JPH1116421A - Direct current power cable - Google Patents

Direct current power cable

Info

Publication number
JPH1116421A
JPH1116421A JP16896297A JP16896297A JPH1116421A JP H1116421 A JPH1116421 A JP H1116421A JP 16896297 A JP16896297 A JP 16896297A JP 16896297 A JP16896297 A JP 16896297A JP H1116421 A JPH1116421 A JP H1116421A
Authority
JP
Japan
Prior art keywords
carbon black
power cable
insulator
less
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16896297A
Other languages
Japanese (ja)
Other versions
JP3602297B2 (en
Inventor
Kazuki Terajima
一希 寺島
Kazuo Watanabe
和夫 渡辺
Shotaro Yoshida
昭太郎 吉田
Toru Takahashi
亨 高橋
Shoichi Hasegawa
正一 長谷川
Hiroyuki Miyata
裕之 宮田
Hisao Sakaguchi
久雄 坂口
Akitoshi Watanabe
明年 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Fujikura Ltd
Original Assignee
Electric Power Development Co Ltd
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Fujikura Ltd filed Critical Electric Power Development Co Ltd
Priority to JP16896297A priority Critical patent/JP3602297B2/en
Publication of JPH1116421A publication Critical patent/JPH1116421A/en
Application granted granted Critical
Publication of JP3602297B2 publication Critical patent/JP3602297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a direct current power cable that improves a direct current breakdown characteristic, and also improves a characteristic lighting impulse breakdown characteristic substantially. SOLUTION: This power cable uses an insulating composition, added 0.2 to 5 wt.% of carbon black of the following condition to thermoplastic resin, as an insulator. (a) The ratio of absorption amount (cc/100g) of mineral oil to the specific surface area (m<2> /g) measured by the BET method is made 0.7 or more, 3.5 or less. (b) Carbon containment rates is made 97 wt.% or more. (c) The rate of coarse grain carbon black of grain size 300 nm or more is made 1% or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空間電荷による電
界の変歪を取り除くことにより絶縁耐力向上を図った直
流電力ケーブルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC power cable having improved dielectric strength by removing distortion of an electric field due to space charge.

【0002】[0002]

【従来の技術】従来よりCVケーブルなど、通常の交流
高電圧電力ケーブルの絶縁体としては、絶縁耐圧、誘電
特性が優れていることから、ポリエチレンや架橋ポリエ
チレンが汎用されている。
2. Description of the Related Art Conventionally, polyethylene and cross-linked polyethylene have been widely used as insulators of ordinary AC high-voltage power cables such as CV cables because of their excellent dielectric strength and dielectric properties.

【0003】[0003]

【発明が解決しようとする課題】ところで、ポリエチレ
ンや架橋ポリエチレンなどからなる絶縁体を有するケー
ブルを、高圧直流送電に適用する場合には、いくつかの
問題点が生じることが知られている。最大の問題点は、
直流高電圧を印加することによって、絶縁体中に寿命の
長い空間電荷が形成され易いことである。この空間電荷
は一般に電子性、正孔性、イオン性のものと言われてお
り、ポリエチレンの結晶構造に関係した領域に電荷がト
ラップされるためとされている。また、ポリエチレンは
絶縁性の良好な無極性の物質であるため、トラップされ
た電荷が漏れが起こりにくく、したがって、寿命の長い
空間電荷となる。そして、直流印加によって絶縁体空間
電荷が蓄積されると、導体近傍の電界強度が上昇し、ケ
ーブルの破壊電圧が低下する不都合が生じる。
It is known that when a cable having an insulator made of polyethylene, cross-linked polyethylene or the like is applied to high-voltage DC power transmission, some problems occur. The biggest problem is that
By applying a DC high voltage, a long-life space charge is easily formed in the insulator. This space charge is generally called electronic, hole or ionic, and is said to be because charges are trapped in a region related to the crystal structure of polyethylene. In addition, since polyethylene is a nonpolar substance having good insulating properties, the trapped charges are unlikely to leak, and thus become space charges with a long life. When the insulator space charge is accumulated by the application of a direct current, the electric field strength near the conductor increases, which causes a disadvantage that the breakdown voltage of the cable decreases.

【0004】上記の不都合を解消するべく、絶縁体中に
適当量のカーボンブラックを添加して空間電荷の蓄積を
低減することにより絶縁耐力を高める直流電力ケーブル
が提案されている(特開昭61−253712号)。
In order to solve the above-mentioned inconvenience, a DC power cable has been proposed in which an insulating material is added with an appropriate amount of carbon black to reduce the accumulation of space charge and thereby increase the dielectric strength (Japanese Patent Application Laid-Open No. 61-1986). -253712).

【0005】この提案の添加条件は、熱可塑性樹脂に対
して、次の条件のカーボンブラックを0.2〜5重量%
添加した絶縁組成物を絶縁体として使用したことを要旨
とするものである。その条件は、BET法で測定した比
表面積(m2/g)に対する鉱物油の吸油量(cc/1
00g)の比が0.7以上で、1.5以下で、かつ、炭
素含有率が97重量%以上で、かつ、平均粒径10〜1
00nm(ナノメータ)のカーボンブラックである。
[0005] The proposed addition conditions are as follows. Carbon black is added in an amount of 0.2 to 5% by weight based on the thermoplastic resin.
The gist is that the added insulating composition is used as an insulator. The conditions are as follows: the amount of mineral oil absorbed (cc / 1) relative to the specific surface area (m 2 / g) measured by the BET method.
00g) is 0.7 or more and 1.5 or less, the carbon content is 97% by weight or more, and the average particle size is 10 to 1
00 nm (nanometer) carbon black.

【0006】しかるに、この提案の場合は、直流破壊特
性は向上するが、一方、添加したカーボンブラックは異
物としての作用もする恐れがある。すなわち、電力ケー
ブルとして要求されるもう一つの特性である雷インパル
ス破壊特性が無添加(非充填)架橋ポリエチレンに比べ
て低下する傾向にあるという問題点がある。
However, in the case of this proposal, the DC breakdown characteristics are improved, but on the other hand, the added carbon black may also act as a foreign substance. That is, there is a problem that the lightning impulse destruction characteristic, which is another characteristic required for the power cable, tends to be lower than that of the non-added (unfilled) crosslinked polyethylene.

【0007】本発明は、前記の問題点を解消するべくな
されたものであって、直流破壊特性を向上させ得ると共
に、雷インパルス破壊特性をも大幅に向上できる直流電
力ケーブルを提供することを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a DC power cable capable of improving DC breakdown characteristics and greatly improving lightning impulse breakdown characteristics. And

【0008】[0008]

【課題を解決するための手段】本発明は、前記課題を解
決するため次の構成を有する。請求項1の発明は、熱可
塑性樹脂に対して、次の条件のカーボンブラックを0.
2〜5重量%添加した絶縁組成物を絶縁体として使用す
ることを特徴とする直流電力ケーブルである。 (a) BET法で測定した比表面積(m2/g)に対す
る鉱物油の吸油量(cc/100g)の比が0.7以
上、3.5以下で、かつ、(b) 炭素含有率が97重
量%以上で、かつ、(c) 粒径が300nm以上の粗
粒カーボンブラックの存在割合が1%以下。
The present invention has the following arrangement to solve the above-mentioned problems. According to the first aspect of the present invention, carbon black is added to a thermoplastic resin under the following conditions.
A DC power cable characterized in that an insulating composition containing 2 to 5% by weight is used as an insulator. (A) the ratio of the oil absorption (cc / 100 g) of the mineral oil to the specific surface area (m 2 / g) measured by the BET method is 0.7 or more and 3.5 or less, and (b) the carbon content is 97% by weight or more and (c) the proportion of coarse carbon black having a particle size of 300 nm or more is 1% or less.

【0009】請求項2の発明は、添加したカーボンブラ
ックは、平均粒径が10〜100nmの条件を含むもの
であることを特徴とする請求項1に記載の直流電力ケー
ブルである。
According to a second aspect of the present invention, there is provided the DC power cable according to the first aspect, wherein the added carbon black includes a condition that the average particle diameter is 10 to 100 nm.

【0010】ここで、比表面積は、カーボンブラック1
g当たりに吸着する所定物質(N2、Arなど)の量
で、g当たりの表面積として表すものである。これは、
粒子1つずつの表面積を測定することが困難なためであ
る。一方、吸油量は文字通り油を吸う量であり、カーボ
ンブラックの粒子構造を見るためのものである。
The specific surface area of carbon black 1
The amount of a predetermined substance (N 2 , Ar, etc.) adsorbed per g is expressed as a surface area per g. this is,
This is because it is difficult to measure the surface area of each particle. On the other hand, the oil absorption is a literal amount of oil absorption, and is for observing the particle structure of carbon black.

【0011】また、熱可塑性樹脂としては、ポリエチレ
ン(低密度ポリエチレン、高密度ポリエチレン)、ポリ
プロピレン、エチレン酢酸ビニル共重合体(EVA)、
エチレンエチルアクリレート共重合体(EEA)、エチ
レンプロピレンゴム(EPR)など、ならびにこれらの
混合物を用いることができる。また、架橋して使用する
ことももちろん可能である。
As the thermoplastic resin, polyethylene (low-density polyethylene, high-density polyethylene), polypropylene, ethylene-vinyl acetate copolymer (EVA),
Ethylene ethyl acrylate copolymer (EEA), ethylene propylene rubber (EPR), and the like, and a mixture thereof can be used. In addition, it is of course possible to use it after crosslinking.

【0012】一方、カーボンブラックの種類としては、
SAFカーボン、アセチレンカーボンなどが代表的なも
のである。
On the other hand, the types of carbon black include
Representative examples include SAF carbon and acetylene carbon.

【0013】請求項1の発明の構成のうちで、上記
(c)の構成により、粒径が300nm以上の粗粒カー
ボンブラックの存在割合を1%以下にすることで、雷イ
ンパルス破壊電圧を向上させることができた。その理由
は、インパルス破壊は、導電性突起が破壊起点になるケ
ースが多く、大きいカーボン粒子(300nm以上)の
存在割合が多いと、カーボン粒子が凝集してできる粗粒
子も当然大きくなり、これが内外導に接触又は近接する
確率も増える。このような内外導付近の凝集粗粒子カー
ボンがインパルス破壊に影響を及ぼすと考えられるから
である。
According to the first aspect of the present invention, the configuration of (c) above improves the lightning impulse breakdown voltage by reducing the proportion of coarse carbon black having a particle size of 300 nm or more to 1% or less. I was able to. The reason for this is that, in many cases, impulse destruction is caused by conductive protrusions as a starting point of destruction. If a large proportion of large carbon particles (300 nm or more) is present, coarse particles formed by agglomeration of carbon particles naturally become large. The probability of touching or approaching the conductor also increases. This is because such agglomerated coarse particle carbon near the inner and outer conductors is considered to affect the impulse breakdown.

【0014】また、それ以外の構成(a)、(b)など
で空間電化の漏れを促すことができる。以下、この理由
を説明する。上記絶縁体組成物の抵抗率(比抵抗)をρ
(Ω−m)とし、絶縁抵抗の温度係数をα(1/℃)、
電界係数(絶縁抵抗のストレス係数)をβ(mm/k
v)、絶縁体にかかる電界強度をE(kv/mm)とす
れば、 ρ=ρ0exp−(αT+βE) ……(1) なる関係が成り立つことが知られている。
In addition, other configurations (a) and (b) can promote leakage of space electrification. Hereinafter, the reason will be described. The resistivity (specific resistance) of the insulator composition is represented by ρ
(Ω-m), the temperature coefficient of the insulation resistance is α (1 / ° C.),
The electric field coefficient (stress coefficient of insulation resistance) is β (mm / k
v), assuming that the electric field strength applied to the insulator is E (kv / mm), it is known that the following relationship holds: ρ = ρ 0 exp− (αT + βE) (1)

【0015】そして、カーボンブラックを添加すると、
電界係数βが増加する一方で温度係数αが減少し、絶縁
体組成物での空間電化の漏れを促進する。なぜならば、
電界係数βが増加すると抵抗率ρが低下するため、高ス
トレス部(強い電界のかかる部分)の電界が緩和され、
また、温度係数αが減少すると、導体温度が高いときに
遮蔽側に現れていた最大電界Emaxが減少するからで
ある。こうして絶縁体組成物内での電界分布が均一化の
方向に動き、空間電荷の蓄積が低減される。各数値限定
の理由につき説明する。
Then, when carbon black is added,
While the electric field coefficient β increases, the temperature coefficient α decreases, promoting the leakage of space electrification in the insulator composition. because,
When the electric field coefficient β increases, the resistivity ρ decreases, so that the electric field in a high stress portion (a portion where a strong electric field is applied) is reduced,
Further, when the temperature coefficient α decreases, the maximum electric field Emax that appears on the shielding side when the conductor temperature is high decreases. Thus, the electric field distribution in the insulator composition moves in the direction of uniformity, and the accumulation of space charges is reduced. The reason for limiting each numerical value will be described.

【0016】(1)カーボンブラックの添加量が0.2
〜5重量%の理由。前記添加量が0.2%以下では上述
の効果が十分に得られず、また、5%以上では抵抗率ρ
の低下と電界係数βの増加が著しく、熱破壊の恐れが生
じる。
(1) The addition amount of carbon black is 0.2
Reason for ~ 5% by weight. When the amount is 0.2% or less, the above-mentioned effects cannot be sufficiently obtained. When the amount is 5% or more, the resistivity ρ
And the electric field coefficient β significantly increases, which may cause thermal destruction.

【0017】(2)吸油量/比表面積が0.7以上で
3.5以下の理由。カーボンブラックの添加量を増加す
ると粒子間の距離が縮まり、高電界下においては粒子間
にトンネル効果による電流が流れる。このため、電界係
数βが必要以上に大きくなり、熱破壊を促す原因とな
る。したがって、少ない添加量で(1)式の抵抗率ρを
低下させることが必須である。ところで、比表面積に対
する吸油量の比が大きいカーボンブラックの方が、少量
で抵抗率ρを下げることができ、この比が0.7以上な
らば良好な結果が得られる。
(2) The reason that the ratio of oil absorption / specific surface area is 0.7 or more and 3.5 or less. As the amount of carbon black added increases, the distance between the particles decreases, and a current flows between the particles under a high electric field due to a tunnel effect. For this reason, the electric field coefficient β becomes unnecessarily large, which causes thermal destruction. Therefore, it is essential to reduce the resistivity ρ of the expression (1) with a small amount of addition. By the way, carbon black having a large ratio of the oil absorption amount to the specific surface area can reduce the resistivity ρ with a small amount, and good results can be obtained if the ratio is 0.7 or more.

【0018】一方、この比が3.5より大きくなると粒
子の凝集度が増して見かけの粒子径が大きくなり、ポリ
エチレン等の熱可塑性樹脂との混じり具合が悪くなる。
特にアセチレンカーボンでは粒子が鎖状に連結している
ので、この影響が大きい。なお、SAF、ISAF、I
−ISAF、CF、SCF、HAFカーボンのいずれか
のカーボンブラックを用いたときには、上記の比が0.
7〜1.5の範囲で、特に良好なことが実験的に確かめ
られた。
On the other hand, when this ratio is larger than 3.5, the degree of aggregation of the particles increases, the apparent particle diameter increases, and the mixing with a thermoplastic resin such as polyethylene deteriorates.
In particular, acetylene carbon has a large effect because particles are connected in a chain. In addition, SAF, ISAF, I
-When any one of ISAF, CF, SCF and HAF carbon blacks is used, the above ratio is 0.1%.
It was experimentally confirmed that particularly good results were obtained in the range of 7 to 1.5.

【0019】(3)カーボンブラックの炭素含有率が9
7重量%以上である理由。カーボンブラックには、灰
分、O2、H2などの不純物が含まれており、これらの不
純物が多いと、電気的特性が低下する。したがって、カ
ーボンの純度は高いほど良好である。
(3) The carbon content of carbon black is 9
The reason is more than 7% by weight. Carbon black contains impurities such as ash, O 2 , and H 2 , and when these impurities are large, the electrical characteristics are deteriorated. Therefore, the higher the purity of carbon, the better.

【0020】(4)カーボンブラックの平均粒径を10
〜100nmをする理由(請求項2)。 平均粒径は、
カーボンブラックの平均粒径とは、各粒子径区間の粒子
数をNi、粒径径区間の中心値をDiとしたとき、 平均粒径=ΣNi・Di/ΣNi で与えられる。この平均粒径10〜100nmの大きさ
のカーボンブラックが、ポリエチレンなどの絶縁体の結
晶構造を乱さない最適の値である。結晶構造が乱される
と絶縁体の電気的性能が低下する。また粒径がこれより
大きいとカーボンブラックの分散や交じり具合が悪くな
る。またこれより小さい場合は製造が難しく現実的でな
い。
(4) The average particle size of carbon black is 10
Reason for setting to 100 nm (claim 2). The average particle size is
The average particle diameter of the carbon black is given by the following equation: Average particle diameter = DNi · Di / ΣNi, where Ni is the number of particles in each particle diameter section, and Di is the center value of the particle diameter section. This carbon black having an average particle size of 10 to 100 nm is an optimal value that does not disturb the crystal structure of an insulator such as polyethylene. Disturbing the crystal structure lowers the electrical performance of the insulator. On the other hand, if the particle size is larger than this, the dispersion and mixing of the carbon black will be poor. On the other hand, if it is smaller than this, it is difficult to manufacture and it is not practical.

【0021】以上のように、カーボンブラックの粒粉分
(粗粒分)を除去し、粒径が300nm以上の粗粒カー
ボンブラックの存在割合を1%以下にすることにより直
流特性を向上させると共に、雷インパルス破壊特性を向
上させることができる。
As described above, the direct current characteristics are improved by removing the carbon black particles (coarse particles) and reducing the presence ratio of the coarse carbon black having a particle diameter of 300 nm or more to 1% or less. And lightning impulse breakdown characteristics can be improved.

【0022】[0022]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。本発明にかかる絶縁材料を
用いて直流電力ケーブルを製造する(本発明品)と共
に、比較品の絶縁材料を電力ケーブルを製造した(比較
品)。
Embodiments of the present invention will be described below in detail with reference to the drawings. A DC power cable was manufactured using the insulating material according to the present invention (the present invention), and a power cable was manufactured using a comparative insulating material (the comparative product).

【0023】すなわち、本発明品の電力ケーブルは、絶
縁体は、架橋ポリエチレンに対して、次の条件のカーボ
ンブラックを0.2〜5重量%添加した絶縁組成物を絶
縁体として使用した。この場合に、BET法で測定した
比表面積(m2/g)に対する鉱物油の吸油量(cc/
100g)の比が0.7以上、3.5以下で、かつ、炭
素含有率が97重量%以上のカーボンブラックであり、
さらに該カーボンブラックの最大粒径が300nmであ
って300nmを超える粗粒分を除去して粒径が300
nm以上の粗粒カーボンブラックの存在割合を1%以下
にした。
That is, in the power cable of the present invention, the insulator used was an insulating composition obtained by adding 0.2 to 5% by weight of carbon black under the following conditions to crosslinked polyethylene. In this case, the oil absorption of the mineral oil (cc / cc) relative to the specific surface area (m 2 / g) measured by the BET method.
100g) is a carbon black having a ratio of 0.7 to 3.5 and a carbon content of 97% by weight or more,
Further, the maximum particle size of the carbon black is 300 nm, and coarse particles exceeding 300 nm are removed to remove the carbon black particles having a maximum particle size of 300 nm.
The proportion of the coarse carbon black having a diameter of not less than nm was set to 1% or less.

【0024】また、比較品の電力ケーブルは、次の条件
のカーボンブラックを0.2〜5重量%添加した絶縁組
成物を絶縁体として使用した。この場合に、BET法で
測定した比表面積(m2/g)に対する鉱物油の吸油量
(cc/100g)の比が0.7以上、3.5以下で、
かつ、炭素含有率が97重量%以上のカーボンブラック
であり、さらに該カーボンブラックの平均粒径が10〜
100nmとし、最大粒径は規定しないものである。
The comparative power cable used as the insulator was an insulating composition to which 0.2 to 5% by weight of carbon black was added under the following conditions. In this case, the ratio of the oil absorption amount (cc / 100 g) of the mineral oil to the specific surface area (m 2 / g) measured by the BET method is 0.7 or more and 3.5 or less,
The carbon black has a carbon content of 97% by weight or more, and the carbon black has an average particle size of 10 to 10% by weight.
100 nm, and the maximum particle size is not specified.

【0025】そして、本発明品および比較品の電力ケー
ブルは、共に、導体断面積が800mm2、絶縁体厚さ
20mmであり、内部および外部半導電層と絶縁体とを
同時押し出しによって形成したものである。
The power cables of the present invention and the comparative product both have a conductor sectional area of 800 mm 2 and an insulator thickness of 20 mm, and are formed by simultaneously extruding the inner and outer semiconductive layers and the insulator. It is.

【0026】上記の本発明品および比較品のそれぞれの
直流電力ケーブルを実際に製造してそれぞれの直流電力
ケーブルの絶縁体を顕微鏡観察し、それにより、カーボ
ン粒子のサイズの分布を調査した。調査結果を図1に示
す。
Each of the above-described DC power cables of the present invention product and the comparative product was actually manufactured, and the insulator of each DC power cable was observed under a microscope, whereby the size distribution of carbon particles was investigated. FIG. 1 shows the results of the investigation.

【0027】また、これらの直流電力ケーブルの雷イン
パルス破壊試験と直流破壊試験を行って、図2に示すよ
う結果を得た。図2から、本発明品の電力ケーブルで
は、雷インパルス破壊電圧が大幅に改善されており、併
せて直流破壊電圧も向上していることが理解される。し
たがって、本発明が比較品に比べて優れたものであるこ
とが理解される。
Further, a lightning impulse breakdown test and a DC breakdown test of these DC power cables were performed, and the results were obtained as shown in FIG. From FIG. 2, it is understood that the lightning impulse breakdown voltage of the power cable according to the present invention is significantly improved, and the DC breakdown voltage is also improved. Therefore, it is understood that the present invention is superior to the comparative product.

【0028】[0028]

【発明の効果】以上説明した通り請求項1の発明によれ
ば、絶縁体をなす熱可塑性樹脂中に特定のカーボンブラ
ックを特定量添加することで空間電化を蓄積を低減させ
て、電力ケーブルの直流破壊電圧を向上させることがで
きると共に、この添加するカーボンブラックは粒径が3
00nm以上の粗粒カーボンブラックの存在割合を1%
以下に押さえることにより、雷インパルス破壊特性を大
幅に向上させる。したがって、直流破壊特性と雷インパ
ルス破壊特性を同時に向上させて、直流電力ケーブルの
総合的な絶縁耐力を向上できる。また、請求項2の発明
によれば、さらに直流破壊電圧が上昇して直流破壊特性
が向上できる。
As described above, according to the first aspect of the present invention, a specific amount of carbon black is added to a thermoplastic resin forming an insulator to reduce the accumulation of space electrification, thereby reducing the power cable. The DC breakdown voltage can be improved, and the carbon black to be added has a particle size of 3
1% of the presence ratio of coarse carbon black of 00 nm or more
By holding down below, the lightning impulse destruction characteristics are greatly improved. Therefore, the DC breakdown characteristics and the lightning impulse breakdown characteristics can be simultaneously improved, and the overall dielectric strength of the DC power cable can be improved. According to the second aspect of the present invention, the DC breakdown voltage further increases, and the DC breakdown characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明品と比較品のカーボン粒子サイズの分布
調査結果の説明図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of the results of an investigation on the distribution of carbon particle sizes of a product of the present invention and a comparative product.

【図2】本発明品と比較品の電気的性能を比較して示す
説明図である。
FIG. 2 is an explanatory diagram showing the electrical performance of a product of the present invention and a comparative product in comparison.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 昭太郎 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 高橋 亨 千葉県富津市新富42番1 株式会社フジク ラ富津工場内 (72)発明者 長谷川 正一 千葉県富津市新富42番1 株式会社フジク ラ富津工場内 (72)発明者 宮田 裕之 千葉県富津市新富42番1 株式会社フジク ラ富津工場内 (72)発明者 坂口 久雄 千葉県富津市新富42番1 株式会社フジク ラ富津工場内 (72)発明者 渡辺 明年 千葉県富津市新富42番1 株式会社フジク ラ富津工場内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shotaro Yoshida 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Inventor Tohru Takahashi 42-1, Shintomi, Futtsu City, Chiba Prefecture Fujikura Futtsu Co., Ltd. Inside the factory (72) Shoichi Hasegawa 42-1, Shintomi, Futtsu, Chiba Prefecture Inside Fujikura Futtsu Factory (72) Inventor Hiroyuki Miyata 42-1, Shintomi, Futtsu City, Chiba Prefecture Inside Fujikura Futtsu Factory (72) Inventor Hisao Sakaguchi 42-1, Shintomi, Futtsu City, Chiba Prefecture Inside Fujikura Futtsu Factory (72) Inventor Akinori Watanabe 42-1, Shintomi Futtsu City, Chiba Prefecture Inside Fujikura Futtsu Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂に対して、次の条件のカー
ボンブラックを0.2〜5重量%添加した絶縁組成物を
絶縁体として使用することを特徴とする直流電力ケーブ
ル。 (a) BET法で測定した比表面積(m2/g)に対す
る鉱物油の吸油量(cc/100g)の比が0.7以
上、3.5以下で、かつ、(b) 炭素含有率が97重
量%以上で、かつ、(c) 粒径が300nm以上の粗
粒カーボンブラックの存在割合が1%以下。
1. A direct-current power cable characterized in that an insulating composition obtained by adding 0.2 to 5% by weight of carbon black to a thermoplastic resin under the following conditions is used as an insulator. (A) the ratio of the oil absorption (cc / 100 g) of the mineral oil to the specific surface area (m 2 / g) measured by the BET method is 0.7 or more and 3.5 or less, and (b) the carbon content is 97% by weight or more and (c) the proportion of coarse carbon black having a particle size of 300 nm or more is 1% or less.
【請求項2】 添加したカーボンブラックは、平均粒径
が10〜100nmの条件を含むものであることを特徴
とする請求項1に記載の直流電力ケーブル。
2. The DC power cable according to claim 1, wherein the added carbon black includes a condition that the average particle size is 10 to 100 nm.
JP16896297A 1997-06-25 1997-06-25 DC power cable Expired - Lifetime JP3602297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16896297A JP3602297B2 (en) 1997-06-25 1997-06-25 DC power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16896297A JP3602297B2 (en) 1997-06-25 1997-06-25 DC power cable

Publications (2)

Publication Number Publication Date
JPH1116421A true JPH1116421A (en) 1999-01-22
JP3602297B2 JP3602297B2 (en) 2004-12-15

Family

ID=15877798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16896297A Expired - Lifetime JP3602297B2 (en) 1997-06-25 1997-06-25 DC power cable

Country Status (1)

Country Link
JP (1) JP3602297B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121056A (en) * 2008-11-20 2010-06-03 Viscas Corp Cross-linked polyethylene composition, and dc power cable
CN102725344A (en) * 2010-01-28 2012-10-10 株式会社维世佳 Crosslinked polyolefin composition, direct-current power cable, and process for construction of direct-current power line
JP2013026048A (en) * 2011-07-22 2013-02-04 Viscas Corp Direct current power cable and manufacturing method of direct current power line
JP2014218617A (en) * 2013-05-10 2014-11-20 株式会社ジェイ・パワーシステムズ Resin composition and dc cable
KR20200103553A (en) 2019-02-25 2020-09-02 스미토모 덴키 고교 가부시키가이샤 Resin composition molded article and dc power cable
KR20200103554A (en) 2019-02-25 2020-09-02 스미토모 덴키 고교 가부시키가이샤 Resin composition, inorganic filler, dc power cable, and method for manufacturing dc power cable
KR20200103552A (en) 2019-02-25 2020-09-02 스미토모 덴키 고교 가부시키가이샤 Resin composition, inorganic filler, dc power cable, and method for manufacturing dc power cable
CN111954694A (en) * 2018-04-20 2020-11-17 住友电气工业株式会社 Resin composition, inorganic filler, direct current cable, and method for producing direct current cable
KR20210003821A (en) 2018-04-20 2021-01-12 스미토모 덴키 고교 가부시키가이샤 Resin composition, inorganic filler, DC power cable, and method for producing DC power cable
WO2022163197A1 (en) 2021-01-29 2022-08-04 住友電気工業株式会社 Resin composition and power cable
WO2022163198A1 (en) 2021-01-29 2022-08-04 住友電気工業株式会社 Resin composition and power cable
WO2022180939A1 (en) 2021-02-25 2022-09-01 住友電気工業株式会社 Resin composition, power cable, and method for producing power cable

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6286886B2 (en) * 2013-06-13 2018-03-07 住友電気工業株式会社 DC cable
JP6318749B2 (en) 2014-03-20 2018-05-09 住友電気工業株式会社 Insulating material manufacturing method, masterbatch, insulating material and power cable
CN107614594B (en) * 2015-05-22 2021-06-01 陶氏环球技术有限责任公司 Method for producing a cable with a crosslinked insulating layer and cable produced by this method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121056A (en) * 2008-11-20 2010-06-03 Viscas Corp Cross-linked polyethylene composition, and dc power cable
CN102725344A (en) * 2010-01-28 2012-10-10 株式会社维世佳 Crosslinked polyolefin composition, direct-current power cable, and process for construction of direct-current power line
JPWO2011093211A1 (en) * 2010-01-28 2013-06-06 株式会社ビスキャス Crosslinked polyolefin composition, DC power cable, and DC power line construction method
JP2013026048A (en) * 2011-07-22 2013-02-04 Viscas Corp Direct current power cable and manufacturing method of direct current power line
JP2014218617A (en) * 2013-05-10 2014-11-20 株式会社ジェイ・パワーシステムズ Resin composition and dc cable
CN111954694A (en) * 2018-04-20 2020-11-17 住友电气工业株式会社 Resin composition, inorganic filler, direct current cable, and method for producing direct current cable
CN111954694B (en) * 2018-04-20 2023-01-10 住友电气工业株式会社 Resin composition, inorganic filler, direct current cable, and method for producing direct current cable
US11365305B2 (en) 2018-04-20 2022-06-21 Sumitomo Electric Industries, Ltd. Resin composition, inorganic filler, direct-current power cable, and method for producing direct-current power cable
KR20210003821A (en) 2018-04-20 2021-01-12 스미토모 덴키 고교 가부시키가이샤 Resin composition, inorganic filler, DC power cable, and method for producing DC power cable
KR20200103553A (en) 2019-02-25 2020-09-02 스미토모 덴키 고교 가부시키가이샤 Resin composition molded article and dc power cable
US10818410B2 (en) 2019-02-25 2020-10-27 Sumitomo Electric Industries, Ltd. Resin composition, inorganic filler, direct-current power cable, and method of manufacturing direct-current power cable
US10804006B2 (en) 2019-02-25 2020-10-13 Sumitomo Electric Industries, Ltd. Resin composition molded article and direct-current power cable
KR20200103552A (en) 2019-02-25 2020-09-02 스미토모 덴키 고교 가부시키가이샤 Resin composition, inorganic filler, dc power cable, and method for manufacturing dc power cable
KR20200103554A (en) 2019-02-25 2020-09-02 스미토모 덴키 고교 가부시키가이샤 Resin composition, inorganic filler, dc power cable, and method for manufacturing dc power cable
WO2022163197A1 (en) 2021-01-29 2022-08-04 住友電気工業株式会社 Resin composition and power cable
WO2022163198A1 (en) 2021-01-29 2022-08-04 住友電気工業株式会社 Resin composition and power cable
KR20230134464A (en) 2021-01-29 2023-09-21 스미토모 덴키 고교 가부시키가이샤 Resin composition and power cable
KR20230137287A (en) 2021-01-29 2023-10-04 스미토모 덴키 고교 가부시키가이샤 Resin composition and power cable
WO2022180939A1 (en) 2021-02-25 2022-09-01 住友電気工業株式会社 Resin composition, power cable, and method for producing power cable
KR20230150252A (en) 2021-02-25 2023-10-30 스미토모 덴키 고교 가부시키가이샤 Resin composition, power cable, and method for producing power cable

Also Published As

Publication number Publication date
JP3602297B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
US4626618A (en) DC electric power cable
JP3602297B2 (en) DC power cable
CN100555477C (en) Field grading material
JP5523281B2 (en) DC power cable with space charge reduction effect
JP5261145B2 (en) Cross-linked polyethylene composition and DC power cable
KR101454092B1 (en) Crosslinked polyolefin composition, direct-current power cable, and process for construction of direct-current power line
JP5697037B2 (en) DC power cable and method for manufacturing DC power line
EP2095376A1 (en) Field grading material
KR20190072868A (en) Insulating composition for high voltage cable and preparing method thereof
CN111138744B (en) Insulating composite material, preparation method thereof and electrostatic air purifier
JPH07111844B2 (en) DC power cable
JP2800079B2 (en) DC power cable
JP3874862B2 (en) DC cross-linked polyethylene insulated power cable
KR20190001627A (en) Power cable having a semiconductive layer formed from the same
KR20110112679A (en) Dc power cable using semiconductive composition and insulation composition
JP2563504B2 (en) DC power cable
JPS62177805A (en) Dc power cable
JPH0475601B2 (en)
JPS63178407A (en) Dc power cable
JPS63178404A (en) Dc power cable
JPH10321043A (en) Dc cable
JPS63178406A (en) Dc power cable
JPH063687B2 (en) DC power cable
JPS63178405A (en) Dc power cable

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term