JPH11171661A - Foam material using burnt ash slag glass - Google Patents

Foam material using burnt ash slag glass

Info

Publication number
JPH11171661A
JPH11171661A JP36333997A JP36333997A JPH11171661A JP H11171661 A JPH11171661 A JP H11171661A JP 36333997 A JP36333997 A JP 36333997A JP 36333997 A JP36333997 A JP 36333997A JP H11171661 A JPH11171661 A JP H11171661A
Authority
JP
Japan
Prior art keywords
slag glass
alkali component
clay
glass
foamed material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36333997A
Other languages
Japanese (ja)
Other versions
JP3440293B2 (en
Inventor
Chihiro Sakai
千尋 酒井
Takeaki Yamane
剛朗 山音
Satoru Honda
哲 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP36333997A priority Critical patent/JP3440293B2/en
Publication of JPH11171661A publication Critical patent/JPH11171661A/en
Application granted granted Critical
Publication of JP3440293B2 publication Critical patent/JP3440293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To obtain a foam material having a stable amount of foaming by mixing a ground material prepared by vitrifying burnt ash of refuse with clay, adding an alkali component to the mixture and baking. SOLUTION: A slag glass has 74-1,500 μm particle diameter. The composition and qualities of clay to be used hardly exert influence on foamability. A sodium- containing compound (e.g. sodium carbonate), practically soda ash is used as the alkali component. The amount of the alkali component used is 0.5-10.0 wt.% based on the slag glass. After the slag glass is mixed with clay and the alkali component, the mixture is blended with water. The amount of water added is 10.0-20.0 wt.% based on the total amount. The mixture is fed to a mold frame and baked in a baking furnace. Preferably the rate of temperature rise is 10-20C/minute, the maximum baking temperature is 950-1,050 deg.C and the rate of temperature drop is 5-50 deg.C. The expansion ratio of 2.0-3.9 times is obtained by adding 3.0-5.0 wt.% of soda ash to the slag glass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水汚泥や都市ゴ
ミの焼却で多量に発生する焼却灰(以下「ゴミ焼却灰」
と称す。)をガラス化したスラグガラスを有効利用して
得られる発泡材に関する。
BACKGROUND OF THE INVENTION The present invention relates to incineration ash (hereinafter referred to as "incineration ash") generated in large quantities by incineration of sewage sludge and municipal waste.
Called. The present invention relates to a foamed material obtained by effectively utilizing slag glass obtained by vitrifying ()).

【0002】[0002]

【従来の技術】ゴミ焼却灰は多くの都市で大量に発生し
ており、一般的には地中への埋設などで処分されている
が、処分地の不足から、その減容化が望まれている。ま
た、近年盛んにいわれている資源の有効利用や再利用、
あるいは環境汚染の防止のためにも、これらのゴミ焼却
灰の絶対量を低減させる必要がある。
2. Description of the Related Art Waste incineration ash is generated in large quantities in many cities and is generally disposed of by burying it in the ground. ing. In addition, the effective use and reuse of resources,
Alternatively, in order to prevent environmental pollution, it is necessary to reduce the absolute amount of these incineration ash.

【0003】従来、ゴミ焼却灰の再利用のために、ゴミ
焼却灰を還元溶融してスラグガラス化することが進めら
れ、スラグガラスの粉砕物から建材等として有効利用可
能な発泡材を製造する試みがなされている。
[0003] Conventionally, in order to reuse refuse incineration ash, reduction and melting of refuse incineration ash to form slag glass has been promoted, and a foamed material that can be effectively used as a building material or the like is produced from pulverized slag glass. Attempts have been made.

【0004】即ち、ゴミ焼却灰から製造されたスラグガ
ラスの粉砕物と粘土及び必要に応じて発泡を促進させる
添加剤を混合し、更に水を添加混練して得られた混練物
を800℃以上の温度域で焼成すると、焼成過程におい
て、含有されるガス物質や酸化還元反応に伴うガス成分
の放出、さらにはガラス相の高温条件下での軟化の促進
によって発泡が始まり、温度の上昇に伴ってこの発泡量
は急激に増加し、発泡材が得られる。この発泡材は、そ
の気泡構造を利用した軽量防音材、断熱材等として有用
である。
That is, a slag glass pulverized material produced from refuse incineration ash is mixed with clay and, if necessary, an additive for promoting foaming, and water is added and kneaded. When firing in the temperature range of above, foaming starts in the firing process due to the release of gaseous substances and gas components involved in the oxidation-reduction reaction, and also the promotion of softening of the glass phase under high temperature conditions, and as the temperature rises The amount of leverage increases sharply and a foam is obtained. This foamed material is useful as a lightweight soundproofing material, a heat insulating material and the like utilizing the cell structure.

【0005】[0005]

【発明が解決しようとする課題】しかし、このようにス
ラグガラスの粉砕物と粘土の混合物を焼成、発泡する場
合、その発泡量が、場合により大きく異なり、所望の発
泡量、即ち、所望の比重及び気孔率の発泡材を安定して
製造することができないという不具合がある。
However, when the mixture of the slag glass pulverized material and the clay is fired and foamed as described above, the foaming amount varies greatly depending on the case, and the desired foaming amount, that is, the desired specific gravity, is obtained. Further, there is a problem that a foamed material having a porosity cannot be stably manufactured.

【0006】これは、スラグガラスの原料である汚泥や
都市ゴミの組成が一定でないために、スラグガラスの組
成も発生場所、発生時期等により大きく異なるものとな
り、このために、スラグガラス中の発泡の温度とガラス
の軟化の温度域が大きく異なり、発泡後にガラスが軟化
するタイミングがずれることによる。
[0006] This is because the composition of sludge and municipal garbage, which are the raw materials of slag glass, is not constant, and the composition of slag glass also varies greatly depending on the place and time of generation. And the temperature range of softening of the glass greatly differ, and the timing of softening of the glass after foaming is shifted.

【0007】このため、発泡性のよいものでは焼成前の
体積に比べて2倍以上の体積の発泡材を得ることができ
るが、発泡倍率が焼成前の1.5倍以下の著しく小さな
ものが形成される場合も多く、所望の発泡材を工業的に
安定生産することができない状況にある。
For this reason, a foamed material having a good foaming property can provide a foamed material having a volume twice or more as large as the volume before firing, but a foaming material having an expansion ratio of 1.5 times or less that before firing is extremely small. In many cases, the desired foamed material cannot be industrially produced stably.

【0008】本発明は上記従来の問題点を解決し、発泡
量の安定した発泡材を提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a foamed material having a stable foaming amount.

【0009】[0009]

【課題を解決するための手段】本発明の焼却灰スラグガ
ラスを用いた発泡材は、ゴミ焼却灰をガラス化して得ら
れるスラグガラスの粉砕物と粘土とを混合し、得られた
混合物を焼成して得られる発泡材において、該混合物に
アルカリ成分を添加したことを特徴とする。
The foamed material using the incinerated ash slag glass of the present invention is obtained by mixing a slag glass pulverized product obtained by vitrifying garbage incinerated ash with clay, and firing the obtained mixture. The foamed material obtained by adding an alkali component to the mixture.

【0010】スラグガラスと粘土との混合物を焼成する
ことによる発泡反応機構は次の通りである。
[0010] The foaming reaction mechanism by firing a mixture of slag glass and clay is as follows.

【0011】ゴミ焼却灰から製造されたスラグガラス
は、基本的には還元状態での溶解のために、製造された
ガラス内部に酸化鉄(FeO)からなる微小な粒子が多
く含まれている。
Slag glass produced from refuse incineration ash contains a large amount of fine particles made of iron oxide (FeO) in the produced glass, basically for melting in a reduced state.

【0012】このようなものを加熱すると、高温の状態
では2FeO→2Fe+O2 の反応が促進され(Feは
更に高温になるとガラス中に溶け込んでしまう)、ガラ
ス内部の微小な粒子の周囲に酸素ガスからなる気泡が多
く形成される。
When such a material is heated, the reaction of 2FeO → 2Fe + O 2 is promoted at a high temperature (Fe dissolves in the glass at a higher temperature), and oxygen gas surrounds the fine particles inside the glass. Many bubbles are formed.

【0013】スラグガラスは、850℃以上の高温状態
では軟化が始まり、温度の上昇に伴って粘度は急速に低
下するため、これらの気泡の大きさはガラスの粘度の低
下に伴って急速に増大する。950〜1050℃の温度
域に達すると、ガラスの粘度が急激に低下するので、気
泡が拡大して連続した泡(空間)となる。
[0013] Slag glass begins to soften in a high temperature state of 850 ° C or higher, and its viscosity rapidly decreases as the temperature rises. Therefore, the size of these bubbles increases rapidly as the viscosity of the glass decreases. I do. When the temperature reaches the temperature range of 950 to 1050 ° C., the viscosity of the glass rapidly decreases, so that the bubbles expand and become continuous bubbles (space).

【0014】また、このような高温の条件下では、混合
された粘土は数100℃で脱水反応によってメタカオリ
ンを形成するが、更に高温条件下ではスラグガラス相と
反応して珪灰石(CaSiO3 )や準長石(CaAlS
2 7 )或は灰長石(CaAl2 Si2 8 )を形成
する。
Under such high temperature conditions, the mixed clay forms metakaolin by a dehydration reaction at several hundred degrees centigrade, but under higher temperature conditions, it reacts with the slag glass phase to produce wollastonite (CaSiO 3 ) And quasi-feldspar (CaAlS
i 2 O 7 ) or anorthite (CaAl 2 Si 2 O 8 ).

【0015】これらは、連続した気泡の壁面を形成し、
更に3次元的なネットワーク構造を形成するが、これら
の骨格が最終製品の強度を保ち、製品に機能を付加して
いる。
These form a continuous bubble wall,
Further forming a three-dimensional network structure, these skeletons maintain the strength of the final product and add functions to the product.

【0016】そして、この段階にいたって、連続した泡
が等しい粒径分布で存在する発泡材が形成される。
Then, up to this stage, a foam is formed in which continuous bubbles are present with an equal particle size distribution.

【0017】このようなことから、発泡反応にはスラグ
ガラスの組成が大きく影響することとなるが、前述の如
く、スラグガラスの組成はゴミ焼却灰、即ち、焼却され
た汚泥や都市ゴミの組成により大きく異なるため、従来
においては、発泡量の安定した発泡材を得ることができ
なかった。
From the above, the composition of the slag glass has a great influence on the foaming reaction. Conventionally, it has not been possible to obtain a foamed material having a stable foaming amount.

【0018】これに対して、本発明に従って、アルカリ
成分を配合することにより、発泡量を著しく増加させ
て、発泡量を安定させることができる。
On the other hand, by blending an alkali component according to the present invention, the foaming amount can be significantly increased and the foaming amount can be stabilized.

【0019】即ち、例えば、ソーダ灰は発泡原料中のナ
トリウム成分の増加を促進し、高温条件下でのスラグガ
ラスの粘度を大きく低下させることができ、800℃以
上の一定の温度において、ソーダ灰無添加のものと比較
するとガラスの軟化を大きく進行させることができる。
このために、800℃以上の焼成の過程で発生した気泡
は、ガラス相の軟化に伴い、900℃付近で急激な拡大
を生じて最終的には単独気泡がつながった連続気泡の集
合体となり、高発泡量の発泡材が形成される。
That is, for example, soda ash can promote the increase of the sodium component in the foaming raw material, greatly reduce the viscosity of the slag glass under high temperature conditions, and at a constant temperature of 800 ° C. or more, soda ash The softening of the glass can be greatly advanced as compared with the case where no additive is added.
For this reason, the bubbles generated in the process of sintering at 800 ° C. or higher cause a rapid expansion around 900 ° C. due to the softening of the glass phase, and eventually form an aggregate of open cells in which single cells are connected, A foam with a high foaming amount is formed.

【0020】このアルカリ成分としては、炭酸ナトリウ
ム(Na2 CO3 )、実用的にはソーダ灰等のナトリウ
ムを含む化合物が好ましく、スラグガラスの粉砕物に対
して0.5〜10.0重量%、特に3.0〜10.0重
量%、とりわけ3.0〜5.0重量%となるように、ス
ラグガラスの粉砕物に対する粘土との合計割合で15.
0〜30.0重量%となるように添加するのが好まし
い。
As the alkali component, a compound containing sodium carbonate (Na 2 CO 3 ), practically a sodium-containing compound such as soda ash, is preferably used. , In particular 3.0 to 10.0% by weight, especially 3.0 to 5.0% by weight, in a total ratio of clay to ground slag glass of 15.
It is preferable to add so as to be 0 to 30.0% by weight.

【0021】また、焼成は、最高温度950〜1050
℃で行うのが好ましい。
The firing is performed at a maximum temperature of 950 to 1050.
It is preferable to carry out at a temperature of ° C.

【0022】[0022]

【発明の実施の形態】以下に本発明の実施の形態を、本
発明の発泡材の製造手順に従って、詳細に説明するが、
以下の製造方法は本発明の発泡材の製造方法の一例であ
って、本発明の発泡材は、何ら以下の製造方法により製
造されたものに限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail according to a production procedure of a foamed material of the present invention.
The following production method is an example of the method for producing a foamed material of the present invention, and the foamed material of the present invention is not limited to those produced by any of the following production methods.

【0023】本発明の発泡材を製造するには、まず、ス
ラグガラスを粉砕し、スラグガラスの粉砕物(以下、単
に「スラグガラス」と称す場合がある。)と粘土とを混
合する。
In order to produce the foamed material of the present invention, first, slag glass is pulverized, and a slag glass pulverized product (hereinafter sometimes simply referred to as “slag glass”) is mixed with clay.

【0024】本発明において用いるスラグガラスは、ゴ
ミ焼却灰の還元溶融で製造されたものであり、このスラ
グガラスは粒径1.5mm以下に粉砕して使用される。
スラグガラスの粉砕粒径が大き過ぎると混合作業性が悪
く、発泡原料の均一混合物を得ることが困難となるが、
スラグガラスの粒径が過度に小さいと発泡性が悪くな
る。一般に、原料スラグガラスの粒径範囲は、74〜1
500μm、特に250〜1500μmであることが好
ましい。
The slag glass used in the present invention is produced by reduction melting of refuse incineration ash, and this slag glass is used after being ground to a particle size of 1.5 mm or less.
If the crushed particle size of the slag glass is too large, the mixing workability is poor, and it is difficult to obtain a uniform mixture of the foaming raw materials,
If the particle size of the slag glass is excessively small, the foaming property deteriorates. Generally, the particle size range of the raw slag glass is from 74 to 1
It is preferably 500 μm, particularly preferably 250 to 1500 μm.

【0025】スラグガラスと混合する粘土には特に制限
はない。即ち、本発明において、使用する粘土の組成や
品質は、発泡性に殆ど影響しないため、どのような粘土
であっても同様の条件で使用することができる。
The clay mixed with the slag glass is not particularly limited. That is, in the present invention, since the composition and quality of the clay used have almost no effect on the foaming property, any clay can be used under the same conditions.

【0026】粘土の混合割合は、後述のアルカリ成分と
粘土との合計の重量がスラグガラスに対して15.0〜
30.0重量%となるような量とするのが好ましい。粘
土の割合が上記範囲より少いと、発泡材に必要な強度を
得ることができず、多いと発泡量の大きな発泡材は得ら
れない。
The mixing ratio of the clay is such that the total weight of the alkali component and the clay described later is 15.0 to slag glass.
The amount is preferably 30.0% by weight. If the proportion of the clay is less than the above range, the strength required for the foamed material cannot be obtained, and if it is too large, a foamed material having a large foaming amount cannot be obtained.

【0027】次いで、スラグガラスと粘土との混合物に
アルカリ成分を添加して、十分に均一に撹拌混合する。
Next, an alkaline component is added to the mixture of the slag glass and the clay, and the mixture is sufficiently stirred and mixed.

【0028】本発明において、発泡量の安定化のために
添加するアルカリ成分としては、ナトリウムを含む化合
物、好ましくは炭酸ナトリウム、実用的にはソーダ灰が
挙げられる。
In the present invention, the alkali component added for stabilizing the foaming amount includes a compound containing sodium, preferably sodium carbonate, and practically soda ash.

【0029】このアルカリ成分の添加量は、多過ぎると
焼成後に発泡材の周囲にアルカリ成分の析出を生じ、ま
た、相対的に粘土添加量を減らすこととなり発泡材に必
要な強度を得ることが困難となる。逆に、アルカリ成分
の添加量が少ないと、発泡性の向上効果が得られない。
従って、ソーダ灰等のアルカリ成分はスラグガラスに対
して0.5〜10.0重量%、特に3.0〜10.0重
量%、とりわけ3.0〜5.0重量%の範囲で添加する
のが好ましい。
If the amount of the alkali component is too large, the alkali component is precipitated around the foamed material after firing, and the amount of clay added is relatively reduced, so that the strength required for the foamed material can be obtained. It will be difficult. Conversely, if the added amount of the alkali component is small, the effect of improving foamability cannot be obtained.
Therefore, an alkali component such as soda ash is added in a range of 0.5 to 10.0% by weight, particularly 3.0 to 10.0% by weight, particularly 3.0 to 5.0% by weight based on the slag glass. Is preferred.

【0030】なお、本発明では、スラグガラスの種類即
ち発泡性の良否にかかわらず、一律の原料配合で同等の
発泡量を得ることができることが特徴であり、従って、
上記ソーダ灰の添加量は用いるスラグガラスの種類にか
かわらず、ほぼ一定とすることができる。
It should be noted that the present invention is characterized in that the same foaming amount can be obtained with a uniform blend of raw materials regardless of the type of slag glass, that is, whether or not foamability is good.
The addition amount of the soda ash can be made substantially constant regardless of the type of slag glass used.

【0031】スラグガラス、粘土及びソーダ灰等のアル
カリ成分を混合した後は、これに水を添加して混練す
る。この水の添加量は、一般に、スラグガラス、粘土及
びソーダ灰等のアルカリ成分の混合物の重量に対して1
0.0〜20.0重量%程度とされる。
After mixing alkali components such as slag glass, clay and soda ash, water is added to the mixture and kneaded. Generally, the amount of water added is 1 to the weight of the mixture of alkali components such as slag glass, clay and soda ash.
It is about 0.0 to 20.0% by weight.

【0032】次いで、この混練物を適当な大きさの型枠
に打ち込んで成形した後、焼成炉に入れて焼成する。こ
の成形に当り、型枠の種類や材質、形状、成形時の圧力
等は発泡性には大きく影響しないため、任意の条件を採
用することができる。また、焼成条件としては、昇温速
度はガラスの軟化を進行させ、同時に起こる発泡を促進
させる観点から、遅い方が好ましく、用いたスラグガラ
スの組成や生産効率を考慮して決定されるが、通常の場
合10〜20℃/分が好ましい。また、最高焼成温度は
950〜1050℃が好ましい。この温度が950℃未
満では十分に発泡が進行せず、1050℃を超えると高
温酸化が起こり褐色に変化することと、発泡材自身の軟
化が始まる。また、焼成後の冷却割れを防止するために
急冷却とならないように降温速度5〜50℃/分程度で
焼成後の冷却を行うのが好ましい。なお、使用する焼成
炉は、上記のような焼成条件での焼成が可能なものであ
れば良く、その型式には特に制限はない。また、加熱方
式も電気、ガスのいずれでも良い。
Next, the kneaded material is cast into a mold having an appropriate size, molded and then fired in a firing furnace. In this molding, the type, material, shape, pressure at the time of molding and the like of the mold do not greatly affect the foaming property, and therefore, arbitrary conditions can be adopted. As the firing conditions, the rate of temperature rise is preferably determined in consideration of the composition and production efficiency of the slag glass used, from the viewpoint of promoting the softening of the glass and promoting simultaneous foaming, Usually, 10 to 20 ° C./min is preferable. Further, the maximum firing temperature is preferably 950 to 1050C. If the temperature is lower than 950 ° C., the foaming does not sufficiently proceed. If the temperature exceeds 1050 ° C., high-temperature oxidation occurs to change the color to brown and the foaming material itself starts to soften. Further, in order to prevent cooling cracks after firing, it is preferable to perform cooling after firing at a temperature lowering rate of about 5 to 50 ° C./min so as not to rapidly cool. The firing furnace to be used is not particularly limited as long as it can be fired under the above firing conditions. The heating method may be either electric or gas.

【0033】このようにして得られる本発明のスラグガ
ラスを用いた発泡材は、スラグガラスの種類にかかわら
ず、一般的にはスラグガラスに対して3.0〜5.0重
量%程度のソーダ灰の添加で、2.0〜3.9倍の発泡
倍率(焼成前の体積に対する焼成後の体積の割合)を安
定に得ることができ、このため、実用的な発泡材を容易
に工業生産することが可能となる。
The foamed material using the slag glass of the present invention thus obtained is generally about 3.0 to 5.0% by weight of soda slag glass, regardless of the type of slag glass. By adding ash, a foaming ratio of 2.0 to 3.9 times (ratio of the volume after firing to the volume before firing) can be stably obtained, so that a practical foam material can be easily produced in industrial production. It is possible to do.

【0034】[0034]

【実施例】以下に実験例、実施例及び比較例を挙げて本
発明をより具体的に説明する。
The present invention will be described below more specifically with reference to experimental examples, examples and comparative examples.

【0035】実験例1 発泡性が悪いと評価されているスラグガラスを用いて、
粒径と発泡性との関係を調べた。
EXPERIMENTAL EXAMPLE 1 Using slag glass evaluated as having poor foaming properties,
The relationship between particle size and foamability was investigated.

【0036】まず、表1に示す粒度分布のスラグガラス
を用い、表1に示す割合でスラグガラスと粘土(木節粘
土)とを混合し、これに更にソーダ灰を混合し、得られ
た混合物に水を添加して混練した。この混練物を型に入
れて成形した後、焼成炉にて昇温速度10℃/分,高温
焼成温度950℃で15分保持,降温速度10℃/分で
焼成した。
First, slag glass having a particle size distribution shown in Table 1 was used, slag glass and clay (Kibushi clay) were mixed at the ratio shown in Table 1, and soda ash was further added thereto. And kneaded with water. The kneaded product was put into a mold and molded, and then fired in a firing furnace at a heating rate of 10 ° C./minute, a high-temperature firing temperature of 950 ° C. for 15 minutes, and a cooling rate of 10 ° C./minute.

【0037】得られた発泡材について、発泡倍率を調
べ、結果を表1に示した。
The expansion ratio of the obtained foamed material was examined, and the results are shown in Table 1.

【0038】表1より、スラグガラスについては細粒部
分が多いと発泡性が悪いことから、発泡倍率の大きい発
泡材を得るためには、細粒部分を分級するのが好ましい
ことがわかる。
From Table 1, it can be seen that foaming properties of slag glass are poor if there are many fine particles, and it is preferable to classify the fine particles in order to obtain a foamed material having a high expansion ratio.

【0039】[0039]

【表1】 [Table 1]

【0040】実施例1〜7,比較例1 実験例1で用いたと同様のスラグガラス(粒径範囲50
0μm以下)及び粘土を用い、表2のソーダ灰添加率と
なるように、表2に示す配合で混合したこと以外は実験
例1と同様にして発泡材を製造し、その発泡倍率を調
べ、結果を表2に示した。
Examples 1 to 7, Comparative Example 1 The same slag glass as used in Experimental Example 1 (particle size range 50
0 μm or less) and clay, and a foamed material was produced in the same manner as in Experimental Example 1 except that the soda ash was added in the proportions shown in Table 2 so as to obtain the soda ash addition rate in Table 2, and the expansion ratio was examined. The results are shown in Table 2.

【0041】表2より、ソーダ灰を添加することによ
り、発泡倍率が著しく高くなり、発泡量が安定すること
がわかる。また、発泡倍率の向上と、ソーダ灰の添加コ
ストを考慮した場合、ソーダ灰の添加量はスラグガラス
に対して3.0〜10.0重量%が好ましいことがわか
る。
Table 2 shows that the addition of soda ash significantly increases the expansion ratio and stabilizes the expansion amount. Also, when considering the improvement of the expansion ratio and the cost of adding soda ash, it is understood that the amount of soda ash is preferably 3.0 to 10.0% by weight based on the slag glass.

【0042】[0042]

【表2】 [Table 2]

【0043】実施例8,比較例2 異なる組成のスラグガラスA〜D(粒径範囲500μm
以下)を用い、ソーダ灰を添加した実施例においては下
記配合Iで混合し(スラグガラスに対するソーダ灰添加
率は3重量%)、ソーダ灰を添加しなかった比較例にお
いては下記配合IIで混合したこと以外は実験例1と同様
にして発泡材を製造した。
Example 8, Comparative Example 2 Slag glasses A to D having different compositions (particle size range 500 μm)
The following examples were used to mix soda ash in the following formulation I (the soda ash addition ratio to the slag glass was 3% by weight), and in the comparative example where no soda ash was added, the following blend II was used. A foamed material was manufactured in the same manner as in Experimental Example 1 except that the above procedure was performed.

【0044】 得られた発泡材の発泡倍率を調べ、結果を表3に示し
た。
[0044] The expansion ratio of the obtained foamed material was examined, and the results are shown in Table 3.

【0045】[0045]

【表3】 [Table 3]

【0046】表3より、ソーダ灰を添加することによ
り、すべてのスラグガラスに対して一律配合で、発泡倍
率を3倍〜4倍の範囲で安定させることができることが
わかる。
From Table 3, it can be seen that the addition of soda ash can stabilize the expansion ratio in the range of 3 to 4 times evenly with all slag glasses.

【0047】[0047]

【発明の効果】以上詳述した通り、本発明によれば、組
成や条件が大きく変化する汚泥や都市ゴミの焼却灰のス
ラグガラスから、均一な連続した気泡を持ち、発泡量の
安定した発泡材を得ることができ、これにより、廃棄物
の減容化、有効再利用を図ることができる。
As described above in detail, according to the present invention, uniform continuous cells are obtained from slag glass of incinerated ash of sludge or municipal garbage whose composition and conditions vary greatly, and the foaming amount is stable. A material can be obtained, and thereby, the volume of waste can be reduced and effective reuse can be achieved.

【0048】本発明の発泡材は、気泡の大きさを容易に
調節することによって、防音効果を持つ吸音材として、
或いは断熱材、その他、住宅用又は産業用建材ないし構
築材、充填材等として、幅広い用途に極めて有用であ
る。
The foamed material of the present invention can be used as a sound absorbing material having a soundproofing effect by easily adjusting the size of cells.
Alternatively, it is very useful for a wide range of uses as a heat insulating material, a building material or a building material for home or industrial use, a filler, and the like.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ゴミ焼却灰をガラス化して得られるスラ
グガラスの粉砕物と粘土とを混合し、得られた混合物を
焼成して得られる発泡材において、 該混合物にアルカリ成分を添加したことを特徴とする焼
却灰スラグガラスを用いた発泡材。
1. A foam obtained by mixing crushed slag glass obtained by vitrifying garbage incineration ash with clay and firing the obtained mixture, wherein an alkali component is added to the mixture. A foam material using incinerated ash slag glass.
【請求項2】 請求項1において、該アルカリ成分はナ
トリウムを含む化合物であることを特徴とする焼却灰ス
ラグガラスを用いた発泡材。
2. A foamed material using incinerated ash slag glass according to claim 1, wherein said alkali component is a compound containing sodium.
【請求項3】 請求項2において、該アルカリ成分が炭
酸ナトリウムであることを特徴とする焼却灰スラグガラ
スを用いた発泡材。
3. The foamed material using incinerated ash slag glass according to claim 2, wherein said alkali component is sodium carbonate.
【請求項4】 請求項1ないし3のいずれか1項におい
て、該アルカリ成分を、スラグガラスの粉砕物に対して
0.5〜10.0重量%添加したことを特徴とする焼却
灰スラグガラスを用いた発泡材。
4. The incinerated ash slag glass according to claim 1, wherein the alkali component is added in an amount of 0.5 to 10.0% by weight based on the slag glass pulverized material. Foam material.
【請求項5】 請求項1ないし4のいずれか1項におい
て、該スラグガラスの粉砕物に対するアルカリ成分と粘
土との合計の割合が15.0〜30.0重量%であるこ
とを特徴とする焼却灰スラグガラスを用いた発泡材。
5. The slag glass according to claim 1, wherein a total ratio of the alkali component and the clay to the ground slag glass is 15.0 to 30.0% by weight. Foam using incinerated ash slag glass.
【請求項6】 請求項1ないし5のいずれか1項におい
て、最高温度950〜1050℃で焼成することを特徴
とする焼却灰スラグガラスを用いた発泡材。
6. The foamed material using incinerated ash slag glass according to any one of claims 1 to 5, wherein the foamed material is fired at a maximum temperature of 950 to 1050 ° C.
【請求項7】 請求項1ないし6のいずれか1項におい
て、焼成前体積に対する焼成後体積で表される発泡倍率
が2倍以上であることを特徴とする焼却灰スラグガラス
を用いた発泡材。
7. The foamed material using incinerated ash slag glass according to claim 1, wherein an expansion ratio represented by a volume after firing with respect to a volume before firing is 2 times or more. .
JP36333997A 1997-12-16 1997-12-16 Foam using incinerated ash slag glass Expired - Lifetime JP3440293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36333997A JP3440293B2 (en) 1997-12-16 1997-12-16 Foam using incinerated ash slag glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36333997A JP3440293B2 (en) 1997-12-16 1997-12-16 Foam using incinerated ash slag glass

Publications (2)

Publication Number Publication Date
JPH11171661A true JPH11171661A (en) 1999-06-29
JP3440293B2 JP3440293B2 (en) 2003-08-25

Family

ID=18479085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36333997A Expired - Lifetime JP3440293B2 (en) 1997-12-16 1997-12-16 Foam using incinerated ash slag glass

Country Status (1)

Country Link
JP (1) JP3440293B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137727A1 (en) * 2012-03-13 2013-09-19 Joris Laarman Studio Bv Ceramic foam
CN105060751A (en) * 2015-07-22 2015-11-18 中钢集团马鞍山矿山研究院有限公司 Preparation method for lightweight heat-preserving fireproof sheet material by utilizing hollow glass microspheres
CN110342956A (en) * 2019-08-21 2019-10-18 山西天合新材料科技有限公司 Inexpensive ecological ceramic material with a variety of sound absorption structures and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137727A1 (en) * 2012-03-13 2013-09-19 Joris Laarman Studio Bv Ceramic foam
CN105060751A (en) * 2015-07-22 2015-11-18 中钢集团马鞍山矿山研究院有限公司 Preparation method for lightweight heat-preserving fireproof sheet material by utilizing hollow glass microspheres
CN110342956A (en) * 2019-08-21 2019-10-18 山西天合新材料科技有限公司 Inexpensive ecological ceramic material with a variety of sound absorption structures and preparation method thereof

Also Published As

Publication number Publication date
JP3440293B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
Rincón et al. Novel ‘inorganic gel casting’process for the manufacturing of glass foams
CN103467023B (en) Method for preparing low density oil well cementing cement test blocks by using pitchstone
CN101550021B (en) Method for preparing light spume multi-hole bricks with fly ash
JP2016135723A (en) Porous geopolymer hardened body
CN103467018A (en) Preparation method for preparing low-density oil well cementing cement briquettes by vermiculites
CN103306422B (en) Composite thermal self-insulation building block of a kind of inner core cast foam concrete and preparation method thereof
CN104150944A (en) Sintered fireproof thermal-insulation material and preparation method thereof
CN112552072A (en) Construction waste regenerated foamed ceramic and preparation method thereof
CN113716919B (en) Biomass ash-based steam-curing-free light foam concrete and preparation method thereof
CN103467016A (en) Preparation method for preparing low-density oil well cement test block from composite ceramic microbeads
Fan et al. Preparation and microstructure evolution of novel ultra-low thermal conductivity calcium silicate-based ceramic foams
CN114409431A (en) Foamed ceramic based on phosphate tailings and coal gangue and preparation method thereof
US6913643B2 (en) Lightweight foamed glass aggregate
JP2011132111A (en) Hydraulic composition
CN103467017B (en) Method for preparing low-density oil well cementing cement briquette by using glass microsphere
CN103435307B (en) Method for preparing low-density oil well cement briquettes by using hafnium carbide microbeads
JPH11171661A (en) Foam material using burnt ash slag glass
JP2002321988A (en) Ceramic foamed body and its manufacturing method
CN106220057A (en) A kind of coal base solid waste foaming thermal-insulating and preparation method thereof
RU2357933C2 (en) Charge for production of glass foam
JP5019308B2 (en) Porous fireproof insulation board and method for producing the same
JP3035611B1 (en) Foam material using incinerated ash slag glass
JP2001340832A (en) Colored foamed material using slag glass
JP4655326B2 (en) Foam glass and manufacturing method thereof
CN110204312A (en) A kind of preparation method of ferronickel dregs porcelain granule

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term