JPH11167934A - Nonaqueous electrolyte secondary battery and its manufacture - Google Patents

Nonaqueous electrolyte secondary battery and its manufacture

Info

Publication number
JPH11167934A
JPH11167934A JP9333252A JP33325297A JPH11167934A JP H11167934 A JPH11167934 A JP H11167934A JP 9333252 A JP9333252 A JP 9333252A JP 33325297 A JP33325297 A JP 33325297A JP H11167934 A JPH11167934 A JP H11167934A
Authority
JP
Japan
Prior art keywords
electrode
positive electrode
negative electrode
battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9333252A
Other languages
Japanese (ja)
Inventor
Yasuo Ota
康雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9333252A priority Critical patent/JPH11167934A/en
Publication of JPH11167934A publication Critical patent/JPH11167934A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a stacked type nonaqueous electrolyte secondary battery with high characteristics and high manufacturing efficiency of an electrode element. SOLUTION: A negative electrode 3 is formed by interposing a negative current collector 2 between two negative electrode sintered bodies formed by sintering a negative active material. A positive electrode 6 is formed by interposing a positive current collector between two positive electrode molded bodies formed by molding a positive active material. Thereafter, the positive electrode 6 is wrapped with a microporous film 7 except for an electrode taking-out portion, then the positive electrode 6 is sealed by welding. Next, the negative electrode 3 and the positive electrode 6 are stacked alternately, reinforcing plates 9 are arranged on both sides of the stack to interpose the stack between them, and they are wound with an adhesive tape 10 to constitute an electrode element 11. The microporous film 7 serves as a separator 5 which separates the negative electrode 3 and the positive electrode 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
とその製造方法に関し、更に詳しくは電極体素子の製造
性に優れ、また電池容量の大きな積層型の非水電解液二
次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery and a method for producing the same, and more particularly, to a stacked non-aqueous electrolyte secondary battery having excellent productivity of electrode elements and a large battery capacity. About.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により電子機器の
小型化、高性能化、携帯化が進み、それに伴ってこれら
携帯用電子機器の使用に適した高いエネルギー密度を有
する電池の要求が強まってきている。従来、これらの電
子機器に使用される二次電池としては、水系電解液を使
用するニッケル・カドミウム電池や鉛電池等があげられ
るが、これらの電池は放電電位が低く、また電池重量、
電池体積が大きくてエネルギー密度の高い電池の要求に
は十分に応えられていないのが実状である。
2. Description of the Related Art In recent years, with the advance of electronic technology, electronic devices have become smaller, more sophisticated, and more portable, and accordingly, the demand for batteries having a high energy density suitable for use of these portable electronic devices has increased. Is coming. Conventionally, secondary batteries used in these electronic devices include nickel-cadmium batteries and lead batteries using an aqueous electrolyte, but these batteries have low discharge potential,
The reality is that the demand for batteries having a large battery volume and a high energy density has not been sufficiently satisfied.

【0003】このような状況のなか、最近、これらの要
求を満たす電池として、リチウムやアルミニウム等の軽
金属を負極とする非水電解液二次電池が注目され、盛ん
に研究が行われている。なかでも正極活物質としてリチ
ウムと遷移金属との複合酸化物を使用し、負極活物質と
してリチウムイオンをドープし且つ脱ドープが可能な炭
素質材料を使用したリチウムイオン二次電池が、高いエ
ネルギー密度と良好なサイクル特性を示す電池として実
用化されてきている。
Under these circumstances, as a battery satisfying these requirements, a non-aqueous electrolyte secondary battery using a light metal such as lithium or aluminum as a negative electrode has recently attracted attention and has been actively studied. Among them, lithium ion secondary batteries using a composite oxide of lithium and a transition metal as a positive electrode active material and a carbonaceous material doped with lithium ions and undoped as a negative electrode active material have a high energy density. And a battery exhibiting good cycle characteristics.

【0004】ところで、上述した非水電解液二次電池の
電極を作成する方法として、バインダーを溶解した溶剤
に活物質を分散させてスラリー状にし、これを集電体の
両面に塗布し、その後、溶剤を乾燥させる方法が用いら
れてきた。しかしながら電極が厚い場合は溶剤を完全に
乾燥させることが困難であり、電解液中に電極に残って
いる溶剤がしみだし、電池特性を悪化させる虞れがあっ
た。
By the way, as a method for preparing the above-mentioned electrode of the non-aqueous electrolyte secondary battery, an active material is dispersed in a solvent in which a binder is dissolved to form a slurry, and the slurry is applied to both surfaces of a current collector. A method of drying a solvent has been used. However, when the electrode is thick, it is difficult to completely dry the solvent, and the solvent remaining on the electrode exudes into the electrolytic solution, possibly deteriorating the battery characteristics.

【0005】その対策として、活物質を造粒して乾燥さ
せ、この活物質で集電体を中央に挟み、圧縮成型して電
極を作成する方法が考案された。しかしながら、この方
法は集電体に箔を用いると圧縮成型しても活物質と集電
体とが密着しにくい等、技術的に難しいものがあった。
また、この密着性を確保するため集電体にメッシュを用
いる方法が提案されているが、この場合、活物質と集電
体との接触面積が小さくなり、また、メッシュをそのま
まリードとして用いるため強度を確保する必要があっ
た。従って、集電体として箔を用いる場合よりも体積の
大きなものを用いる必要があり、このため所定サイズの
電池においては内包する活物質の量を少なくしなければ
ならず、電池容量が減少してしまう問題があった。
As a countermeasure, a method has been devised in which an active material is granulated and dried, a current collector is sandwiched between the active materials at the center, and compression molding is performed to form an electrode. However, this method is technically difficult when a foil is used for the current collector, such that the active material and the current collector hardly adhere to each other even when compression-molded.
Further, a method of using a mesh for the current collector has been proposed to ensure this adhesion, but in this case, the contact area between the active material and the current collector is reduced, and the mesh is used as a lead as it is. It was necessary to secure strength. Therefore, it is necessary to use a current collector having a larger volume than in the case of using a foil.For this reason, in a battery of a predetermined size, the amount of the active material contained therein must be reduced, and the battery capacity decreases. There was a problem.

【0006】[0006]

【発明が解決しようとする課題】従って本発明の課題
は、積層型の非水電解液二次電池において、電池特性に
すぐれ、且つ電極体素子の製造効率の向上した非水電解
液二次電池とその製造方法の提供を目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent battery characteristics and improved production efficiency of an electrode assembly element in a laminated non-aqueous electrolyte secondary battery. And a method of manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、請求項1に記載の発明は、正極と
負極との間に微多孔性フィルムを積層した構成の電極体
素子を有し、該電極体素子を電池缶内に収納すると共
に、前記電池缶内に非水電解液を注入してなる非水電解
液二次電池の製造方法において、薄板に形成した2枚の
正極活物質の間に導電体からなる集電体を挟んで正極を
形成する工程と、それに続く、前記正極を微多孔性フィ
ルムにより電極取り出し部位を除いて包み込む工程と、
薄板に形成した2枚の負極活物質の間に導電体からなる
集電体を挟んで負極を形成する工程と、前記微多孔性フ
ィルムにより包み込まれた正極と前記負極とを交互に積
層する工程とを有する製造方法を提供する。
Means for Solving the Problems The present invention has been made in view of the above problems, and an invention according to claim 1 is an electrode element having a structure in which a microporous film is laminated between a positive electrode and a negative electrode. In the method for manufacturing a non-aqueous electrolyte secondary battery, in which the electrode element is housed in a battery can and a non-aqueous electrolyte is injected into the battery can, two sheets formed in a thin plate are provided. A step of forming a positive electrode with a current collector made of a conductor between the positive electrode active materials, and a subsequent step of wrapping the positive electrode with a microporous film except for an electrode extraction site,
A step of forming a negative electrode by sandwiching a current collector made of a conductor between two negative electrode active materials formed in a thin plate, and a step of alternately stacking the positive electrode and the negative electrode wrapped by the microporous film And a production method comprising:

【0008】また、請求項2に記載の発明は、正極と負
極との間に微多孔性フィルムを積層した構成の電極体素
子を有し、該電極体素子を電池缶内に収納すると共に、
前記電池缶内に非水電解液を注入してなる非水電解液二
次電池において、前記正極は、微多孔性フィルムにより
電極取り出し部位を除いて包み込まれた構成として上記
課題を解決する。
Further, the invention according to claim 2 has an electrode element having a structure in which a microporous film is laminated between a positive electrode and a negative electrode, and the electrode element is housed in a battery can.
In a non-aqueous electrolyte secondary battery in which a non-aqueous electrolyte is injected into the battery can, the above-mentioned problem is solved by a configuration in which the positive electrode is wrapped by a microporous film except for an electrode take-out site.

【0009】請求項1に記載の非水電解液二次電池の製
造方法、および請求項2に記載の非水電解液二次電池に
よれば、集電体に金属箔を用いて電池容量を確保できる
と共に、電極体素子の製造性に優れた非水電解液二次電
池とその製造方法が提供できる。
According to the method for manufacturing a non-aqueous electrolyte secondary battery according to the first aspect and the non-aqueous electrolyte secondary battery according to the second aspect, the battery capacity is increased by using a metal foil for the current collector. It is possible to provide a non-aqueous electrolyte secondary battery which can secure the electrode element and is excellent in productivity of the electrode assembly element, and a method of manufacturing the same.

【0010】[0010]

【発明の実施の形態】本発明者らは鋭意検討を行った結
果、正極活物質、負極活物質をそれぞれ板状に形成した
後、金属箔を挟んで電極を形成し、さらに、正極を微多
孔性フィルムで電極取り出し部位を除いて包み込み、こ
れら正極と負極を交互に積層して電極体素子を構成する
ことにより、前述の課題を解決することが可能であるこ
とを見いだした。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of intensive studies, the present inventors formed a positive electrode active material and a negative electrode active material in the form of a plate, formed an electrode with a metal foil in between, and further formed a positive electrode. The inventors have found that it is possible to solve the above-mentioned problems by wrapping a porous film except for an electrode take-out site and alternately stacking the positive electrode and the negative electrode to form an electrode element.

【0011】本発明はこのような知見に基づいて行われ
たものであり、LiX MO2 (但しMは1以上の遷移金
属を表し、0.05≦X≦1.10である)よりなる正
極と、リチウムをドープ、且つ脱ドープが可能な炭素質
材料よりなる負極とが積層され、電池缶に収納された
後、非水電解液が注入されてなる非水電解液二次電池に
適用される。
The present invention has been made based on such knowledge, and is composed of Li X MO 2 (where M represents one or more transition metals and 0.05 ≦ X ≦ 1.10.) A non-aqueous electrolyte secondary battery in which a positive electrode and a lithium-doped, negative electrode made of a carbonaceous material that can be doped and de-doped is stacked, and then housed in a battery can and then injected with a non-aqueous electrolyte. Is done.

【0012】本発明の実施形態について図1ないし図5
を参照して説明する。ここで図1は本発明にかかわる非
水電解液二次電池の製造方法を示す図である。図2は本
発明にかかわる非水電解液二次電池の負極〔同図
(a)〕と正極〔同図(b)〕の構成を示す斜視図であ
り、図3はこれら負極、正極による電極体素子の構成を
示す斜視図である。また、図4は本発明の製造方法によ
り製造される非水電解液二次電池の断面図であり、図5
は比較のために作製された従来の非水電解液二次電池の
断面図である。
FIGS. 1 to 5 show an embodiment of the present invention.
This will be described with reference to FIG. Here, FIG. 1 is a view showing a method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention. FIG. 2 is a perspective view showing the configuration of a negative electrode [FIG. 2 (a)] and a positive electrode [FIG. 2 (b)] of a non-aqueous electrolyte secondary battery according to the present invention, and FIG. It is a perspective view which shows the structure of a body element. FIG. 4 is a sectional view of a non-aqueous electrolyte secondary battery manufactured by the manufacturing method of the present invention.
FIG. 2 is a cross-sectional view of a conventional non-aqueous electrolyte secondary battery manufactured for comparison.

【0013】まず、負極活物質としては、リチウムをド
ープ/脱ドープが可能な炭素材料が用いられ、ポリアセ
チレン、ポリピロール等の導電性ポリマー、あるいはコ
ークス、ポリマー炭、カーボンファイバー等の他、単位
体積当たりのエネルギー密度が大きい熱分解炭素類、コ
ークス類(石油コークス、ピッチコークス、石炭コーク
ス等)、カーボンブラック(アセチレンブラック等)、
ガラス状炭素、有機高分子材料焼成体(有機高分子材料
を500℃以上の適当な温度で不活性ガス気流中、ある
いは真空中で焼成したもの)、炭素繊維等が好ましい。
First, as the negative electrode active material, a carbon material capable of doping / dedoping lithium is used, and a conductive polymer such as polyacetylene or polypyrrole, or coke, polymer charcoal, carbon fiber, etc. Pyrolytic carbons, cokes (petroleum coke, pitch coke, coal coke, etc.), carbon black (acetylene black, etc.)
Glassy carbon, a fired body of an organic polymer material (an organic polymer material fired at an appropriate temperature of 500 ° C. or higher in an inert gas stream or in a vacuum), and carbon fibers are preferable.

【0014】一方、正極活物質としては、LiX MO2
(但しMは1以上の遷移金属、好ましくはCo,Ni,
Mnのうちの少なくとも1種を表し、0.05≦X≦
1.10である)で表される、リチウムと遷移金属から
なる複合金属酸化物やリチウムを含んだ層間化合物が用
いられる。
On the other hand, as the positive electrode active material, Li X MO 2
(Where M is one or more transition metals, preferably Co, Ni,
Represents at least one kind of Mn, and 0.05 ≦ X ≦
1.10), a composite metal oxide composed of lithium and a transition metal or an intercalation compound containing lithium is used.

【0015】また、電解液としてはプロピレンカーボネ
ート、エチレンカーボネート、ブチレンカーボネート、
γ−ブチロラクトン、1,2−ジメトキシエタン、1,
2−ジエトキシメタン、1,2−ジメトキシエタン、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、ジグライム類、トリグライム類、スルホラン、炭
酸ジメチル、炭酸ジエチル、炭酸ジプロピル等の単独、
若しくは2種類以上が混合されて溶媒として使用され
る。
Further, as the electrolytic solution, propylene carbonate, ethylene carbonate, butylene carbonate,
γ-butyrolactone, 1,2-dimethoxyethane, 1,
2-diethoxymethane, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran,
1,3-dioxolan, 4-methyl-1,3-dioxolan, diglymes, triglymes, sulfolane, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like alone;
Alternatively, two or more kinds are mixed and used as a solvent.

【0016】つぎに、本発明にかかわる非水電解液二次
電池の製造方法について説明する。本製造方法は電極体
素子の形成に関して特徴を有するものであって、その他
の部位の製造工程は従来と同様である。
Next, a method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention will be described. The present manufacturing method has a feature regarding the formation of the electrode element, and the manufacturing steps of the other portions are the same as those in the related art.

【0017】図1に示すように、上述した負極活物質を
焼成した2枚の負極焼結体1で負極集電体2を挟み、負
極3を形成する。また、上述した正極活物質を成型した
2枚の正極成型体4で正極集電体5を挟み、正極6を形
成する。その後、正極6を微多孔性フィルム7で電極取
り出し部位を除いて包み込み、溶着して正極6を封入す
る。つぎに、前記負極3と正極6とを交互に積層し、積
層の両側に補強板9を設けて、これらを挟み込み、最後
に粘着テープ10を巻いて電極体素子11を構成する。
このとき前記微多孔性フィルム7が負極3と正極6とを
分離するセパレータ8となる。
As shown in FIG. 1, a negative electrode 3 is formed by sandwiching a negative electrode current collector 2 between two negative electrode sintered bodies 1 obtained by firing the above-described negative electrode active material. The positive electrode 6 is formed by sandwiching the positive electrode current collector 5 between the two positive electrode molded bodies 4 formed by molding the positive electrode active material described above. Thereafter, the positive electrode 6 is wrapped with a microporous film 7 except for the electrode take-out site, and the positive electrode 6 is sealed by welding. Next, the negative electrode 3 and the positive electrode 6 are alternately laminated, reinforcing plates 9 are provided on both sides of the laminate, these are sandwiched, and finally an adhesive tape 10 is wound to form the electrode element element 11.
At this time, the microporous film 7 becomes a separator 8 for separating the negative electrode 3 and the positive electrode 6.

【0018】図2、図3に負極3、正極6の構成と、こ
れらにより構成された電極体素子11が示されている。
尚、積層する負極3と正極6の数は図示する数に限るこ
となく、任意の数を積層してよいことは当然である。ま
た、電極体素子11を作製したあとの電池製造工程は従
来と同様であり、後段の実施例において述べる。
FIGS. 2 and 3 show the configuration of the negative electrode 3 and the positive electrode 6 and the electrode element 11 formed by these components.
Note that the number of the negative electrode 3 and the positive electrode 6 to be laminated is not limited to the number shown in the figure, and it is natural that any number may be laminated. Further, the battery manufacturing process after manufacturing the electrode element element 11 is the same as the conventional one, and will be described in a later example.

【0019】実施例 まず、負極焼結体1を次のようにして作製した。低膨張
性のメソフェーズカーボン粉体250メッシュアンダー
品を酸化雰囲気中で処理を行い、平均粒径が20μmの
粉末を得た(これを炭素質粉体Aとする)。また、得ら
れた炭素質粉体Aの1部を不活性ガス中にて900℃で
3時間焼成してコークス状とし、さらにこれを粉砕して
平均粒径が20μmの粉末を得た(これを炭素質粉体B
とする)。
Example First, a negative electrode sintered body 1 was produced as follows. The low-expansion mesophase carbon powder 250 mesh under product was treated in an oxidizing atmosphere to obtain a powder having an average particle diameter of 20 μm (this is referred to as carbonaceous powder A). Further, one part of the obtained carbonaceous powder A was calcined in an inert gas at 900 ° C. for 3 hours to form a coke, which was then pulverized to obtain a powder having an average particle diameter of 20 μm (this To carbonaceous powder B
And).

【0020】つぎに、炭素質粉体Aと炭素質粉体Bとを
混合し、バインダーとしてポリビニルアルコール(分子
量500)を加え、溶媒として水を用いて混練した。そ
の後、250μm以下、150μm以上にメッシュを用
いて造粒し、また粒度調整を行った。
Next, the carbonaceous powder A and the carbonaceous powder B were mixed, polyvinyl alcohol (molecular weight: 500) was added as a binder, and kneaded using water as a solvent. Thereafter, granulation was performed using a mesh of 250 μm or less and 150 μm or more, and the particle size was adjusted.

【0021】この造粒品を角型に成型し、これを不活性
ガス中にて、1000℃にて3時間処理し、縦41.5
mm、横32.3mmの負極焼結体1を得た。炭素質部
分の体積密度は1.25g/mlであり、真比重は1.
75であった。また、厚みは、電極体素子11の最外周
にあたる2枚は0.3mmとし、その他のものは0.6
mmとした。
This granulated product is formed into a square shape, and this is treated in an inert gas at 1000 ° C. for 3 hours to obtain a vertical 41.5%.
mm, a negative electrode sintered body 1 having a width of 32.3 mm was obtained. The volume density of the carbonaceous portion is 1.25 g / ml, and the true specific gravity is 1.
75. The thickness of the outermost two electrodes of the electrode element element 11 is 0.3 mm, and the thickness of the other two is 0.6 mm.
mm.

【0022】つぎに、正極成型体4を次のようにして作
製した。リチウム複合酸化物であるLiCoO2 に導電
剤と結着剤とを加えて混合し、これにジメチルフォルム
アミドを分散剤として加えてスラリーを作成した。これ
を有機溶媒用スプレードライヤーを用いて造粒し、この
造粒品を角型に成型し、縦39.5mm、横31.0m
mの正極成型体4を得た。成型時のプレス圧は電極の密
度を十分に高くできる200kg/cm2 とした。
Next, a positive electrode molded body 4 was produced as follows. A conductive agent and a binder were added to LiCoO 2 , which is a lithium composite oxide, and mixed, and dimethylformamide was added as a dispersant to prepare a slurry. This was granulated using a spray drier for organic solvent, and the granulated product was molded into a square shape, 39.5 mm long and 31.0 m wide.
m of the positive electrode molded body 4 was obtained. The pressing pressure at the time of molding was set to 200 kg / cm 2 which can sufficiently increase the density of the electrode.

【0023】先に説明した負極焼結体1で厚さ10μm
の銅箔を両側から挟んで負極3とする。また、正極成型
体4で厚さ20μmのアルミ箔を両側から挟んで正極6
とし、さらにこれを厚さ35μmの微多孔性フィルム7
で包み込み、電極取り出し部位を除いて周囲を熱で溶着
して袋状にした。このようにした正極6と負極3とを交
互に積層した。このとき微多孔性フィルム7はセパレー
タ8を形成することになる。その後、積層体の両側に補
強板9を加え、粘着テープ10を縦に巻いて電極体素子
11を作成した。
The negative electrode sintered body 1 described above has a thickness of 10 μm.
Is sandwiched from both sides to form the negative electrode 3. Also, the positive electrode molded body 4 sandwiches the aluminum foil having a thickness of 20 μm from both sides to form the positive electrode 6.
And furthermore, the microporous film 7 having a thickness of 35 μm
And the periphery was welded by heat except for the electrode take-out site to form a bag. The positive electrode 6 and the negative electrode 3 were alternately stacked. At this time, the microporous film 7 forms the separator 8. Thereafter, reinforcing plates 9 were added to both sides of the laminate, and an adhesive tape 10 was vertically wound to form an electrode element 11.

【0024】このようにして作成した電極体素子11を
図4に示すように、ニッケルメッキを施した鉄製の角型
の電池缶21内に収納し、電極体素子11の上下両面に
絶縁板22を配置した。負極3の負極リード23を補強
板9に溶接し、さらに補強板9を電池缶21に溶接し、
一方、正極6の正極リード24を電池蓋26に絶縁体2
7を介して設けられた正極端子25にレーザ溶接する。
尚、電池蓋26には図示はしていないが、安全装置とし
て開裂弁が設けられている。
As shown in FIG. 4, the electrode element 11 thus prepared is housed in a nickel-plated iron rectangular battery can 21 and insulating plates 22 are provided on both upper and lower surfaces of the electrode element 11. Was placed. The negative electrode lead 23 of the negative electrode 3 was welded to the reinforcing plate 9, and the reinforcing plate 9 was further welded to the battery can 21,
On the other hand, the positive electrode lead 24 of the positive electrode 6 is attached to the battery lid 26 by the insulator 2.
Laser welding is carried out to the positive electrode terminal 25 provided via.
Although not shown, the battery lid 26 is provided with a cleavage valve as a safety device.

【0025】つぎに、電池缶21の中に、エチルカーボ
ネートを5容量%、プロピレンカーボネートを15容量
%、ジメチルカーボネート40容量%、メチルカーボネ
ートの40容量%の混合溶媒に、LiPF6 を1.5モ
ル溶解させた電解液を注入し、その後、レーザにより電
池蓋26を電池缶21に溶接して、厚み14mm、高さ
48mm、幅34mmの電池を作成した。
Next, in a battery can 21, a mixed solvent of 5% by volume of ethyl carbonate, 15% by volume of propylene carbonate, 40% by volume of dimethyl carbonate, and 40% by volume of methyl carbonate was mixed with 1.5 parts by weight of LiPF 6 . The molten electrolytic solution was injected, and then the battery lid 26 was welded to the battery can 21 with a laser to produce a battery having a thickness of 14 mm, a height of 48 mm, and a width of 34 mm.

【0026】比較例 比較例として従来の渦巻き電極体を用いた非水電解液二
次電池を次のようにして作製した。この方法により作製
された電池の断面図を図5に示す。
Comparative Example As a comparative example, a non-aqueous electrolyte secondary battery using a conventional spiral electrode body was manufactured as follows. FIG. 5 is a cross-sectional view of a battery manufactured by this method.

【0027】まず、負極31を次のようにして作製し
た。出発原料として石油ピッチを用い、これを酸素架橋
した後、不活性ガス気流中で焼成して、軟黒鉛化炭素材
料を得た。この軟黒鉛化炭素材料を粉砕し、平均粒径
(平均体積径)が10μmの炭素材料粉末とした。この
炭素材料粉末を結着剤と混合して負極混合物を調製し、
この負極混合物をN−メチル−2−ピロリドンに分散さ
せてスラリー状にし、負極スラリーを調製した。このよ
うにして得られた負極スラリーを負極集電体となる厚さ
10μmの帯状の銅箔の両面に均一に塗布し、乾燥させ
た後、ロールプレス機により圧縮成型し、帯状の負極3
1を作製した。
First, the negative electrode 31 was manufactured as follows. A petroleum pitch was used as a starting material, which was crosslinked with oxygen, and then fired in an inert gas stream to obtain a soft graphitized carbon material. This soft graphitized carbon material was pulverized into a carbon material powder having an average particle diameter (average volume diameter) of 10 μm. This carbon material powder is mixed with a binder to prepare a negative electrode mixture,
This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry to prepare a negative electrode slurry. The negative electrode slurry thus obtained is uniformly applied to both sides of a 10 μm-thick strip-shaped copper foil serving as a negative electrode current collector, dried, and then compression-molded by a roll press to obtain a strip-shaped negative electrode 3.
1 was produced.

【0028】つぎに、正極32を次のようにして作製し
た。炭酸リチウムと炭酸コバルトを0.5モル:1.0
モルの比で混合し、この混合物を空気中で焼成してLi
CoO2 を得た。このLiCoO2 を導電材および結着
剤とを混合して正極混合物を調製し、この正極混合物を
溶剤となるN−メチル−2−ピロリドンに分散させてス
ラリー状にし、正極スラリーを調製した。
Next, the positive electrode 32 was manufactured as follows. 0.5 mol of lithium carbonate and cobalt carbonate: 1.0
Mole ratio and calcine the mixture in air to give Li
CoO 2 was obtained. This LiCoO 2 was mixed with a conductive material and a binder to prepare a positive electrode mixture, and this positive electrode mixture was dispersed in N-methyl-2-pyrrolidone as a solvent to form a slurry, thereby preparing a positive electrode slurry.

【0029】このようにして得られた正極スラリーを正
極集電体となる厚さ20μmの帯状のアルミニウム箔の
両面に均一に塗布し、乾燥させた後、ロールプレス機で
圧縮成形し、帯状の正極32を作製した。
The positive electrode slurry thus obtained is uniformly coated on both sides of a 20 μm-thick strip-shaped aluminum foil serving as a positive electrode current collector, dried, and then compression-molded by a roll press to form a strip-shaped aluminum foil. A positive electrode 32 was produced.

【0030】上述したように作製された負極31、正極
32、および微多孔性ポリプロピレンフィルムよりなる
セパレータ8とを、負極31、セパレータ8、正極3
2、セパレータ8の順に積層し、これを多数回巻回して
渦巻き状の電極体素子33を作製した。
The negative electrode 31, the positive electrode 32, and the separator 8 made of a microporous polypropylene film as described above were combined with the negative electrode 31, the separator 8, and the positive electrode 3.
2, the separator 8 was laminated in this order, and this was wound many times to produce a spiral electrode body element 33.

【0031】このようにして作成した電極体素子33
を、ニッケルメッキを施した鉄製の角型の電池缶21内
に収納し、電極体素子33の上下両面に絶縁板22を配
置した。負極31の負極リード23を電池缶21に溶接
し、一方、正極32の正極リード24を電池蓋26に絶
縁体27を介して設けられた正極端子25にレーザ溶接
した。尚、電池蓋26には図示はしていないが、安全装
置として開裂弁が設けられている。
The electrode element element 33 thus produced
Was housed in a nickel-plated iron square battery can 21, and insulating plates 22 were arranged on both upper and lower surfaces of the electrode element element 33. The negative electrode lead 23 of the negative electrode 31 was welded to the battery can 21, while the positive electrode lead 24 of the positive electrode 32 was laser-welded to a positive electrode terminal 25 provided on a battery lid 26 via an insulator 27. Although not shown, the battery lid 26 is provided with a cleavage valve as a safety device.

【0032】つぎに、電池缶21の中に、エチルカーボ
ネートを5容量%、プロピレンカーボネートを15容量
%、ジメチルカーボネート40容量%、メチルカーボネ
ートの40容量%の混合溶媒に、LiPF6 を1.5モ
ル溶解させた電解液を注入し、その後、レーザにより電
池蓋26を電池缶21に溶接して、厚み14mm、高さ
48mm、幅34mmの電池を作成した。
Next, in a battery can 21, a mixed solvent of 5% by volume of ethyl carbonate, 15% by volume of propylene carbonate, 40% by volume of dimethyl carbonate, and 40% by volume of methyl carbonate was mixed with 1.5% of LiPF 6 . The molten electrolytic solution was injected, and then the battery lid 26 was welded to the battery can 21 with a laser to produce a battery having a thickness of 14 mm, a height of 48 mm, and a width of 34 mm.

【0033】上述したようにして作製した実施例と比較
例の非水電解液二次電池について、充電電流1000m
A、終止電圧4.2Vの条件で充電を行い、つぎに終止
電圧2.75Vまで300mA、600mA、750m
Aの各定電流で放電を行い電池容量を測定した。その結
果を表1に示す。
The charging current of the non-aqueous electrolyte secondary batteries of Examples and Comparative Examples produced as described above was 1000 m
A, charging was performed under the conditions of a final voltage of 4.2 V, and then 300 mA, 600 mA, and 750 m until a final voltage of 2.75 V.
The battery was discharged at each constant current of A, and the battery capacity was measured. Table 1 shows the results.

【0034】[0034]

【表1】 [Table 1]

【0035】この測定結果から本発明の構成による非水
電解液二次電池は、従来の構成の電池に比して、各負荷
電流において容量が増加していることが分かる。
From this measurement result, it can be seen that the capacity of the nonaqueous electrolyte secondary battery according to the configuration of the present invention is increased at each load current as compared with the battery of the conventional configuration.

【0036】尚、負極材料、正極材料、電解液等は実施
例に記載されたものに限ることなく、通常用いられるも
のは全て本発明に適用可能である。また、負極、正極の
積層する枚数、集電体の厚さ、負極、正極の厚みも実施
例に記載されたものに限ることがないことは当然であ
る。
The negative electrode material, the positive electrode material, the electrolytic solution and the like are not limited to those described in the examples, and all commonly used materials can be applied to the present invention. Also, the number of layers of the negative electrode and the positive electrode, the thickness of the current collector, and the thickness of the negative electrode and the positive electrode are not limited to those described in the examples.

【0037】[0037]

【発明の効果】以上の説明からも明らかなように本発明
によると、製造工程が簡単になり製造効率が向上すると
共に、電極体素子の体積効率がよくなり、電池容量が増
大した非水電解液二次電池の提供が可能となる。
As is apparent from the above description, according to the present invention, the non-aqueous electrolysis method in which the manufacturing process is simplified and the manufacturing efficiency is improved, the volume efficiency of the electrode element element is improved, and the battery capacity is increased. It becomes possible to provide a liquid secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかわる非水電解液二次電池の製造
方法を示す図である。
FIG. 1 is a diagram showing a method for manufacturing a nonaqueous electrolyte secondary battery according to the present invention.

【図2】 本発明にかかわる非水電解液二次電池の負極
〔同図(a)〕と正極〔同図(b)〕の構成を示す斜視
図である。
FIG. 2 is a perspective view showing the configuration of a negative electrode [FIG. 2 (a)] and a positive electrode [FIG. 2 (b)] of a non-aqueous electrolyte secondary battery according to the present invention.

【図3】 本発明にかかわる非水電解液二次電池の電極
体素子の構成を示す斜視図である。
FIG. 3 is a perspective view showing a configuration of an electrode element of the nonaqueous electrolyte secondary battery according to the present invention.

【図4】 本発明の製造方法により製造される非水電解
液二次電池の断面図である。
FIG. 4 is a sectional view of a non-aqueous electrolyte secondary battery manufactured by the manufacturing method of the present invention.

【図5】 従来の非水電解液二次電池の断面図である。FIG. 5 is a cross-sectional view of a conventional non-aqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1…負極焼結体、2…負極集電体、3,31…負極、4
…正極成型体、5…正極集電体、6,32…正極、7…
微多孔性フィルム、8…セパレータ、9…補強板、10
…粘着テープ、11,33…電極体素子、21…電池
缶、22…絶縁板、23…負極リード、24…正極リー
ド、25…正極端子、26…電池蓋、27…絶縁体
DESCRIPTION OF SYMBOLS 1 ... Negative electrode sintered body, 2 ... Negative electrode current collector, 3, 31 ... Negative electrode, 4
... Positive electrode molded body, 5 ... Positive electrode current collector, 6,32 ... Positive electrode, 7 ...
Microporous film, 8: separator, 9: reinforcing plate, 10
... Adhesive tape, 11, 33 ... Electrode element, 21 ... Battery can, 22 ... Insulating plate, 23 ... Negative electrode lead, 24 ... Positive electrode lead, 25 ... Positive electrode terminal, 26 ... Battery cover, 27 ... Insulator

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年4月6日[Submission date] April 6, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】図1に示すように、上述した負極活物質を
焼成した2枚の負極焼結体1で負極集電体2を挟み、負
極3を形成する。また、上述した正極活物質を成型した
2枚の正極成型体4で正極集電体5を挟み、正極6を形
成する。その後、正極6を微多孔性フィルム7で電極取
り出し部位を除いて包み込み、溶着して正極6を封入す
る。つぎに、前記負極3と正極6とを交互に積層し、積
層の両側に補強板9を設けて、これらを挟み込み、最後
に粘着テープ10を巻いて電極体素子11を構成する。
このとき前記微多孔性フィルム7が負極3と正極6とを
分離するセパレータ8となる。また、積層した電極のう
ち両端の負極3は正極6と向かい合う方のみ負極焼結体
を有する。
As shown in FIG. 1, a negative electrode 3 is formed by sandwiching a negative electrode current collector 2 between two negative electrode sintered bodies 1 obtained by firing the above-described negative electrode active material. The positive electrode 6 is formed by sandwiching the positive electrode current collector 5 between the two positive electrode molded bodies 4 formed by molding the positive electrode active material described above. Thereafter, the positive electrode 6 is wrapped with a microporous film 7 except for the electrode take-out site, and the positive electrode 6 is sealed by welding. Next, the negative electrode 3 and the positive electrode 6 are alternately laminated, reinforcing plates 9 are provided on both sides of the laminate, these are sandwiched, and finally an adhesive tape 10 is wound to form the electrode element element 11.
At this time, the microporous film 7 becomes a separator 8 for separating the negative electrode 3 and the positive electrode 6. In addition, the stacked electrodes
The negative electrode 3 at both ends is a negative electrode sintered body only on the side facing the positive electrode 6.
Having.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】まず、負極31を次のようにして作製し
た。出発原料として石油ピッチを用い、これを酸素架橋
した後、不活性ガス気流中で焼成して、黒鉛化炭素材
料を得た。この黒鉛化炭素材料を粉砕し、平均粒径
(平均体積径)が10μmの炭素材料粉末とした。この
炭素材料粉末を結着剤と混合して負極混合物を調製し、
この負極混合物をN−メチル−2−ピロリドンに分散さ
せてスラリー状にし、負極スラリーを調製した。このよ
うにして得られた負極スラリーを負極集電体となる厚さ
10μmの帯状の銅箔の両面に均一に塗布し、乾燥させ
た後、ロールプレス機により圧縮成型し、帯状の負極3
1を作製した。
First, the negative electrode 31 was manufactured as follows. Using petroleum pitch as a starting material, after which the oxygen bridge, and fired in an inert gas stream, to obtain a non-graphitizable carbon material. The graphitizable carbon material was pulverized, and the average particle size (average volume diameter) was the carbon material powder 10 [mu] m. This carbon material powder is mixed with a binder to prepare a negative electrode mixture,
This negative electrode mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry to prepare a negative electrode slurry. The negative electrode slurry thus obtained is uniformly applied to both sides of a 10 μm-thick strip-shaped copper foil serving as a negative electrode current collector, dried, and then compression-molded by a roll press to obtain a strip-shaped negative electrode 3.
1 was produced.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正5】[Procedure amendment 5]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

【手続補正6】[Procedure amendment 6]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極との間に微多孔性フィルムを
積層した構成の電極体素子を有し、該電極体素子を電池
缶内に収納すると共に、前記電池缶内に非水電解液を注
入してなる非水電解液二次電池の製造方法において、 薄板に形成した2枚の正極活物質の間に導電体からなる
集電体を挟んで正極を形成する工程と、 それに続く、前記正極を微多孔性フィルムにより電極取
り出し部位を除いて包み込む工程と、 薄板に形成した2枚の負極活物質の間に導電体からなる
集電体を挟んで負極を形成する工程と、 前記微多孔性フィルムにより包み込まれた正極と前記負
極とを交互に積層する工程とを有してなることを特徴と
する非水電解液二次電池の製造方法。
An electrode device having a structure in which a microporous film is laminated between a positive electrode and a negative electrode, the electrode device is housed in a battery can, and a non-aqueous electrolyte is contained in the battery can. In a method for producing a non-aqueous electrolyte secondary battery, a step of forming a positive electrode by sandwiching a current collector made of a conductor between two positive electrode active materials formed in a thin plate, A step of wrapping the positive electrode with a microporous film except for an electrode take-out site; a step of forming a negative electrode with a current collector made of a conductor between two negative electrode active materials formed in a thin plate; A process of alternately stacking the positive electrode and the negative electrode wrapped by a porous film, the method comprising the steps of:
【請求項2】 正極と負極との間に微多孔性フィルムを
積層した構成の電極体素子を有し、該電極体素子を電池
缶内に収納すると共に、前記電池缶内に非水電解液を注
入してなる非水電解液二次電池において、 前記正極は、微多孔性フィルムにより電極取り出し部位
を除いて包み込まれた構成であることを特徴とする非水
電解液二次電池。
2. An electrode device having a structure in which a microporous film is laminated between a positive electrode and a negative electrode, wherein the electrode device is housed in a battery can, and a non-aqueous electrolyte is contained in the battery can. A non-aqueous electrolyte secondary battery characterized in that the positive electrode is wrapped by a microporous film except for an electrode take-out site.
JP9333252A 1997-12-03 1997-12-03 Nonaqueous electrolyte secondary battery and its manufacture Pending JPH11167934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9333252A JPH11167934A (en) 1997-12-03 1997-12-03 Nonaqueous electrolyte secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9333252A JPH11167934A (en) 1997-12-03 1997-12-03 Nonaqueous electrolyte secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH11167934A true JPH11167934A (en) 1999-06-22

Family

ID=18264036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9333252A Pending JPH11167934A (en) 1997-12-03 1997-12-03 Nonaqueous electrolyte secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH11167934A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307760A (en) * 2000-04-18 2001-11-02 Matsushita Electric Ind Co Ltd Square battery and its manufacturing method
JP2002198098A (en) * 2000-12-25 2002-07-12 Mitsubishi Cable Ind Ltd Sheet-like lithium secondary cell
JP2002245998A (en) * 2001-02-13 2002-08-30 Toshiba Corp Battery pack and battery
JP2008098361A (en) * 2006-10-11 2008-04-24 Fdk Corp Storage element
JP2012523094A (en) * 2009-04-07 2012-09-27 リ−テック・バッテリー・ゲーエムベーハー Galvanicel electrode geometry
JP2013254628A (en) * 2012-06-06 2013-12-19 Toyota Industries Corp Power storage device
JP2014167938A (en) * 2012-07-24 2014-09-11 Toshiba Corp Secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307760A (en) * 2000-04-18 2001-11-02 Matsushita Electric Ind Co Ltd Square battery and its manufacturing method
JP4712152B2 (en) * 2000-04-18 2011-06-29 パナソニック株式会社 Square battery and method of manufacturing the same
JP2002198098A (en) * 2000-12-25 2002-07-12 Mitsubishi Cable Ind Ltd Sheet-like lithium secondary cell
JP2002245998A (en) * 2001-02-13 2002-08-30 Toshiba Corp Battery pack and battery
JP2008098361A (en) * 2006-10-11 2008-04-24 Fdk Corp Storage element
JP2012523094A (en) * 2009-04-07 2012-09-27 リ−テック・バッテリー・ゲーエムベーハー Galvanicel electrode geometry
JP2013254628A (en) * 2012-06-06 2013-12-19 Toyota Industries Corp Power storage device
JP2014167938A (en) * 2012-07-24 2014-09-11 Toshiba Corp Secondary battery
US10135050B2 (en) 2012-07-24 2018-11-20 Kabushiki Kaisha Toshiba Secondary battery
US10700327B2 (en) 2012-07-24 2020-06-30 Kabushiki Kaisha Toshiba Secondary battery

Similar Documents

Publication Publication Date Title
JP3380935B2 (en) Prismatic lithium-ion secondary battery
US6689511B2 (en) Secondary battery and electronic instrument using it
KR100925857B1 (en) Multi-layered Type Electrochemistry Cell of Improved Safety
US6287728B1 (en) Nonaqueous electrolyte secondary battery
KR101186471B1 (en) Nonaqueous electrolyte battery
EP1128450A2 (en) Electrode connection for battery and methods of producing the same
JP3536391B2 (en) Wound electrode element body, method of manufacturing the same, and method of manufacturing battery using wound electrode element body
JP2006260904A (en) Winding type battery and its manufacturing method
JP3160920B2 (en) Non-aqueous electrolyte secondary battery
US5601950A (en) Non-aqueous electrolyte secondary cell
JP3605256B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode
JPH11219731A (en) Organic electrolyte secondary battery
JPH09266012A (en) Nonaqueous electrolyte secondary battery and battery assembly
JP2701347B2 (en) Non-aqueous electrolyte secondary battery
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JPH11167934A (en) Nonaqueous electrolyte secondary battery and its manufacture
CN113261144A (en) Method of manufacturing secondary battery having improved resistance
JP2001023685A (en) Electrolyte and secondary battery using it
JP3371908B2 (en) Non-aqueous electrolyte secondary battery
JPH11273743A (en) Cylindrical nonaqueous electrolyte secondary battery
JP3444302B2 (en) Non-aqueous electrolyte secondary battery
JP2001085009A (en) Positive electrode active material and its manufacture
JP2000133274A (en) Polymer lithium secondary battery
JP2000243427A (en) Solid electrolyte cell and its manufacture
JPH10302752A (en) Nonaqueous electrolyte secondary battery