JPH11171519A - Graphite powder, its production, negative electrode for lithium secondary battery and lithium secondary battery - Google Patents
Graphite powder, its production, negative electrode for lithium secondary battery and lithium secondary batteryInfo
- Publication number
- JPH11171519A JPH11171519A JP9345953A JP34595397A JPH11171519A JP H11171519 A JPH11171519 A JP H11171519A JP 9345953 A JP9345953 A JP 9345953A JP 34595397 A JP34595397 A JP 34595397A JP H11171519 A JPH11171519 A JP H11171519A
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- secondary battery
- lithium secondary
- graphite powder
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 145
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 85
- 239000010439 graphite Substances 0.000 claims abstract description 85
- 239000002245 particle Substances 0.000 claims abstract description 39
- 239000002243 precursor Substances 0.000 claims abstract description 16
- 238000010298 pulverizing process Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 12
- 230000002427 irreversible effect Effects 0.000 abstract description 23
- 239000011230 binding agent Substances 0.000 abstract description 15
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 7
- 238000002156 mixing Methods 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 239000012298 atmosphere Substances 0.000 abstract description 3
- 229910052796 boron Inorganic materials 0.000 abstract description 2
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- -1 for example Inorganic materials 0.000 description 9
- 238000010304 firing Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000011280 coal tar Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000005087 graphitization Methods 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920002755 poly(epichlorohydrin) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Secondary Cells (AREA)
- Inert Electrodes (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、黒鉛粉末、その製
造法、リチウム二次電池用負極及びリチウム二次電池に
関する。さらに詳しくは、ポータブル機器、電気自動
車、電力貯蔵等に用いるのに好適な、不可逆容量が小さ
く、急速充放電特性等に優れ、且つ高容量のリチウム二
次電池とそれを得るためのリチウム二次電池用負極、前
記リチウム二次電池用負極用黒鉛粉末に関する。TECHNICAL FIELD The present invention relates to a graphite powder, a method for producing the same, a negative electrode for a lithium secondary battery, and a lithium secondary battery. More specifically, a lithium secondary battery with small irreversible capacity, excellent rapid charge / discharge characteristics, etc., and high capacity suitable for use in portable devices, electric vehicles, and electric power storage, and a lithium secondary battery for obtaining the same. The present invention relates to a negative electrode for a battery and the graphite powder for a negative electrode for a lithium secondary battery.
【0002】[0002]
【従来の技術】従来黒鉛粒子としては、例えば天然黒鉛
粒子、コークスを黒鉛化した人造黒鉛粒子、有機系高分
子材料やピッチを黒鉛化した人造黒鉛粒子、それらを粉
砕した黒鉛粒子、高密度黒鉛成形体を粉砕した黒鉛粒子
等がある。これらの黒鉛粒子は、有機系結着剤及び有機
溶剤と混合して黒鉛ペーストとし、この黒鉛ペーストを
銅箔の表面に塗布し、溶剤を乾燥してリチウム二次電池
用負極として使用されている。例えば、特公昭62−2
3433号公報に示されるように、負極に黒鉛を使用す
ることでリチウムのデンドライトによる内部短絡の問題
を解消し、サイクル特性の改良を図っている。2. Description of the Related Art Conventional graphite particles include, for example, natural graphite particles, artificial graphite particles obtained by graphitizing coke, artificial graphite particles obtained by graphitizing organic polymer materials and pitch, graphite particles obtained by pulverizing them, and high-density graphite. Examples include graphite particles obtained by pulverizing a molded body. These graphite particles are mixed with an organic binder and an organic solvent to form a graphite paste, the graphite paste is applied to the surface of a copper foil, and the solvent is dried to be used as a negative electrode for a lithium secondary battery. . For example, Japanese Patent Publication No. 622-2
As disclosed in Japanese Patent No. 3433, the use of graphite for the negative electrode solves the problem of internal short circuit due to lithium dendrite, and improves cycle characteristics.
【0003】しかしながら、黒鉛結晶が発達している天
然黒鉛やコークスを黒鉛化した人造黒鉛等の黒鉛材料
は、c軸方向の結晶の層間の結合力が、結晶の面方向の
結合に比べて弱いために、粉砕により黒鉛層間の結合が
切れ、アスペクト比が大きいいわゆる鱗状の黒鉛粒子と
なる。鱗状黒鉛は、アスペクト比が大きいために、バイ
ンダーと混練して集電体に塗布して電極を作製したとき
に、鱗状黒鉛粒子が集電体の面方向に配向し、その結
果、黒鉛結晶へのリチウムの吸蔵・放出の繰り返しによ
って発生するC軸方向の膨張・収縮により電極内部の破
壊が生じ、サイクル特性が低下する問題がある。またこ
れらの黒鉛は粉砕による衝撃で黒鉛粒子の表面状態が変
化し、その結果比表面積が大きくなり、作製するリチウ
ム二次電池の第一サイクル目の不可逆容量が大きくなる
問題がある。そこで、リチウム二次電池の第一サイクル
目の不可逆容量が小さく、高容量急速充放電特性サイク
ル特性が向上できる黒鉛粉末が要求されている。However, graphite materials such as natural graphite in which graphite crystals are developed and artificial graphite obtained by graphitizing coke have a weaker bonding force between the layers of the crystals in the c-axis direction than in the plane direction of the crystals. Therefore, the bond between the graphite layers is broken by the pulverization, and so-called scale-like graphite particles having a large aspect ratio are obtained. Since the scale-like graphite has a large aspect ratio, it is kneaded with a binder and applied to a current collector to produce an electrode.When the electrode is produced, the scale-like graphite particles are oriented in the surface direction of the current collector, and as a result, the graphite crystal is formed. There is a problem that the expansion and contraction in the C-axis direction caused by the repetition of the insertion and extraction of lithium causes destruction of the inside of the electrode, thereby deteriorating the cycle characteristics. In addition, these graphites have a problem that the surface state of the graphite particles changes due to the impact due to the pulverization, resulting in an increase in the specific surface area and an increase in the irreversible capacity in the first cycle of the lithium secondary battery to be manufactured. Therefore, there is a need for a graphite powder that has a small irreversible capacity in the first cycle of a lithium secondary battery and can improve the cycle characteristics of high-capacity rapid charge / discharge characteristics.
【0004】[0004]
【発明が解決しようとする課題】請求項1及び2記載の
発明は、高容量で、第一サイクル目の不可逆容量が小さ
く、急速充放電特性に優れたリチウム二次電池に好適な
黒鉛粉末の製造法を提供するものである。請求項3記載
の発明は、高容量で、第一サイクル目の不可逆容量が小
さく、急速充放電特性に優れたリチウム二次電池に好適
な黒鉛粉末を提供するものである。請求項4記載の発明
は、第一サイクル目の不可逆容量が小さく、急速充放電
特性に優れたリチウム二次電池用負極を提供するもので
ある。請求項5記載の発明は、第一サイクル目の不可逆
容量が小さく、急速充放電特性に優れたリチウム二次電
池を提供するものである。The invention according to claims 1 and 2 provides a graphite powder suitable for a lithium secondary battery having a high capacity, a small irreversible capacity in the first cycle, and an excellent rapid charge / discharge characteristic. It provides a manufacturing method. The third aspect of the present invention provides a graphite powder suitable for a lithium secondary battery having a high capacity, a small irreversible capacity in the first cycle, and an excellent rapid charge / discharge characteristic. The fourth aspect of the present invention provides a negative electrode for a lithium secondary battery having a small irreversible capacity in the first cycle and excellent in rapid charge / discharge characteristics. The invention according to claim 5 provides a lithium secondary battery having a small irreversible capacity in the first cycle and excellent in rapid charge / discharge characteristics.
【0005】[0005]
【課題を解決するための手段】本発明は、かさ密度が
1.6g/cm3以下の黒鉛成形体を粉砕する工程を含むこ
とを特徴とする黒鉛粉末の製造法に関する。また本発明
は、前記かさ密度が1.6g/cm3以下の黒鉛成形体が、
400〜3200℃の範囲で揮発する成分を少なくとも
1種類含んでなる黒鉛前駆体を黒鉛化して得られたもの
である黒鉛粉末の製造法に関する。また本発明は、平均
粒径が10〜50μm、比表面積が8m2/g以下、ア
スペクト比が5以下である黒鉛粉末に関する。また本発
明は、前記黒鉛粉末又は前記製造法により得られる黒鉛
粉末を含有してなるリチウム二次電池用負極に関する。
さらに本発明は、前記の負極と正極を有してなるリチウ
ム二次電池に関する。SUMMARY OF THE INVENTION The present invention relates to a method for producing graphite powder, which comprises a step of pulverizing a graphite compact having a bulk density of 1.6 g / cm 3 or less. Further, the present invention provides the graphite molded body having a bulk density of 1.6 g / cm 3 or less,
The present invention relates to a method for producing a graphite powder, which is obtained by graphitizing a graphite precursor containing at least one component that volatilizes in the range of 400 to 3200 ° C. The present invention also relates to a graphite powder having an average particle size of 10 to 50 μm, a specific surface area of 8 m 2 / g or less, and an aspect ratio of 5 or less. The present invention also relates to a negative electrode for a lithium secondary battery containing the graphite powder or the graphite powder obtained by the production method.
Further, the present invention relates to a lithium secondary battery having the above-mentioned negative electrode and positive electrode.
【0006】[0006]
【発明の実施の形態】本発明の黒鉛粉末は、かさ密度が
1.6g/cm3以下の黒鉛成形体を粉砕する工程を含むこ
とを特徴とする。粉砕する黒鉛成形体のかさ密度は1.
0〜1.6g/cm3の範囲が好ましく、1.2〜1.5g/c
m3の範囲であればさらに好ましく、1.2〜1.45g/
cm3の範囲であれば特に好ましい。粉砕する黒鉛成形体
のかさ密度が1.6g/cm3を超えると、粉砕において大
きな粉砕力が必要となり、その粉砕力によって作製する
黒鉛粉末の表面の状態が変化し、その結果比表面積が増
大し、作製するリチウム二次電池の不可逆容量が低下す
る。さらには、作製する黒鉛粉末の表面の結晶性も低下
し、得られるリチウム二次電池の放電容量が低下する。
一方、粉砕する黒鉛成形体の密度が1.0g/cm3未満で
あると、黒鉛成形体の取扱性が低下する傾向にある。ま
た、黒鉛化時の炉詰め重量が少なくなり黒鉛化処理効率
が悪くなる傾向にある。なお、かさ密度は黒鉛成形体の
重量及び体積の測定値から算出できる。BEST MODE FOR CARRYING OUT THE INVENTION The graphite powder of the present invention is characterized by including a step of pulverizing a graphite molded body having a bulk density of 1.6 g / cm 3 or less. The bulk density of the graphite molded body to be ground is 1.
The range of 0 to 1.6 g / cm 3 is preferable, and 1.2 to 1.5 g / c.
more preferably be in the range of m 3, 1.2~1.45g /
A range of cm 3 is particularly preferred. If the bulk density of the graphite compact to be crushed exceeds 1.6 g / cm 3 , a large crushing force is required in the crushing, and the state of the surface of the produced graphite powder changes due to the crushing force, resulting in an increase in the specific surface area. However, the irreversible capacity of the manufactured lithium secondary battery is reduced. Further, the crystallinity of the surface of the graphite powder to be produced also decreases, and the discharge capacity of the obtained lithium secondary battery decreases.
On the other hand, if the density of the graphite molded body to be ground is less than 1.0 g / cm 3 , the handleability of the graphite molded body tends to decrease. In addition, the furnace filling weight during graphitization tends to decrease, and the graphitization treatment efficiency tends to deteriorate. The bulk density can be calculated from the measured values of the weight and volume of the graphite molded body.
【0007】かさ密度が1.6g/cm3以下の黒鉛成形体
の作製方法としては、特に制限はない。例えば、黒鉛化
可能な骨材又は黒鉛、黒鉛化可能なバインダを含む材料
を混合したのち、所定形状に成形した黒鉛前駆体を非酸
化性雰囲気で熱処理することで得られる。There is no particular limitation on the method for producing a graphite molded body having a bulk density of 1.6 g / cm 3 or less. For example, it can be obtained by mixing a material containing a graphitizable aggregate or graphite and a graphitizable binder, and then heat-treating the graphite precursor formed into a predetermined shape in a non-oxidizing atmosphere.
【0008】黒鉛化可能な骨材としては、黒鉛化できる
粉末材料であれば特に制限はなく、例えば、コークス粉
末、樹脂の炭化物等が使用できる。黒鉛としては、例え
ば天然黒鉛粉末、人造黒鉛粉末等が使用できるが粉末状
であれば特に制限はない。黒鉛化可能な骨材又は黒鉛の
粒径は、本発明で作製する黒鉛粉末の粒径より小さいこ
とが好ましい。黒鉛化可能なバインダとしては、ター
ル、ピッチの他、熱硬化性樹脂、熱可塑性樹脂等の有機
系材料が挙げられる。バインダの量としては、作製する
黒鉛成形体の密度及び作製する黒鉛粉末のアスペクト比
及び比表面積の点から、黒鉛化可能な骨材又は黒鉛との
合計に対して30〜50重量%が好ましい。黒鉛化可能
な骨材又は黒鉛と黒鉛化可能なバインダを混合する方法
は特に制限はないが、バインダの軟化温度以上で混合す
ることが好ましく、その温度は使用するバインダの種類
によって異なるが、80〜350℃の範囲が好ましい。[0008] The graphitizable aggregate is not particularly limited as long as it is a powder material that can be graphitized. For example, coke powder, carbide of resin and the like can be used. As the graphite, for example, natural graphite powder, artificial graphite powder and the like can be used, but there is no particular limitation as long as it is in powder form. The particle size of the graphitizable aggregate or graphite is preferably smaller than the particle size of the graphite powder produced in the present invention. Examples of the binder capable of being graphitized include tar, pitch, and organic materials such as thermosetting resins and thermoplastic resins. The amount of the binder is preferably 30 to 50% by weight based on the total amount of the graphitizable aggregate or graphite from the viewpoint of the density of the graphite molded body to be produced and the aspect ratio and the specific surface area of the graphite powder to be produced. The method of mixing the graphitizable aggregate or graphite with the graphitizable binder is not particularly limited, but it is preferable to mix at a temperature equal to or higher than the softening temperature of the binder, and the temperature varies depending on the type of the binder used. The range of -350 ° C is preferred.
【0009】黒鉛前駆体の成形体形状は、特に制限はな
いが、例えばブロック状、円筒状、塊状等が作業性、黒
鉛化時の炉への詰め効率の点で好ましい。成形体の大き
さに特に制限はないが、一片が5mm以上の長さを持つ形
状のものが好ましい。ここで、上記かさ密度とするため
には、黒鉛前駆体中に400〜3200℃の温度範囲に
おいて揮発する成分を含ませる方法、黒鉛前駆体をプレ
ス成形する際のプレス圧力を低くしてかさ密度を調整す
る方法等があるが、黒鉛前駆体中に400〜3200℃
の温度範囲において揮発する成分を含ませる方法が好ま
しい。この方法において、含まれる成分の揮発温度が4
00℃未満では黒鉛成形体のかさ密度が高くなりやす
く、3200℃を超えると黒鉛成形体中に揮発成分が残
存しやすくなる問題がある。ここで揮発温度とは、常圧
において成分が昇華、分解、溶融ガス化等により揮発
し、重量減少を生じる温度をいう。一般に、黒鉛前駆体
は、焼成温度400〜900℃の炭素化において、収縮
し、高密度化しやすい。従って、揮発する成分として
は、400〜1000℃の炭素化時の収縮後も、残存し
やすいものが得られる黒鉛成形体の密度の点で好まし
く、揮発温度は800〜3000℃の範囲が好ましく、
1000〜3000℃の範囲がより好ましい。The shape of the molded graphite precursor is not particularly limited, but is preferably, for example, a block, a cylinder, a lump, or the like, from the viewpoint of workability and packing efficiency in a furnace during graphitization. There is no particular limitation on the size of the molded body, but a molded body having a length of at least 5 mm is preferred. Here, in order to obtain the above bulk density, a method of including a component which is volatilized in a temperature range of 400 to 3200 ° C. in the graphite precursor, a method in which the pressing pressure at the time of press-molding the graphite precursor is reduced, and the bulk density is reduced There is a method of adjusting the temperature of the graphite precursor.
It is preferable to include a component that volatilizes in the above temperature range. In this method, the volatilization temperature of the contained components is 4
If the temperature is lower than 00 ° C., the bulk density of the graphite molded body tends to be high, and if it exceeds 3200 ° C., there is a problem that volatile components easily remain in the graphite molded body. Here, the volatilization temperature refers to a temperature at which the components volatilize at normal pressure due to sublimation, decomposition, melt gasification, and the like, causing weight loss. In general, a graphite precursor tends to shrink and become denser when carbonized at a firing temperature of 400 to 900 ° C. Therefore, as a volatile component, even after shrinkage during carbonization at 400 to 1000 ° C., it is preferable in terms of the density of a graphite molded body that easily remains, and the volatilization temperature is preferably in a range of 800 to 3000 ° C.,
The range of 1000-3000 degreeC is more preferable.
【0010】400〜3200℃の温度範囲において揮
発する成分の添加は黒鉛前駆体を成形する前に添加して
もよいが、均一混合の点で、黒鉛化可能な骨材又は黒鉛
と黒鉛化可能なバインダを混合する際に添加し、これら
を同時に混合することが好ましい。400〜3200℃
の温度範囲において揮発する成分が含まれる黒鉛前駆体
は、非酸化性雰囲気中で、焼成又は黒鉛化の熱処理を行
う際に揮発することによって、かさ密度が1.6g/cm3
以下の低密度黒鉛成形体とすることができる。400〜
3200℃の温度範囲において揮発する成分の種類とし
ては、特に制限はなく、例えばポリビニルアルコール
(揮発温度400〜700℃)等の熱可塑性樹脂、松脂
等の植物から得られる樹脂(揮発温度400〜1000
℃)、ケイ素、ホウ素、鉄、チタン、ニッケル等の金
属、これらの酸化物、炭化物等(揮発温度2200〜3
200℃)が使用できる。これらの中で、金属、その酸
化物又は炭化物を使用すると、黒鉛化触媒としての機能
も発揮し、作製する黒鉛粉末の結晶性の点でさらに好ま
しい。The addition of components that evaporate in the temperature range of 400 to 3200 ° C. may be added before molding the graphite precursor, but in terms of uniform mixing, it can be graphitized with the aggregate or graphite. It is preferable to add these binders when mixing them and to mix them simultaneously. 400-3200 ° C
The graphite precursor containing a component that volatilizes in the temperature range of 1) is volatilized when performing a heat treatment for firing or graphitization in a non-oxidizing atmosphere to have a bulk density of 1.6 g / cm 3.
The following low-density graphite molded body can be obtained. 400 ~
There are no particular restrictions on the types of components that evaporate in the temperature range of 3200 ° C., for example, thermoplastic resins such as polyvinyl alcohol (evaporation temperature of 400 to 700 ° C.) and resins obtained from plants such as rosin (evaporation temperature of 400 to 1000).
C), metals such as silicon, boron, iron, titanium and nickel, oxides and carbides thereof (volatilization temperature of 2200 to 3
200 ° C) can be used. Among these, the use of a metal, an oxide or a carbide thereof also functions as a graphitization catalyst, and is more preferable in view of the crystallinity of the graphite powder to be produced.
【0011】黒鉛前駆体の焼成は、酸化し難い条件で行
うことが好ましく、例えば窒素雰囲気中、アルゴン雰囲
気中、真空中で焼成する方法が挙げられる。焼成の温度
は、2000℃以上が好ましく、2500℃以上であれ
ばより好ましく、2800℃以上であればさらに好まし
い。焼成の温度が低いと、黒鉛の結晶の発達が悪く、放
電容量が低くなる傾向にある。また、黒鉛化の温度が低
いと添加した揮発成分が黒鉛成形体に残存し易く、黒鉛
成形体の密度が高くなる傾向にある。焼成の温度に上限
はないが、一般に3200℃以下である。また揮発成分
は、作製する黒鉛成形体中に残存すると、得られる黒鉛
粉末の比表面積が大きくなるばかりでなく、放電容量が
低下する傾向にあるので、揮発成分の揮発温度より焼
成、黒鉛化温度を高くすることが好ましい。焼成の昇温
は段階的に行ってもよく、例えば、一度500〜120
0℃程度で仮焼成したのちさらに2000℃以上で焼成
することも可能である。The firing of the graphite precursor is preferably carried out under conditions that are difficult to oxidize, and examples thereof include a method of firing in a nitrogen atmosphere, an argon atmosphere, and in a vacuum. The firing temperature is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, even more preferably 2800 ° C. or higher. If the firing temperature is low, the development of graphite crystals is poor, and the discharge capacity tends to be low. On the other hand, when the temperature for graphitization is low, the added volatile component tends to remain in the graphite molded body, and the density of the graphite molded body tends to increase. Although there is no upper limit on the firing temperature, it is generally 3200 ° C. or lower. When the volatile components remain in the graphite compact to be produced, not only the specific surface area of the obtained graphite powder becomes large, but also the discharge capacity tends to decrease. Is preferably increased. The firing temperature may be increased stepwise, for example, once from 500 to 120.
After calcination at about 0 ° C., calcination can be further performed at 2,000 ° C. or more.
【0012】以上によりかさ密度が1.6g/cm3以下の
黒鉛成形体を得、ついでこれを粉砕する。粉砕する方法
は、特に制限はなく、例えば、ジェットミル、ハンマー
ミル、ピンミル等の衝撃粉砕が比表面積、不可逆容量、
放電容量の点で好ましい。粉砕後の黒鉛粉末の平均粒径
は10〜50μmとすることが好ましい。なお、本発明
において平均粒径は、レーザー回折粒度分布計により測
定することができる。Thus, a graphite molded body having a bulk density of 1.6 g / cm 3 or less is obtained and then pulverized. The method of pulverization is not particularly limited, for example, impact milling such as jet mill, hammer mill, and pin mill has a specific surface area, irreversible capacity,
It is preferable in terms of discharge capacity. The average particle size of the pulverized graphite powder is preferably 10 to 50 μm. In the present invention, the average particle size can be measured by a laser diffraction particle size distribution meter.
【0013】以上のように方法によれば、得られる黒鉛
粉末は、比表面積が8m2/g以下とすることができ
る。比表面積は、6m2/g以下であればより好まし
く、4m2/g以下であればさらに好ましい。なお、比
表面積は、窒素ガス吸着によるBET法で測定すること
ができる。また、得られる黒鉛粉末は、アスペクト比が
5以下であることが好ましく、3以下であればさらに好
ましい。アスペクト比が大きすぎると、急速充放電特性
が低下する傾向にある。なお、アスペクト比は、黒鉛粒
子の長軸方向の長さをA、短軸方向の長さをBとしたと
き、A/Bで表される。本発明のアスペクト比は、顕微
鏡で黒鉛粒子を拡大し、任意に10個以上の黒鉛粒子を
選択し、A/Bを測定し、その平均値をとったものであ
る。According to the method described above, the obtained graphite powder can have a specific surface area of 8 m 2 / g or less. The specific surface area is more preferably 6 m 2 / g or less, further preferably 4 m 2 / g or less. The specific surface area can be measured by a BET method using nitrogen gas adsorption. The obtained graphite powder preferably has an aspect ratio of 5 or less, more preferably 3 or less. If the aspect ratio is too large, the rapid charge / discharge characteristics tend to decrease. The aspect ratio is represented by A / B, where A is the length in the major axis direction of the graphite particles and B is the length in the minor axis direction. The aspect ratio of the present invention is obtained by magnifying graphite particles with a microscope, arbitrarily selecting 10 or more graphite particles, measuring A / B, and taking the average value.
【0014】また、得られる黒鉛粉末のX線広角回折に
おける結晶の層間距離d(002)は3.40Å以下が
好ましく、3.38Å以下であればより好ましく、3.
37Å以下であれば特に好ましい。c軸方向の結晶子の
大きさLc(002)は500Å以上であることが好ま
しく、1000Å以上であることがより好ましい。結晶
の層間距離d(002)が小さくなるかc軸方向の結晶
子の大きさLc(002)が大きくなると、放電容量が
大きくなる。The interlayer distance d (002) of the obtained graphite powder in X-ray wide-angle diffraction is preferably 3.40 ° or less, more preferably 3.38 ° or less, and more preferably 3.38 ° or less.
It is particularly preferable that the angle is 37 ° or less. The crystallite size Lc (002) in the c-axis direction is preferably at least 500 °, more preferably at least 1000 °. As the interlayer distance d (002) of the crystal decreases or the crystallite size Lc (002) in the c-axis direction increases, the discharge capacity increases.
【0015】本発明の黒鉛粉末は、リチウム二次電池用
負極用として、有機系結着剤及び溶剤と混練して、シー
ト状、ペレット状等の形状に成形される。有機系結着剤
としては、例えば、ポリエチレン、ポリプロピレン、エ
チレンプロピレンターポリマー、ブタジエンゴム、スチ
レンブタジエンゴム、ブチルゴム、イオン伝導率の大き
な高分子化合物等が使用できる。本発明においてイオン
伝導率の大きな高分子化合物としては、ポリフッ化ビニ
リデン、ポリエチレンオキサイド、ポリエピクロルヒド
リン、ポリフォスファゼン、ポリアクリロニトリル等が
使用できる。これらの中では、イオン伝導率の大きな高
分子化合物が好ましく、ポリフッ化ビニリデンが特に好
ましい。The graphite powder of the present invention is kneaded with an organic binder and a solvent for a negative electrode of a lithium secondary battery, and is formed into a sheet shape, a pellet shape or the like. As the organic binder, for example, polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, a polymer compound having a high ionic conductivity, and the like can be used. In the present invention, as the polymer compound having a large ionic conductivity, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, and the like can be used. Among these, a polymer compound having a large ionic conductivity is preferable, and polyvinylidene fluoride is particularly preferable.
【0016】黒鉛粉末と有機系結着剤との混合比率は、
黒鉛粉末100重量部に対して、有機系結着剤を20重
量部以下用いることが好ましく、3〜10重量部用いる
ことがより好ましい。溶剤としては特に制限はなく、N
−メチル2−ピロリドン、ジメチルホルムアミド、イソ
プロパノール等が用いられる。溶剤の量に特に制限はな
く、所望の粘度に調整できればよいが、混合物に対し
て、30〜70重量%用いられることが好ましい。黒鉛
粉末は、有機系結着剤及び溶剤と混練し、粘度を調整し
た後、集電体に塗布し、該集電体と一体化して負極とさ
れる。集電体としては、例えばニッケル、銅等の箔、メ
ッシュなどの金属集電体が使用できる。なお一体化は、
例えばロール、プレス等の成形法で行うことができ、ま
たこれらを組み合わせて一体化してもよい。The mixing ratio between the graphite powder and the organic binder is as follows:
The organic binder is preferably used in an amount of 20 parts by weight or less, more preferably 3 to 10 parts by weight, based on 100 parts by weight of the graphite powder. There is no particular limitation on the solvent.
-Methyl 2-pyrrolidone, dimethylformamide, isopropanol and the like are used. The amount of the solvent is not particularly limited as long as it can be adjusted to a desired viscosity, but is preferably used in an amount of 30 to 70% by weight based on the mixture. The graphite powder is kneaded with an organic binder and a solvent, and after adjusting the viscosity, applied to a current collector, and integrated with the current collector to form a negative electrode. As the current collector, for example, a metal current collector such as a foil of nickel or copper, or a mesh can be used. The integration is
For example, it can be performed by a molding method such as a roll, a press, or the like, and may be integrated by combining them.
【0017】このようにして得られた負極は、リチウム
イオン二次電池やリチウムポリマ二次電池等の負極とし
て用いられる。例えば、リチウムイオン二次電池におい
ては、セパレータを介して正極を対向して配置し、かつ
電解液を注入する。本発明のリチウム二次電池用負極を
用いることにより、従来の炭素材料を負極に使用したリ
チウム二次電池に比較して、不可逆容量が小さく、高容
量で急速充放電特性、サイクル特性に優れたリチウム二
次電池を作製することができる。The negative electrode thus obtained is used as a negative electrode of a lithium ion secondary battery, a lithium polymer secondary battery or the like. For example, in a lithium ion secondary battery, a positive electrode is arranged to face a separator, and an electrolyte is injected. By using the negative electrode for a lithium secondary battery of the present invention, compared to a lithium secondary battery using a conventional carbon material for the negative electrode, the irreversible capacity is small, high capacity, rapid charge / discharge characteristics, and excellent in cycle characteristics. A lithium secondary battery can be manufactured.
【0018】本発明におけるリチウム二次電池の正極に
用いられる材料については特に制限はなく、例えばLi
NiO2、LiCoO2、LiMn2O4等を単独または混
合して使用することができる。電解液としては、LiC
lO4、LiPF6、LiAsF6、LiBF4、LiSO
3CF3等のリチウム塩を例えばエチレンカーボネート、
ジエチルカーボネート、ジメトキシエタン、ジメチルカ
ーボネート、テトラヒドロフラン、プロピレンカーボネ
ート等の非水系溶剤、ポリフッ化ビニリデン、ポリアニ
リン等の高分子固体電解質に溶解又は含有させたいわゆ
る有機電解液を使用することができる。液体の電解液を
使用する場合に用いられるセパレータとしては、例えば
ポリエチレン、ポリプロピレン等のポリオレフィンを主
成分とした不織布、クロス、微孔フィルム又はそれらを
組み合わせたものを使用することができる。The material used for the positive electrode of the lithium secondary battery in the present invention is not particularly limited.
NiO 2 , LiCoO 2 , LiMn 2 O 4 and the like can be used alone or in combination. As the electrolyte, LiC
10 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO
Lithium salts such as 3 CF 3 are, for example, ethylene carbonate,
A so-called organic electrolyte dissolved or contained in a non-aqueous solvent such as diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, and propylene carbonate, or a solid polymer electrolyte such as polyvinylidene fluoride and polyaniline can be used. As a separator used when a liquid electrolyte is used, for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof, containing a polyolefin such as polyethylene or polypropylene as a main component can be used.
【0019】なお、図1に円筒型リチウムイオン二次電
池の一例の一部断面正面図を示す。図1に示す円筒型リ
チウムイオン二次電池は、薄板状に加工された正極1
と、同様に加工された負極2が、ポリエチレン製微孔膜
等のセパレータ3を介して重ね合わせたものを捲回し、
これを金属製等の電池缶7に挿入し、密閉化されてい
る。正極1は正極タブ4を介して正極蓋6に接合され、
負極2は負極タブ5を介して電池底部へ接合されてい
る。正極蓋6はガスケット8にて電池缶7へ固定されて
いる。FIG. 1 is a partially sectional front view of an example of a cylindrical lithium ion secondary battery. The cylindrical lithium ion secondary battery shown in FIG.
And the negative electrode 2 processed in the same manner is wound by laminating the negative electrode 2 with a separator 3 such as a polyethylene microporous membrane interposed therebetween.
This is inserted into a battery can 7 made of metal or the like, and sealed. The positive electrode 1 is joined to the positive electrode lid 6 via the positive electrode tab 4,
The negative electrode 2 is joined to the battery bottom via the negative electrode tab 5. The positive electrode lid 6 is fixed to the battery can 7 with a gasket 8.
【0020】[0020]
【実施例】以下、本発明の実施例を図面を参照し説明す
る。 実施例1 平均粒径10μmのコークス粉末50重量部と、ピッチ
15重量部と、炭化ケイ素(揮発温度2500〜300
0℃)10重量部と、コールタール10重量部を混合
し、200℃で1時間撹拌した。次いで、この混合物を
平均粒径20μmに粉砕し、該粉砕物を金型に入れプレ
ス成形し、大きさ15mm×25cm×6cmの直方体の黒鉛
前駆体成形体とした。この黒鉛前駆体成形体を窒素雰囲
気中で1000℃で熱処理した後、さらに窒素雰囲気下
で3000℃で熱処理し、黒鉛成形体を得た。得られた
黒鉛成形体のかさ密度は、黒鉛成形体の重量及び体積の
測定値から算出した。さらにこの黒鉛成形体を粉砕し、
黒鉛粉末とした。得られた黒鉛粉末の平均粒径は、レー
ザー回折式粒度測定機で、比表面積は窒素ガス吸着によ
るBET5点法で求めた。アスペクト比の測定は、得ら
れた黒鉛粉末を電子顕微鏡で拡大し、10個任意に選び
出し、アスペクト比の平均値を測定した。表1に粉砕前
の黒鉛成形体の密度、黒鉛粉末の平均粒径、比表面積、
アスペクト比の測定結果を示す。Embodiments of the present invention will be described below with reference to the drawings. Example 1 50 parts by weight of coke powder having an average particle diameter of 10 μm, 15 parts by weight of a pitch, and silicon carbide (volatilization temperature 2500 to 300
(0 ° C.) and 10 parts by weight of coal tar were mixed and stirred at 200 ° C. for 1 hour. Next, the mixture was pulverized to an average particle size of 20 μm, and the pulverized product was put into a mold and press-formed to obtain a rectangular graphite precursor molded body having a size of 15 mm × 25 cm × 6 cm. This graphite precursor molded body was heat-treated at 1000 ° C. in a nitrogen atmosphere, and further heat-treated at 3000 ° C. in a nitrogen atmosphere to obtain a graphite molded body. The bulk density of the obtained graphite molded body was calculated from the measured values of the weight and volume of the graphite molded body. Furthermore, this graphite molded body is crushed,
It was graphite powder. The average particle size of the obtained graphite powder was determined by a laser diffraction particle size analyzer, and the specific surface area was determined by a BET five-point method using nitrogen gas adsorption. The aspect ratio was measured by enlarging the obtained graphite powder with an electron microscope, arbitrarily selecting ten pieces, and measuring the average value of the aspect ratio. Table 1 shows the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area,
The measurement result of an aspect ratio is shown.
【0021】次いで得られた黒鉛粒子90重量%に、N
−メチル−2−ピロリドンに溶解したポリフッ化ビニリ
デン(PVDF)を固形分で10重量%加えて混練して
黒鉛ペーストを作製した。この黒鉛ペーストを厚さが1
0μmの圧延銅箔に塗布し、さらに乾燥して、面圧49
0MPa(0.5トン/cm2)の圧力で圧縮成形し、試料電
極とした。黒鉛粒子層の厚さは90μm、密度は1.5
g/cm3とした。作製した試料電極を3端子法による定電
流充放電を行い、リチウム二次電池用負極としての評価
を行った。Next, 90% by weight of the obtained graphite particles was added with N
Polyvinylidene fluoride (PVDF) dissolved in -methyl-2-pyrrolidone was added at a solid content of 10% by weight and kneaded to prepare a graphite paste. This graphite paste has a thickness of 1
0 μm rolled copper foil, and further dried to a contact pressure of 49 μm.
It was compression molded at a pressure of 0 MPa (0.5 ton / cm 2 ) to obtain a sample electrode. The thickness of the graphite particle layer is 90 μm and the density is 1.5
g / cm 3 . The prepared sample electrode was charged and discharged at a constant current by a three-terminal method, and evaluated as a negative electrode for a lithium secondary battery.
【0022】図2は作成したリチウム二次電池の概略図
であり、試料電極の評価は図2に示すようにガラスセル
9に、電解液10としてLiPF6をエチレンカーボネ
ート(EC)及びジメチルカーボネート(DMC)(E
CとDMCは体積比で1:1)の混合溶媒に1モル/リ
ットルの濃度になるように溶解した溶液を入れ、試料電
極11、セパレータ12及び対極13を積層して配置
し、さらに参照極14を上部から吊るしてリチウム二次
電池を作製して行った。なお、対極13及び参照極14
には金属リチウムを使用し、セパレータ4にはポリエチ
レン微孔膜を使用した。得られたリチウム二次電池を用
いて試料電極11と対極13の間に、試料電極の面積に
対して、0.2mA/cm2の定電流で5mV(Vvs.Li
/Li+)まで充電し、1V(Vvs.Li/Li+)ま
で放電する試験を繰り返した。また、30サイクル毎に
対極の金属リチウムを新品に交換しながら繰り返し充放
電を行った。表1に1サイクル目の放電容量、不可逆容
量、100サイクル目の放電容量を示す。FIG. 2 is a schematic view of the prepared lithium secondary battery. The evaluation of the sample electrode was performed by using LiPF 6 as an electrolyte 10 in ethylene carbonate (EC) and dimethyl carbonate (E) as shown in FIG. DMC) (E
A solution prepared by dissolving C and DMC in a mixed solvent having a volume ratio of 1: 1) so as to have a concentration of 1 mol / liter is added, and the sample electrode 11, the separator 12, and the counter electrode 13 are stacked and arranged. 14 was suspended from above to produce a lithium secondary battery. The counter electrode 13 and the reference electrode 14
, Metal lithium was used, and a polyethylene microporous membrane was used for the separator 4. Using the obtained lithium secondary battery, 5 mV (Vvs. Li) between the sample electrode 11 and the counter electrode 13 at a constant current of 0.2 mA / cm 2 with respect to the area of the sample electrode.
/ Li +) to charge, the test was repeated for discharging to 1V (Vvs.Li/Li +). The charge / discharge was repeated while replacing the counter electrode metal lithium with a new one every 30 cycles. Table 1 shows the discharge capacity at the first cycle, the irreversible capacity, and the discharge capacity at the 100th cycle.
【0023】実施例2 平均粒径10μmのコークス粉末50重量部と、ピッチ
15重量部と、炭化ケイ素5重量部と、コールタール1
0重量部を混合し、200℃で1時間撹拌した以外は実
施例1と同様の方法で黒鉛成形体及び黒鉛粉末を作製し
た。表1に粉砕前の黒鉛成形体の密度、黒鉛粉末の平均
粒径、比表面積、アスペクト比の測定結果を示す。ま
た、実施例1と同様の方法で充放電試験を実施した。表
1に1サイクル目の放電容量、不可逆容量、100サイ
クル目の放電容量を示す。Example 2 50 parts by weight of coke powder having an average particle size of 10 μm, 15 parts by weight of pitch, 5 parts by weight of silicon carbide, and 1 part of coal tar
0 parts by weight were mixed and stirred at 200 ° C. for 1 hour to produce a graphite molded body and graphite powder in the same manner as in Example 1. Table 1 shows the measurement results of the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area, and the aspect ratio. A charge / discharge test was performed in the same manner as in Example 1. Table 1 shows the discharge capacity at the first cycle, the irreversible capacity, and the discharge capacity at the 100th cycle.
【0024】実施例3 平均粒径10μmのコークス粉末50重量部と、ピッチ
15重量部と、炭化ケイ素2重量部と、コールタール1
0重量部を混合し、200℃で1時間撹拌した以外は実
施例1と同様の方法で黒鉛成形体及び黒鉛粉末を作製し
た。表1に粉砕前の黒鉛成形体の密度、黒鉛粉末の平均
粒径、比表面積、アスペクト比の測定結果を示す。ま
た、実施例1と同様の方法で充放電試験を実施した。表
1に1サイクル目の放電容量、不可逆容量、100サイ
クル目の放電容量を示す。Example 3 50 parts by weight of coke powder having an average particle diameter of 10 μm, 15 parts by weight of pitch, 2 parts by weight of silicon carbide, and 1 part of coal tar
0 parts by weight were mixed and stirred at 200 ° C. for 1 hour to produce a graphite molded body and graphite powder in the same manner as in Example 1. Table 1 shows the measurement results of the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area, and the aspect ratio. A charge / discharge test was performed in the same manner as in Example 1. Table 1 shows the discharge capacity at the first cycle, the irreversible capacity, and the discharge capacity at the 100th cycle.
【0025】実施例4 平均粒径10μmのコークス粉末50重量部と、ピッチ
15重量部と、炭化ケイ素1重量部と、コールタール1
0重量部を混合し、200℃で1時間撹拌した以外は実
施例1と同様の方法で黒鉛成形体及び黒鉛粉末を作製し
た。表1に粉砕前の黒鉛成形体の密度、黒鉛粉末の平均
粒径、比表面積、アスペクト比の測定結果を示す。ま
た、実施例1と同様の方法で充放電試験を実施した。表
1に1サイクル目の放電容量、不可逆容量、100サイ
クル目の放電容量を示す。Example 4 50 parts by weight of coke powder having an average particle diameter of 10 μm, 15 parts by weight of pitch, 1 part by weight of silicon carbide, and 1 part by weight of coal tar
0 parts by weight were mixed and stirred at 200 ° C. for 1 hour to produce a graphite molded body and graphite powder in the same manner as in Example 1. Table 1 shows the measurement results of the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area, and the aspect ratio. A charge / discharge test was performed in the same manner as in Example 1. Table 1 shows the discharge capacity at the first cycle, the irreversible capacity, and the discharge capacity at the 100th cycle.
【0026】比較例1 平均粒径10μmのコークス粉末50重量部と、ピッチ
15重量部と、コールタール10重量部を混合し、20
0℃で1時間撹拌した。次いで、この混合物を平均粒径
20μmに粉砕し、該粉砕物を型に入れ冷間静水圧成形
機(CIP成形機)で直方体に成形した。次いでこの成
形体を窒素雰囲気中で1000℃で熱処理した後、ピッ
チ含浸を行い、この操作を2回繰り返し、黒鉛前駆体と
した。この黒鉛前駆体を窒素雰囲気中で1000℃で熱
処理したさらに窒素雰囲気下で3000℃で熱処理し、
高密度黒鉛成形体を得た。さらにこの黒鉛成形体を粉砕
し、黒鉛粉末とした。表1に粉砕前の黒鉛成形体の密
度、黒鉛粉末の平均粒径、比表面積、アスペクト比の測
定結果を示す。また、実施例1と同様の方法で充放電試
験を実施した。表1に1サイクル目の放電容量、不可逆
容量、100サイクル目の放電容量を示す。COMPARATIVE EXAMPLE 1 50 parts by weight of coke powder having an average particle size of 10 μm, 15 parts by weight of pitch, and 10 parts by weight of coal tar were mixed.
Stirred at 0 ° C. for 1 hour. Next, this mixture was pulverized to an average particle size of 20 μm, and the pulverized product was put into a mold and formed into a rectangular parallelepiped by a cold isostatic press (CIP press). Next, after heat-treating this compact at 1000 ° C. in a nitrogen atmosphere, pitch impregnation was performed, and this operation was repeated twice to obtain a graphite precursor. This graphite precursor was heat-treated at 1000 ° C. in a nitrogen atmosphere, and further heat-treated at 3000 ° C. in a nitrogen atmosphere.
A high-density graphite compact was obtained. Further, the graphite compact was pulverized to obtain graphite powder. Table 1 shows the measurement results of the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area, and the aspect ratio. A charge / discharge test was performed in the same manner as in Example 1. Table 1 shows the discharge capacity at the first cycle, the irreversible capacity, and the discharge capacity at the 100th cycle.
【0027】比較例2 平均粒径15μmの天然黒鉛粉末50重量部と、ピッチ
15重量部とコールタール20重量部を混合し、200
℃で1時間撹拌した以外は実施例1と同様の方法で黒鉛
成形体及び黒鉛粉末を作製した。表1に粉砕前の黒鉛成
形体の密度、黒鉛粉末の平均粒径、比表面積、アスペク
ト比の測定結果を示す。また、実施例1と同様の方法で
充放電試験を実施した。表1に1サイクル目の放電容
量、不可逆容量、100サイクル目の放電容量を示す。Comparative Example 2 A mixture of 50 parts by weight of natural graphite powder having an average particle size of 15 μm, 15 parts by weight of pitch, and 20 parts by weight of coal tar was mixed.
A graphite molded body and graphite powder were produced in the same manner as in Example 1 except that the mixture was stirred at 1 ° C. for 1 hour. Table 1 shows the measurement results of the density of the graphite compact before pulverization, the average particle size of the graphite powder, the specific surface area, and the aspect ratio. A charge / discharge test was performed in the same manner as in Example 1. Table 1 shows the discharge capacity at the first cycle, the irreversible capacity, and the discharge capacity at the 100th cycle.
【0028】[0028]
【表1】 [Table 1]
【0029】表1に示されるように、本発明になる黒鉛
粉末は、比表面積及びアスペクト比が小さく、第一サイ
クル目の不可逆容量が小さく、さらにサイクル特性に優
れたリチウム二次電池用負極として好適であることが示
された。As shown in Table 1, the graphite powder according to the present invention has a small specific surface area and an aspect ratio, a small irreversible capacity in the first cycle, and excellent cycle characteristics as a negative electrode for a lithium secondary battery. It has been shown to be suitable.
【0030】[0030]
【発明の効果】請求項1及び2記載の製造法によれば、
高容量で、第一サイクル目の不可逆容量が小さく、急速
充放電特性に優れたリチウム二次電池に好適な黒鉛粉末
が得られる。請求項3記載の黒鉛粉末は、高容量で、第
一サイクル目の不可逆容量が小さく、急速充放電特性に
優れたリチウム二次電池に好適なものである。請求項4
記載のリチウム二次電池用負極は、第一サイクル目の不
可逆容量が小さく、急速充放電特性に優れるものであ
る。請求項5記載のリチウム二次電池は、第一サイクル
目の不可逆容量が小さく、急速充放電特性に優れるもの
である。According to the production method according to claims 1 and 2,
A graphite powder suitable for a lithium secondary battery having high capacity, small irreversible capacity in the first cycle, and excellent in rapid charge / discharge characteristics can be obtained. The graphite powder according to claim 3 is suitable for a lithium secondary battery having a high capacity, a small irreversible capacity in the first cycle, and excellent in rapid charge / discharge characteristics. Claim 4
The described negative electrode for a lithium secondary battery has a small irreversible capacity in the first cycle and is excellent in rapid charge / discharge characteristics. The lithium secondary battery according to claim 5 has a small irreversible capacity in the first cycle and is excellent in rapid charge / discharge characteristics.
【図1】円筒型リチウム二次電池の一部断面正面図であ
る。FIG. 1 is a partial cross-sectional front view of a cylindrical lithium secondary battery.
【図2】本発明の実施例で、充放電特性及び不可逆容量
の測定に用いたリチウム二次電池の概略図である。FIG. 2 is a schematic view of a lithium secondary battery used for measurement of charge / discharge characteristics and irreversible capacity in Examples of the present invention.
1 正極 2 負極 3 セパレータ 4 正極タブ 5 負極タブ 6 正極蓋 7 電池缶 8 ガスケット 9 ガラスセル 10 電解液 11 試料電極(負極) 12 セパレータ 13 対極(正極) 14 参照極 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode cover 7 Battery can 8 Gasket 9 Glass cell 10 Electrolyte 11 Sample electrode (negative electrode) 12 Separator 13 Counter electrode (positive electrode) 14 Reference electrode
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z (72)発明者 藤田 淳 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 (72)発明者 山田 和夫 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01M 10/40 H01M 10/40 Z (72) Inventor Jun Fujita 3-3-1 Ayukawacho, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. (72) Inventor Kazuo Yamada 3-1-1 Ayukawacho, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Yamazaki Plant
Claims (5)
体を粉砕する工程を含むことを特徴とする黒鉛粉末の製
造法。1. A method for producing graphite powder, comprising a step of pulverizing a graphite compact having a bulk density of 1.6 g / cm 3 or less.
体が、400〜3200℃の範囲で揮発する成分を少な
くとも1種類含んでなる黒鉛前駆体を黒鉛化して得られ
たものである請求項1記載の黒鉛粉末の製造法。2. A graphite molded product having a bulk density of 1.6 g / cm 3 or less, which is obtained by graphitizing a graphite precursor containing at least one component that volatilizes in the range of 400 to 3200 ° C. A method for producing the graphite powder according to claim 1.
8m2/g以下、アスペクト比が5以下である黒鉛粉
末。3. A graphite powder having an average particle size of 10 to 50 μm, a specific surface area of 8 m 2 / g or less and an aspect ratio of 5 or less.
れる黒鉛粉末又は請求項3記載の黒鉛粉末を含有してな
るリチウム二次電池用負極。4. A negative electrode for a lithium secondary battery comprising the graphite powder obtained by the method according to claim 1 or 2 or the graphite powder according to claim 3.
リチウム二次電池。5. A lithium secondary battery comprising the negative electrode according to claim 4 and a positive electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34595397A JP3582336B2 (en) | 1997-12-16 | 1997-12-16 | Manufacturing method of graphite powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34595397A JP3582336B2 (en) | 1997-12-16 | 1997-12-16 | Manufacturing method of graphite powder |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003358046A Division JP2004099438A (en) | 2003-10-17 | 2003-10-17 | Graphite powder, negative pole for lithium secondary battery and lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11171519A true JPH11171519A (en) | 1999-06-29 |
JP3582336B2 JP3582336B2 (en) | 2004-10-27 |
Family
ID=18380133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34595397A Expired - Lifetime JP3582336B2 (en) | 1997-12-16 | 1997-12-16 | Manufacturing method of graphite powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3582336B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003282054A (en) * | 2002-03-20 | 2003-10-03 | Osaka Gas Co Ltd | Manufacturing method of negative electrode material for lithium secondary battery and lithium secondary battery |
WO2014157509A1 (en) * | 2013-03-29 | 2014-10-02 | Jx日鉱日石エネルギー株式会社 | Method for producing graphite and particles for graphite production |
WO2020144977A1 (en) * | 2019-01-10 | 2020-07-16 | 株式会社Gsユアサ | Power storage element and method for manufacturing power storage element |
CN115321533A (en) * | 2022-08-31 | 2022-11-11 | 浙江碳一新能源有限责任公司 | Modified graphite negative electrode material and preparation method and application thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113130894A (en) * | 2020-03-20 | 2021-07-16 | 宁德新能源科技有限公司 | Negative electrode active material, and electrochemical device and electronic device using same |
-
1997
- 1997-12-16 JP JP34595397A patent/JP3582336B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003282054A (en) * | 2002-03-20 | 2003-10-03 | Osaka Gas Co Ltd | Manufacturing method of negative electrode material for lithium secondary battery and lithium secondary battery |
WO2014157509A1 (en) * | 2013-03-29 | 2014-10-02 | Jx日鉱日石エネルギー株式会社 | Method for producing graphite and particles for graphite production |
JP2014196211A (en) * | 2013-03-29 | 2014-10-16 | Jx日鉱日石エネルギー株式会社 | Production method of graphite and particle for producing graphite |
KR20150134351A (en) * | 2013-03-29 | 2015-12-01 | 제이엑스 닛코닛세키 에네루기 가부시키가이샤 | Method for producing graphite and particles for graphite production |
EP2980017A4 (en) * | 2013-03-29 | 2016-12-07 | Jx Nippon Oil & Energy Corp | Method for producing graphite and particles for graphite production |
US9725323B2 (en) | 2013-03-29 | 2017-08-08 | Jx Nippon Oil & Energy Corporation | Method for producing graphite and particulates for graphite production |
WO2020144977A1 (en) * | 2019-01-10 | 2020-07-16 | 株式会社Gsユアサ | Power storage element and method for manufacturing power storage element |
JPWO2020144977A1 (en) * | 2019-01-10 | 2021-11-25 | 株式会社Gsユアサ | Power storage element and manufacturing method of power storage element |
CN115321533A (en) * | 2022-08-31 | 2022-11-11 | 浙江碳一新能源有限责任公司 | Modified graphite negative electrode material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3582336B2 (en) | 2004-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10651458B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP3305995B2 (en) | Graphite particles for lithium secondary battery negative electrode | |
JP3361510B2 (en) | Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery | |
JP3213575B2 (en) | Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery | |
JP2001089118A (en) | Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery | |
JP3321782B2 (en) | Graphite particles for lithium secondary battery negative electrode | |
JP3528671B2 (en) | Carbon powder for negative electrode of lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery | |
JP3582336B2 (en) | Manufacturing method of graphite powder | |
JP3651225B2 (en) | Lithium secondary battery, negative electrode thereof and method for producing the same | |
JP2000012017A (en) | Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery | |
JP3951219B2 (en) | Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery | |
JP4811699B2 (en) | Negative electrode for lithium secondary battery | |
JP4483560B2 (en) | Negative electrode for lithium secondary battery | |
JP2002343341A (en) | Negative electrode for lithium secondary battery | |
JP4079032B2 (en) | Carbon powder for negative electrode of lithium secondary battery, production method thereof, negative electrode for lithium secondary battery, and lithium secondary battery | |
JP4828118B2 (en) | Negative electrode for lithium secondary battery | |
JP5853293B2 (en) | Negative electrode for lithium secondary battery | |
JP2004099438A (en) | Graphite powder, negative pole for lithium secondary battery and lithium secondary battery | |
JP5704473B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP3487155B2 (en) | Carbon particles, negative electrode for lithium secondary battery and lithium secondary battery | |
JP2001006669A (en) | Graphite particles for lithium secondary battery negative electrode, manufacture of the particles, negative electrode for lithium secondary battery, and lithium secondary battery | |
JP4687661B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP4952549B2 (en) | Carbon powder for negative electrode of lithium secondary battery, production method thereof, negative electrode for lithium secondary battery, and lithium secondary battery | |
JPH10223231A (en) | Anode for lithium secondary battery and lithium secondary battery | |
JP2011181524A (en) | Carbon powder for lithium secondary battery negative electrode, method of manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040610 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040706 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040719 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070806 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080806 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090806 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090806 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100806 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110806 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110806 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120806 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120806 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |