JP3800706B2 - Deionized water production equipment - Google Patents

Deionized water production equipment Download PDF

Info

Publication number
JP3800706B2
JP3800706B2 JP04002697A JP4002697A JP3800706B2 JP 3800706 B2 JP3800706 B2 JP 3800706B2 JP 04002697 A JP04002697 A JP 04002697A JP 4002697 A JP4002697 A JP 4002697A JP 3800706 B2 JP3800706 B2 JP 3800706B2
Authority
JP
Japan
Prior art keywords
chamber
ion
desalting chamber
exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04002697A
Other languages
Japanese (ja)
Other versions
JPH10216729A (en
Inventor
一郎 寺田
洋 戸田
純治郎 岩元
和郎 梅村
健 小松
徹 星
フィリップ フューネルガード マーク
フローリアン テッシール デービット
グレン トウェ イアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP04002697A priority Critical patent/JP3800706B2/en
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to US08/952,218 priority patent/US5961805A/en
Priority to TW086103470A priority patent/TW426644B/en
Priority to PCT/JP1997/000896 priority patent/WO1997034696A1/en
Priority to KR1019970708217A priority patent/KR100441461B1/en
Priority to CA002221709A priority patent/CA2221709C/en
Priority to AU19433/97A priority patent/AU1943397A/en
Priority to AT97907381T priority patent/ATE227162T1/en
Priority to EP97907381A priority patent/EP0837729B1/en
Priority to DE69716852T priority patent/DE69716852T2/en
Priority to CN97190214A priority patent/CN1080594C/en
Priority to IN500CA1997 priority patent/IN182200B/en
Priority to MYPI97001177A priority patent/MY125056A/en
Publication of JPH10216729A publication Critical patent/JPH10216729A/en
Priority to US09/338,570 priority patent/US6228240B1/en
Application granted granted Critical
Publication of JP3800706B2 publication Critical patent/JP3800706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、医薬品の製造、半導体の製造、発電用ボイラー水などに使用される純水もしくは超純水を製造するための脱イオン水製造装置に関する。
【0002】
【従来の技術】
脱イオン水の製造方法としては、イオン交換樹脂の充填床に被処理水を流し、不純物イオンをイオン交換樹脂に吸着させて除去することにより脱イオン水を得る方法が一般的である。ここで、吸着能力の低下したイオン交換樹脂は酸やアルカリを用いて再生する方法が採用されている。しかし、この方法においては再生に使用した酸やアルカリの廃液が排出されるという問題があり、そのため再生の必要のない脱イオン水製造方法が望まれている。
【0003】
このような観点から、近年、イオン交換樹脂とイオン交換膜を組み合せた自己再生型電気透析脱イオン水製造方法が注目されている。この方法は、陰イオン交換膜と陽イオン交換膜とを交互に配置した電気透析装置の脱塩室に陰イオン交換体と陽イオン交換体の混合物を入れ、該脱塩室に被処理水を流しながら電圧を印加して電気透析を行うことにより脱イオン水を製造する方法である。この方法では、一般に湿潤状態のイオン交換樹脂を脱塩室に収容するため、イオン交換樹脂相互、或いはイオン交換樹脂とイオン交換膜との密着性が不十分であり、脱塩室の厚みを増大させて膜使用面積を減少させようとすると抵抗が上昇するという欠点があった。
【0004】
これらの欠点を補う方法として、特公平4ー72567号公報及び特公平6ー20513号公報においては、脱塩室の幅を約0.762〜10.16cm(≒0.3〜4インチ)、厚さを約0.127〜0.635cm(≒0.05〜0.25インチ)とし、抵抗の上昇を防止することが提案されている。しかしながらこの方法では脱塩室の厚さが薄いため、イオン交換体の脱塩室への充填が難かしく、また単位面積あたりの生産水量も低いという欠点があった。
【0005】
【発明が解決しようとする課題】
本発明は、イオン交換体とイオン交換膜を組み合わせた自己再生型電気透析脱イオン水製造装置において、脱塩室の厚さを厚くしても抵抗の上昇が少なく、かつ従来技術が有していた上記のような欠点を有せず、長期にわたり安定して純水を得ることができる脱イオン水製造装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、陰極と陽極の間に陽イオン交換膜と陰イオン交換膜を交互に配列させ、脱塩室と濃縮室とを形成させた電気透析槽の脱塩室にイオン交換体を収容してなる脱イオン水製造装置において、脱塩室に収容したイオン交換体と脱塩室を区画する陽イオン交換膜及び陰イオン交換膜との間に0.1〜20kg/cm2 の圧力を発生させるようにせしめたことを特徴とする脱イオン水製造装置を提供する。
【0007】
【発明の実施の形態】
本発明においては、イオン交換体は予めその状態を変化させて電気透析槽の脱塩室中に収容されるか、または脱塩室中に収容された後、その状態が変化させられる。以下、本明細書においては、イオン交換体の状態を次のような用語で説明することにする。「使用状態」とは、イオン交換体を脱塩室中に収容し、電気透析に使用しているときの状態であり、使用時の環境と平衡になった状態をいう。「収縮状態」とは、何らかの方法でイオン交換体の見掛けの体積を収縮させた状態をいう。「自由状態」とは、使用する環境と平衡な状態であるが、脱塩室による拘束のない状態をいう。
【0008】
本発明においては、脱塩室の厚さを0.2cm以上、好ましくは0.7cm以上とする。脱塩室の厚さが0.2cm未満であると使用膜面積の減少効果が明確でなく、イオン交換体の充填もし難いので好ましくない。一方その厚さが80.0cmを超えると使用膜面積の減少効果は大きいが、やはり抵抗上昇が大きくなるので好ましくない。なかでも、脱塩室の厚さが1.1cm以上で30.0cm以下の範囲であると、抵抗上昇が少なく、使用膜面積減少効果も大きいので特に好ましい。
【0009】
脱塩室に収容乃至充填したイオン交換体と脱塩室を区画する陽イオン交換膜及び陰イオン交換膜との間に発生させる圧力は0.1〜20kg/cm2 の範囲である。その圧力が0.1kg/cm2 未満であると、イオン交換体同士又はイオン交換体とイオン交換膜の密着性が十分でなく、抵抗が上昇したり、処理水のショートパスができ、得られる水の純度が低下するので好ましくない。一方、その圧力が20kg/cm2 より大きいと、イオン交換体同士又はイオン交換体とイオン交換膜の密着性は十分であるが、処理水量が低下したり、使用しているイオン交換膜がダメージを受けるので好ましくない。なかでも、上記圧力は0.5〜10kg/cm2 、特に0.8〜2kg/cm2 であるのが好ましい。
【0010】
本発明における、脱塩室に充填した充填体とイオン交換膜との間に圧力を発生させる好ましい手段としては(1)脱塩室に収容するイオン交換体を再生型の容積よりも容積を減少させた形に変換し、自由状態でのイオン交換体再生型の容積が脱塩室の容積より大きい量のイオン交換体を脱塩室に収容し、通水及び通電することにより、イオン交換体の容積を増大させ圧力を増大させる手段や、(2)脱塩室にイオン交換体を収容し、脱塩室の容積を機械的に減少させることにより圧力を増大させる手段が用いられる。
【0011】
上記(1)の手段では、脱塩室に収容するイオン交換体を使用状態における当該イオン交換体の容積より容積を減少させた形に変換し、電気透析に使用しているときと平衡な状態であるが、脱塩室による拘束のない状態でのイオン交換体容積に換算した時に脱塩室容積に対して103〜170%となる量を収容することが好ましい。この量が103%未満であると、収容したイオン交換体の密着性が良くないので好ましくない。一方、その量が170%より大きいと、密着性は良好となるが、通水した時の圧力損失が大きくなるので好ましくない。なかでも上記イオン交換体の量は、111〜150%であるのが特に好ましい。
【0012】
イオン交換体を再生型の容積よりも容積減少させる方法としては、▲1▼乾燥により水分率を減少させる方法や、▲2▼対イオンを再生型以外のイオン種に変えて負荷型とする方法、▲3▼或いは有機溶媒に浸漬して溶媒置換する方法などがあるが、▲4▼乾燥により水分率を減少させる▲1▼の方法と対イオンを再生型以外のイオン種に変えて負荷型とする▲2▼の方法を併用する方法は、イオン交換体の品種や構造等にかかわらず容易に適用でき、容積増大効果も大きいので、好ましい方法である。
【0013】
乾燥により水分率を減少させる場合、水分率(重量)としては1〜30%に減少させるのが好ましい。水分率が1%未満であると、乾燥に時間がかかるので好ましくない。水分率が30%より大きいと、通水及び通電した際に容積の増大効果が小さくなるので好ましくない。水分率が5〜15%であると、乾燥も容易で通水、通電時の容積増大効果も大きく特に好ましい。乾燥時の対イオンの種類としては、陽イオン交換体の場合はNa型が、陰イオン交換体の場合はCl型が熱的に安定なので好ましく用いられる。乾燥温度は30〜80℃が好ましい。これが30℃未満であると乾燥に時間がかかり、80℃より高い温度であるとイオン交換基が分解するので好ましくない。
【0014】
対イオンを再生型以外のイオン種に変えて負荷型とする方法の場合には、前述のように陽イオン交換体の場合はNa型が、陰イオン交換体の場合はCl型が特に好ましいが、それ以外にも陽イオン交換体の場合にはK型やLi型、陰イオン交換体の場合はNO3 型など1価の対イオンが好ましく用いられる。この点、Ca型やAl型、SO4 型などの2価以上の対イオンの場合には、再生型への変換が容易でなくなるので好ましくない。
【0015】
次に、前記(2)の脱塩室にイオン交換体を収容し、脱塩室容積を機械的に減少させることにより圧力を増大させる方法では、脱塩室の室枠とイオン交換膜の間に圧力により収縮するスペーサーを導入し、イオン交換体を充填した後に外部より圧力をかけて圧縮することにより、脱塩室容積を5〜60容量%減少させることが好ましい。減少させる脱塩室容積が5容量%未満であると、収容したイオン交換体の密着性がよくないので好ましくない。逆に、減少させる脱塩室容積が60容量%より大きいと、密着性は良好となるが、通水したときの圧力損失が大きくなるので好ましくない。収縮するスペーサーの材料としては、ポリエチレンやポリプロピレン、ポリスチレンなどの発泡シートが好ましく用いられる。
【0016】
本発明において、脱塩室に収容するイオン交換体としては、イオン交換樹脂やイオン交換繊維、それらの加工成形品などがあげられるが、イオン交換樹脂及びイオン交換樹脂をバインダーポリマーを用いてシート状に接着した多孔質イオン交換体は、イオン交換性能や耐久性等の観点から好ましいイオン交換体である。特に多孔質イオン交換体シートは、それ自体イオン交換樹脂間の密着性が良好であり、脱塩室に収容する場合も容易に収容できるので好ましい。
【0017】
イオン交換体を脱塩室に収容した際の空隙率は、液体の通過に関与する連続した空隙率が5容量%以上であるのが好ましい。空隙率が5容量%より小さいと液体の流量が減少し、圧損が大きくなるので好ましくない。空隙率が10〜40%である場合は、通水性も良好で、脱塩性能も優れ、純度の高い処理水が得られるので特に好ましい。なお、この空隙率は、イオン交換体を脱塩室に収容し通水及び通電した際の値である。
【0018】
上記イオン交換体としては、少なくとも陽イオン交換体、陰イオン交換体又はそれらの混合物、若しくはそれらの多孔質成形品が利用できる。また陽イオン交換体のドメイン(領域)と陰イオン交換体のドメイン(領域)を組み合わせた構造でもよい。その場合のイオン交換膜に接する各ドメインの形状は種々の形状が利用でき、例えば海島状、層状、モザイク状、格子状等が利用できる。特に海島状や層状は希釈室に収納し易く且つ効率よく脱塩できるという理由で好ましい。ただし、全体で使用する陽イオン交換体と陰イオン交換体の比率は、総イオン交換容量比で陽イオン交換体/陰イオン交換体=20/80〜80/20の範囲の割合であることが好ましい。
【0019】
イオン交換体として多孔質イオン交換体を使用する場合には、バインダーポリマーの重量分率は20%以下であることが好ましい。重量分率が20%より大きいとイオン交換樹脂粒子表面をバインダーポリマーが被覆して吸着性が低下し、また空隙率が低下するために処理する液体の流量が減少し、圧損が大きくなるので好ましくない。なかでも上記重量分率は1〜5%が好ましい。バインダーポリマーとしては、多孔質イオン交換体の製法の観点から熱可塑性ポリマー又は溶媒可溶性ポリマーであることが好ましい。
【0020】
このようなバインダーポリマーとしては、次のようなものが好ましく使用できる。まず熱可塑性ポリマーとしては低密度ポリエチレンや線状低密度ポリエチレン、超高分子量高密度ポリエチレン、ポリプロピレン、ポリイソブチレン、1,2ーポリブタジエン、酢酸ビニル、エチレンー酢酸ビニル共重合体などが挙げられ、また溶媒可溶性ポリマーとしては天然ゴム、ブチルゴム、ポリイソプレン、ポリクロロプレン、スチレンーブタジエンゴム、ニトリルゴム、塩化ビニルー脂肪酸ビニルエステル共重合体等が挙げられる。
【0021】
バインダーポリマーを用いてイオン交換樹脂を結合した多孔質シートの厚さは容積を減少させた形で脱塩室に収容する際の厚みで脱塩室の厚みの50〜100%となる厚さが好ましい。この厚さが脱塩室厚みの50%より薄いと通水及び通電した際にイオン交換膜に密着しないので好ましくない。その厚さが100%より厚いと脱塩室に収容できないので好ましくない。容積を減少させた形での多孔質シートの厚さが脱塩室厚みの70〜90%である場合は特に好ましい。
【0022】
バインダーポリマーを用いてイオン交換樹脂を結合して多孔質シート状とする方法としては次のような方法が好ましい。すなわち、▲1▼イオン交換樹脂粒子とバインダーポリマーを加熱混練した後、平板プレス等の熱成形によりシート状とする方法、▲2▼バインダーポリマー溶液をイオン交換樹脂粒子表面に塗布して溶媒を蒸発させ硬化する方法、▲3▼バインダーポリマー及び造孔剤とイオン交換樹脂粒子とを加熱混合成形後、造孔剤を抽出する方法、▲4▼造孔剤を分散したバインダーポリマー溶液をイオン交換樹脂粒子表面に塗布して硬化させた後、造孔剤を抽出する方法などである。このうち▲1▼のイオン交換樹脂粒子とバインダーポリマーを加熱混練した後、平板プレス等の熱成形によりシート状とする方法、および▲3▼のバインダーポリマー及び造孔剤とイオン交換樹脂粒子を加熱混合成形後、造孔剤を抽出する方法は、成形加工性や得られる多孔質イオン交換体の比抵抗などの観点から好ましい。
【0023】
イオン交換体のイオン交換基は、陽イオン交換基としては強酸であるスルホン酸型が、陰イオン交換基としては強塩基である4級アンモニウム塩型又はピリジニウム塩型が、イオン交換性と化学的安定性の観点から好ましい。イオン交換体のイオン交換容量は、0.5〜7ミリ当量/g乾燥樹脂が好ましい。イオン交換容量が0.5ミリ当量/g乾燥樹脂より低いと、脱塩室でのイオンの吸着、脱塩が十分に行われず、処理水純度が低下する恐れがあるので好ましくない。イオン交換容量が1〜5ミリ当量/g乾燥樹脂である場合は、処理水純度の高いものが得られ、性能安定性にも優れており、特に好ましい。
【0024】
本発明において脱イオン水を製造するための装置としては、例えば特開平3ー186400号公報、特開平2ー277526号公報、特開平5ー64726号公報、米国特許第4632745号明細書及び米国特許第5425866号明細書などに記載されている、次のような構成を有する電気透析槽を使用することが好ましい。電気透析槽には、陽極を備える陽極室と陰極を備える陰極室との間に複数枚の陽イオン交換膜と陰イオン交換膜とを好ましくは室枠を介して交互に配列して、陽極側が陰イオン交換膜で区画され、陰極側が陽イオン交換膜で区画された脱塩室と、陰極側が陽イオン交換膜で区画され、陽極側が陰イオン交換膜で区画された濃縮室とを交互に好ましくは2〜50組程度形成される。陽イオン交換膜と陰イオン交換膜との間に介在する中央に開口部を有する額縁状の室枠の厚みは、脱塩室及び濃縮室の厚みを規定する。脱塩室及び濃縮室の室枠の厚みは必ずしも同じである必要はない。イオン交換膜は均一系又は不均一系の何れのものも使用でき、機械的強度を大きくするため、織布又は不織布で補強したものも使用できる。濃縮室にはその厚みを所定厚に保持するためにネット状のスペーサ(離間材)が挿入配置されることが好ましい。脱塩室には被処理水を流し、濃縮室には濃縮された塩類を排出するための水を流しながら電流を流すことにより脱塩を行うことができる。各ユニットセルには、好ましくは4〜20V程度の電圧が印加され、電流密度は好ましく0.00001〜0.05A/cm2 にて通電される。
【0025】
図1は、その種電気透析槽の一態様例を模式的に示す図である。図1中Aは陰イオン交換膜、Kは陽イオン交換膜であり、図示のとおり、これら両イオン交換膜A及び陽イオン交換膜Kは電気透析槽1中に脱塩室枠D1、D2、D3 ・・・Dn及び濃縮室枠C1、C2、C3 ・・・Cnを介して所定間隔を置いて配置され、これにより陽極室2、濃縮室S1、S2・・・Sn、脱塩室R1、R2・・・Rn及び陰極室3が構成される。そして脱塩室R1、R2・・・Rnには陰陽のイオン交換樹脂が収容、充填される。濃縮室には、スペーサーN1、N2、N3 ・・・Nnが挿入配置される。
【0026】
図1中符号4は陽極、5は陰極であり、操作中両極間に所定の電圧がかけられる。これにより導管6から脱塩室R1、R2・・・Rnへ導入される被処理液中の陰イオン成分は陰イオン交換膜Aを通して陽極側の濃縮室へ透過移行する一方、被処理液中の陽イオン成分は陽イオン交換膜Kを通して陰極側の濃縮室へ透過移行し、被処理液自体は脱イオン化され、導管7を通して排出される。また濃縮液は導入管8を通して各濃縮室S1、S2・・・Snへ導入され、ここで上記のように透過移行した陰陽両イオンが集められ濃縮液として導管9から排出される。
【0027】
脱塩室内において陽イオン交換体に捕捉された被処理水中の陽イオンは、電場により駆動力を与えられ、捕捉した陽イオン交換体に接触している陽イオン交換体を経由して陽イオン交換膜に達し、さらに膜を通過して濃縮室に移動する。同様に、陰イオン交換体に捕捉された被処理水中の陰イオンは陰イオン交換体、陰イオン交換膜を経由して濃縮室に移動する。このことから陽イオン交換体及び陰イオン交換体がある範囲で集合して集合域を形成していると、同種イオン粒子同士の接触点が格段に多くなるためイオンの移動が容易になり、脱イオン性能が向上するのでさらに好ましい。
【0028】
【実施例】
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明がこれら実施例に限定されないことはもちろんである。
【0029】
《実施例1》
粒径が400〜600μm、イオン交換容量が4.5ミリ当量/g乾燥樹脂のスルホン酸酸型(H型)陽イオン交換樹脂(三菱化学社製、商品名:ダイヤイオンSKー1B)、および粒径が400〜600μm、イオン交換容量が3.5ミリ当量/g乾燥樹脂の4級アンモニウム塩型(OH型)陰イオン交換樹脂(三菱化学社製、商品名:ダイヤイオンSAー10A)を温度50℃で熱風乾燥して水分率を8重量%とした後、陽イオン交換樹脂/陰イオン交換樹脂=44/56(乾燥状態での重量比)で混合して、イオン交換容量比が50/50の混合物とした。
【0030】
この乾燥イオン交換樹脂混合物を脱塩室の厚みが1.2cm、濃縮室の厚みが0.2cmの縦型の電気透析槽の脱塩室に容積充填率で60%充填し、60分間の通水及び24時間の前通電処理後、10μS/cmの水中での比抵抗を測定したところ、電流密度0.0025A/cm2 の時、1051Ω・cmであった。かかる電気透析槽を用いて以下のように脱イオン水の製造を行った。電気透析槽は陽イオン交換膜(強酸性不均一膜、厚み500μm、イオン交換容量4.5ミリ当量/グラム乾燥樹脂)及び陰イオン交換膜(強塩基性不均一膜、厚み500μm、イオン交換容量3.5ミリ当量/グラム乾燥樹脂)を脱塩室枠(厚み1.2cmのポリプロピレン製)濃縮室枠(厚み0.2cmのポリプロピレン製)を介して配列し、締め付けたフィルタープレス型透析槽(濃縮室には、交点厚みが0.2cmのポリプロピレン製ネットを挿入)からなる有効面積507cm2 (横13cm、縦39cm)×5対のものを用いた。
【0031】
原水として電導度5μS/cmの水を用い、電流密度0.004A/cm2 (電圧=ユニットセル当り5V)で脱塩を行ったところ、電導度0.062μS/cmの処理水が0.4m3 /hの生産量で安定して得られた。この場合、生産水1m3/hあたりの膜使用有効面積は1.27m2であった。測定後脱塩室のイオン交換樹脂を取り出し、自由状態のイオン交換樹脂混合物の容積を測定したところ、脱塩室の容積の122%の容積であった。また、図2に示す測定装置を使用し、本実施例と同じ乾燥イオン交換体を、同じ容積充填率で図2に示す金属容器10に入れ、通水して発生圧力を測定したところ、圧力は2.1kg/cm2 であった。なお、図2中、11は金属板、12は水注入口、13は水出口、14はロードセル、15は乾燥イオン交換体である。
【0032】
《実施例2》
粒径が400〜600μm、イオン交換容量が4.5ミリ当量/g乾燥樹脂のスルホン酸ナトリウム型(Na型)陽イオン交換樹脂(三菱化学社製、商品名:ダイヤイオンSKー1B)、および粒径が400〜600μm、イオン交換容量が3.5ミリ当量/g乾燥樹脂の4級アンモニウム塩型(Cl型)陰イオン交換樹脂(三菱化学社製、商品名:ダイヤイオンSAー10A)を温度50℃で熱風乾燥し水分率を8重量%とした後、陽イオン交換樹脂/陰イオン交換樹脂=44/56(乾燥状態での重量比)で混合し、イオン交換容量比が50/50の混合物とした。
【0033】
この混合物に線状低密度ポリエチレン(ダウケミカル社製、商品名:アフィニティSMー1300)を3重量%混合し、温度120〜130℃で混練した。得られた混練物を平板プレスで温度130℃で熱成形し、厚さ0.6cmの多孔質イオン交換体シート状物を得た。この多孔質シート状物の、連続した空隙の空隙率は23容量%であった。この多孔質イオン交換シートを、脱塩室の厚みを0.8cmとした以外は実施例1と同じ構成を有する電気透析槽の脱塩室に容積充填率で54%収容し、60分間の通水及び24時間の前通電処理後、10μS/cmの水中での比抵抗を測定したところ、電流密度0.0025A/cm2 の時、1164Ω・cmであった。
【0034】
比抵抗の測定後脱イオン水の製造を行った。電気透析槽として、脱塩室の厚みを除いて実施例1と同じ電気透析槽を用いた。原水として電導度5μS/cmの水を用い、電流密度0.004A/cm2 (電圧=ユニットセル当り5V)で脱塩を行ったところ、電導度0.060μS/cmの処理水が0.45m3 /hの生産量で安定して得られた。この場合、生産水1m3/h あたりの膜使用有効面積は1.13m2 であった。運転後脱塩室のイオン交換シートを取り出し、自由状態の容積を測定したところ脱塩室の容積の111%の容積であった。また、本実施例と同じ乾燥イオン交換体シートを、同じ容積充填率で図2に示す測定装置の金属容器10に入れ通水して発生圧力を測定したところ、圧力は1.2kg/cm2 であった。
【0035】
《実施例3》
粒径が400〜600μm、イオン交換容量が4.5ミリ当量/g乾燥樹脂のスルホン酸ナトリウム型(Na型)陽イオン交換樹脂(三菱化学社製、商品名:ダイヤイオンSKー1B)、および粒径が400〜600μm、イオン交換容量が3.5ミリ当量/g乾燥樹脂の4級アンモニウム塩型(Cl型)陰イオン交換樹脂(三菱化学社製、商品名:ダイヤイオンSAー10A)を温度50℃で熱風乾燥し水分率を8重量%とした。各々のイオン交換樹脂に、線状低密度ポリエチレン(ダウケミカル社製、商品名:アフィニティSMー1300)を3重量%混合し、温度120〜130℃で混練した。得られた各々の混練物を平板プレスで温度130℃で熱成形し、厚さ0.6cmの多孔質陽イオン交換体シート状物と多孔質陰イオン交換体シート状物を得た。得られた多孔質陽イオン交換体シート状物の連続した空隙の空隙率は24容量%であり、多孔質陰イオン交換体シート状物の空隙率は23容量%であった。
【0036】
これら両多孔質イオン交換体シート状物を用いて、図3(a)〜(b)に示す形状の陽イオン交換体のドメイン(領域)と陰イオン交換体のドメイン(領域)の組み合わせを作製し、実施例2と同じ電気透析槽の厚さ0.8cmの脱塩室に容積充填率66%で充填した。図3(a)は平面図、図3(b)は図3(a)中YーY線断面図であり、図3中符号16はアニオン交換体ドメインを示し、符号17はカチオン交換体ドメインを示している。60分間の通水及び24時間の前通電処理後、10μS/cmの水中での比抵抗を測定したところ、電流密度0.0025A/cm2 の時911Ω・cmであった。
【0037】
比抵抗の測定後脱イオン水の製造を行った。電気透析槽は実施例2で使用したものと同じ電気透析槽を用いた。原水として電導度5μS/cmの水を用い、電流密度0.004A/cm2 (電圧=ユニットセル当り5V)で脱塩を行ったところ、電導度0.057μS/cmの処理水が0.47m3 /hの生産量で安定して得られた。この場合、生産水1m3 /hあたりの膜使用有効面積は1.08m2 であった。測定後脱塩室のイオン交換樹脂を取り出し、容積を測定したところ脱塩室の容積の134%の容積であった。また本実施例と同じ乾燥イオン交換体を、同じ容積充填率で図2に示す測定装置の金属容器10に入れ、通水して発生圧力を測定したところ、圧力は4.2kg/cm2 であった。
【0038】
《実施例4》
粒径が400〜600μm、イオン交換容量が4.5ミリ当量/g乾燥樹脂のスルホン酸ナトリウム型(Na型)陽イオン交換樹脂(三菱化学社製、商品名:ダイヤイオンSKー1B)、および粒径が400〜600μm、イオン交換容量が3.5ミリ当量/g乾燥樹脂の4級アンモニウム塩型(Cl型)陰イオン交換樹脂(三菱化学社製、商品名:ダイヤイオンSAー10A)を温度50℃で熱風乾燥し水分率を8重量%とした。各々のイオン交換樹脂に1,2ーポリブタジエン(日本合成ゴム社製、RBー820)を3重量%混合し、温度120〜130℃で混練した。得られた各々の混練物を平板プレスで温度130℃で熱成形し、厚さ0.6cmの多孔質陽イオン交換体シート状物と多孔質陰イオン交換体シート状物を得た。得られた多孔質陽イオン交換体シート状物の連続した空隙の空隙率は24容量%であり、多孔質陰イオン交換体シート状物の空隙率は23容量%であった。
【0039】
これらの両多孔質イオン交換体シート状物を使用して、図4(a)〜(b)に示す形状の陽イオン交換体のドメイン(領域)と陰イオン交換体のドメイン(領域)の組み合わせを作製し、厚さ0.8cmの脱塩室に容積充填率55%で充填した。図4(a)は平面図、図4(b)は図4(a)中ZーZ線断面図であり、図4中、符号16はアニオン交換体ドメインを示し、符号17はカチオン交換体ドメインを示している。60分間の通水及び24時間の前通電処理後、10μS/cmの水中での比抵抗を測定したところ、電流密度0.0025A/cm2 の時1206Ω・cmであり、同じ混合比の未乾燥再生型イオン交換樹脂をセルに入れて測定した場合の1362Ω・cmより低い値が得られた。
【0040】
比抵抗の測定後脱イオン水の製造を行った。電気透析槽は実施例2で使用したものと同じものを用いた。原水として電導度5μS/cmの水を用い、電流密度0.004A/cm2 (電圧=ユニットセル当り5V)で脱塩を行ったところ、電導度0.057μS/cmの処理水が0.46m3 /hの生産量で安定して得られた。この場合、生産水1m3 /h当りの膜使用有効面積は1.10m2 であった。測定後脱塩室のイオン交換樹脂を取り出し、容積を測定したところ脱塩室の容積の113%の容積であった。また本実施例と同じ乾燥イオン交換体を、同じ容積充填率で図2に示す測定装置の金属容器10に入れ、通水して発生圧力を測定したところ、圧力は1.3kg/cm2 であった。
【0041】
《比較例》
粒径が400〜600μm、イオン交換容量が4.5ミリ当量/g乾燥樹脂のスルホン酸酸型(H型)陽イオン交換樹脂(三菱化学社製、商品名:ダイヤイオンSKー1B)、および粒径が400〜600μm、イオン交換容量が3.5ミリ当量/g乾燥樹脂の4級アンモニウム塩型(OH型)陰イオン交換樹脂(三菱化学社製、商品名:ダイヤイオンSAー10A)を塩酸及び水酸化ナトリウム水溶液で再生した後、陽イオン交換樹脂/陰イオン交換樹脂=40/60(湿潤状態での容量比)で混合し、イオン交換容量比が50/50の混合物とした。
【0042】
この湿潤状態にある再生イオン交換樹脂混合物を、脱塩室の幅が0.8cmである以外は実施例1と同じ構成を有する電気透析槽の脱塩室に容積充填率で100%充填し、60分間の通水及び24時間の前通電処理後、10μS/cmの水中での比抵抗を測定したところ、電流密度0.0025A/cm2 の時1362Ω・cmであった。比抵抗の測定後脱イオン水の製造を行った。電気透析槽は、脱塩室の厚みが異なる他は実施例1と同じものを用いた。原水として電導度5μS/cmの水を用い、電流密度0.005A/cm2 (電圧=ユニットセル当り5V)で脱塩を行ったところ、電導度0.07μS/cmの処理水が0.04m3 /hの生産量でしか得られなかった。処理水量を増大させると電導度が上昇するため処理水量を増大することはできなかった。この場合、生産水1m3 /h当りの膜使用有効面積は12.68m2 と大きい値であった。
【0043】
【発明の効果】
本発明の脱イオン水製造装置によれば、電気透析槽の脱塩室に収容するイオン交換体相互(同士)及びイオン交換膜との密着性を上げることにより電気抵抗を小さくすることができ、脱塩室の厚みも大きくできる。従って膜使用面積が少なく、生産水量が大きい装置が得られる。
【図面の簡単な説明】
【図1】自己再生型電気透析装置の一態様例を模式的に示す図。
【図2】本実施例において乾燥イオン交換体の通水による発生圧力を測定した装置の概略を示す図。
【図3】陰陽の両多孔質イオン交換体シート状物を島状に構成した多孔質イオン交換樹脂体の態様例を示す図(実施例3で使用)。
【図4】陰陽の両多孔質イオン交換体シート状物を多層状に構成した多孔質イオン交換樹脂体の態様例を示す図(実施例4で使用)。
【符号の説明】
A 陰イオン交換膜
K 陽イオン交換膜
1 容器(電気透析槽)
2 陽極室
3 陰極室
4 陽極
5 陰極
1、S2・・・Sn 濃縮室
1、R2・・・Rn 脱塩室
1、D2、D3 ・・・Dn 脱塩室枠
1、C2、C3 ・・・Cn 濃縮室枠
1、N2、N3 ・・・Nn スペーサー
6 被処理液導入管
7 脱イオン水導管
8 濃縮液導入管
9 濃縮液導管
10 金属容器
11 金属板
12 水注入口
13 水出口
14 ロードセル
15 乾燥イオン交換体
16 アニオン交換体ドメイン
17 カチオン交換体ドメイン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deionized water production apparatus for producing pure water or ultrapure water used for pharmaceutical production, semiconductor production, boiler water for power generation and the like.
[0002]
[Prior art]
As a method for producing deionized water, a general method is to obtain deionized water by flowing water to be treated through a packed bed of ion exchange resin and adsorbing and removing impurity ions on the ion exchange resin. Here, a method of regenerating the ion exchange resin having reduced adsorption capacity using an acid or alkali is employed. However, this method has a problem that the waste liquid of acid and alkali used for regeneration is discharged, and therefore, a deionized water production method that does not require regeneration is desired.
[0003]
From such a viewpoint, in recent years, a self-regenerating electrodialysis deionized water production method combining an ion exchange resin and an ion exchange membrane has attracted attention. In this method, a mixture of an anion exchanger and a cation exchanger is placed in a desalting chamber of an electrodialysis apparatus in which an anion exchange membrane and a cation exchange membrane are alternately arranged, and water to be treated is placed in the desalting chamber. This is a method for producing deionized water by applying voltage while flowing and performing electrodialysis. In this method, since the ion exchange resin in a wet state is generally contained in the desalting chamber, the adhesion between the ion exchange resins or between the ion exchange resin and the ion exchange membrane is insufficient, and the thickness of the desalting chamber is increased. However, there is a drawback in that the resistance increases when trying to reduce the membrane use area.
[0004]
As a method for compensating for these drawbacks, in Japanese Patent Publication No. 4-72567 and Japanese Patent Publication No. 6-20513, the width of the desalting chamber is about 0.762 to 10.16 cm (≈0.3 to 4 inches), It has been proposed that the thickness be about 0.127 to 0.635 cm (≈0.05 to 0.25 inch) to prevent an increase in resistance. However, in this method, since the thickness of the desalting chamber is thin, it is difficult to fill the ion-exchanger into the desalting chamber, and the amount of produced water per unit area is low.
[0005]
[Problems to be solved by the invention]
The present invention relates to a self-regenerative electrodialysis deionized water production apparatus that combines an ion exchanger and an ion exchange membrane, and does not increase in resistance even if the thickness of the desalting chamber is increased, and the prior art has Another object of the present invention is to provide a deionized water production apparatus that does not have the above-described drawbacks and can stably obtain pure water over a long period of time.
[0006]
[Means for Solving the Problems]
In the present invention, a cation exchange membrane and an anion exchange membrane are alternately arranged between a cathode and an anode, and an ion exchanger is accommodated in a desalting chamber of an electrodialysis tank in which a desalting chamber and a concentration chamber are formed. In the deionized water production apparatus as described above, 0.1-20 kg / cm between the ion exchanger accommodated in the desalting chamber and the cation exchange membrane and the anion exchange membrane partitioning the desalting chamber. 2 The deionized water production apparatus is characterized in that the pressure is generated.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the state of the ion exchanger is changed in advance and accommodated in the desalting chamber of the electrodialysis tank, or the state is changed after being accommodated in the desalting chamber. Hereinafter, in this specification, the state of the ion exchanger will be described by the following terms. The “use state” is a state when the ion exchanger is accommodated in the desalting chamber and used for electrodialysis, and is in a state of being balanced with the environment at the time of use. The “contracted state” refers to a state in which the apparent volume of the ion exchanger is contracted by some method. “Free state” refers to a state that is in equilibrium with the environment in which it is used but is not constrained by a desalting chamber.
[0008]
In the present invention, the thickness of the desalting chamber is 0.2 cm or more, preferably 0.7 cm or more. If the thickness of the desalting chamber is less than 0.2 cm, the effect of reducing the area of the membrane used is not clear, and it is difficult to fill the ion exchanger, which is not preferable. On the other hand, if the thickness exceeds 80.0 cm, the effect of reducing the area of the film used is large, but it is also not preferable because the increase in resistance is also large. Especially, it is especially preferable that the thickness of the desalting chamber is 1.1 cm or more and 30.0 cm or less because the resistance increase is small and the effect of reducing the area of the membrane used is large.
[0009]
The pressure generated between the ion exchanger accommodated or filled in the desalting chamber and the cation exchange membrane and anion exchange membrane partitioning the desalting chamber is 0.1-20 kg / cm. 2 Range. The pressure is 0.1 kg / cm 2 If it is less than 1, the adhesion between the ion exchangers or between the ion exchanger and the ion exchange membrane is not sufficient, the resistance is increased, a short path of treated water can be formed, and the purity of the water obtained is not preferable. . On the other hand, the pressure is 20 kg / cm. 2 If it is larger, the adhesion between the ion exchangers or between the ion exchanger and the ion exchange membrane is sufficient, but it is not preferable because the amount of treated water decreases or the ion exchange membrane used is damaged. Above all, the pressure is 0.5-10 kg / cm. 2 Especially 0.8-2kg / cm 2 Is preferred.
[0010]
In the present invention, as a preferable means for generating pressure between the packing body filled in the desalting chamber and the ion exchange membrane, (1) the volume of the ion exchanger accommodated in the desalting chamber is smaller than that of the regenerative type. The ion exchanger in a free state is stored in the desalting chamber with a volume of the ion exchanger regeneration type larger than that of the desalting chamber, and the ion exchanger is made to pass water and energize. And (2) means for increasing the pressure by accommodating the ion exchanger in the desalting chamber and mechanically reducing the volume of the desalting chamber.
[0011]
In the means of (1) above, the ion exchanger accommodated in the desalting chamber is It is converted into a form in which the volume is reduced from the volume of the ion exchanger in use, and is in equilibrium with that used for electrodialysis, but is not restricted by the desalination chamber Ion exchanger in state of Desalination chamber when converted to volume of It is preferable to accommodate an amount of 103 to 170% with respect to the volume. If this amount is less than 103%, the adhesion of the accommodated ion exchanger is not good, which is not preferable. On the other hand, when the amount is larger than 170%, the adhesion is good, but the pressure loss when water is passed increases, which is not preferable. In particular, the amount of the ion exchanger is particularly preferably 111 to 150%.
[0012]
As a method of reducing the volume of the ion exchanger from that of the regenerative type, (1) a method of reducing the moisture content by drying, or (2) a method of changing the counter ion to a non-regenerative type and making it a load type , (3) or a method of substituting the solvent by immersing it in an organic solvent. (4) The method of (1) in which the moisture content is reduced by drying and the load type by changing the counter ion to an ion species other than the regeneration type. The method (2) that is used in combination is a preferred method because it can be easily applied regardless of the type and structure of the ion exchanger and has a large volume increasing effect.
[0013]
When the moisture content is reduced by drying, the moisture content (weight) is preferably reduced to 1 to 30%. If the moisture content is less than 1%, drying takes time, which is not preferable. If the moisture content is greater than 30%, the effect of increasing the volume is reduced when water is passed through and energized, such being undesirable. A moisture content of 5 to 15% is particularly preferable because drying is easy and the effect of increasing the volume during water flow and energization is large. As the type of counter ion at the time of drying, Na type is preferable in the case of a cation exchanger, and Cl type is preferable in the case of an anion exchanger because it is thermally stable. The drying temperature is preferably 30 to 80 ° C. If the temperature is less than 30 ° C., drying takes time, and if the temperature is higher than 80 ° C., the ion exchange group is decomposed, which is not preferable.
[0014]
In the case of a method in which the counter ion is changed to an ion species other than the regenerative type to make it a load type, the Na type is particularly preferable for the cation exchanger and the Cl type is particularly preferable for the anion exchanger as described above. In addition, in the case of a cation exchanger, K type and Li type, and in the case of an anion exchanger, NO Three A monovalent counter ion such as a mold is preferably used. In this respect, Ca type, Al type, SO Four In the case of a divalent or higher counter ion such as a mold, it is not preferable because it cannot be easily converted to a regenerated form.
[0015]
Next, in the method (2) in which the ion exchanger is accommodated in the desalting chamber and the pressure is increased by mechanically reducing the volume of the desalting chamber, the chamber between the desalting chamber and the ion exchange membrane is used. It is preferable to reduce the volume of the desalting chamber by 5 to 60% by volume by introducing a spacer that contracts due to pressure, filling the ion exchanger, and compressing by applying pressure from the outside. If the desalting chamber volume to be reduced is less than 5% by volume, the adhesion of the accommodated ion exchanger is not good, which is not preferable. On the other hand, if the volume of the desalting chamber to be reduced is larger than 60% by volume, the adhesion is good, but the pressure loss when water is passed increases, which is not preferable. As the material for the shrinking spacer, a foamed sheet of polyethylene, polypropylene, polystyrene or the like is preferably used.
[0016]
In the present invention, examples of the ion exchanger accommodated in the desalting chamber include ion exchange resins, ion exchange fibers, processed products thereof, and the like. The ion exchange resin and the ion exchange resin are formed into a sheet using a binder polymer. The porous ion exchanger adhered to is a preferable ion exchanger from the viewpoints of ion exchange performance and durability. In particular, a porous ion exchanger sheet is preferable because it has good adhesion between ion exchange resins and can be easily accommodated in a desalting chamber.
[0017]
As for the porosity when the ion exchanger is accommodated in the desalting chamber, the continuous porosity involved in the passage of the liquid is preferably 5% by volume or more. If the porosity is less than 5% by volume, the flow rate of the liquid decreases and the pressure loss increases, which is not preferable. When the porosity is 10 to 40%, water permeability is good, desalting performance is excellent, and treated water with high purity is particularly preferable. In addition, this porosity is a value at the time of accommodating an ion exchanger in a desalting chamber, water flow, and electricity supply.
[0018]
As the ion exchanger, at least a cation exchanger, an anion exchanger, a mixture thereof, or a porous molded product thereof can be used. Moreover, the structure which combined the domain (area | region) of the cation exchanger and the domain (area | region) of the anion exchanger may be sufficient. In this case, various shapes can be used for each domain in contact with the ion exchange membrane. For example, a sea island shape, a layer shape, a mosaic shape, a lattice shape, or the like can be used. In particular, sea islands and layers are preferred because they can be easily stored in the dilution chamber and can be efficiently desalted. However, the ratio of the cation exchanger to the anion exchanger used as a whole may be a ratio of the cation exchanger / anion exchanger = 20/80 to 80/20 in the total ion exchange capacity ratio. preferable.
[0019]
When a porous ion exchanger is used as the ion exchanger, the weight fraction of the binder polymer is preferably 20% or less. If the weight fraction is larger than 20%, the surface of the ion exchange resin particles is covered with a binder polymer, so that the adsorptivity is lowered, and the porosity is lowered, so that the flow rate of the liquid to be treated is reduced and the pressure loss is increased. Absent. Among these, the weight fraction is preferably 1 to 5%. The binder polymer is preferably a thermoplastic polymer or a solvent-soluble polymer from the viewpoint of the production method of the porous ion exchanger.
[0020]
As such a binder polymer, the following can be preferably used. First, examples of the thermoplastic polymer include low density polyethylene, linear low density polyethylene, ultra high molecular weight high density polyethylene, polypropylene, polyisobutylene, 1,2-polybutadiene, vinyl acetate, ethylene-vinyl acetate copolymer, and solvent. Examples of the soluble polymer include natural rubber, butyl rubber, polyisoprene, polychloroprene, styrene-butadiene rubber, nitrile rubber, vinyl chloride-fatty acid vinyl ester copolymer, and the like.
[0021]
The thickness of the porous sheet in which the ion exchange resin is bound using the binder polymer is 50% to 100% of the thickness of the desalting chamber when the porous sheet is accommodated in the desalting chamber in a reduced volume form. preferable. If this thickness is less than 50% of the desalting chamber thickness, it is not preferable because it does not adhere to the ion exchange membrane when water is passed through or energized. If the thickness is greater than 100%, it cannot be accommodated in the desalting chamber, which is not preferable. It is particularly preferable when the thickness of the porous sheet with the volume reduced is 70 to 90% of the thickness of the desalting chamber.
[0022]
The following method is preferred as a method for binding an ion exchange resin to a porous sheet using a binder polymer. (1) A method in which ion exchange resin particles and a binder polymer are kneaded with heat and then formed into a sheet by thermoforming such as a flat plate press. (2) The binder polymer solution is applied to the surface of the ion exchange resin particles and the solvent is evaporated. (3) A method of extracting a pore-forming agent after heat-mixing and molding a binder polymer and a pore-forming agent and ion-exchange resin particles, and (4) a binder polymer solution in which the pore-forming agent is dispersed is an ion-exchange resin. For example, a method of extracting a pore-forming agent after being applied to the particle surface and cured. Among these, (1) the ion exchange resin particles and binder polymer are heat-kneaded and then formed into a sheet by thermoforming such as a flat plate press, and the binder polymer, pore former and ion exchange resin particles of (3) are heated. The method of extracting the pore-forming agent after the mixed molding is preferable from the viewpoints of molding processability and specific resistance of the resulting porous ion exchanger.
[0023]
The ion exchange group of the ion exchanger has a sulfonic acid type that is a strong acid as a cation exchange group, and a quaternary ammonium salt type or a pyridinium salt type that is a strong base as an anion exchange group. It is preferable from the viewpoint of stability. The ion exchange capacity of the ion exchanger is preferably 0.5 to 7 meq / g dry resin. If the ion exchange capacity is lower than 0.5 meq / g dry resin, ion adsorption and desalting are not sufficiently performed in the desalting chamber, and the purity of the treated water may be lowered, which is not preferable. In the case where the ion exchange capacity is 1 to 5 meq / g dry resin, a product with high treated water purity is obtained, and the performance stability is excellent, which is particularly preferable.
[0024]
As an apparatus for producing deionized water in the present invention, for example, JP-A-3-186400, JP-A-2-277526, JP-A-5-64726, US Pat. No. 4,632,745 and US Pat. It is preferable to use an electrodialysis tank having the following configuration, which is described in the specification of US Pat. No. 5,425,866. In the electrodialysis tank, a plurality of cation exchange membranes and anion exchange membranes are preferably arranged alternately through a chamber frame between an anode chamber having an anode and a cathode chamber having a cathode, and the anode side is A desalting chamber partitioned by an anion exchange membrane and a cathode side partitioned by a cation exchange membrane, and a concentration chamber partitioned by a cation exchange membrane on the cathode side and partitioned by an anion exchange membrane are preferred alternately. 2 to 50 sets are formed. The thickness of the frame-like chamber frame having an opening at the center interposed between the cation exchange membrane and the anion exchange membrane defines the thickness of the desalting chamber and the concentration chamber. The thickness of the chamber frame of the desalting chamber and the concentration chamber is not necessarily the same. The ion exchange membrane can be either homogeneous or heterogeneous, and can be reinforced with a woven or non-woven fabric in order to increase the mechanical strength. In order to keep the thickness of the concentrating chamber at a predetermined thickness, a net-like spacer (spacer) is preferably inserted and arranged. Desalination can be performed by flowing the water to be treated in the desalting chamber and flowing an electric current in the concentration chamber while flowing water for discharging the concentrated salts. A voltage of about 4 to 20 V is preferably applied to each unit cell, and the current density is preferably 0.00001 to 0.05 A / cm. 2 Is energized.
[0025]
FIG. 1 is a diagram schematically showing an example of the seed electrodialysis tank. In FIG. 1, A is an anion exchange membrane and K is a cation exchange membrane. As shown in the drawing, both the ion exchange membrane A and the cation exchange membrane K are disposed in the desalination chamber frame D in the electrodialysis tank 1. 1 , D 2 , D Three ... Dn and concentration chamber frame C 1 , C 2 , C Three ... Arranged at predetermined intervals via Cn, whereby anode chamber 2 and concentrating chamber S 1 , S 2 ... Sn, desalination chamber R 1 , R 2 ... Rn and cathode chamber 3 are formed. And desalination chamber R 1 , R 2 ... Rn is filled with Yin Yang ion exchange resin. Spacer N in the concentration chamber 1 , N 2 , N Three ... Nn is inserted and arranged.
[0026]
In FIG. 1, reference numeral 4 denotes an anode, and 5 denotes a cathode, and a predetermined voltage is applied between both electrodes during operation. As a result, the desalination chamber R from the conduit 6 1 , R 2 ... Anion components in the liquid to be treated introduced into Rn permeate and transfer through the anion exchange membrane A to the concentration chamber on the anode side, while cation components in the liquid to be treated pass through the cation exchange membrane K to the cathode. Permeated to the concentration chamber on the side, the liquid to be treated itself is deionized and discharged through the conduit 7. Further, the concentrated liquid passes through the introduction pipe 8 to each concentration chamber S. 1 , S 2 ... Are introduced into Sn, where the positive and negative ions permeated as described above are collected and discharged from the conduit 9 as a concentrate.
[0027]
The cations in the water to be treated that are captured by the cation exchanger in the desalting chamber are given a driving force by an electric field, and are exchanged via the cation exchanger in contact with the captured cation exchanger. It reaches the membrane and passes through the membrane and moves to the concentration chamber. Similarly, the anion in the water to be treated captured by the anion exchanger moves to the concentration chamber via the anion exchanger and the anion exchange membrane. For this reason, if the cation exchanger and the anion exchanger are gathered within a certain range to form an aggregation region, the number of contact points between the same kind of ion particles is remarkably increased, so that the movement of ions is facilitated. Since ion performance improves, it is further more preferable.
[0028]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, of course, this invention is not limited to these Examples.
[0029]
Example 1
A sulfonic acid type (H type) cation exchange resin (trade name: Diaion SK-1B, manufactured by Mitsubishi Chemical Corporation) having a particle size of 400 to 600 μm and an ion exchange capacity of 4.5 meq / g dry resin, and A quaternary ammonium salt type (OH type) anion exchange resin (trade name: Diaion SA-10A, manufactured by Mitsubishi Chemical Corporation) having a particle size of 400 to 600 μm and an ion exchange capacity of 3.5 meq / g dry resin. After drying with hot air at a temperature of 50 ° C. to a moisture content of 8% by weight, the mixture was mixed at a cation exchange resin / anion exchange resin = 44/56 (weight ratio in the dry state), and the ion exchange capacity ratio was 50 / 50 mixture.
[0030]
This dry ion exchange resin mixture was filled in a desalting chamber of a vertical electrodialysis tank having a desalting chamber thickness of 1.2 cm and a concentrating chamber thickness of 0.2 cm at a volume filling rate of 60 minutes. When the specific resistance in 10 μS / cm water was measured after water and 24 hours pre-energization treatment, the current density was 0.0025 A / cm. 2 At that time, it was 1051 Ω · cm. Using such an electrodialysis tank, deionized water was produced as follows. Electrodialysis tanks are cation exchange membranes (strongly acidic heterogeneous membrane, thickness 500 μm, ion exchange capacity 4.5 meq / g dry resin) and anion exchange membranes (strongly basic heterogeneous membrane, thickness 500 μm, ion exchange capacity) 3.5 milliequivalent / gram dry resin) was placed through a desalting chamber frame (made of polypropylene with a thickness of 1.2 cm) and concentrated chamber frame (made of polypropylene with a thickness of 0.2 cm) and tightened, and the filter press type dialysis tank ( An effective area of 507 cm consisting of a polypropylene net with an intersection thickness of 0.2 cm is inserted into the concentration chamber. 2 (13 cm wide, 39 cm long) × 5 pairs were used.
[0031]
Water having an electric conductivity of 5 μS / cm is used as raw water, and the current density is 0.004 A / cm. 2 When desalting was carried out at a voltage of 5 V per unit cell, the treated water with a conductivity of 0.062 μS / cm was 0.4 m. Three It was stably obtained at a production rate of / h. In this case, 1m of production water Three Effective area of membrane used per 1h is 1.27m 2 Met. After the measurement, the ion exchange resin in the desalting chamber was taken out, and the volume of the ion exchange resin mixture in the free state was measured to be 122% of the volume of the desalting chamber. Moreover, when the measurement apparatus shown in FIG. 2 was used, the same dry ion exchanger as in this example was put into the metal container 10 shown in FIG. 2 at the same volume filling rate, and the generated pressure was measured by passing water. 2.1kg / cm 2 Met. In FIG. 2, 11 is a metal plate, 12 is a water inlet, 13 is a water outlet, 14 is a load cell, and 15 is a dry ion exchanger.
[0032]
Example 2
Sodium sulfonate type (Na type) cation exchange resin (trade name: Diaion SK-1B, manufactured by Mitsubishi Chemical Corporation) having a particle size of 400 to 600 μm and an ion exchange capacity of 4.5 meq / g dry resin, and A quaternary ammonium salt type (Cl type) anion exchange resin (product name: Diaion SA-10A, manufactured by Mitsubishi Chemical Corporation) having a particle size of 400 to 600 μm and an ion exchange capacity of 3.5 meq / g dry resin. After drying with hot air at a temperature of 50 ° C. to a moisture content of 8% by weight, mixing is carried out at a cation exchange resin / anion exchange resin = 44/56 (weight ratio in the dry state), and the ion exchange capacity ratio is 50/50 A mixture of
[0033]
3% by weight of linear low density polyethylene (manufactured by Dow Chemical Company, trade name: Affinity SM-1300) was mixed with this mixture and kneaded at a temperature of 120 to 130 ° C. The obtained kneaded material was thermoformed at a temperature of 130 ° C. with a flat plate press to obtain a porous ion exchanger sheet-like material having a thickness of 0.6 cm. The porosity of the continuous voids of this porous sheet was 23% by volume. The porous ion exchange sheet was accommodated in a desalting chamber of an electrodialysis tank having the same configuration as that of Example 1 except that the thickness of the desalting chamber was 0.8 cm, and the volume filling rate was 54%. When the specific resistance in 10 μS / cm water was measured after water and 24 hours pre-energization treatment, the current density was 0.0025 A / cm. 2 At that time, it was 1164 Ω · cm.
[0034]
After measuring the specific resistance, deionized water was produced. As the electrodialysis tank, the same electrodialysis tank as in Example 1 was used except for the thickness of the desalination chamber. Water having an electric conductivity of 5 μS / cm is used as raw water, and the current density is 0.004 A / cm. 2 When desalting was performed at (voltage = 5 V per unit cell), treated water with an electric conductivity of 0.060 μS / cm was 0.45 m. Three It was stably obtained at a production rate of / h. In this case, 1m of production water Three Effective area of membrane used per 1h is 1.13m 2 Met. After the operation, the ion exchange sheet in the desalting chamber was taken out, and the volume in the free state was measured. As a result, it was 111% of the volume of the desalting chamber. Further, when the same dry ion exchanger sheet as in this example was passed through the metal container 10 of the measuring apparatus shown in FIG. 2 at the same volume filling rate and the generated pressure was measured, the pressure was 1.2 kg / cm. 2 Met.
[0035]
Example 3
Sodium sulfonate type (Na type) cation exchange resin (trade name: Diaion SK-1B, manufactured by Mitsubishi Chemical Corporation) having a particle size of 400 to 600 μm and an ion exchange capacity of 4.5 meq / g dry resin, and A quaternary ammonium salt type (Cl type) anion exchange resin (product name: Diaion SA-10A, manufactured by Mitsubishi Chemical Corporation) having a particle size of 400 to 600 μm and an ion exchange capacity of 3.5 meq / g dry resin. It was dried with hot air at a temperature of 50 ° C. to adjust the water content to 8% by weight. Each ion-exchange resin was mixed with 3% by weight of linear low-density polyethylene (manufactured by Dow Chemical Company, trade name: Affinity SM-1300) and kneaded at a temperature of 120 to 130 ° C. Each obtained kneaded material was thermoformed at a temperature of 130 ° C. with a flat plate press to obtain a porous cation exchanger sheet and a porous anion exchanger sheet having a thickness of 0.6 cm. The porosity of continuous voids of the obtained porous cation exchanger sheet was 24% by volume, and the porosity of the porous anion exchanger sheet was 23% by volume.
[0036]
Using these porous ion exchanger sheet-like materials, a combination of a cation exchanger domain (region) and an anion exchanger domain (region) having the shape shown in FIGS. In the same electrodialysis tank as in Example 2, the desalting chamber having a thickness of 0.8 cm was filled at a volume filling rate of 66%. 3 (a) is a plan view, FIG. 3 (b) is a cross-sectional view taken along line YY in FIG. 3 (a), and in FIG. 3, reference numeral 16 denotes an anion exchanger domain, and reference numeral 17 denotes a cation exchanger domain. Is shown. When the specific resistance in 10 μS / cm water was measured after 60 minutes of water flow and 24 hours of pre-energization, the current density was 0.0025 A / cm. 2 At that time, it was 911 Ω · cm.
[0037]
After measuring the specific resistance, deionized water was produced. The same electrodialysis tank as used in Example 2 was used as the electrodialysis tank. Water having an electric conductivity of 5 μS / cm is used as raw water, and the current density is 0.004 A / cm. 2 When desalting was performed at (voltage = 5 V per unit cell), the treated water having an electric conductivity of 0.057 μS / cm was 0.47 m. Three It was stably obtained at a production rate of / h. In this case, 1m of production water Three Effective area of membrane used per hour / h is 1.08m 2 Met. After the measurement, the ion exchange resin in the desalting chamber was taken out and the volume was measured. As a result, the volume was 134% of the volume of the desalting chamber. Further, when the same dry ion exchanger as in the present example was put into the metal container 10 of the measuring apparatus shown in FIG. 2 with the same volume filling rate and the generated pressure was measured by passing water, the pressure was 4.2 kg / cm. 2 Met.
[0038]
Example 4
Sodium sulfonate type (Na type) cation exchange resin (trade name: Diaion SK-1B, manufactured by Mitsubishi Chemical Corporation) having a particle size of 400 to 600 μm and an ion exchange capacity of 4.5 meq / g dry resin, and A quaternary ammonium salt type (Cl type) anion exchange resin (product name: Diaion SA-10A, manufactured by Mitsubishi Chemical Corporation) having a particle size of 400 to 600 μm and an ion exchange capacity of 3.5 meq / g dry resin. It was dried with hot air at a temperature of 50 ° C. to adjust the water content to 8% by weight. Each ion exchange resin was mixed with 3% by weight of 1,2-polybutadiene (RB-820, manufactured by Nippon Synthetic Rubber Co., Ltd.) and kneaded at a temperature of 120 to 130 ° C. Each obtained kneaded material was thermoformed at a temperature of 130 ° C. with a flat plate press to obtain a porous cation exchanger sheet and a porous anion exchanger sheet having a thickness of 0.6 cm. The porosity of continuous voids of the obtained porous cation exchanger sheet was 24% by volume, and the porosity of the porous anion exchanger sheet was 23% by volume.
[0039]
A combination of the cation exchanger domain (region) and the anion exchanger domain (region) having the shape shown in FIGS. 4 (a) to 4 (b) using these both porous ion exchanger sheets. Was filled in a desalting chamber having a thickness of 0.8 cm at a volume filling rate of 55%. 4A is a plan view, and FIG. 4B is a cross-sectional view taken along the line ZZ in FIG. 4A. In FIG. 4, reference numeral 16 denotes an anion exchanger domain, and reference numeral 17 denotes a cation exchanger. Shows the domain. When the specific resistance in 10 μS / cm water was measured after 60 minutes of water flow and 24 hours of pre-energization, the current density was 0.0025 A / cm. 2 In this case, the value was 1206 Ω · cm, and a value lower than 1362 Ω · cm when an undried regenerated ion exchange resin having the same mixing ratio was measured in a cell was obtained.
[0040]
After measuring the specific resistance, deionized water was produced. The same electrodialysis tank as that used in Example 2 was used. Water having an electric conductivity of 5 μS / cm is used as raw water, and the current density is 0.004 A / cm. 2 When desalting was performed at (voltage = 5 V per unit cell), treated water having an electric conductivity of 0.057 μS / cm was 0.46 m. Three It was stably obtained at a production rate of / h. In this case, 1m of production water Three Effective area of membrane per 1h is 1.10m 2 Met. After the measurement, the ion exchange resin in the desalting chamber was taken out and the volume was measured. As a result, it was 113% of the volume of the desalting chamber. Further, when the same dry ion exchanger as in this example was put into the metal container 10 of the measuring apparatus shown in FIG. 2 at the same volume filling rate and the generated pressure was measured by passing water, the pressure was 1.3 kg / cm. 2 Met.
[0041]
《Comparative example》
A sulfonic acid type (H type) cation exchange resin (trade name: Diaion SK-1B, manufactured by Mitsubishi Chemical Corporation) having a particle size of 400 to 600 μm and an ion exchange capacity of 4.5 meq / g dry resin, and A quaternary ammonium salt type (OH type) anion exchange resin (trade name: Diaion SA-10A, manufactured by Mitsubishi Chemical Corporation) having a particle size of 400 to 600 μm and an ion exchange capacity of 3.5 meq / g dry resin. After regenerating with hydrochloric acid and sodium hydroxide aqueous solution, the mixture was mixed with cation exchange resin / anion exchange resin = 40/60 (volume ratio in a wet state) to obtain a mixture having an ion exchange capacity ratio of 50/50.
[0042]
This wet regenerated ion exchange resin mixture is filled 100% by volume filling rate into the desalting chamber of the electrodialysis tank having the same configuration as in Example 1 except that the width of the desalting chamber is 0.8 cm, When the specific resistance in 10 μS / cm water was measured after 60 minutes of water flow and 24 hours of pre-energization, the current density was 0.0025 A / cm. 2 At that time, it was 1362 Ω · cm. After measuring the specific resistance, deionized water was produced. The same electrodialysis tank as in Example 1 was used except that the thickness of the desalting chamber was different. Water having an electric conductivity of 5 μS / cm is used as raw water, and the current density is 0.005 A / cm. 2 When desalting was performed at (voltage = 5 V per unit cell), the treated water with an electric conductivity of 0.07 μS / cm was 0.04 m. Three / H production only. When the amount of treated water was increased, the conductivity increased and the amount of treated water could not be increased. In this case, 1m of production water Three Effective area of membrane used per hour / h is 12.68m 2 It was a big value.
[0043]
【The invention's effect】
According to the deionized water production apparatus of the present invention, the electrical resistance can be reduced by increasing the adhesion between the ion exchangers housed in the demineralization chamber of the electrodialysis tank (to each other) and the ion exchange membrane, The thickness of the desalination chamber can be increased. Therefore, an apparatus having a small membrane use area and a large production water volume can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram schematically illustrating an example of a self-regenerating electrodialysis apparatus.
FIG. 2 is a diagram showing an outline of an apparatus for measuring a pressure generated by passing water of a dry ion exchanger in the present example.
FIG. 3 is a view showing an example of a porous ion exchange resin body in which both Yin and Yang porous ion exchanger sheet-like materials are formed in an island shape (used in Example 3).
FIG. 4 is a diagram showing an example of a porous ion exchange resin body in which both Yin and Yang porous ion exchanger sheet-like materials are formed in a multilayer shape (used in Example 4).
[Explanation of symbols]
A anion exchange membrane
K cation exchange membrane
1 container (electrodialysis tank)
2 Anode chamber
3 Cathode chamber
4 Anode
5 Cathode
S 1 , S 2 ... Sn enrichment chamber
R 1 , R 2 ... Rn desalination chamber
D 1 , D 2 , D Three ... Dn desalination chamber frame
C 1 , C 2 , C Three ... Cn enrichment chamber frame
N 1 , N 2 , N Three ... Nn spacer
6 Liquid to be treated inlet
7 Deionized water conduit
8 Concentrated liquid inlet tube
9 Condensate conduit
10 Metal container
11 Metal plate
12 Water inlet
13 Water outlet
14 Load cell
15 Dry ion exchanger
16 Anion exchanger domain
17 Cation exchanger domain

Claims (5)

陰極と陽極の間に陽イオン交換膜と陰イオン交換膜を交互に配列させ脱塩室と濃縮室とを形成させた電気透析槽の脱塩室にイオン交換体を収容してなる脱イオン水製造装置において、脱塩室に収容されたイオン交換体と脱塩室を区画する陽イオン交換膜及び陰イオン交換膜との間に0.1〜20kg/cm2の圧力を発生させるようにせしめたことを特徴とする脱イオン水製造装置。Deionized water containing an ion exchanger in a desalting chamber of an electrodialysis tank in which a cation exchange membrane and an anion exchange membrane are alternately arranged between a cathode and an anode to form a desalting chamber and a concentrating chamber In the production apparatus, a pressure of 0.1 to 20 kg / cm 2 is generated between the ion exchanger accommodated in the desalting chamber and the cation exchange membrane and the anion exchange membrane partitioning the desalting chamber. An apparatus for producing deionized water. 前記脱塩室の厚みが、0.7〜30cmである請求項1に記載の脱イオン水製造装置。  The deionized water production apparatus according to claim 1, wherein the demineralization chamber has a thickness of 0.7 to 30 cm. 前記脱塩室に収容したイオン交換体と陽イオン交換膜及び陰イオン交換膜との間に圧力を発生させる手段が、脱塩室にイオン交換体を収容し、脱塩室の容積を機械的に減少させることにより圧力を増大させる手段である請求項1乃至請求項2の何れか1項に記載の脱イオン水製造装置。  The means for generating pressure between the ion exchanger accommodated in the desalting chamber and the cation exchange membrane and the anion exchange membrane accommodates the ion exchanger in the desalting chamber and mechanically increases the volume of the desalting chamber. The deionized water production apparatus according to any one of claims 1 to 2, wherein the deionized water production unit is means for increasing the pressure by reducing the pressure. 前記圧力を発生させる手段が、脱塩室の室枠とイオン交換膜の間に圧力により収縮するスペーサーを導入し、イオン交換体を充填した後に外部より圧力をかけて圧縮することにより、脱塩室容積を5〜60容量%減少させる手段である請求項に記載の脱イオン水製造装置。The means for generating the pressure introduces a spacer that contracts by pressure between the chamber frame of the desalting chamber and the ion exchange membrane, and after filling the ion exchanger, compresses by applying pressure from the outside, thereby desalting. The deionized water production apparatus according to claim 3 , which is means for reducing the chamber volume by 5 to 60% by volume. 請求項1乃至請求項の何れか1項に記載の脱イオン水製造装置において、濃縮室にネット状のスペーサーが挿入配置されてなることを特徴とする脱イオン水製造装置。The deionized water production apparatus according to any one of claims 1 to 4 , wherein a net-like spacer is inserted and disposed in the concentration chamber.
JP04002697A 1996-03-21 1997-02-07 Deionized water production equipment Expired - Lifetime JP3800706B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP04002697A JP3800706B2 (en) 1997-02-07 1997-02-07 Deionized water production equipment
CN97190214A CN1080594C (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
PCT/JP1997/000896 WO1997034696A1 (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
KR1019970708217A KR100441461B1 (en) 1996-03-21 1997-03-19 Method and Apparatus for Producing Deionized Water
CA002221709A CA2221709C (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
AU19433/97A AU1943397A (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
AT97907381T ATE227162T1 (en) 1996-03-21 1997-03-19 METHOD AND APPARATUS FOR PRODUCING DEIONIZED WATER
EP97907381A EP0837729B1 (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
US08/952,218 US5961805A (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
TW086103470A TW426644B (en) 1996-03-21 1997-03-19 Method and apparatus for producing deionized water
DE69716852T DE69716852T2 (en) 1996-03-21 1997-03-19 METHOD AND DEVICE FOR PRODUCING DEIONIZED WATER
IN500CA1997 IN182200B (en) 1996-03-21 1997-03-20
MYPI97001177A MY125056A (en) 1996-03-21 1997-03-20 Method and apparatus for producing deionized water
US09/338,570 US6228240B1 (en) 1996-03-21 1999-06-23 Method and apparatus for producing deionized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04002697A JP3800706B2 (en) 1997-02-07 1997-02-07 Deionized water production equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005170280A Division JP4049170B2 (en) 2005-06-10 2005-06-10 Method for producing deionized water production apparatus

Publications (2)

Publication Number Publication Date
JPH10216729A JPH10216729A (en) 1998-08-18
JP3800706B2 true JP3800706B2 (en) 2006-07-26

Family

ID=12569402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04002697A Expired - Lifetime JP3800706B2 (en) 1996-03-21 1997-02-07 Deionized water production equipment

Country Status (1)

Country Link
JP (1) JP3800706B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197174B1 (en) * 1998-11-25 2001-03-06 E-Cell Corporation Method and apparatus for electrodeionization of water using mixed bed and single phase ion exchange materials in the diluting compartment
JP5738505B2 (en) * 2001-07-10 2015-06-24 ジーイー ウォーター アンド プロセス テクノロジーズ カナダ Method for filling a filler containing an ion exchanger
JP6018005B2 (en) * 2013-03-29 2016-11-02 株式会社クラレ Nitrate ion separation method
JP6018020B2 (en) * 2013-06-07 2016-11-02 株式会社クラレ Method for producing deionized water

Also Published As

Publication number Publication date
JPH10216729A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
US6228240B1 (en) Method and apparatus for producing deionized water
EP0751826B1 (en) Porous ion exchanger and method for producing deionized water
US6334941B1 (en) Apparatus for producing deionized water
JP4509386B2 (en) Electrodeionization method and apparatus for water using mixed bed and single phase ion exchange material in dilution chamber
JP4049170B2 (en) Method for producing deionized water production apparatus
US20010003329A1 (en) Electro-regenerating type apparatus for producing deionized water
JP3947829B2 (en) Deionized water production equipment
JPH08252579A (en) Porous ion exchanger and production of deionized water
JP3644182B2 (en) Deionized water production equipment
JP3800706B2 (en) Deionized water production equipment
JP5233798B2 (en) Electric regenerative pure water production equipment
JP2001049009A (en) Heterogeneous multi-layered ion exchange film, method and device for manufacturing deionized water using the same
JPH04284853A (en) Ion exchange filtering method and apparatus therefor
JPH10216717A (en) Porous ion exchanger and preparation of demineralized water
JPH10244169A (en) Porous ion exchanger and production of demineralized water
JPH11165175A (en) Manufacturing apparatus for deionized water
JP3906540B2 (en) Method for producing deionized water
JP2001314866A (en) Method and device for preparing deionized water
CA2221709C (en) Method and apparatus for producing deionized water
JP2001062312A (en) Production of porous ion exchanger
JPH08197061A (en) Apparatus for producing deionized water
JPH08197062A (en) Apparatus for electrodialytically producing deionized water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term