JPH11165175A - Manufacturing apparatus for deionized water - Google Patents

Manufacturing apparatus for deionized water

Info

Publication number
JPH11165175A
JPH11165175A JP9343643A JP34364397A JPH11165175A JP H11165175 A JPH11165175 A JP H11165175A JP 9343643 A JP9343643 A JP 9343643A JP 34364397 A JP34364397 A JP 34364397A JP H11165175 A JPH11165175 A JP H11165175A
Authority
JP
Japan
Prior art keywords
exchange membrane
ion
chamber
membrane
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9343643A
Other languages
Japanese (ja)
Inventor
Ichiro Terada
一郎 寺田
Hiroshi Toda
洋 戸田
Kazuo Umemura
和郎 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9343643A priority Critical patent/JPH11165175A/en
Publication of JPH11165175A publication Critical patent/JPH11165175A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent creases of an ion-exchange membrane from being generated by a method wherein a specific % or higher of an ion-exchange group of a cation exchange membrane or an anion exchange membrane is made to be a regenerative type, which is built in an electrodialysis tank under a wetting state to be applied to passing water. SOLUTION: 70% or higher, preferably about 90% or higher of an ion exchange group of a cation exchange membrane K or an anion exchange membrane A is made to be a regenerative type. The cation exchange membrane K and the anion exchange membrane A are arranged by about 5 pairs between an anodic chamber 2 and a cathodic chamber 3 in an order of a spacer not/the anion exchange membrane A/a platy porous ion exchanger/the cation exchange membrane K, and built in an electrodialysis tank 1 under a wetting state. Demineralization chambers R1 to Rn and enriching chambers S1 to Sn are made to be between both ion exchange membranes K, A. By executing dialysis treatment by passing water through an electrodialysis tank 1, creases of the ion-exchange membranes K, A can be prevented from being generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、陽イオン交換膜と
陰イオン交換膜を交互に配列し、脱塩室と濃縮室を形成
した電気透析槽の脱塩室にイオン交換体を収容し、脱塩
室に被処理水を流しながら電圧を印加するようにした脱
イオン水の製造装置に関するものである。
[0001] The present invention relates to a cation exchange membrane and an anion exchange membrane which are alternately arranged, and an ion exchanger is accommodated in a desalination chamber of an electrodialysis tank having a desalination chamber and a concentration chamber. The present invention relates to an apparatus for producing deionized water in which a voltage is applied while flowing water to be treated through a desalination chamber.

【0002】[0002]

【従来の技術】脱イオン水の製造装置としては、陽イオ
ン交換樹脂及び陰イオン交換樹脂の充填床に被処理水を
流し、不純物イオンをイオン交換樹脂に吸着させて除去
し、脱イオン水を得るのが一般的である。その際に吸着
能力の低下した陽イオン交換樹脂及び陰イオン交換樹脂
は、それぞれ酸及びアルカリを用いて再生する方法が採
用されている。その結果、この装置においては、再生に
使用した酸及びアルカリの廃液が排出される問題があ
り、そのため再生の必要のない脱イオン水の製造装置が
望まれている。
2. Description of the Related Art As an apparatus for producing deionized water, water to be treated is caused to flow through a packed bed of a cation exchange resin and an anion exchange resin, and impurity ions are adsorbed and removed by the ion exchange resin. It is common to get. At that time, a method of regenerating a cation exchange resin and an anion exchange resin having reduced adsorption capacity by using an acid and an alkali, respectively, is adopted. As a result, in this apparatus, there is a problem that the waste liquid of the acid and alkali used for the regeneration is discharged. Therefore, there is a demand for an apparatus for producing deionized water which does not require the regeneration.

【0003】このような観点から、近年イオン交換樹脂
とイオン交換膜を組み合わせた自己再生型電気透析によ
る脱イオン水の製造装置が注目されている。この装置
は、陰イオン交換膜と陽イオン交換膜とを交互に配列
し、脱塩室と濃縮室を形成した電気透析槽の脱塩室にイ
オン交換体を収容し、この脱塩室に被処理水を流しなが
ら電圧を印加して電気透析を行うことにより脱イオン水
を製造するもので、脱塩室内で水解離による酸とアルカ
リを用いてイオン交換樹脂およびイオン交換膜を自己再
生している。
[0003] From such a viewpoint, an apparatus for producing deionized water by self-regenerating electrodialysis using an ion exchange resin and an ion exchange membrane in recent years has attracted attention. In this apparatus, an anion exchange membrane and a cation exchange membrane are alternately arranged, and an ion exchanger is accommodated in a desalination chamber of an electrodialysis tank having a desalination chamber and a concentration chamber. It produces deionized water by applying voltage while flowing treated water and performing electrodialysis, and self-regenerates ion-exchange resin and ion-exchange membrane using acid and alkali by water dissociation in a desalination chamber. I have.

【0004】この従来装置においては、色々な工夫や開
発がすでに行われており、それらには、たとえば脱塩室
の幅と厚さを限定した装置(特開昭61−107906
号公報)や被処理水を脱イオン装置の脱塩室に2パス以
上通過させるようにした装置(特開平1−307410
号公報)、被処理水が最初に通過する部分に充填するイ
オン交換樹脂をアニオン交換樹脂にする装置(特開平4
−71624号公報)などがある。
[0004] In this conventional apparatus, various ideas and developments have already been carried out, including, for example, an apparatus in which the width and thickness of a desalting chamber are limited (Japanese Patent Application Laid-Open No. 61-107906).
And Japanese Patent Application Laid-Open No. 1-307410 discloses an apparatus in which water to be treated is passed through a desalination chamber of a deionizer at least two times.
Japanese Patent Application Laid-open No. Hei 4 (1994), discloses an apparatus for converting an ion exchange resin filled in a portion through which water to be treated first passes into an anion exchange resin.
-71624).

【0005】[0005]

【発明が解決しようとする課題】脱イオン水の製造装置
で使用されるイオン交換膜は、通常湿潤状態で電気透析
槽にセット(組込)されており、セット後に通水を開始
し継続していくと、イオン交換膜に「しわ」の発生が観
察され、極端な場合には、膜の折れやピンホールの発生
が観察される。従来このような問題を解消するための適
切な技術は存在せず、前記した3件の従前の工夫も、こ
の問題を解決するための提案ではない。本発明者は、こ
の問題を解決すべく研究開発を進め、その結果完成した
のが本発明である。
An ion exchange membrane used in a deionized water producing apparatus is usually set (incorporated) in an electrodialysis tank in a wet state, and after the setting, water flow is started and continued. As the process proceeds, generation of “wrinkles” is observed in the ion-exchange membrane, and in extreme cases, occurrence of breakage of the membrane and generation of pinholes are observed. Conventionally, there is no appropriate technique for solving such a problem, and the above three conventional ideas are not proposals for solving this problem. The present inventor has conducted research and development to solve this problem, and as a result, the present invention has been completed.

【0006】本発明者が研究・開発を進めるに当たり、
特に注目したのは、通水を進めるにしたがい、イオン交
換膜に「しわ」が発生している点であり、この点に着目
し開発したのが本発明である。すなわち、この着目に基
づきイオン交換膜の製造技術をみると、イオン交換膜
は、そのイオン交換特性を劣化あるいは変質することな
く生産するという製造上の制約から製造した後のイオン
交換基は通常負荷型となっている。その結果セット前の
イオン交換膜は負荷型で膨潤度が低い状態であるのに対
し、セット後通水して通電するに従ってイオン交換基が
再生するために膨潤度が高くなり、しわが発生すること
になるのではないかと本発明者は考えた。
[0006] As the present inventors proceed with research and development,
Of particular note was the fact that "wrinkles" were generated in the ion exchange membrane as water flowed, and the present invention was developed by focusing on this point. In other words, looking at the manufacturing technology of ion-exchange membranes based on this focus, ion-exchange membranes are usually loaded under ion-exchange groups after they are manufactured due to the manufacturing constraints of manufacturing without deteriorating or deteriorating their ion-exchange properties. It is a type. As a result, the ion-exchange membrane before setting is in a load type and has a low swelling degree, whereas the ion-exchange groups are regenerated as water is supplied and electricity is applied after setting, so that the swelling degree increases and wrinkles occur. The present inventor thought that this would be the case.

【0007】[0007]

【課題を解決するための手段】本発明が先の問題を解消
するために脱イオン水の製造装置に採用した手段は、陽
イオン交換膜と陰イオン交換膜とを交互に配列し、脱塩
室と濃縮室とを形成した電気透析槽の脱塩室にイオン交
換体を収容し、脱塩室に被処理水を流しながら通電する
ようにした脱イオン水の製造装置において、陽イオン交
換膜又は陰イオン交換膜のイオン交換基の70%以上を
再生型にした湿潤状態で電気透析槽に組込み、電気透析
槽に通水するようにしたことを特徴とすることからなる
ものである。
In order to solve the above problems, the present invention employs a deionized water producing apparatus in which a cation exchange membrane and an anion exchange membrane are alternately arranged, and In a deionized water producing apparatus in which an ion exchanger is accommodated in a desalting chamber of an electrodialysis tank having a chamber and a concentrating chamber, and electricity is supplied while flowing water to be treated through the desalting chamber, a cation exchange membrane is used. Alternatively, 70% or more of the ion exchange groups of the anion exchange membrane are incorporated into the electrodialysis tank in a regenerated wet state, and water is passed through the electrodialysis tank.

【0008】[0008]

【発明の実施の形態】本発明で使用するイオン交換膜と
しては、均質イオン交換膜は勿論であるが、粉粒状イオ
ン交換樹脂とバインダーポリマーから構成される不均質
イオン交換膜が強度及び柔軟性の観点から好ましい。不
均質イオン交換膜を製造する方法としては、粉粒状のイ
オン交換樹脂とバインダーポリマーを加熱下で混合混練
した後加熱押出し成形によりシート状とする方法が好ま
しく用いられる。シート状に成形する手法は、先の加熱
押出し成形に限定されるものではなく、加熱プレス等の
既知の手段は採用可能である。
BEST MODE FOR CARRYING OUT THE INVENTION As the ion exchange membrane used in the present invention, not only a homogeneous ion exchange membrane but also a heterogeneous ion exchange membrane composed of a powdery ion exchange resin and a binder polymer has strength and flexibility. It is preferable from the viewpoint of. As a method for producing a heterogeneous ion exchange membrane, a method in which a powdery ion exchange resin and a binder polymer are mixed and kneaded under heating and then extruded under heating to form a sheet is preferably used. The method of forming into a sheet is not limited to the above-mentioned heat extrusion molding, and known means such as a heat press can be adopted.

【0009】不均質イオン交換膜を製造する際に使用す
るイオン交換樹脂の官能基については、陽イオン交換樹
脂の場合はスルホン酸型の強酸性基、陰イオン交換樹脂
の場合は第4アンモニウム塩基やピリジニウム塩基等の
強塩基性基が好ましいが、これらに限られるわけでな
く、それぞれカルボン酸基、リン酸基等の弱酸性基及び
第2アミノ基、第3アミノ基等の弱塩基性基であっても
よい。
Regarding the functional groups of the ion exchange resin used for producing the heterogeneous ion exchange membrane, a sulfonic acid type strongly acidic group in the case of a cation exchange resin, and a quaternary ammonium base in the case of an anion exchange resin. And strongly basic groups such as pyridinium bases, but not limited thereto, and weakly acidic groups such as carboxylic acid groups and phosphoric acid groups, and weakly basic groups such as secondary amino groups and tertiary amino groups, respectively. It may be.

【0010】そして、イオン交換樹脂の粒径は、好まし
くは最大粒径が150μm以下であって、かつ100〜
150μmの粒径のものがイオン交換樹脂粒子原料全体
の5重量%以下で、しかも20μm以下の粒径のものが
20重量%以下であることが好ましい。最大粒径が15
0μm以上あるいは100〜150μmの粒径のものが
5重量%以上であると、成形したときにピンホールが発
生しやすくなり、かつ膜の機械的強度も低下するので好
ましくない。
The particle size of the ion exchange resin is preferably such that the maximum particle size is not more than 150 μm and
It is preferable that the particles having a particle diameter of 150 μm account for 5% by weight or less of the entire raw material of the ion exchange resin particles, and the particles having a particle diameter of 20 μm or less account for 20% by weight or less. Maximum particle size is 15
If the particle size is 0 μm or more or 100 to 150 μm and the content is 5% by weight or more, pinholes are likely to be generated during molding, and the mechanical strength of the film is undesirably reduced.

【0011】またイオン交換樹脂の粒径が20μm以下
のものが20重量%以上であると、イオン交換樹脂粒子
の表面積が著しく増大し、バインダーポリマーとの混練
が不十分となり欠陥点が発生しやすくなるので好ましく
ない。さらに欠陥点をなくすために十分に加熱混練を行
うと、時間がかかったり混練温度が上昇するためイオン
交換基が分解し、膜の電気抵抗が著しく上昇するので好
ましくない。
When the particle size of the ion-exchange resin is 20 μm or less and 20% by weight or more, the surface area of the ion-exchange resin particles is significantly increased, the kneading with the binder polymer is insufficient, and defect points are easily generated. Is not preferred. Further, if the heating and kneading are sufficiently performed to eliminate the defect points, it takes a long time or the kneading temperature rises, so that the ion exchange group is decomposed and the electric resistance of the membrane is remarkably increased.

【0012】不均質イオン交換膜のバインダーポリマー
としては、低密度ポリエチレン、線状低密度ポリエチレ
ン、超高分子量高密度ポリエチレン、高密度ポリエチレ
ン、ポリプロピレン、およびそれらに柔軟なゴム材料を
混合したものなどがあげられる。このうち低密度ポリエ
チレンと、エチレン−プロピレンゴム、エチレン−プロ
ピレン−ジエンゴムまたはこれらの2種のゴムを含むゴ
ム材料との混合物は、得られるイオン交換膜の強度、伸
度及び柔軟性の点で特に好ましいポリマーである。
Examples of the binder polymer for the heterogeneous ion exchange membrane include low-density polyethylene, linear low-density polyethylene, ultra-high-molecular-weight high-density polyethylene, high-density polyethylene, polypropylene, and a mixture thereof with a flexible rubber material. can give. Among them, low-density polyethylene and a mixture of ethylene-propylene rubber, ethylene-propylene-diene rubber or a rubber material containing these two rubbers are particularly preferred in terms of strength, elongation and flexibility of the obtained ion exchange membrane. Preferred polymers.

【0013】バインダーポリマーが低密度ポリエチレン
とゴム材料との混合物の場合、バインダーポリマー全体
に対するゴム材料の含有率は10〜50重量%が好まし
く用いられる。ゴムの含有率が10重量%より少ないと
得られる膜が脆くなり、50重量%より大きいと膜が柔
らかくなり圧力変形に弱くなるので好ましくない。ゴム
材料の含有率が25〜35重量%のものは、前記の物性
面で優れたものが得られ、成形も容易なので特に好まし
い。
When the binder polymer is a mixture of low-density polyethylene and a rubber material, the content of the rubber material with respect to the whole binder polymer is preferably from 10 to 50% by weight. If the rubber content is less than 10% by weight, the obtained film becomes brittle, and if it is more than 50% by weight, the film becomes soft and weak to pressure deformation, which is not preferable. A rubber material having a content of 25 to 35% by weight is particularly preferable because excellent properties can be obtained in the above-mentioned physical properties and molding is easy.

【0014】バインダーポリマーとして、低密度ポリエ
チレンとエチレン−プロピレンゴムまたはエチレン−プ
ロピレン−ジエンゴムとの混合物に更に他のポリマーを
混合して用いる場合、そのポリマーとしては、高密度ポ
リエチレン、超高分子量高密度ポリエチレン、ポリプロ
ピレン、ポリイソブチレン等のポリオレフィンが好適で
ある。
When a low-density polyethylene and a mixture of ethylene-propylene rubber or ethylene-propylene-diene rubber are further mixed with another polymer as a binder polymer, the polymer may be high-density polyethylene, ultra-high molecular weight high-density Polyolefins such as polyethylene, polypropylene and polyisobutylene are preferred.

【0015】粉砕したイオン交換樹脂粒子とバインダー
ポリマーとを混合する割合は、重量比でイオン交換樹脂
/バインダーポリマーが40/60〜70/30である
ことが好ましい。イオン交換樹脂が40重量%未満の場
合は、得られる不均質イオン交換膜の電気抵抗が著しく
上昇するので好ましくない。イオン交換樹脂が70重量
%を超える場合は、機械的強度が低下し成形できなくな
るので好ましくない。
The mixing ratio of the crushed ion exchange resin particles and the binder polymer is preferably such that the weight ratio of ion exchange resin / binder polymer is 40/60 to 70/30. If the amount of the ion exchange resin is less than 40% by weight, the resulting heterogeneous ion exchange membrane has an undesirably high electric resistance. If the amount of the ion exchange resin exceeds 70% by weight, it is not preferable because the mechanical strength decreases and molding becomes impossible.

【0016】本発明で使用される再生型不均質イオン交
換膜を調製する方法としては、再生型イオン交換樹脂を
原料として不均質イオン交換膜を製造する方法と負荷型
イオン交換樹脂を原料として不均質イオン交換膜を製造
した後酸又はアルカリ処理により再生型不均質イオン交
換膜に変換する方法とがある。前記した2方法があるも
のの、再生型イオン交換樹脂は耐熱性が低く不均質イオ
ン交換膜の加熱成形製膜時にイオン交換基が分解してイ
オン交換容量が低下するので、前者は好ましくない。
The method for preparing the regenerative heterogeneous ion exchange membrane used in the present invention includes a method for producing a heterogeneous ion exchange membrane using a regenerative ion exchange resin as a raw material, and a method for preparing a heterogeneous ion exchange resin using a load type ion exchange resin as a raw material. There is a method in which a homogeneous ion exchange membrane is produced and then converted into a regenerative heterogeneous ion exchange membrane by an acid or alkali treatment. Although there are the two methods described above, the former is not preferable because the regenerative ion exchange resin has low heat resistance and the ion exchange group is decomposed during the heat forming of the heterogeneous ion exchange membrane to reduce the ion exchange capacity.

【0017】陰イオン交換膜または陽イオン交換膜の再
生型への変換は、イオン交換膜に存在するイオン交換基
の70%以上を再生型とすることが必要であり、好まし
くは90%以上再生型にするのがよい。また変換のため
に行う再生処理は陽イオン交換膜の場合には酸処理、陰
イオン交換膜の場合にはアルカリ処理が好ましい。な
お、ここおいて、再生型とは、陰イオン交換膜の場合に
は陰イオン交換基にOH-が結合した状態をいい、陽イ
オン交換膜の場合には陽イオン交換基にH+が結合した
状態をいう。
When converting an anion exchange membrane or a cation exchange membrane to a regenerative type, it is necessary that at least 70% of the ion exchange groups present in the ion exchange membrane be of a regenerative type, preferably at least 90%. It is better to make it a type. The regeneration treatment for conversion is preferably an acid treatment for a cation exchange membrane, and an alkali treatment for an anion exchange membrane. Here, the regenerative type refers to a state in which OH is bonded to an anion exchange group in the case of an anion exchange membrane, and H + is bonded to a cation exchange group in the case of a cation exchange membrane. Refers to the state of having done.

【0018】使用する酸の種類としては、塩酸、硫酸、
硝酸などが好ましく、処理条件としては、濃度0.1〜
3M、温度25〜70℃、時間0.5〜48時間が好ま
しく用いられる。また、アルカリの種類としては、水酸
化ナトリウム、水酸化カリウムなどが好ましく、処理条
件としては、濃度0.1〜3M、温度25〜70℃、時
間0.5〜72時間が好ましく用いられる。酸およびア
ルカリの濃度は、0.1Mより小さいと処理に時間がか
かり、3Mより大きいと膜が劣化したり洗浄に時間がか
かるので好ましくない。
The types of acids used include hydrochloric acid, sulfuric acid,
Nitric acid or the like is preferable, and the processing conditions include a concentration of 0.1 to
3M, a temperature of 25 to 70 ° C, and a time of 0.5 to 48 hours are preferably used. Further, as the kind of alkali, sodium hydroxide, potassium hydroxide and the like are preferable, and as the processing conditions, a concentration of 0.1 to 3 M, a temperature of 25 to 70 ° C., and a time of 0.5 to 72 hours are preferably used. If the concentration of the acid and the alkali is less than 0.1M, the treatment takes a long time. If the concentration is more than 3M, the film is deteriorated and the cleaning takes a long time, which is not preferable.

【0019】再生処理の温度については、25℃より低
いとイオン交換基の再生型への変換が十分でなく、70
℃より高いと膜が変形したりイオン交換基が分解したり
するので好ましくない。時間は0.5時間より短いとイ
オン交換基の再生型への変換が十分でなく、72時間よ
り長いと膜が劣化したり洗浄に時間がかかるので好まし
くない。この温度と時間については、イオン交換基の7
0%以上が再生型に転換するように選択することが必要
であり、好ましくは90%以上が再生型になるよう選択
するのがよい。
When the temperature of the regeneration treatment is lower than 25 ° C., the conversion of the ion-exchange groups to the regeneration type is not sufficient,
When the temperature is higher than ° C, the membrane is deformed or the ion exchange group is decomposed, which is not preferable. If the time is shorter than 0.5 hour, the conversion of the ion-exchange group to the regenerative type is not sufficient, and if the time is longer than 72 hours, the membrane is deteriorated and cleaning takes a long time, which is not preferable. Regarding the temperature and the time, 7
It is necessary to select so that 0% or more is converted to a regenerative type, and it is preferable to select so that 90% or more becomes a regenerative type.

【0020】また、電気透析槽の脱塩室に収容するイオ
ン交換体としては、粒状のイオン交換樹脂でもよいし、
イオン交換樹脂をバインダーポリマーを用いて板状に成
形し多孔質イオン交換体としたものでもよい。板状に成
形する方法としては、乾燥イオン交換樹脂とバインダー
ポリマーを加熱混合した後に成形する方法、バインダー
ポリマーを溶媒に溶解後イオン交換樹脂と混合し成形し
た後に溶媒を除去する方法が例示される。
The ion exchanger accommodated in the desalting chamber of the electrodialysis tank may be a granular ion exchange resin,
A porous ion exchanger may be formed by molding an ion exchange resin into a plate shape using a binder polymer. Examples of the method of forming into a plate shape include a method of heating and mixing a dry ion-exchange resin and a binder polymer, and a method of removing the solvent after dissolving the binder polymer in a solvent, mixing with the ion-exchange resin, and forming. .

【0021】板状に成形したイオン交換体は、取り扱い
やすく充填が容易でイオン交換樹脂どうしの密着性が良
好なので、電気抵抗が低くなり本発明に使用するのに好
適なイオン交換体である。この多孔質イオン交換体の空
隙率は、液体の通過に関与する連続した空隙率が5容量
%以上が好ましい。5容量%より小さいと液体の流量が
減少し、圧力損出が大きくなるので好ましくない。空隙
率が10〜40容量%である場合は、通水性も良好で、
脱塩性能も優れ、純度の高い処理水が得られるので特に
好ましい。この空隙率は、多孔質イオン交換体を脱塩室
に収容しその使用状態の値である。
The ion exchanger formed into a plate shape is a suitable ion exchanger for use in the present invention because of its low electric resistance because it is easy to handle and easy to fill and has good adhesion between ion exchange resins. As for the porosity of the porous ion exchanger, a continuous porosity involved in the passage of the liquid is preferably 5% by volume or more. If it is less than 5% by volume, the flow rate of the liquid decreases and the pressure loss increases, which is not preferable. When the porosity is 10 to 40% by volume, water permeability is also good,
It is particularly preferable because of excellent desalination performance and high-purity treated water. The porosity is a value when the porous ion exchanger is accommodated in a desalting chamber and used.

【0022】多孔質イオン交換体は、陽イオン交換樹脂
粒子もしくは陰イオン交換樹脂粒子を単独で含むもの又
はそれらの混合物を含むものでもよい。混合物を含むも
のの場合には、陽イオン交換樹脂粒子を含む部分と陰イ
オン交換樹脂粒子を含む部分が海島構造や層状構造のよ
うに組み合わせた相分離構造を有するものがよく、その
構造のものが特に好ましい。ただし、いずれの場合にお
いても1つの脱塩室に収容する陽イオン交換樹脂粒子の
総量と陰イオン交換樹脂粒子の総量の比率は、総イオン
交換容量比で陽イオン交換樹脂/陰イオン交換樹脂=3
0/70〜80/20であることが好ましい。総イオン
交換容量比がこの範囲外であると処理水純度が低下して
しまうおそれがあるので好ましくない。
The porous ion exchanger may be one containing cation exchange resin particles or anion exchange resin particles alone, or one containing a mixture thereof. In the case of a mixture containing a mixture, the portion containing the cation exchange resin particles and the portion containing the anion exchange resin particles preferably have a phase-separated structure combined like a sea-island structure or a layered structure. Particularly preferred. However, in any case, the ratio of the total amount of the cation exchange resin particles to the total amount of the anion exchange resin particles accommodated in one desalting chamber is defined as the total ion exchange capacity ratio of cation exchange resin / anion exchange resin = 3
It is preferably 0/70 to 80/20. If the total ion exchange capacity ratio is out of this range, the purity of the treated water may be undesirably reduced.

【0023】多孔質イオン交換体に用いるバインダーポ
リマーの重量分率は多孔質イオン交換体の全体に対して
20%以下であることが好ましい。重量分率が20%よ
り大きいと、イオン交換樹脂粒子表面をバインダーポリ
マーが被覆し吸着性能が低下し、また空隙率が低下する
ため処理する液体の流量が減少し、圧力損出が大きくな
るので好ましくない。なかでもバインダーポリマーの重
量分率は1〜5%が好ましい。
The weight fraction of the binder polymer used in the porous ion exchanger is preferably 20% or less based on the entire porous ion exchanger. If the weight fraction is more than 20%, the surface of the ion-exchange resin particles is coated with the binder polymer to lower the adsorption performance, and the porosity decreases, so that the flow rate of the liquid to be treated decreases and the pressure loss increases. Not preferred. Especially, the weight fraction of the binder polymer is preferably 1 to 5%.

【0024】多孔質イオン交換体に用いるバインダーポ
リマーとしては、多孔質イオン交換体の製法の観点から
熱可塑性ポリマーまたは溶媒可溶性ポリマーであること
が好ましい。このようなバインダーポリマーとしては、
次のようなものが好ましく使用できる。まず熱可塑性ポ
リマーとしては、低密度ポリエチレン、線状低密度ポリ
エチレン、超高分子量高密度ポリエチレン、ポリプロピ
レン、ポリイソブチレン、ポリ酢酸ビニル及びエチレン
−酢酸ビニル共重合体などが挙げられ、溶媒可溶性ポリ
マーとしては、天然ゴム、ブチルゴム、ポリイソプレ
ン、ポリクロロプレン、スチレン−ブタジエンゴム、ニ
トリルゴム、塩化ビニル−脂肪酸ビニルエステル共重合
体等が挙げられる。
The binder polymer used for the porous ion exchanger is preferably a thermoplastic polymer or a solvent-soluble polymer from the viewpoint of the production method of the porous ion exchanger. As such a binder polymer,
The following can be preferably used. First, as the thermoplastic polymer, low-density polyethylene, linear low-density polyethylene, ultra-high-molecular-weight high-density polyethylene, polypropylene, polyisobutylene, polyvinyl acetate and ethylene-vinyl acetate copolymer, and the like.Examples of the solvent-soluble polymer include Natural rubber, butyl rubber, polyisoprene, polychloroprene, styrene-butadiene rubber, nitrile rubber, vinyl chloride-fatty acid vinyl ester copolymer and the like.

【0025】バインダーポリマーを用いてイオン交換樹
脂を結合した板状多孔質イオン交換体の厚さは、1〜3
00mmが好ましい。厚さが1mmより薄いとそれを収
容する脱塩室厚みもきわめて薄くなり、その結果水が流
れ難く処理水量が低下し、かつ圧力損出も増加するおそ
れがあるので好ましくない。厚さが300mmより厚い
と電気抵抗が高くなるおそれがあるので好ましくない。
イオン交換樹脂の成形体の厚さが3〜50mmである場
合はさらに好ましい。この厚さは、多孔質シートを脱塩
室に収容しその使用状態の値である。
The thickness of the plate-like porous ion exchanger to which the ion exchange resin is bound by using the binder polymer is 1 to 3
00 mm is preferred. If the thickness is less than 1 mm, the thickness of the desalting chamber accommodating the thinner is extremely thin, and as a result, it is difficult to flow water, the amount of treated water is reduced, and the pressure loss may be increased. If the thickness is larger than 300 mm, the electric resistance may be increased, which is not preferable.
More preferably, the thickness of the ion-exchange resin molded body is 3 to 50 mm. This thickness is a value when the porous sheet is accommodated in a desalting chamber and used.

【0026】本発明において脱イオン水を製造するため
の装置のタイプとしては、例えば特開平3−18640
0号公報、特開平2−277526号公報、特開平5−
64726号公報、米国特許第4632745号明細書
及び米国特許第5425866号明細書などに記載され
ている、電気透析槽を使用することが好ましい。すなわ
ち電気透析槽としては、陽極を備える陽極室と陰極を備
える陰極室との間に複数枚の陽イオン交換膜と陰イオン
交換膜とを好ましくは室枠を介して交互に配列する構造
となっている。かかる場合、本発明では陽イオン交換膜
及び陰イオン交換膜は、イオン交換基の70%以上が再
生型で、かつ湿潤状態にて配列される。この場合、脱塩
室に収容されるイオン交換体が板状である場合には、イ
オン交換膜の間には、かかる板状イオン交換体が挿入さ
れ配列される。
The type of the apparatus for producing deionized water in the present invention is described in, for example, Japanese Patent Application Laid-Open No. Hei 3-18640.
0, JP-A-2-277526 and JP-A-5-275.
It is preferable to use an electrodialysis tank described in US Pat. No. 64726, US Pat. No. 4,632,745 and US Pat. No. 5,425,866. That is, the electrodialysis tank has a structure in which a plurality of cation exchange membranes and anion exchange membranes are preferably alternately arranged via a chamber frame between an anode chamber having an anode and a cathode chamber having a cathode. ing. In such a case, in the present invention, in the cation exchange membrane and the anion exchange membrane, 70% or more of the ion exchange groups are regenerated and arranged in a wet state. In this case, when the ion exchanger accommodated in the desalting chamber has a plate shape, such a plate ion exchanger is inserted and arranged between the ion exchange membranes.

【0027】かくして、電気透析槽には、陽極側が陰イ
オン交換膜で区画され、陰極側が陽イオン交換膜で区画
された脱塩室と、陽極側が陽イオン交換膜で区画され、
陰極側が陰イオン交換膜で区画された濃縮室とを交互に
好ましくは2〜50組程度形成される。陽イオン交換膜
と陰イオン交換膜との間に介在する中央に開口部を有す
る額縁状の室枠の厚みは、脱塩室及び濃縮室の厚みを規
定する。脱塩室及び濃縮室の室枠の厚みは必ずしも同じ
である必要はない。なお、濃縮室にはその厚みを所定厚
に保持するためにネット状のスペーサ(離間体)を挿入
配置することが好ましい。その際に、組立てられた電気
透析槽の脱塩室にイオン交換体が未収容の場合には、粒
状のイオン交換体がこの段階で収容される。
Thus, in the electrodialysis tank, a desalting chamber in which the anode side is partitioned by the anion exchange membrane and the cathode side is partitioned by the cation exchange membrane, and the anode side is partitioned by the cation exchange membrane,
Preferably about 2 to 50 sets of concentrating chambers whose cathode side is partitioned by an anion exchange membrane are alternately formed. The thickness of the frame-shaped chamber frame having an opening at the center interposed between the cation exchange membrane and the anion exchange membrane defines the thickness of the desalination chamber and the concentration chamber. The thicknesses of the chamber frames of the desalting chamber and the concentrating chamber need not always be the same. Preferably, a net-shaped spacer (separator) is inserted and arranged in the concentration chamber to maintain the thickness at a predetermined thickness. At this time, if the ion exchanger is not stored in the desalting chamber of the assembled electrodialysis tank, the granular ion exchanger is stored at this stage.

【0028】その後、電気透析槽の脱塩室に被処理水を
流し、濃縮室に濃縮された塩類を排出するための水を流
しながら、それら両水により電気透析槽のイオン交換膜
を収縮させ、しわの発生のないようにしながら定常状態
に移行させ、それと共に電流を流すことにより被処理水
の脱塩を行うことができる。電気透析槽の通常の運転時
には、各ユニットセルに、好ましくは4〜20V程度の
電圧が印加され、好ましくは電流密度0.00001〜
0.05A/cm2 にて通電される。
Thereafter, the water to be treated is flowed into the desalting chamber of the electrodialysis tank, and while the water for discharging the concentrated salts is flown into the concentrating chamber, the ion exchange membrane of the electrodialysis tank is shrunk by the water. By shifting to a steady state while preventing wrinkles from occurring, and by passing an electric current therewith, desalination of the water to be treated can be performed. During normal operation of the electrodialysis tank, a voltage of preferably about 4 to 20 V is applied to each unit cell, and a current density of preferably 0.00001 to
Electricity is supplied at 0.05 A / cm 2 .

【0029】図1は、本発明の脱イオン水の製造装置の
一態様を模式的に示す図である。この図中において、A
は陰イオン交換膜、Kは陽イオン交換膜であり、これら
陰イオン交換膜A及び陽イオン交換膜Kは電気透析槽1
中に脱塩室枠D1 、D2 、D3 ・・・Dn 及び濃縮室枠
C1 、C2 、C3 ・・・Cn を介して所定間隔を置いて
配置され、これにより陽極室2、濃縮室S1 、S2 ・・
・Sn 、脱塩室R1 、R2 ・・・Rn 及び陰極室3が構
成される。そして、脱塩室R1 、R2 ・・・Rn には陰
陽のイオン交換体が収容、充填され、濃縮室には、スペ
ーサーN1 、N2 、N3 ・・・Nn が挿入配置される。
FIG. 1 is a diagram schematically showing one embodiment of the apparatus for producing deionized water of the present invention. In this figure, A
Is an anion exchange membrane and K is a cation exchange membrane. These anion exchange membrane A and cation exchange membrane K are
.. Dn and the enrichment chamber frames C1, C2, C3... Cn are arranged at predetermined intervals, thereby forming the anode chamber 2, the enrichment chambers S1, S2.・ ・
.. Sn, the desalting chambers R1, R2,... The demineralization chambers R1, R2,..., Rn are filled with an anion-exchange ion exchanger, and spacers N1, N2, N3,.

【0030】また、この図1において、符号4は陽極、
5は陰極であり、操作中両極間に所定の電圧がかけられ
る。これにより導管6から脱塩室R1 、R2 ・・・Rn
へ導入される被処理液中の陰イオン成分は陰イオン交換
膜Aを通して陽極側の濃縮室に透過移行する一方、被処
理液中の陽イオン成分は陽イオン交換膜Kを通して陰極
側の濃縮室へ透過移行し、被処理液自体は脱イオン化さ
れ、導管7を通して導出される。また濃縮液は導入管8
を通して各濃縮室S1 、S2 ・・・Sn へ導入され、こ
こで上記のように透過移行した陰陽両イオンが集められ
濃縮液として導管9から排出される。
In FIG. 1, reference numeral 4 denotes an anode,
Reference numeral 5 denotes a cathode, and a predetermined voltage is applied between both electrodes during operation. This allows the desalination chambers R1, R2,.
The anion component in the liquid to be treated, which is introduced into the solution, permeates and transfers to the concentration chamber on the anode side through the anion exchange membrane A, while the cation component in the liquid to be treated passes through the cation exchange membrane K to the concentration chamber on the cathode side. Then, the liquid to be treated is deionized and discharged through the conduit 7. Also, the concentrated solution was
Through each of the concentration chambers S1, S2,..., Sn, where the anions and cations permeated and transferred as described above are collected and discharged from the conduit 9 as a concentrate.

【0031】脱塩室内において陽イオン交換体に捕捉さ
れた被処理水中の陽イオンは、電場により駆動力を与え
られ、捕捉した陽イオン交換体に接触している陽イオン
交換体を順次経由して陽イオン交換膜に到達し、さらに
膜を通過して濃縮室に移動する。同様に、陰イオン交換
体に捕捉された被処理水中の陰イオンは陰イオン交換
体、陰イオン交換膜を経由して濃縮室に移動する。この
ことから陽イオン交換体及び陰イオン交換体がある範囲
で集合して集合域を形成していると、同種イオン粒子同
士の接触点が格段に多くなるためイオンの移動が容易に
なり、脱イオン性能が向上するのでさらに好ましい。
The cations in the water to be treated captured by the cation exchanger in the desalting chamber are given a driving force by an electric field and sequentially pass through the cation exchanger in contact with the captured cation exchanger. To reach the cation exchange membrane and then pass through the membrane to the concentration chamber. Similarly, anions in the water to be treated captured by the anion exchanger move to the concentration chamber via the anion exchanger and the anion exchange membrane. From this fact, if the cation exchanger and anion exchanger are aggregated in a certain area to form an aggregation area, the number of contact points between the same type of ion particles is significantly increased, so that the movement of ions becomes easier, and It is more preferable because ionic performance is improved.

【0032】[0032]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
は勿論である。また実施例と比較例を対比し、その対比
に基づき、本発明の優れた効果を具体的に合わせて説明
する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it is a matter of course that the present invention is not limited to these Examples. In addition, Examples and Comparative Examples will be compared, and the excellent effects of the present invention will be specifically described based on the comparison.

【0033】(実施例1)バインダーポリマーとして、
低密度ポリエチレン70重量%とエチレン−プロピレン
−ジエンゴム30重量%をラボプラストミルで150
℃、30分混合混練し、混合物を得た。一方、イオン交
換樹脂として、強酸性カチオン交換樹脂である三菱化学
製ダイヤイオンSK−1B(スチレン−ジビニルベンゼ
ン共重合体樹脂、イオン交換基−SO3 Na型、みかけ
密度0.825g/ml、水分含有率43〜50重量
%、イオン交換容量2.0meq/ml)を用い、60
℃で24時間温風乾燥後、ジェットミルにて粉砕を行っ
た。粉砕した粒子はステンレスメッシュふるいで、粒径
150μm以上の粒子を除いた。得られた粒径150μ
m以下のイオン交換樹脂粉末粒子の粒径分布をふるいに
より測定したところ、粒径100〜150μmのものが
1.2重量%で、粒径20μm以下の粒子が12重量%
であった。
(Example 1) As a binder polymer,
70% by weight of low density polyethylene and 30% by weight of ethylene-propylene-diene rubber
The mixture was mixed and kneaded at 30 ° C. for 30 minutes to obtain a mixture. On the other hand, as the ion exchange resin, Mitsubishi Chemical Diaion SK-1B (styrene-divinylbenzene copolymer resin, ion exchange group-SO 3 Na type, apparent density 0.825 g / ml, moisture Using a content of 43 to 50% by weight and an ion exchange capacity of 2.0 meq / ml),
After drying with hot air at 24 ° C. for 24 hours, pulverization was performed with a jet mill. The pulverized particles were removed with a stainless mesh sieve to remove particles having a particle size of 150 μm or more. Obtained particle size 150μ
When the particle size distribution of the ion-exchange resin powder particles having a particle size of 100 μm or less was measured at 1.2% by weight, and the particles having a particle size of 20 μm or less were 12% by weight.
Met.

【0034】このイオン交換樹脂粒子と上記低密度ポリ
エチレン/エチレン−プロピレン−ジエンゴム混合物を
混合比60/40(重量比)で混合し、ラボプラストミ
ルで130℃、50rpm、20分混練した。得られた
混練物を平板プレスにより160℃で、加熱溶融プレス
し、厚さ500μmの陽イオン交換膜を得た。得られた
膜を50℃で24時間イオン交換水に浸漬した後、40
℃の1M塩酸に16時間浸漬しイオン交換基を再生型に
変換し、イオン交換水で洗浄した。得られた陽イオン交
換膜中のNa+ を化学的に定量したところイオン交換基
の99%以上が再生型に変換されていた。塩酸処理後の
膜の寸法変化は、イオン交換水処理後の膜寸法を100
%とした場合に平面方向で101.5%、厚み方向で1
04.7%であった。
The ion-exchange resin particles and the low-density polyethylene / ethylene-propylene-diene rubber mixture were mixed at a mixing ratio of 60/40 (weight ratio) and kneaded with a Labo Plastomill at 130 ° C., 50 rpm for 20 minutes. The obtained kneaded material was heated and melt-pressed at 160 ° C. by a flat plate press to obtain a cation exchange membrane having a thickness of 500 μm. After immersing the obtained membrane in ion-exchanged water at 50 ° C. for 24 hours,
The substrate was immersed in 1M hydrochloric acid at 16 ° C. for 16 hours to convert the ion-exchange group into a regenerated type, and washed with ion-exchanged water. When Na + in the obtained cation exchange membrane was chemically quantified, 99% or more of the ion exchange groups were converted to the regenerated form. The dimensional change of the membrane after the hydrochloric acid treatment was determined by setting the membrane dimension after the ion-exchanged water treatment to 100%.
%, 101.5% in the plane direction and 1 in the thickness direction
44.7%.

【0035】同様にイオン交換樹脂として強塩基性アニ
オン交換樹脂である、三菱化学製ダイヤイオンSA−1
0A(スチレン−ジビニルベンゼン共重合体樹脂、イオ
ン交換基−N(CH3)3Cl型、みかけ密度0.685g
/ml、水分含有率43〜47重量%、イオン交換容量
1.3meq/ml)を用いて、厚さ500μmの陰イ
オン交換膜を得た。使用した粒径150μm以下のイオ
ン交換樹脂粉末粒子の粒径分布は、粒径100〜150
μmのものが0.9重量%で、粒径20μm以下の粒子
が8重量%であった。
Similarly, Diaion SA-1 manufactured by Mitsubishi Chemical is a strong basic anion exchange resin as the ion exchange resin.
0A (styrene-divinylbenzene copolymer resin, ion exchange group-N (CH 3 ) 3 Cl type, apparent density 0.685 g)
/ Ml, a water content of 43 to 47% by weight, and an ion exchange capacity of 1.3 meq / ml) to obtain an anion exchange membrane having a thickness of 500 µm. The particle size distribution of the used ion exchange resin powder particles having a particle size of 150 μm or less is as follows.
The particles having a particle diameter of 20 μm or less were 8% by weight.

【0036】得られた膜を50℃で24時間イオン交換
水に浸漬した後、40℃の1M水酸化ナトリウムに16
時間浸漬しイオン交換基を再生型に変換し、イオン交換
水で洗浄した。得られた陰イオン交換膜中のCl- を化
学的に定量したところイオン交換基の99%以上が再生
型に変換されていた。水酸化ナトリウム処理後の膜の寸
法変化は、イオン交換水処理後の膜寸法を100%とし
た場合に平面方向で102.0%、厚み方向で103.
6%であった。
The obtained membrane was immersed in ion-exchanged water at 50 ° C. for 24 hours, and then immersed in 1 M sodium hydroxide at 40 ° C.
It was immersed for a period of time to convert the ion-exchange group into a regeneration type, and washed with ion-exchanged water. The resulting Cl anion-exchange membrane - chemically more than 99% of the ion exchange group was quantified had been converted into regenerative a. The dimensional change of the membrane after the sodium hydroxide treatment was 102.0% in the plane direction and 103.10 in the thickness direction when the membrane size after the ion-exchanged water treatment was 100%.
6%.

【0037】次に粒径が400〜600μm、イオン交
換容量が4.5ミリ当量/g乾燥樹脂のスルホン酸ナト
リウム型陽イオン交換樹脂(三菱化学製、商品名ダイヤ
イオンSK−1B)及び粒径が400〜600μm、イ
オン交換容量が3.5ミリ当量/g乾燥樹脂の4級アン
モニウム塩型陰イオン交換樹脂(三菱化学製、商品名ダ
イヤイオンSA−10A)を80℃で熱風乾燥し水分率
を3重量%とした後、陽イオン交換樹脂/陰イオン交換
樹脂=44/56(乾燥状態での重量比)で混合し、イ
オン交換容量比が50/50の混合物とした。
Next, a sodium sulfonate type cation exchange resin (Diaion SK-1B, manufactured by Mitsubishi Chemical Corporation) having a particle size of 400 to 600 μm and an ion exchange capacity of 4.5 meq / g and a particle size. Quaternary ammonium salt type anion exchange resin (Diaion SA-10A manufactured by Mitsubishi Chemical Co., Ltd., trade name: 400-600 μm, ion exchange capacity: 3.5 meq / g dry resin) is dried with hot air at 80 ° C. Was adjusted to 3% by weight, and then mixed at a cation exchange resin / anion exchange resin = 44/56 (weight ratio in a dry state) to obtain a mixture having an ion exchange capacity ratio of 50/50.

【0038】この混合物に線状低密度ポリエチレン(ダ
ウケミカル社製、商品名アフィニティSM−1300)
を3重量%混合し、120〜130℃で混練した。得ら
れた混練物を平板プレスで130℃で熱成形し、厚さ
0.6cmの多孔質イオン交換体シート状物を得た。こ
の多孔質シート状物の連続した空隙の空隙率は23容量
%、含水率は2.0重量%であった。
A linear low-density polyethylene (Affinity SM-1300, manufactured by Dow Chemical Company) is added to the mixture.
And 3% by weight, and kneaded at 120 to 130 ° C. The obtained kneaded material was thermoformed at 130 ° C. by a flat plate press to obtain a porous ion exchanger sheet having a thickness of 0.6 cm. The porosity of the continuous voids of this porous sheet was 23% by volume, and the water content was 2.0% by weight.

【0039】前記した乾燥状態の板状多孔質イオン交換
体、再生型陽イオン交換膜および再生型陰イオン交換膜
を陽極と陰極の間に、スペーサーネット/陰イオン交換
膜/板状多孔質イオン交換体/陽イオン交換膜の順に5
対配列し、図1に示される電気透析槽に組み込んだ。そ
の電気透析槽の脱塩室の厚みは8mmであった。濃縮室
に配置されるスペーサーネット(開口部菱形)は、ポリ
プロピレン製で、糸径0.5mm、ピッチ間距離(対角
点にある糸の中心間距離)3mm、糸交点厚み1.2m
m、濃縮室枠厚み1.2mmのものを用いた。また板状
多孔質イオン交換体の脱塩室における容積充填率は乾燥
状態で52%であった。
The above-mentioned dried plate-like porous ion exchanger, regenerative cation exchange membrane and regenerative anion exchange membrane are placed between an anode and a cathode by a spacer net / anion exchange membrane / plate-like porous ion. 5 in the order of exchanger / cation exchange membrane
Paired and assembled into the electrodialyzer shown in FIG. The thickness of the desalting chamber of the electrodialysis tank was 8 mm. The spacer net (opening diamond) arranged in the concentration chamber is made of polypropylene, and has a yarn diameter of 0.5 mm, a pitch distance (distance between the centers of the diagonal yarns) of 3 mm, and a yarn intersection thickness of 1.2 m.
m, the thickness of the concentration chamber frame was 1.2 mm. The volume filling ratio of the plate-like porous ion exchanger in the desalting chamber was 52% in a dry state.

【0040】陽イオン交換膜と陰イオン交換膜の間には
図1に示されるように脱塩室枠(厚み8mmのポリプロ
ピレン製)及び濃縮室枠(厚み1.2mmのポリプロピ
レン製)が介在しており、有効面積520cm2 ×5対
のフィルタプレス型透析槽であった。電気透析槽の脱塩
室、濃縮室及び両極室に対して電導度が5μS/cmの
水を10分間供給し、次いで15時間の前通電処理によ
り多孔質イオン交換体を十分に湿潤化後、脱イオン水の
製造を行った。原水として電導度5μS/cmの水を用
い、ユニットセル当り4Vの電圧を印加して脱塩を行っ
たところ、電導度0.06μS/cmの純水が0.5m
3 /hの生産量で安定して得られた。測定後イオン交換
膜を取り出し、状態を観察したところ、収縮により十分
に張力がかかった状態であり、しわの発生はなかった。
As shown in FIG. 1, a desalting chamber frame (made of polypropylene having a thickness of 8 mm) and a concentrating chamber frame (made of polypropylene having a thickness of 1.2 mm) are interposed between the cation exchange membrane and the anion exchange membrane. The filter press type dialysis tank had an effective area of 520 cm 2 × 5 pairs. After supplying water having a conductivity of 5 μS / cm for 10 minutes to the desalting chamber, the concentrating chamber, and the bipolar chamber of the electrodialysis tank, and then pre-energizing for 15 hours to sufficiently wet the porous ion exchanger, Production of deionized water was performed. Desalination was performed by using a water having an electric conductivity of 5 μS / cm as raw water and applying a voltage of 4 V per unit cell to obtain 0.5 m of pure water having an electric conductivity of 0.06 μS / cm.
A stable production rate of 3 / h was obtained. After the measurement, the ion-exchange membrane was taken out and the state was observed. As a result, it was in a state where tension was sufficiently applied due to shrinkage, and no wrinkles were generated.

【0041】(実施例2)脱塩室に充填するイオン交換
体として、粒径が400〜600μm、イオン交換容量
が4.5ミリ当量/g乾燥樹脂のスルホン酸ナトリウム
型陽イオン交換樹脂(三菱化学製、商品名ダイヤイオン
SK−1B)及び粒径が400〜600μm、イオン交
換容量が3.5ミリ当量/g乾燥樹脂の4級アンモニウ
ム塩型陰イオン交換樹脂(三菱化学製、商品名ダイヤイ
オンSA−10A)の混合乾燥物を用い、かつ脱塩室の
構造を粒状イオン交換樹脂の流出を阻止しうる構造とし
た以外は実施例1と同様にして試験を行った。混合乾燥
物の水分率は8重量%、陽イオン交換樹脂/陰イオン交
換樹脂混合比は44/56(乾燥状態での重量比)、イ
オン交換容量比は50/50で、乾燥イオン交換樹脂混
合物を脱塩室に容積充填率50%で充填した。
(Example 2) As an ion exchanger packed in a desalination chamber, a sodium sulfonate type cation exchange resin having a particle size of 400 to 600 µm and an ion exchange capacity of 4.5 meq / g (Mitsubishi) Quaternary ammonium salt type anion exchange resin (trade name: Diaion SK-1B manufactured by Chemical Co., Ltd.) and particle size of 400 to 600 μm, ion exchange capacity: 3.5 meq / g (Diamond, manufactured by Mitsubishi Chemical Corporation) A test was conducted in the same manner as in Example 1 except that a mixed and dried product of the ions SA-10A) was used and the structure of the desalting chamber was a structure capable of preventing the outflow of the granular ion exchange resin. The moisture content of the mixed dried product was 8% by weight, the cation exchange resin / anion exchange resin mixture ratio was 44/56 (weight ratio in a dry state), the ion exchange capacity ratio was 50/50, and the dry ion exchange resin mixture was used. Was charged into the desalting chamber at a volume filling rate of 50%.

【0042】実施例1と同様にして、電気透析槽の各室
に10分間の通水及び15時間の前通電処理により、イ
オン交換樹脂を十分に湿潤化後、脱イオン水の製造試験
を行った。電気透析槽は、有効面積520cm2 ×5対
のものを用いた。原水として電導度5μS/cmの水を
用い、ユニットセル当り4Vの電圧を印加して脱塩を行
ったところ、電導度0.08μS/cmの処理水が0.
42m3 /hの生産量で安定して得られた。測定後イオ
ン交換膜を取り出し、状態を観察したところ、収縮によ
り十分に張力がかかった状態であり、しわの発生はなか
った。
In the same manner as in Example 1, the ion exchange resin was sufficiently wetted by passing water through each chamber of the electrodialysis tank for 10 minutes and pre-energizing for 15 hours, and then subjected to a production test of deionized water. Was. The electrodialysis tank used had an effective area of 520 cm 2 × 5 pairs. Desalination was performed by using a water having a conductivity of 5 μS / cm as a raw water and applying a voltage of 4 V per unit cell to obtain a treated water having a conductivity of 0.08 μS / cm.
It was obtained stably at a production rate of 42 m 3 / h. After the measurement, the ion-exchange membrane was taken out and the state was observed. As a result, it was in a state where tension was sufficiently applied due to shrinkage, and no wrinkles were generated.

【0043】(比較例1)実施例1において、カチオン
交換膜を塩酸処理せずに、またアニオン交換膜を水酸化
ナトリウム処理せずに用いた以外は実施例1と同様にし
て試験を行った。これらの膜においては、再生型はいず
れもイオン交換基の1%以下であった。原水として電導
度5μS/cmの水を用い、ユニットセル当り4Vの電
圧を印加して脱塩を行ったところ、電導度0.25μS
/cmと純度の低い処理水が0.35m3 /hの生産量
で得られた。測定後イオン交換膜を取り出し状態を観察
したところ、折れしわが多数発生しており、しわの頂点
でピンホールが発生している部分があった。解体直後の
寸法は、陽イオン交換膜の場合イオン交換水処理後の1
03.5%、陰イオン交換膜の場合イオン交換水処理後
の103.2%であった。
(Comparative Example 1) A test was performed in the same manner as in Example 1 except that the cation exchange membrane was not treated with hydrochloric acid and the anion exchange membrane was not treated with sodium hydroxide. . In each of these membranes, the regenerated type accounted for 1% or less of the ion exchange groups. Desalination was performed by applying a voltage of 4 V per unit cell using water having an electric conductivity of 5 μS / cm as raw water.
/ Cm low purity treated water was obtained at a production rate of 0.35 m 3 / h. After the measurement, the ion-exchange membrane was taken out and the state of observation was observed. As a result, a large number of folds and wrinkles were generated, and there was a portion where pinholes were generated at the top of the wrinkles. The dimensions immediately after disassembly are 1 after ion-exchanged water treatment for cation exchange membranes.
In the case of an anion exchange membrane, it was 103.2% after ion-exchange water treatment.

【0044】[0044]

【発明の効果】本発明では、イオン交換膜を再生型に転
換した後、湿潤状態で電気透析槽にセットするものであ
り、これにより通水時の被処理水との接触で膜に存在す
る官能基のイオン交換に伴って発現する膜の変形、特に
膨張変形を抑制することができる。その結果、イオン交
換膜の折れ・しわ等の発生が回避できるという利点があ
る。
According to the present invention, after the ion exchange membrane is converted to a regenerative type, it is set in an electrodialysis tank in a wet state. It is possible to suppress the deformation of the membrane, particularly the expansion deformation, which develops due to the ion exchange of the functional groups. As a result, there is an advantage that the generation of the ion exchange membrane, such as bending and wrinkling, can be avoided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱イオン水製造装置の一態様を模式的に示す
図。
FIG. 1 is a diagram schematically showing one embodiment of a deionized water producing apparatus.

【符号の説明】[Explanation of symbols]

A:陰イオン交換膜 K:陽イオン交換膜 1:容器(電気透析槽) 2:陽極室 3:陰極室 4:陽極 5:陰極 S1、S2・・・Sn :濃縮室 R1、R2・・・Rn :脱塩室 D1、D2、D3・・・Dn:脱塩室枠 C1、C2、C3・・・Cn:濃縮室枠 N1、N2、N3・・・Nn:スペーサー 6:被処理液導入管 7:脱イオン水導管 8:濃縮液導入管 9:濃縮液導管 A: Anion exchange membrane K: Cation exchange membrane 1: Container (electrodialysis tank) 2: Anode compartment 3: Cathode compartment 4: Anode 5: Cathode S1, S2 ... Sn: Concentration compartment R1, R2 ... Rn: desalting chamber D1, D2, D3... Dn: desalting chamber frame C1, C2, C3... Cn: concentrating chamber frame N1, N2, N3. 7: Deionized water conduit 8: Concentrated liquid introduction pipe 9: Concentrated liquid conduit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換膜と陰イオン交換膜とを交
互に配列し、脱塩室と濃縮室とを形成した電気透析槽の
脱塩室にイオン交換体を収容し、脱塩室に被処理水を流
しながら通電するようにした脱イオン水の製造装置にお
いて、陽イオン交換膜または陰イオン交換膜のイオン交
換基の70%以上を再生型にした湿潤状態で電気透析槽
に組込み、電気透析槽に通水するようにしたことを特徴
とする脱イオン水の製造装置。
1. An ion exchanger is accommodated in a desalination chamber of an electrodialysis tank in which a cation exchange membrane and an anion exchange membrane are alternately arranged, and a desalination chamber and a concentration chamber are formed. In an apparatus for producing deionized water in which electricity is supplied while flowing water to be treated, 70% or more of ion exchange groups of a cation exchange membrane or an anion exchange membrane are incorporated into an electrodialysis tank in a wet state in a regenerative type, An apparatus for producing deionized water, wherein water is passed through an electrodialysis tank.
【請求項2】 イオン交換膜がイオン交換樹脂粒子とバ
インダーポリマーから構成される不均質イオン交換膜で
ある請求項1に記載の脱イオン水の製造装置。
2. The apparatus according to claim 1, wherein the ion exchange membrane is a heterogeneous ion exchange membrane composed of ion exchange resin particles and a binder polymer.
【請求項3】 陽イオン交換膜のカチオン交換基を再生
型にする方法が酸処理である請求項1または2に記載の
脱イオン水の製造装置。
3. The apparatus for producing deionized water according to claim 1, wherein the method for converting the cation exchange groups of the cation exchange membrane into a regenerating type is acid treatment.
【請求項4】 陰イオン交換膜のアニオン交換基を再生
型にする方法がアルカリ処理である請求項1または2に
記載の脱イオン水の製造装置。
4. The apparatus for producing deionized water according to claim 1, wherein the method for converting the anion exchange group of the anion exchange membrane into a regenerating type is an alkali treatment.
【請求項5】 脱塩室に収容するイオン交換体が、陽イ
オン交換樹脂、陰イオン交換樹脂またはそれらの混合物
をバインダーポリマーで接着した多孔体である請求項1
〜4のいずれか1に記載の脱イオン水の製造装置。
5. The ion exchanger housed in the desalting chamber is a porous body obtained by bonding a cation exchange resin, an anion exchange resin or a mixture thereof with a binder polymer.
5. The apparatus for producing deionized water according to any one of items 4 to 4.
JP9343643A 1997-12-01 1997-12-01 Manufacturing apparatus for deionized water Pending JPH11165175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9343643A JPH11165175A (en) 1997-12-01 1997-12-01 Manufacturing apparatus for deionized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9343643A JPH11165175A (en) 1997-12-01 1997-12-01 Manufacturing apparatus for deionized water

Publications (1)

Publication Number Publication Date
JPH11165175A true JPH11165175A (en) 1999-06-22

Family

ID=18363122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9343643A Pending JPH11165175A (en) 1997-12-01 1997-12-01 Manufacturing apparatus for deionized water

Country Status (1)

Country Link
JP (1) JPH11165175A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068198A (en) * 2006-09-14 2008-03-27 Kurita Water Ind Ltd Electrodeionization apparatus
JP2010234287A (en) * 2009-03-31 2010-10-21 Nippon Rensui Co Ltd Filling method for ion exchange resin, and electric regeneration-type pure water making apparatus
JP2010234288A (en) * 2009-03-31 2010-10-21 Nippon Rensui Co Ltd Electric regeneration-type pure water making apparatus
WO2010122989A1 (en) * 2009-04-21 2010-10-28 国立大学法人東北大学 Electrodialyzer
JP2010264385A (en) * 2009-05-14 2010-11-25 Tohoku Univ Electrodialyzer
JP2011056376A (en) * 2009-09-09 2011-03-24 Nippon Rensui Co Ltd Filling method for ion exchange resin, and electric regeneration-type pure water making apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068198A (en) * 2006-09-14 2008-03-27 Kurita Water Ind Ltd Electrodeionization apparatus
JP2010234287A (en) * 2009-03-31 2010-10-21 Nippon Rensui Co Ltd Filling method for ion exchange resin, and electric regeneration-type pure water making apparatus
JP2010234288A (en) * 2009-03-31 2010-10-21 Nippon Rensui Co Ltd Electric regeneration-type pure water making apparatus
WO2010122989A1 (en) * 2009-04-21 2010-10-28 国立大学法人東北大学 Electrodialyzer
JP2010264385A (en) * 2009-05-14 2010-11-25 Tohoku Univ Electrodialyzer
JP2011056376A (en) * 2009-09-09 2011-03-24 Nippon Rensui Co Ltd Filling method for ion exchange resin, and electric regeneration-type pure water making apparatus

Similar Documents

Publication Publication Date Title
US5961805A (en) Method and apparatus for producing deionized water
EP0984998B1 (en) Bipolar membranes with fluid distribution passages
US6334941B1 (en) Apparatus for producing deionized water
JP4778664B2 (en) Apparatus and method for electrodialysis
US5759373A (en) Porous ion exchanger and method for producing deionized water
JP4454502B2 (en) Electric desalination equipment
JPH11502764A (en) Improvement of membrane treatment including electrodialysis
JPWO2003097536A1 (en) Electric desalination equipment
JP3947829B2 (en) Deionized water production equipment
WO1999020567A1 (en) Apparatus for electrically producing deionized water
JP3644182B2 (en) Deionized water production equipment
JP3394372B2 (en) Electric regeneration type desalination equipment
JP4049170B2 (en) Method for producing deionized water production apparatus
JPH11165175A (en) Manufacturing apparatus for deionized water
IE920802A1 (en) A supported, mechanically stable bipolar membrane for¹electrodialysis
EP3222349B1 (en) Bipolar ion exchange sheet and manufacturing method therefor
JP2008132492A (en) Electric demineralizer
JPH10192716A (en) Porous ion exchanger and production of demineralized water
JPH10244169A (en) Porous ion exchanger and production of demineralized water
JP3800706B2 (en) Deionized water production equipment
JPH10192717A (en) Porous ion exchanger and production of demineralized water
JPH1071338A (en) Porous ion exchange resin material and production of deionized water
JP2001062312A (en) Production of porous ion exchanger
JP3906540B2 (en) Method for producing deionized water
WO1998051620A1 (en) Purification of a liquid stream