JP3906540B2 - Method for producing deionized water - Google Patents

Method for producing deionized water Download PDF

Info

Publication number
JP3906540B2
JP3906540B2 JP00102098A JP102098A JP3906540B2 JP 3906540 B2 JP3906540 B2 JP 3906540B2 JP 00102098 A JP00102098 A JP 00102098A JP 102098 A JP102098 A JP 102098A JP 3906540 B2 JP3906540 B2 JP 3906540B2
Authority
JP
Japan
Prior art keywords
exchange resin
water
ion
resin particles
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00102098A
Other languages
Japanese (ja)
Other versions
JPH11197671A (en
Inventor
純治郎 岩元
健 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP00102098A priority Critical patent/JP3906540B2/en
Publication of JPH11197671A publication Critical patent/JPH11197671A/en
Application granted granted Critical
Publication of JP3906540B2 publication Critical patent/JP3906540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、脱イオン水の製造方法、特には、電気透析により脱イオン水を製造する方法に関する。
【0002】
【従来の技術】
脱イオン水の製造方法としては、イオン交換樹脂の充填床に被処理水を流し、不純物イオンをイオン交換樹脂に吸着させて除去し脱イオン水溶液を得る方法が一般的である。ここで吸着能力の低下したイオン交換樹脂は、酸やアルカリを用いて再生する方法が採用されている。しかし、この方法においては再生に使用した酸やアルカリの廃液が排出される問題があるため、再生の必要のない脱イオン水溶液製造方法が望まれている。
【0003】
このような観点から、近年イオン交換樹脂とイオン交換膜を組み合せた自己再生型電気透析脱イオン水溶液製造方法が注目されている。この方法は、陰イオン交換膜と陽イオン交換膜とを交互に配置した電気透析装置の脱塩室にイオン交換体を充填し、この脱塩室に被処理水を流しながら電圧を印加して電気透析を行うことにより、脱塩室に入れられたイオン交換体の再生を伴いつつ脱イオン水溶液を製造する方法である。
【0004】
この方法に関して、脱塩室の幅と厚さを限定する方法(特開昭61−107906号公報)や脱塩室に充填するイオン交換樹脂の径を均一にしたものを使用する方法(特開平3−207487号公報)、被処理水が最初に通過する部分に充填するイオン交換樹脂をアニオン交換樹脂にする方法(特開平4−71624号公報)、脱塩室に充填するイオン交換体をイオン交換樹脂とイオン交換繊維の混合物とする方法(特開平5−277344号公報)などが検討されている。
【0005】
しかし、脱塩室に入れるイオン交換体として架橋イオン交換樹脂が固定化されていないため、使用中に同符号のイオン交換体が凝集したり、水流によりイオン交換樹脂の粒子または繊維が破砕し、効率的な脱塩と再生が行われなくなり、得られる水の純度の安定性に問題があった。
【0006】
これらの欠点を補う方法として、ポリエチレンやポリプロピレン等の不織布に放射線グラフトを行ってイオン交換基を導入する方法(特開平5−64726号公報、特開平5−131120号公報)、イオン交換ポリマーと補強材ポリマーを海島構造の複合繊維形態とした後シート状に成形したもの(特開平6−79268号公報)が提案されている。
【0007】
これらの方法では、イオン交換体が固定化されているが、放射線を使用する必要がある、複合繊維を作製する工程が複雑である、機械的強度が必ずしも充分でないなどの欠点があった。
【0008】
【発明が解決しようとする課題】
本発明は、イオン交換体とイオン交換膜を組み合わせた自己再生型電気透析脱イオン水溶液製造方法において、放射線の使用などの複雑な工程によらず固定化されたイオン交換体を作製し、低電圧で安定して高純度の脱イオン水溶液を製造することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、区画室の内部に、陽イオン交換樹脂粒子が連結した構造を有する多孔性層と、陰イオン交換樹脂粒子が連結した構造を有する多孔性層とを、被処理水の流れ方向に交互に配置し、被処理水中のイオンをイオン交換樹脂に吸着する方法であって、被処理水の流速が0.5cm/秒以上であり、かつ、イオン交換樹脂粒子が被処理水の流れにより移動しないように、前記区画室の内部に0.1〜20kg/cm の圧力を発生させることにより固定されている、電気透析による脱イオン水の製造方法を提供する。
【0010】
本発明において、陽イオン交換樹脂粒子が連結した構造を有する多孔性層は、実質的に陽イオン交換樹脂粒子からなるものであるが、陽イオン交換樹脂粒子のイオン交換性を阻害しない範囲で、他の材料を含んでいてもよい。以下、本明細書では単に陽イオン交換樹脂層という。また、陰イオン交換樹脂粒子が連結した構造を有する多孔性層は、実質的に陽イオン交換樹脂粒子からなるものであるが、陰イオン交換樹脂粒子のイオン交換性を阻害しない範囲で、他の材料を含んでいてもよい。以下、本明細書では単に陰イオン交換樹脂層という。
【0011】
陽イオン交換樹脂層と陰イオン交換樹脂層とを、被処理水の流れ方向に交互に配置した状態というのは、例えば、底面を水平に保持した直方体の上から下へ水を流通させる場合は、それぞれの樹脂層が、交互に水平に積み重なっている状態をいう。ただし、樹脂槽は完全に平行である必要はなく、被処理水が交互に陽イオン交換樹脂層と陰イオン交換樹脂層を通る限りにおいては、傾斜していても差し支えない。
【0012】
イオン交換樹脂層の数は、特に限定されず、陽イオン交換樹脂層が1層以上、陰イオン交換樹脂層が1層以上あればよい。自己再生型電気透析装置に用いる場合は、得られる脱イオン水の純度を高くするためには、それぞれ3層以上あることが好ましい。陽イオン交換樹脂層および陰イオン交換樹脂層の、被処理水の流れ方向の厚さとしては、1〜200mm程度が好ましい。自己再生型電気透析装置に用いる場合、電流方向の厚さとしては1〜200mm程度が好ましい。
【0013】
被処理水は、流速0.5cm/秒以上で流通させる必要がある。流速が0.5cm/秒に満たない場合は、イオン交換樹脂の量に対する水の処理量が少なく効率的でないので不適当である。処理量の観点では被処理水の流速は高い方が好ましいが、流速が高くなると圧力損失が大きくなり、イオン交換体を格納する容器などに高い強度であることが必要となる。被処理水の流速の好ましい範囲は、1〜100cm/秒である。ここで、被処理水の流速とは、被処理水の流れ方向の長さが区画室と同じで、かつ、多孔性イオン交換体の空隙と同じ内容積の管に、同じ流量の水を流したときの水の線速を意味するものとする。
【0014】
本発明では、イオン交換樹脂粒子は層状構造が保持できるよう、固定されていることが必要である。ここで、固定とは被処理水を流通させたときに、個々の粒子が実質的に移動しないことをいう。
【0015】
固定の手段の第1として、イオン交換樹脂粒子を接着剤ポリマーで結合する方法が挙げられる。以下、本明細書では、イオン交換樹脂粒子を接着剤ポリマーで結合した多孔体を、多孔性イオン交換体という。この多孔性イオン交換体は、引っ張り強度が1g/cm2 以上であることが必要である。引っ張り強度が1g/cm2 未満の場合、長期的には、水の抵抗により結合が破壊し、陽イオン交換樹脂層と陰イオン交換樹脂層の幾何学的パターンが崩壊するおそれがあるので不適当である。
【0016】
本発明では、陽イオン交換樹脂層または陰イオン交換樹脂層のいずれかを、多孔性イオン交換体とし、他方を粒子状のまま用いる場合でも、イオン交換樹脂を固定する作用があるが、両方のイオン交換樹脂層を多孔性イオン交換体としたほうが、固定の効果が高いので好ましい。
【0017】
多孔性イオン交換体を用いる場合は、ハンドリングが容易になり電気透析装置などへの組込みが極めて容易になるという効果もある。
【0018】
固定の手段の第2として、各室内で圧力を発生させて摩擦力により固定する方法が挙げられる。このときの圧力としては、0.1〜20kg/cm2 の圧力が必要である。圧力が、0.1kg/cm2 より小さい場合は、イオン交換樹脂粒子の移動抑止が小さく、また20kg/cm2 より大きいと区画室の破損、処理水の流動抵抗の上昇が起きやすくなるので、それぞれ好ましくない。発生させる圧力が、5〜10kg/cm2 の場合は、さらに好ましい。
【0019】
区画室の内部に圧力を発生させると、室壁と充填されたイオン交換樹脂層との間を流れる被処理水、いわゆるショートパスの発生を減少させる効果もある。さらに、自己再生型電気透析脱イオン水溶液製造方法の場合、イオン交換樹脂粒子同士の接触も良好になるため、電気抵抗が減少し、吸着されたイオンの電位による移動も容易になるという効果もある。
【0020】
多孔性イオン交換体を用いる場合にも、区画室の内部に圧力を発生させることにより、それぞれの効果が合わされるので好ましい。
【0021】
本発明の多孔イオン交換体は、流体の流路中に配置してイオン交換を行う各種装置に使用できる。特に、陽イオン交換樹脂粒子を含む多孔性層と陰イオン交換樹脂粒子を含む多孔性層とを配置する区画室が、自己再生型電気透析装置の脱塩室である場合は、連続的に安定して高純度の脱イオン水を製造することができるので好ましい。自己再生型電気透析装置としては、陽極を備える陽極室と陰極を備える陰極室との間に、複数枚の陽イオン交換膜と陰イオン交換膜とを交互に配列してなる電気透析槽であって、陽極側が陰イオン交換膜で区画され陰極側が陽イオン交換膜で区画された部分が脱塩室で、陽極側が陽イオン交換膜で区画され陰極側が陰イオン交換膜で区画された濃縮室である構成を例示できる。以下の説明は、主として電気透析装置の場合を例にして説明する。
【0022】
【発明の実施の形態】
イオン交換樹脂粒子を結合するための接着剤ポリマーとしては、多孔性イオン交換体の製造が容易である点で、熱可塑性ポリマーまたは溶媒可溶性ポリマーであることが好ましい。具体的には、熱可塑性ポリマーとして、低密度ポリエチレンや線状低密度ポリエチレン、超高分子量高密度ポリエチレン、ポリプロピレン、ポリイソブチレン、酢酸ビニル、エチレン−酢酸ビニル共重合体などが例示される。また、溶媒可溶性ポリマーとして、天然ゴム、ブチルゴム、ポリイソプレン、ポリクロロプレン、スチレン−ブタジエンゴム、ニトリルゴム、塩化ビニル−脂肪酸ビニルエステル共重合体などが例示される。
【0023】
接着剤ポリマーとして、イオン交換基を有するポリマー用いる場合は、多孔性イオン交換体のイオン交換容量を大きくすることなどの効果がある。陽イオン交換樹脂粒子のための接着剤ポリマーとしては、陽イオン交換基を有するポリマーが好ましい。陰イオン交換樹脂粒子のための接着剤ポリマーとしては、陰イオン交換基を有するポリマーが好ましい。
【0024】
陽イオン交換基を有するポリマーとして、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)、ポリアクリル酸、ポリメタクリル酸、パーフルオロスルホン酸を含有するポリマーまたはそれらの塩を含有するポリマーが挙げられる。
【0025】
陰イオン交換基を有するポリマーとしては、ポリビニルベンジルトリメチルアンモニウムクロリドを含有するポリマーが挙げられる。さらに、ポリ(4−ビニルピリジン)、ポリ(2−ビニルピリジン)、ポリ(ジメチルアミノエチルアクリレート)、ポリ(1−ビニルイミダゾール)、ポリ(2−ビニルピラジン)、ポリ(4−ブテニルピリジン)、ポリ(N,N−ジメチルアクリルアミド)、ポリ(N,N−ジメチルアミノプロピルアクリルアミド)を含有するポリマーおよびそれらの4級化物を含有するポリマーが挙げられる。また、ポリエチレンイミンを含有するポリマーが挙げられる。
【0026】
多孔イオン交換体中の接着剤ポリマーの重量分率は、多孔イオン交換体の重量を基準として0.5〜20%、特には1〜10%であることが好ましい。重量分率が20%より大きいと、イオン交換樹脂粒子表面を接着剤ポリマーが被覆するためイオン成分の吸着性が低下し、また空隙率が低下するため処理する液体の流量が減少し、圧力損失が大きくなるので好ましくない。また、0.5%以下では多孔体の強度が小さくなり取り扱いが困難になるので好ましくない。
【0027】
多孔性イオン交換体の製造方法としては、次のような方法が好ましく採用できる。すなわち、イオン交換樹脂粒子と接着剤ポリマーの混合物を加熱混練した後平板プレスなどの熱成形によりシート状とする方法、接着剤ポリマー溶液をイオン交換樹脂粒子表面に塗布して溶媒を蒸発させ硬化する方法、接着剤ポリマーおよび造孔剤とイオン交換樹脂粒子を加熱混合成形後造孔剤を抽出する方法、造孔剤を分散した接着剤ポリマー溶液をイオン交換樹脂粒子表面に塗布して硬化させた後造孔剤を抽出する方法などである。
【0028】
このうち、イオン交換樹脂粒子と接着剤ポリマーを加熱混練した後平板プレス等の熱成形によりシート状とする方法、接着剤ポリマーおよび造孔剤とイオン交換樹脂粒子を加熱混合成形後造孔剤を抽出する方法は、成形加工性や得られる多孔イオン交換体の比抵抗などの観点から好ましい。上記接着剤ポリマーの熱成形温度は特に制限はないが、イオン交換樹脂粒子の耐熱性の観点から70〜180℃が好ましい。
【0029】
接着剤ポリマーを溶液として用いる場合、その濃度は特に制限はないが、5〜50重量%のものが好ましく使用される。溶媒としては水やアルコール、ケトンやエステル等の通常の有機溶媒が使用される。接着剤ポリマー溶液をイオン交換樹脂粒子表面に塗布して溶媒を蒸発させ硬化する方法では、イオン交換樹脂粒子を支持体となるメッシュや多孔体上に並べた後、接着剤ポリマー溶液を塗布し乾燥させてもよく、接着剤ポリマー溶液にイオン交換樹脂粒子を浸漬、乾燥後加熱プレスしてもよい。接着剤ポリマーとして、水溶性ポリマーを使用することもできるが、接着剤ポリマー溶液に架橋剤を添加し、架橋処理を行った後使用するのが好ましい。
【0030】
多孔イオン交換体の製造に造孔剤を用いる場合、接着剤ポリマー重量に対して5〜40重量%の造孔剤を添加して使用するのが好ましい。造孔剤の種類は特に制限はなく、後で溶媒で抽出できるものであれば使用可能であるが、ポリビニルアルコールやポリエステル等のポリマー粉末が好ましい。
【0031】
多孔性イオン交換体を、電気透析装置に組み込む方法としては、多孔性陽イオン交換体および多孔性陰イオン交換体を、それぞれ形成しておき、電気透析槽の組み立て時に複合化させる方法、多孔陽イオン交換体および多孔陰イオン交換体を複合化した多孔イオン交換体を形成した後、槽に組み込む方法、などが適用できる。
【0032】
本発明において、イオン交換樹脂粒子を固定するための、もう一方の手段であるイオン交換体に圧力を発生させる方法としては、多孔イオン交換体を充填後、充填容器容積を収縮させる方法、多孔イオン交換体を膨張させる方法がある。多孔イオン交換体を膨張させる方法としてイオン交換体を膨潤させる液を供給させる方法もあるが、この方法では運転時にその効果が低下するおそれがあるので運転時の状態よりも収縮した状態で充填後通水、運転する方法が好ましい。多孔イオン交換体を乾燥状態で充填後水溶液を供給し膨潤させることが、膨潤率が大きく圧力の制御も容易であり、また透析槽の構造変更も小さくて済むため、好ましい。
【0033】
効率よく脱イオン水を製造するには脱塩室側に供給された被処理水をショートパスすることなく均一に多孔イオン交換体内を通過させる必要がある。ショートパスを防止するためには多孔イオン交換体とイオン交換膜の間に圧力が発生する状態で運転することが好ましい。
【0034】
具体的には、閉空間にイオン交換体を充填した後、該イオン交換体を膨潤させることにより圧力を発生させる方法、閉空間にイオン交換体を充填した後、該閉空間の体積を小さくすることにより圧力を発生させる方法。閉空間にイオン交換体とともに別の充填体を充填し、該充填体を充填後に膨潤させることにより圧力を発生させる方法などが挙げられる。
【0035】
このうち、閉空間にイオン交換体を充填した後、該イオン交換体を膨潤させて圧力を発生させる方法としては、乾燥した樹脂を充填した後、水で湿潤させて膨潤させる方法。付加型の樹脂を充填後、再生型に転換することにより膨潤させる方法、前記2つの組み合わせによる方法などが挙げられる。
【0036】
また、閉空間にイオン交換体を充填した後、該閉空間の体積を小さくすることにより圧力を発生させる方法としては、例えば、自己再生型電気透析脱イオン水溶液製造方法においては、閉空間である脱塩室にイオン交換体を充填した後、室枠を締め付け、該脱塩室の厚みを小さくすることにより体積を小さくし、圧力を発生させる方法などが挙げられる。
【0037】
閉空間にイオン交換体とともに別の充填体を充填し、該充填体を充填後に膨潤させることにより圧力を発生させる方法としては、イオン交換体とイオン交換樹脂以外の水により膨潤する物質を乾燥状態で充填後、水で湿潤させることにより膨潤させる方法が挙げられる。いずれの方法でも圧力が不均一なると膜のシワや偏流等トラブルの原因となりやすいので、それぞれの方式において最適な手法の採用が不可欠となる。
【0038】
陽イオン交換体と陰イオン交換体を層状に分布させる方法として、結合剤樹脂で結合したイオン交換体を用いる以外に、例えば、粒状のイオン交換樹脂を用い、電気透析槽の組立時に、型板等を用いながら、順次陰陽のイオン交換樹脂粒子を流し込み層状に充填する方法も適用できる。この方法の場合、電気透析槽に供給する処水量が大きく、多孔イオン交換体中を流れる流速が更に大きいと、イオン交換樹脂粒子が槽内で移動して正規のイオン交換樹脂層パターンが崩れてしまい、脱イオン性能が低下するおそれがある。
【0039】
本発明で用いるイオン交換樹脂粒子は、粒径が50〜2000μmの範囲にあるのが好ましい。粒径が50μmより小さい場合は、多孔質イオン交換体の空孔の径が小さくなり被処理水が流れにくくなり、処理水量が低下するおそれがある。粒径が1500μmより大きい場合は、イオン交換体の表面積が不足し、イオン交換の処理効率が低下するおそれがある。イオン交換樹脂粒子の粒径は300〜1000μmである場合はさらに好ましい。イオン交換樹脂は上記粒径の範囲になるように合成するか、上記粒径の範囲になるように粉砕したものを使用できる。
【0040】
イオン交換樹脂粒子の形状は球状、楕円状、板状、円盤状、棒状等上記粒子の集合体が多孔体層を形成できる全ての形状をとりうるが球状の場合は水の透過性に優れるので特に好ましい。
【0041】
イオン交換樹脂粒子は、イオン交換容量として0.5〜7.0ミリ当量/g乾燥樹脂が好ましい。イオン交換容量が0.5ミリ当量/g乾燥樹脂より低いと脱塩室でのイオンの吸着、脱塩が充分に行われず脱イオン水純度が低下するおそれがあり、また7.0ミリ当量/g乾燥樹脂より大きいとイオン交換樹脂粒子の強度が著しく低下するので好ましくない。イオン交換容量が1.0〜5.0ミリ当量/g乾燥樹脂である場合は、脱イオン水純度の高いものが得られ、性能安定性にも優れており特に好ましい。上記イオン交換樹脂粒子は通常の水処理用途等に広く用いられているもので、安価で入手が容易であり、工業的に大きなメリットである。
【0042】
イオン交換樹脂粒子のイオン交換基としては、陽イオン交換基としては強酸であるスルホン酸型が、陰イオン交換基としては強塩基である4級アンモニウム塩型またはピリジニウム塩型が、それぞれイオン交換性と化学的安定性の観点から好ましい。
【0043】
本発明の脱イオン水の製造方法を実施するための製造装置としては、具体的には次のようなものが好ましい。すなわち、陽極を備える陽極室と陰極を備える陰極室との間に、複数枚の陽イオン交換膜と陰イオン交換膜とを交互に配列して、陽極側が陰イオン交換膜で区画され陰極側が陽イオン交換膜で区画された脱塩室と、陽極側が陽イオン交換膜で区画され陰極側が陰イオン交換膜で区画された濃縮室とを交互に、2〜300組程度直列に配置する。脱塩室には被処理水溶液を流し、濃縮室には濃縮された塩類を排出するための水溶液を流しながら、電流を流すことにより脱イオンを行うことができる。各ユニットセルには、脱塩室において水解離を起こさせるため、数V程度の電圧を印加することが好ましい。
【0044】
多孔イオン交換体とイオン交換膜の間の密着力は、0.1〜20kg/cm2 、特には0.5〜10kg/cm2 であるのが好ましい。圧力が0.1kg/cm2 より小さい場合にはイオン交換体と膜との隙間にショートパスが生じやすく、被処理水中の不純物イオンがイオン交換樹脂に吸着されず、高純度の脱イオン水溶液が得られないので好ましくない。圧力が20kg/cm2 より大きい場合には透析槽壁やイオン交換膜が破損するおそれがあり、好ましくない。
【0045】
【実施例】
陽極と陰極との間に陽イオン交換膜(旭硝子社製品名:セレミオンCMT)と陰イオン交換膜(旭硝子社製品名:セレミオンAMP)とを交互に配列して、陽極側が陰イオン交換膜で区画され陰極側が陽イオン交換膜で区画された脱塩室と、陽極側が陽イオン交換膜で区画され陰極側が陰イオン交換膜で区画された濃縮室を交互に3対配置した有効面積0.16m2 の電気透析槽を使用した。以下本発明を実施例(例2、3)、比較例(例1)により説明するが、本発明はこれらに限定されない。
【0046】
[例1]
上記電気透析槽の脱塩室に、湿潤状態の粒径が400〜550μm、イオン交換容量が4.2ミリ当量/g乾燥樹脂のスルホン酸型陽イオン交換樹脂(三菱化学社製品名:ダイヤイオンSK1B)、および、粒径が400〜600μm、イオン交換容量が3.7ミリ当量/g乾燥樹脂の4級アンモニウム塩型陰イオン交換樹脂(三菱化学社製品名:ダイヤイオンSA10A)を型板を用いて流し込む方法で20mmの厚み(被処理水の流動方向)で層状に多孔イオン交換体を脱塩室一杯に形成した。この操作は、極めて熟練を要する困難な作業であった。
【0047】
次に電導度7μS/cmの水を、脱塩室内の流速が1cm/秒になるように供給し、40A/m2 の電流を流して脱イオン水試験を行ったところ、処理水の電気伝導度の変化が大きく最終的に電気抵抗6MΩ・cmの脱イオン水が得られた。運転停止後解体観察したところ、多孔イオン交換体は層状の当初の形状を全く保っていなかった。
【0048】
[例2]
例1とで用いたのと同じ陽イオン交換樹脂粒子および陰イオン交換樹脂粒子を、オーブンで含水量5重量%まで乾燥した。これらのイオン交換樹脂粒子を、電気透析槽の脱塩室に、型板を用いて流し込む方法で20mmの厚み(被処理水の流動方向)で層状に多孔イオン交換体を脱塩室体積内に形成した。例1の場合と同様に、極めて熟練と時間を要する作業であった。
【0049】
次に、純水を脱塩室にゆっくり供給して乾燥イオン交換樹脂粒子を膨潤させた。電気透析槽は、充分な機械的強度を有するため脱塩室の内寸が変わらないように、このため脱塩室内には2kg/cm2 の圧力が発生していた。
【0050】
次に、電導度7μS/cmの水を脱塩室内の流速が0.5cm/秒になるように供給し、40A/m2 の電流を流して脱イオン水試験を行ったところ、処理水の電気伝導度は電気抵抗16MΩ・cmの脱イオン水が得られた。運転停止後解体観察したところ、多孔イオン交換体は層状の当初の形状をほぼ保っていた。
【0051】
[例3]
例1で用いたのと同じ陽イオン交換樹脂および陰イオン交換樹脂を、それぞれ乾燥した。後、それぞれに線状低密度ポリエチレン(ダウケミカル社製、商品名アフィニティSM−1300)2重量%を混合し、120〜130℃で加圧ニーダーで30分混練した。次に得られた陽イオン交換樹脂混練物および陰イオン交換樹脂混練物をそれぞれ平板プレスで130℃で熱成形し、厚さ6mmの多孔質シートを得た。このシートの引っ張り強度は8g/cm2 であった。
【0052】
次に陽イオン多孔シートおよび陰イオン多孔シートをそれぞれ20mmの幅に切断したのち組み合わせ、プレスして一体化した層状の多孔複合イオン交換体を形成し、例1と同じ電気透析装置の脱塩室に組んだ。この作業は、多孔イオン交換体が一体化されているため組み込み作業は極めて容易であった。
【0053】
この電気透析槽に純水を供給して多孔イオン交換体を湿潤、膨潤させて約2kg/cm2 の密着力を発生させた。この状態でこの多孔イオン交換体の水透過性は圧力0.35kg/m2 で3×106 kg・cm・m-2・h-1であった。次に電導度7μS/cmの被処理水を脱塩室内の流速が2.5cm/秒になるように供給し、40A/m2 の電流を流したところ、電気抵抗17.6MΩ・cmの脱イオン水が安定して得られた。運転停止後解体観察したところ、多孔イオン交換体の層状の形状は完全に保たれていた。
【0054】
【発明の効果】
本発明において、陽イオン交換樹脂層および陰イオン交換樹脂層では、同種イオン交換樹脂粒子が連結した構造であるため、吸着されたイオンは隣接する粒子を経由して、その層の内部では電位勾配などにより容易に移動することができる。また、陽イオン交換樹脂層および陰イオン交換樹脂層が、交互に配置されているため、区画室の各部位を流れる処理水は全て所定の距離だけ、陽イオン交換樹脂および陰イオン交換樹脂に接触する。よって、低い電圧で規定量の電流を流すことができ、高いレベルでの脱イオンが達成できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing deionized water, and more particularly to a method for producing deionized water by electrodialysis.
[0002]
[Prior art]
As a method for producing deionized water, a method is generally used in which water to be treated is passed through a packed bed of ion exchange resin, and impurity ions are adsorbed and removed by ion exchange resin to obtain a deionized aqueous solution. Here, a method of regenerating the ion exchange resin having reduced adsorption capacity using an acid or alkali is employed. However, since this method has a problem that the waste liquid of acid and alkali used for regeneration is discharged, a method for producing a deionized aqueous solution that does not require regeneration is desired.
[0003]
From such a viewpoint, in recent years, a self-regenerating electrodialysis deionized aqueous solution production method combining an ion exchange resin and an ion exchange membrane has attracted attention. In this method, an ion exchanger is filled in a desalting chamber of an electrodialysis apparatus in which an anion exchange membrane and a cation exchange membrane are alternately arranged, and a voltage is applied while flowing water to be treated into the desalting chamber. It is a method for producing a deionized aqueous solution with regeneration of an ion exchanger placed in a demineralization chamber by performing electrodialysis.
[0004]
With respect to this method, a method of limiting the width and thickness of the desalting chamber (Japanese Patent Laid-Open No. Sho 61-107906) or a method using a uniform diameter of ion-exchange resin filled in the desalting chamber (Japanese Patent Laid-Open No. No. 3-207487), a method in which an ion exchange resin to be filled in a portion through which treated water first passes is an anion exchange resin (Japanese Patent Laid-Open No. 4-71624), and an ion exchanger to be filled in a desalting chamber is ionized. A method of making a mixture of an exchange resin and ion exchange fibers (Japanese Patent Laid-Open No. 5-277344) has been studied.
[0005]
However, since the cross-linked ion exchange resin is not immobilized as an ion exchanger to be put into the desalination chamber, the ion exchanger of the same sign is aggregated during use, or the particles or fibers of the ion exchange resin are crushed by a water flow, Efficient desalting and regeneration were not performed, and there was a problem in the stability of the purity of the water obtained.
[0006]
As a method for compensating for these disadvantages, a method of introducing ion exchange groups by performing radiation grafting on a nonwoven fabric such as polyethylene or polypropylene (JP-A-5-64726, JP-A-5-131120), ion-exchange polymer and reinforcement A material polymer made into a composite fiber form having a sea-island structure and then molded into a sheet shape (Japanese Patent Laid-Open No. 6-79268) has been proposed.
[0007]
In these methods, the ion exchanger is immobilized, but there are disadvantages such as the necessity of using radiation, the process of producing the composite fiber is complicated, and the mechanical strength is not always sufficient.
[0008]
[Problems to be solved by the invention]
The present invention relates to a self-regenerative electrodialysis deionized aqueous solution manufacturing method combining an ion exchanger and an ion exchange membrane, producing an immobilized ion exchanger regardless of complicated processes such as the use of radiation, and a low voltage The purpose is to produce a highly pure deionized aqueous solution stably.
[0009]
[Means for Solving the Problems]
In the present invention, a porous layer having a structure in which cation exchange resin particles are connected in a compartment and a porous layer having a structure in which anion exchange resin particles are connected are arranged in the direction of water to be treated. It is a method of alternately arranging and adsorbing ions in the water to be treated to the ion exchange resin, the flow rate of the water to be treated is 0.5 cm / second or more , and the ion exchange resin particles are caused by the flow of the water to be treated. Provided is a method for producing deionized water by electrodialysis, which is fixed by generating a pressure of 0.1 to 20 kg / cm 2 inside the compartment so as not to move.
[0010]
In the present invention, the porous layer having a structure in which the cation exchange resin particles are connected is substantially composed of the cation exchange resin particles, but in a range not inhibiting the ion exchange properties of the cation exchange resin particles, Other materials may be included. Hereinafter, it is simply referred to as a cation exchange resin layer in this specification. In addition, the porous layer having a structure in which anion exchange resin particles are connected is substantially composed of cation exchange resin particles. It may contain material. Hereinafter, it is simply referred to as an anion exchange resin layer in this specification.
[0011]
The state in which the cation exchange resin layer and the anion exchange resin layer are alternately arranged in the flow direction of the water to be treated is, for example, when water is circulated from above to below the rectangular parallelepiped holding the bottom surface horizontally. Each resin layer is alternately stacked horizontally. However, the resin tanks do not have to be completely parallel, and may be inclined as long as the water to be treated passes alternately through the cation exchange resin layer and the anion exchange resin layer.
[0012]
The number of ion exchange resin layers is not particularly limited, and it is sufficient that the number of cation exchange resin layers is one or more and the number of anion exchange resin layers is one or more. When used in a self-regenerating electrodialysis apparatus, it is preferable that there are three or more layers in order to increase the purity of the deionized water obtained. As thickness of the to-be-processed water flow direction of a cation exchange resin layer and an anion exchange resin layer, about 1-200 mm is preferable. When used in a self-regenerating electrodialysis apparatus, the thickness in the current direction is preferably about 1 to 200 mm.
[0013]
The water to be treated needs to be circulated at a flow rate of 0.5 cm / second or more. If the flow rate is less than 0.5 cm / sec, the amount of water treated relative to the amount of ion exchange resin is small and not efficient, which is inappropriate. From the viewpoint of throughput, it is preferable that the flow rate of the water to be treated is high. However, as the flow rate increases, the pressure loss increases, and it is necessary that the container for storing the ion exchanger has high strength. A preferable range of the flow rate of the water to be treated is 1 to 100 cm / second. Here, the flow rate of the water to be treated is the same as that of the compartment in the flow direction of the water to be treated, and the same flow rate of water is allowed to flow into a tube having the same internal volume as the void of the porous ion exchanger. It means the linear velocity of water when
[0014]
In the present invention, the ion exchange resin particles need to be fixed so that the layered structure can be maintained. Here, “fixed” means that the individual particles do not substantially move when the water to be treated is circulated.
[0015]
As a first fixing means, there is a method of binding ion exchange resin particles with an adhesive polymer. Hereinafter, in the present specification, a porous body in which ion exchange resin particles are bonded with an adhesive polymer is referred to as a porous ion exchanger. This porous ion exchanger needs to have a tensile strength of 1 g / cm 2 or more. If the tensile strength is less than 1 g / cm 2, the bond is broken due to the resistance of water and the geometric pattern of the cation exchange resin layer and the anion exchange resin layer may collapse in the long term. It is.
[0016]
In the present invention, even when either the cation exchange resin layer or the anion exchange resin layer is a porous ion exchanger and the other is used in the form of particles, the ion exchange resin is fixed. It is preferable to use a porous ion exchanger as the ion exchange resin layer because the fixing effect is high.
[0017]
In the case of using a porous ion exchanger, there is an effect that handling becomes easy and incorporation into an electrodialysis apparatus or the like becomes extremely easy.
[0018]
As a second fixing means, there is a method in which pressure is generated in each chamber and fixed by frictional force. As the pressure at this time, a pressure of 0.1 to 20 kg / cm 2 is necessary. When the pressure is less than 0.1 kg / cm 2, the movement inhibition of the ion exchange resin particles is small, and when the pressure is greater than 20 kg / cm 2 , the compartment is easily damaged and the flow resistance of the treated water is likely to increase. Each is not preferred. More preferably, the generated pressure is 5 to 10 kg / cm 2 .
[0019]
Generating pressure inside the compartment also has an effect of reducing the generation of water to be treated that flows between the chamber wall and the filled ion-exchange resin layer, so-called short path. Further, in the case of the self-regenerating electrodialysis deionized aqueous solution manufacturing method, the contact between the ion exchange resin particles is improved, so that there is an effect that the electric resistance is reduced and the movement of the adsorbed ions is facilitated. .
[0020]
Also in the case of using a porous ion exchanger, it is preferable because the respective effects are combined by generating pressure inside the compartment.
[0021]
The porous ion exchanger of the present invention can be used in various apparatuses that perform ion exchange by being placed in a fluid flow path. In particular, when the compartment in which the porous layer containing the cation exchange resin particles and the porous layer containing the anion exchange resin particles are the desalination chamber of the self-regenerating electrodialysis apparatus, it is continuously stable. Thus, high purity deionized water can be produced, which is preferable. The self-regenerating electrodialysis apparatus is an electrodialysis tank in which a plurality of cation exchange membranes and anion exchange membranes are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode. The portion where the anode side is partitioned by an anion exchange membrane and the cathode side is partitioned by a cation exchange membrane is a desalination chamber, the anode side is partitioned by a cation exchange membrane and the cathode side is partitioned by an anion exchange membrane. A configuration can be exemplified. In the following description, the case of an electrodialysis apparatus will be mainly described as an example.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The adhesive polymer for binding the ion exchange resin particles is preferably a thermoplastic polymer or a solvent-soluble polymer in terms of easy production of a porous ion exchanger. Specifically, examples of the thermoplastic polymer include low density polyethylene, linear low density polyethylene, ultrahigh molecular weight high density polyethylene, polypropylene, polyisobutylene, vinyl acetate, and ethylene-vinyl acetate copolymer. Examples of the solvent-soluble polymer include natural rubber, butyl rubber, polyisoprene, polychloroprene, styrene-butadiene rubber, nitrile rubber, vinyl chloride-fatty acid vinyl ester copolymer, and the like.
[0023]
When a polymer having an ion exchange group is used as the adhesive polymer, there are effects such as increasing the ion exchange capacity of the porous ion exchanger. The adhesive polymer for the cation exchange resin particles is preferably a polymer having a cation exchange group. As the adhesive polymer for the anion exchange resin particles, a polymer having an anion exchange group is preferable.
[0024]
As a polymer having a cation exchange group, a polymer containing polystyrene sulfonic acid, polyvinyl sulfonic acid, poly (2-acrylamido-2-methylpropane sulfonic acid), polyacrylic acid, polymethacrylic acid, perfluorosulfonic acid, or those Examples thereof include a polymer containing a salt.
[0025]
Examples of the polymer having an anion exchange group include polymers containing polyvinylbenzyltrimethylammonium chloride. Furthermore, poly (4-vinylpyridine), poly (2-vinylpyridine), poly (dimethylaminoethyl acrylate), poly (1-vinylimidazole), poly (2-vinylpyrazine), poly (4-butenylpyridine), poly And polymers containing (N, N-dimethylacrylamide), poly (N, N-dimethylaminopropylacrylamide) and polymers containing their quaternized products. Moreover, the polymer containing a polyethyleneimine is mentioned.
[0026]
The weight fraction of the adhesive polymer in the porous ion exchanger is preferably 0.5 to 20%, particularly 1 to 10%, based on the weight of the porous ion exchanger. If the weight fraction is larger than 20%, the ion exchange resin particle surface is coated with the adhesive polymer, so that the adsorptivity of the ionic component is lowered, and the porosity is reduced, so that the flow rate of the liquid to be treated is reduced and the pressure loss. Is unfavorable because of the increase. On the other hand, if it is 0.5% or less, the strength of the porous body becomes small and the handling becomes difficult.
[0027]
As a method for producing a porous ion exchanger, the following method can be preferably employed. That is, a method of heating and kneading a mixture of ion exchange resin particles and adhesive polymer and then forming into a sheet by thermoforming such as a flat plate press, applying an adhesive polymer solution to the surface of ion exchange resin particles, evaporating the solvent, and curing Method, method of extracting the pore-forming agent after heat-mixing molding the adhesive polymer and pore-forming agent and ion-exchange resin particles, and applying the adhesive polymer solution in which the pore-forming agent is dispersed to the surface of the ion-exchange resin particles and curing For example, a method of extracting a post-pore-forming agent.
[0028]
Among them, a method of heat-kneading ion exchange resin particles and an adhesive polymer and then forming into a sheet form by thermoforming such as a flat plate press, an adhesive polymer and a pore-forming agent and ion-exchange resin particles by heat-mixing and forming a pore-forming agent The extraction method is preferable from the viewpoints of moldability and specific resistance of the porous ion exchanger to be obtained. Although there is no restriction | limiting in particular in the thermoforming temperature of the said adhesive polymer, 70-180 degreeC is preferable from a heat resistant viewpoint of an ion exchange resin particle.
[0029]
When the adhesive polymer is used as a solution, its concentration is not particularly limited, but 5 to 50% by weight is preferably used. As the solvent, ordinary organic solvents such as water, alcohol, ketone and ester are used. In the method in which the adhesive polymer solution is applied to the surface of the ion exchange resin particles and the solvent is evaporated to cure, the ion exchange resin particles are arranged on a support mesh or porous body, and then the adhesive polymer solution is applied and dried. Alternatively, the ion exchange resin particles may be immersed in an adhesive polymer solution, dried, and then heated and pressed. Although a water-soluble polymer can be used as the adhesive polymer, it is preferably used after adding a crosslinking agent to the adhesive polymer solution and performing a crosslinking treatment.
[0030]
When using a pore-forming agent for the production of the porous ion exchanger, it is preferable to add 5 to 40% by weight of the pore-forming agent to the weight of the adhesive polymer. The type of pore-forming agent is not particularly limited and can be used as long as it can be extracted with a solvent later. Polymer powders such as polyvinyl alcohol and polyester are preferred.
[0031]
As a method for incorporating the porous ion exchanger into the electrodialysis apparatus, a method in which a porous cation exchanger and a porous anion exchanger are respectively formed and combined at the time of assembling the electrodialysis tank, For example, a method of forming a porous ion exchanger in which an ion exchanger and a porous anion exchanger are combined and then incorporating them into a tank can be applied.
[0032]
In the present invention, as a method of generating pressure on the ion exchanger, which is another means for fixing the ion exchange resin particles, a method of shrinking the filling container volume after filling the porous ion exchanger, porous ion There is a method of expanding the exchanger. There is also a method of supplying a liquid that swells the ion exchanger as a method of expanding the porous ion exchanger. However, since this method may reduce the effect during operation, it may be in a contracted state after the operation. A method of passing water and driving is preferable. It is preferable to supply the aqueous solution after filling the porous ion exchanger in a dry state and swell it, because the swelling rate is large and the pressure can be easily controlled, and the structural change of the dialysis tank is small.
[0033]
In order to produce deionized water efficiently, it is necessary to uniformly pass the water to be treated supplied to the demineralization chamber through the porous ion exchanger without performing a short pass. In order to prevent a short pass, it is preferable to operate in a state where pressure is generated between the porous ion exchanger and the ion exchange membrane.
[0034]
Specifically, a method of generating pressure by swelling the ion exchanger after filling the closed space, and reducing the volume of the closed space after filling the closed space with the ion exchanger The method of generating pressure by Examples include a method in which a closed space is filled with another filler together with an ion exchanger, and pressure is generated by swelling the filler after filling.
[0035]
Among these methods, after filling the ion exchanger in the closed space, the ion exchanger is swollen to generate pressure, and then the dried resin is filled and then wetted with water and swollen. Examples of the method include a method of swelling by filling an addition-type resin and then switching to a regeneration type, a method using a combination of the two, and the like.
[0036]
In addition, as a method for generating pressure by reducing the volume of the closed space after filling the ion exchanger in the closed space, for example, in the self-regenerating electrodialysis deionized aqueous solution manufacturing method, the closed space is used. Examples of the method include a method in which after the ion-exchanger is filled in the desalting chamber, the chamber frame is tightened and the thickness of the desalting chamber is reduced to reduce the volume and generate pressure.
[0037]
As a method of generating a pressure by filling another space with an ion exchanger in a closed space and swelling the space after filling, the substance swollen by water other than the ion exchanger and the ion exchange resin is in a dry state. After the filling, the method of swelling by wetting with water is mentioned. In any method, if the pressure is not uniform, troubles such as wrinkling and drift of the film are likely to be caused. Therefore, it is indispensable to adopt an optimum method in each method.
[0038]
As a method for distributing the cation exchanger and the anion exchanger in a layered manner, in addition to using an ion exchanger bonded with a binder resin, for example, a granular ion exchange resin is used, and a template is used during assembly of an electrodialysis tank. A method in which Yin and Yang ion exchange resin particles are sequentially poured and filled in a layer shape can also be applied. In the case of this method, if the amount of treated water supplied to the electrodialysis tank is large and the flow rate flowing through the porous ion exchanger is further large, the ion exchange resin particles move in the tank and the regular ion exchange resin layer pattern collapses. As a result, the deionization performance may be reduced.
[0039]
The ion exchange resin particles used in the present invention preferably have a particle size in the range of 50 to 2000 μm. When the particle size is smaller than 50 μm, the pore diameter of the porous ion exchanger becomes small and the water to be treated becomes difficult to flow, which may reduce the amount of treated water. When the particle diameter is larger than 1500 μm, the surface area of the ion exchanger is insufficient, and the ion exchange processing efficiency may be reduced. More preferably, the particle size of the ion exchange resin particles is 300 to 1000 μm. The ion exchange resin may be synthesized so as to be in the above particle size range or pulverized so as to be in the above particle size range.
[0040]
The shape of the ion-exchange resin particles can be any shape that can form a porous layer, such as a spherical shape, an elliptical shape, a plate shape, a disk shape, or a rod shape. Particularly preferred.
[0041]
The ion exchange resin particles preferably have an ion exchange capacity of 0.5 to 7.0 meq / g dry resin. If the ion exchange capacity is lower than 0.5 meq / g dry resin, there is a possibility that the adsorption and desalting of ions in the desalting chamber will not be sufficiently performed and the deionized water purity may be lowered, and 7.0 meq / If it is larger than g dry resin, the strength of the ion exchange resin particles is remarkably lowered, which is not preferable. In the case where the ion exchange capacity is 1.0 to 5.0 meq / g dry resin, a resin having high deionized water purity is obtained, and the performance stability is excellent, which is particularly preferable. The ion exchange resin particles are widely used for ordinary water treatment applications and the like, are inexpensive and easily available, and are industrially significant advantages.
[0042]
As the ion exchange group of the ion exchange resin particle, a sulfonic acid type that is a strong acid is used as a cation exchange group, and a quaternary ammonium salt type or a pyridinium salt type that is a strong base is used as an anion exchange group. From the viewpoint of chemical stability.
[0043]
As a production apparatus for carrying out the method for producing deionized water of the present invention, the following is specifically preferred. That is, a plurality of cation exchange membranes and anion exchange membranes are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, the anode side is partitioned by an anion exchange membrane, and the cathode side is positive. About 2 to 300 sets of demineralization chambers partitioned by an ion exchange membrane and concentration chambers partitioned by a cation exchange membrane and the cathode side by an anion exchange membrane are alternately arranged in series. Deionization can be performed by flowing an electric current while flowing an aqueous solution to be treated in the desalting chamber and flowing an aqueous solution for discharging the concentrated salts into the concentration chamber. A voltage of about several volts is preferably applied to each unit cell in order to cause water dissociation in the desalting chamber.
[0044]
The adhesion between the porous ion exchanger and the ion exchange membrane is preferably 0.1 to 20 kg / cm 2 , particularly preferably 0.5 to 10 kg / cm 2 . When the pressure is less than 0.1 kg / cm 2 , a short path is likely to occur in the gap between the ion exchanger and the membrane, and impurity ions in the water to be treated are not adsorbed on the ion exchange resin, and a high-purity deionized aqueous solution is formed. Since it cannot be obtained, it is not preferable. If the pressure is higher than 20 kg / cm 2 , the dialysis tank wall and the ion exchange membrane may be damaged, which is not preferable.
[0045]
【Example】
Between the anode and the cathode, a cation exchange membrane (Asahi Glass Co., Ltd. product name: Selemion CMT) and an anion exchange membrane (Asahi Glass Co., Ltd. product name: Selemion AMP) are alternately arranged, and the anode side is partitioned by an anion exchange membrane. And an effective area of 0.16 m 2 in which three pairs of demineralization chambers, the cathode side of which is partitioned by a cation exchange membrane, and the concentration chambers of which the anode side is partitioned by a cation exchange membrane and the cathode side is partitioned by an anion exchange membrane are arranged. An electrodialysis tank was used. EXAMPLES Hereinafter, although an Example (Example 2, 3) and a comparative example (Example 1) demonstrate this invention, this invention is not limited to these.
[0046]
[Example 1]
In the desalting chamber of the electrodialysis tank, a sulfonic acid type cation exchange resin having a wet particle size of 400 to 550 μm and an ion exchange capacity of 4.2 meq / g dry resin (Mitsubishi Chemical Corporation product name: Diaion) SK1B), and a quaternary ammonium salt type anion exchange resin (Mitsubishi Chemical Corporation product name: Diaion SA10A) having a particle size of 400 to 600 μm and an ion exchange capacity of 3.7 meq / g dry resin. The porous ion exchanger was formed into a layer in a desalting chamber in a layered manner with a thickness of 20 mm (flow direction of water to be treated) by the method of pouring and using. This operation was a difficult task requiring extremely skill.
[0047]
Next, when water having an electric conductivity of 7 μS / cm was supplied so that the flow rate in the desalting chamber was 1 cm / sec and a current of 40 A / m 2 was applied, a deionized water test was conducted. The degree of change was large and finally deionized water having an electric resistance of 6 MΩ · cm was obtained. When the disassembly was observed after the operation was stopped, the porous ion exchanger did not maintain the original layered shape at all.
[0048]
[Example 2]
The same cation exchange resin particles and anion exchange resin particles as used in Example 1 were dried in an oven to a water content of 5% by weight. By pouring these ion exchange resin particles into a desalting chamber of an electrodialysis tank using a template, the porous ion exchanger is layered in a thickness of 20 mm (flow direction of water to be treated) into the desalting chamber volume. Formed. As in the case of Example 1, the work was extremely skillful and time consuming.
[0049]
Next, pure water was slowly supplied to the desalting chamber to swell the dry ion exchange resin particles. Since the electrodialysis tank has sufficient mechanical strength, a pressure of 2 kg / cm 2 was generated in the desalting chamber so that the inner dimensions of the desalting chamber did not change.
[0050]
Next, when deionized water test was conducted by supplying water with an electric conductivity of 7 μS / cm so that the flow rate in the desalting chamber was 0.5 cm / sec and passing a current of 40 A / m 2 , As for the electric conductivity, deionized water having an electric resistance of 16 MΩ · cm was obtained. When the disassembly was observed after the operation was stopped, the porous ion exchanger almost maintained its original layered shape.
[0051]
[Example 3]
The same cation exchange resin and anion exchange resin used in Example 1 were each dried. Thereafter, 2% by weight of linear low density polyethylene (manufactured by Dow Chemical Co., Ltd., trade name Affinity SM-1300) was mixed with each, and kneaded with a pressure kneader at 120 to 130 ° C. for 30 minutes. Next, the obtained cation exchange resin kneaded material and the anion exchange resin kneaded material were each thermoformed with a flat plate press at 130 ° C. to obtain a porous sheet having a thickness of 6 mm. The tensile strength of this sheet was 8 g / cm 2 .
[0052]
Next, the cation porous sheet and the anion porous sheet are each cut to a width of 20 mm and then combined and pressed to form an integrated layered porous composite ion exchanger. Assembled. This work was very easy to install because the porous ion exchanger was integrated.
[0053]
Pure water was supplied to the electrodialysis tank to wet and swell the porous ion exchanger to generate an adhesive force of about 2 kg / cm 2 . The water permeability of the porous ion exchanger was pressure 0.35kg / m 2 3 × 10 6 kg · cm · m -2 · h -1 in this state. Next, when water to be treated having an electric conductivity of 7 μS / cm was supplied so that the flow rate in the desalting chamber was 2.5 cm / sec and a current of 40 A / m 2 was passed, the electric resistance of 17.6 MΩ · cm was removed. Ionized water was obtained stably. When disassembly was observed after the operation was stopped, the layered shape of the porous ion exchanger was completely maintained.
[0054]
【The invention's effect】
In the present invention, since the cation exchange resin layer and the anion exchange resin layer have a structure in which the same kind of ion exchange resin particles are connected, the adsorbed ions pass through adjacent particles, and the potential gradient is generated inside the layer. It can be easily moved. In addition, since the cation exchange resin layer and the anion exchange resin layer are alternately arranged, all of the treated water flowing through each part of the compartment contacts the cation exchange resin and the anion exchange resin for a predetermined distance. To do. Therefore, a specified amount of current can be passed at a low voltage, and deionization at a high level can be achieved.

Claims (2)

区画室の内部に、陽イオン交換樹脂粒子が連結した構造を有する多孔性層と、陰イオン交換樹脂粒子が連結した構造を有する多孔性層とを、被処理水の流れ方向に交互に配置し、被処理水中のイオンをイオン交換樹脂に吸着する方法であって、被処理水の流速が0.5cm/秒以上であり、かつ、イオン交換樹脂粒子が被処理水の流れにより移動しないように、前記区画室の内部に0.1〜20kg/cm の圧力を発生させることにより固定されている、電気透析による脱イオン水の製造方法。Inside the compartment, a porous layer having a structure in which cation exchange resin particles are connected and a porous layer having a structure in which anion exchange resin particles are connected are alternately arranged in the flow direction of the water to be treated. a method for adsorbing the water to be treated ion to an ion exchange resin, the flow rate of the water to be treated is not less 0.5 cm / sec or more, and, as ion exchange resin particles are not moved by the flow of water to be treated A method for producing deionized water by electrodialysis, which is fixed by generating a pressure of 0.1 to 20 kg / cm 2 inside the compartment . 陽イオン交換樹脂粒子を含む多孔性層と陰イオン交換樹脂粒子を含む多孔性層とを配置する区画室が、陽極を備える陽極室と陰極を備える陰極室との間に、複数枚の陽イオン交換膜と陰イオン交換膜とを交互に配列してなる電気透析槽における、陽極側が陰イオン交換膜で区画され陰極側が陽イオン交換膜で区画された脱塩室であって、陽極側が陽イオン交換膜で区画され陰極側が陰イオン交換膜で区画された濃縮室とを交互に設けた電気透析槽における、脱塩室である請求項1記載の電気透析による脱イオン水の製造方法。The compartment in which the porous layer containing the cation exchange resin particles and the porous layer containing the anion exchange resin particles are arranged has a plurality of cations between the anode chamber having the anode and the cathode chamber having the cathode. An electrodialysis tank in which exchange membranes and anion exchange membranes are arranged alternately, a desalination chamber in which the anode side is partitioned by an anion exchange membrane and the cathode side is partitioned by a cation exchange membrane, and the anode side is a cation The method for producing deionized water by electrodialysis according to claim 1 , which is a demineralization chamber in an electrodialysis tank provided alternately with concentration chambers partitioned by an exchange membrane and on the cathode side by an anion exchange membrane.
JP00102098A 1998-01-06 1998-01-06 Method for producing deionized water Expired - Fee Related JP3906540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00102098A JP3906540B2 (en) 1998-01-06 1998-01-06 Method for producing deionized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00102098A JP3906540B2 (en) 1998-01-06 1998-01-06 Method for producing deionized water

Publications (2)

Publication Number Publication Date
JPH11197671A JPH11197671A (en) 1999-07-27
JP3906540B2 true JP3906540B2 (en) 2007-04-18

Family

ID=11489895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00102098A Expired - Fee Related JP3906540B2 (en) 1998-01-06 1998-01-06 Method for producing deionized water

Country Status (1)

Country Link
JP (1) JP3906540B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233798B2 (en) * 2009-03-31 2013-07-10 日本錬水株式会社 Electric regenerative pure water production equipment
JP5110020B2 (en) * 2009-03-31 2012-12-26 日本錬水株式会社 Ion exchange resin filling method and electric regenerative pure water production apparatus

Also Published As

Publication number Publication date
JPH11197671A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
US6334941B1 (en) Apparatus for producing deionized water
US5759373A (en) Porous ion exchanger and method for producing deionized water
JP4453982B2 (en) Method for producing composite porous ion exchanger
JP4633955B2 (en) Porous ion exchanger, deionization module and electric deionized water production apparatus using the same
US5961805A (en) Method and apparatus for producing deionized water
JP3773190B2 (en) Electric deionized water production equipment
EP1386938B1 (en) Electrodeionization water purification device
US5891328A (en) Membrane-frame for processes including electrodialysis
TW200303782A (en) Electrodeionization water producing apparatus and method of producing deionized water using same
JPH08252579A (en) Porous ion exchanger and production of deionized water
JP3947829B2 (en) Deionized water production equipment
JP4049170B2 (en) Method for producing deionized water production apparatus
JP3644182B2 (en) Deionized water production equipment
JP3906540B2 (en) Method for producing deionized water
JPH05131120A (en) Electric regeneration type desalting apparatus
JPH10192716A (en) Porous ion exchanger and production of demineralized water
JP3800706B2 (en) Deionized water production equipment
JPH10244169A (en) Porous ion exchanger and production of demineralized water
JPH10192717A (en) Porous ion exchanger and production of demineralized water
JPH11165175A (en) Manufacturing apparatus for deionized water
JPH10216717A (en) Porous ion exchanger and preparation of demineralized water
JP2001062312A (en) Production of porous ion exchanger
JP2003190963A (en) Ion exchanger and electric demineralizer
JPH08197062A (en) Apparatus for electrodialytically producing deionized water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees