. On the other hand, if it exceeds 0.5%, the cost increases and the toughness of the welded portion is deteriorated.
[0018]
V
V is effective for increasing the strength when added in a small amount, and is added in an amount of 0.02% or more in order to increase the YP of the large rolled H-section steel. On the other hand, if it exceeds 0.06%, coarse V carbonitrides are produced and the toughness is deteriorated, so the content is made 0.02 to 0.06%.
[0019]
B
In order to remarkably increase the hardness of the HAZ part, B is restricted to 3 ppm or less as an impurity in the present invention.
[0020]
From the viewpoint of securing toughness, N is preferably 0.0050% or less.
[0021]
FIG. 1 shows the maximum hardness (JIS Z3101) of the weld heat affected zone (HAZ) in a steel having a carbon equivalent (Ceq) of 0.47% or less (chemical components are shown in Table 1). As the carbon equivalent increases, the maximum hardness increases. However, when C and B outside the scope of the present invention are contained, they are markedly cured.
[0022]
Ceq
Ceq is set to 0.47% or less in order to reduce the HAZ hardness during small heat input welding.
[0023]
In the present invention, one or more of Cu, Ni, Cr, and Nb can be added as necessary in addition to the above basic components.
[0024]
Cu
Cu is an element effective for increasing the strength. To obtain the effect, 0.05% or more is added. On the other hand, if it exceeds 0.5%, the production cost increases, and the nonuniformity of strength in the thickness direction and surface scratches occur.
[0025]
Ni
Ni is effective in improving strength and toughness, and 0.05% or more is added to obtain the effect. On the other hand, if it exceeds 0.5%, the weldability is impaired and the production cost increases, so the content is made 0.05 to 0.5%.
[0026]
Cr
Cr is effective in increasing the strength, and 0.05% or more is added to obtain the effect. On the other hand, if it exceeds 0.1%, the weldability is deteriorated, so 0.05 to 0.1%.
[0027]
Nb
Nb is effective in increasing the strength, and when the effect is obtained, 0.005% or more is added. On the other hand, if it exceeds 0.05%, the toughness deteriorates, so the content is made 0.005 to 0.05%.
[0028]
2. Manufacturing conditions Slab heating temperature: 1100-1350 ° C
As the dimension of the rolled H-section steel increases, it is desirable to finish the rolling in a high temperature range in consideration of deformation resistance and dimensional accuracy during rolling. When the heating temperature is less than 1100 ° C., the temperature drop during rolling is remarkable, and the toughness is excellent, but the dimensional accuracy is lowered.
[0029]
On the other hand, when the temperature exceeds 1350 ° C., the austenite grain size at the time of heating becomes remarkably large, and the toughness is insufficient as building steel, and the furnace body of the heating furnace is damaged.
[0030]
When the cumulative rolling reduction at 1100 ° C. or less is 20% or more and 1100 ° C. or less and the cumulative rolling reduction in the austenite recrystallization region is less than 20%, the coarse austenite grains make it difficult to refine the ferrite grains and deteriorate toughness. Therefore, 20% or more.
[0031]
Accelerated cooling rate: 2 ° C./s or higher In order to achieve TS ≧ 590 MPa class, the accelerated cooling rate is 2 ° C./s or higher at the center of the plate thickness. The accelerated cooling is performed immediately after rolling.
[0032]
In FIG. 2, a steel having a carbon equivalent of 0.47% or less (shown in Table 1 with chemical components) is heated to 1230 ° C., and after rolling at 1100 ° C. or less and a cumulative reduction ratio of 20% or more and a finishing temperature of 900 ° C., It shows the mechanical properties when cooled to about 500 ° C. at various cooling rates and then allowed to cool. When the cooling rate is 2 ° C./s or higher, TS ≧ 590 MPa class.
[0033]
Further, in the present invention, it is desirable that the cooling stop temperature is 600 to 300 ° C. for earthquake resistance (YR ≦ 80%) and high toughness.
[0034]
FIG. 3 shows a steel sheet having a carbon equivalent of 0.47% or less (shown in Table 1 with chemical components) heated to 1230 ° C., rolled at 1100 ° C. or less and a cumulative reduction of 20% or more, and finished at a temperature of 900 ° C. Then, immediately after accelerated cooling at 2 ° C./s or more, the mechanical properties are shown when water cooling is stopped at various temperatures.
[0035]
As the stop temperature decreases, the yield ratio decreases, and a rolled H-section steel with excellent earthquake resistance with a cooling stop temperature of 600 ° C. or less and YR ≦ 80% is obtained. When the cooling stop temperature is 600 to 300 ° C., high toughness is obtained together with earthquake resistance.
[0036]
[Table 1]
Figure 0004736205
[0037]
【Example】
Using the steel having the composition shown in Table 1, rolled H-section steel was produced under various conditions. Table 2 shows the manufacturing conditions and the mechanical properties obtained.
[0038]
In Tables 1 and 2, the steel No. 1 to 10 are common, and in Table 2, the alphabetical symbol at the end indicates that the manufacturing conditions have changed. In Table 1, the maximum hardness indicates the HAZ maximum hardness, and was determined according to JIS Z3101.
[0039]
In an example using steel No. 1, steel 1A has a cooling rate of less than 2 ° C./s, a strength of 590 MPa class is not obtained, and the absorbed energy of the Charpy impact test at 0 ° C. is also low. It has become.
[0040]
On the other hand, steels 1B, 1C, and 1D have a cooling rate of 2 ° C./s or more, and sufficient mechanical properties are obtained as a large-scale rolled H-section steel for 590 MPa class.
[0041]
Incidentally, the maximum hardness of steel No. 1 is as low as 270 and an excellent hardness is obtained.
[0042]
In an example using steel No. 2, steel 2A had a cooling rate of less than 2 ° C./s, a strength of 590 MPa was not obtained, and the absorbed energy of the Charpy impact test at 0 ° C. was also low. It has become.
[0044]
The maximum hardness of steel No. 2 is as low as 310, and excellent hardness is obtained.
[0045]
In an example using steel No. 3, steel 3A has sufficient mechanical properties as a large-sized rolled H-section steel for building of 590 MPa class.
[0046]
Steel 3B is obtained by further lowering the rolling finishing temperature of 3A, and has further excellent mechanical properties as a large-sized rolled H-section steel for 590 MPa class.
[0047]
The maximum hardness of steel Nos. 4 to 7 is low 263 to 280 because of the low C system, and the HAZ curability is low.
[0048]
Steel 4A to steel 7A have sufficient mechanical properties as a large-sized rolled H-section steel for building of 590 MPa class.
[0049]
Steel No. 8 has an Mo addition amount outside the scope of the present invention and a maximum hardness as low as 258, but the strength is inferior as a 590 MPa class.
[0050]
Steel No. 9 has B added, and Steel No. 10 has a high C addition of 0.13%, which is outside the scope of the present invention, and has sufficient mechanical properties as a large rolled H-section steel for 590 MPa class construction. However, the maximum hardness exceeds 350, and the low heat input weldability is poor.
[0051]
[Table 2]
Figure 0004736205
[0052]
【The invention's effect】
According to the present invention, a 590 MPa class high-strength rolled H-section steel having a flange thickness of 32 mm or more, which can be used as a column material and has excellent small heat input weldability when attaching accessories, is obtained with high productivity. It has extremely excellent effects in industry.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of carbon equivalent on maximum hardness (JISZ3101). FIG. 2 is a graph showing the effect of accelerated cooling conditions (cooling rate) on the mechanical properties of rolled H-section steel. Diagram showing the effect of accelerated cooling conditions (cooling stop temperature) on the mechanical properties of H-section steel

Claims (2)

質量%で、C:0.05〜0.12%、Si:0.05〜0.5%、Mn:0.6〜1.6%、Mo:0.2〜0.5%、V:0.02〜0.06%、B:0.0003%以下に規制し、且つCeq≦0.47%、残部Feおよび不可避的不純物からなる鋼を、1100〜1350℃に加熱後、1100℃以下で累積圧下率20%以上、圧延終了温度800〜1000℃で熱間圧延し、その後直ちに冷却速度が11℃/s以上で水冷停止温度が600〜300℃の加速冷却を行うことを特徴とする耐震性および小入熱溶接性に優れたTS590MPa以上の高強度H形鋼の製造方法。In mass%, C: 0.05 to 0.12%, Si: 0.05 to 0.5%, Mn: 0.6 to 1.6%, Mo: 0.2 to 0.5%, V: 0.02 to 0.06%, B: 0.0003% or less and steel composed of Ceq ≦ 0.47%, remaining Fe and inevitable impurities, heated to 1100 to 1350 ° C., and then 1100 ° C. or less And hot rolling at a rolling reduction temperature of 800 to 1000 ° C. at a rolling reduction temperature of 800 to 1000 ° C., and then immediately performing accelerated cooling with a cooling rate of 11 ° C./s or more and a water cooling stop temperature of 600 to 300 ° C. A method for producing a high-strength H-section steel of TS590 MPa or more that is excellent in earthquake resistance and small heat input weldability. 更に、Cu:0.05〜0.5%、Ni:0.05〜0.5%、Cr:0.05〜0.1%、Nb:0.005〜0.05%の一種又は二種以上を含有することを特徴とする請求項1記載の耐震性および小入熱溶接性に優れたTS590MPa以上の高強度H形鋼の製造方法。Further, Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%, Cr: 0.05 to 0.1%, Nb: 0.005 to 0.05%, one or two kinds The method for producing a high-strength H-section steel of TS590 MPa or more excellent in earthquake resistance and small heat input weldability according to claim 1, comprising the above .
JP2001058460A 2001-03-02 2001-03-02 Manufacturing method of high strength H-section steel of TS590MPa or more excellent in earthquake resistance and small heat input weldability Expired - Fee Related JP4736205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058460A JP4736205B2 (en) 2001-03-02 2001-03-02 Manufacturing method of high strength H-section steel of TS590MPa or more excellent in earthquake resistance and small heat input weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058460A JP4736205B2 (en) 2001-03-02 2001-03-02 Manufacturing method of high strength H-section steel of TS590MPa or more excellent in earthquake resistance and small heat input weldability

Publications (2)

Publication Number Publication Date
JP2002256341A JP2002256341A (en) 2002-09-11
JP4736205B2 true JP4736205B2 (en) 2011-07-27

Family

ID=18918178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058460A Expired - Fee Related JP4736205B2 (en) 2001-03-02 2001-03-02 Manufacturing method of high strength H-section steel of TS590MPa or more excellent in earthquake resistance and small heat input weldability

Country Status (1)

Country Link
JP (1) JP4736205B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6390813B2 (en) 2016-03-02 2018-09-19 新日鐵住金株式会社 Low-temperature H-section steel and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176660A (en) * 1994-12-26 1996-07-09 Nkk Corp Production of high strength extremely thick rolled wide flange shape steel for construction use, having fire resistance and excellent weldability and reduced in change in strength in plate thickness direction
JP2000096136A (en) * 1998-09-18 2000-04-04 Nkk Corp Extra thick rolled wide flange shape combining earthquake resistance with refractoriness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08176660A (en) * 1994-12-26 1996-07-09 Nkk Corp Production of high strength extremely thick rolled wide flange shape steel for construction use, having fire resistance and excellent weldability and reduced in change in strength in plate thickness direction
JP2000096136A (en) * 1998-09-18 2000-04-04 Nkk Corp Extra thick rolled wide flange shape combining earthquake resistance with refractoriness

Also Published As

Publication number Publication date
JP2002256341A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
EP3546611A1 (en) High-strength corrosion-resistant composite chequered iron and manufacturing method therefor
JP4329583B2 (en) Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof
JP3333414B2 (en) High-strength hot-rolled steel sheet for heat curing with excellent stretch flangeability and method for producing the same
JP5368820B2 (en) 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP2009235516A (en) 590 MPa CLASS HIGH YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP2008169440A (en) Thin-walled low-yield ratio high-tensile-strength steel sheet and manufacturing method therefor
JP4736205B2 (en) Manufacturing method of high strength H-section steel of TS590MPa or more excellent in earthquake resistance and small heat input weldability
JPH1068016A (en) Production of extra thick wide flange shape
JP7393614B2 (en) High strength, high ductility steel plate and its manufacturing method
JP3852279B2 (en) Manufacturing method of rolled H-section steel with excellent earthquake resistance
JPH07150245A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JPH08176660A (en) Production of high strength extremely thick rolled wide flange shape steel for construction use, having fire resistance and excellent weldability and reduced in change in strength in plate thickness direction
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
JPH05125481A (en) High tensile strength steel material having high toughness and low yield ratio and its production
JP4687153B2 (en) Production method of low yield ratio high strength steel
JPH07278730A (en) Electric resistance welded tube with 1080 to 1450mpa tensile strength excellent in ductility and toughness and its production
JPH0790375A (en) Production of thick bend steel pipe having high strength and high toughness
JPH06212255A (en) Production of low yield ratio high tensile strength steel plate excellent in weatherability
JP4474967B2 (en) Manufacturing method of low yield ratio high strength steel sheet with low toughness degradation due to cold working
JPH10310821A (en) Manufacture of high tensile strength steel tube for construction use
JPH0649541A (en) Production of low yield ratio building steel pipe by cold forming
JP2962110B2 (en) Manufacturing method of low yield ratio high strength steel sheet for box column
JPH07216504A (en) Electric resistance welded tube excellent in ductility and toughness and having 680-1070mpa tensile strength and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees