JPH11163537A - Prepreg for multilayer circuit board and manufacture of multilayer circuit board - Google Patents

Prepreg for multilayer circuit board and manufacture of multilayer circuit board

Info

Publication number
JPH11163537A
JPH11163537A JP10046843A JP4684398A JPH11163537A JP H11163537 A JPH11163537 A JP H11163537A JP 10046843 A JP10046843 A JP 10046843A JP 4684398 A JP4684398 A JP 4684398A JP H11163537 A JPH11163537 A JP H11163537A
Authority
JP
Japan
Prior art keywords
prepreg
circuit board
nonwoven fabric
multilayer circuit
aramid fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP10046843A
Other languages
Japanese (ja)
Inventor
Toru Shimazu
徹 嶋津
Koichi Hiraoka
宏一 平岡
Masayuki Noda
雅之 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10046843A priority Critical patent/JPH11163537A/en
Publication of JPH11163537A publication Critical patent/JPH11163537A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Nonwoven Fabrics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer circuit board which has a small thermal expansion coefficient and is improved in circuit embedding, size stability, and moisture resistance, by using a prepreg based on a nonwoven fabric of aramid fiber. SOLUTION: A prepreg based on a nonwoven fabric of aramid fiber is prepared by laminating its thickness to 110-200% of the thickness of the nonwoven aramid fabric before resin impregnation, and by keeping tensile strength of the nonwoven fabric of aramid faber before resin impregnation at 1-6 kgf/cm, preferably 3-6 kg/cm. A metal leaf is laminated on each of the double-sides or on a single side of a substrate core material with the prepreg by hot-pressing and is pattern-etched to form a circuit. The multilayer circuit board is manufactured by further repeating, in a similar manner, the process in which a metal leaf is laminated with the prepreg by hot-pressing and the circuit preparation is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層回路板製造用
プリプレグ、殊にアラミド繊維不織布を基材とするプリ
プレグに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prepreg for producing a multilayer circuit board, and more particularly to a prepreg based on an aramid fiber nonwoven fabric.

【0002】[0002]

【従来の技術】電子機器は部品組込みの高密度化により
小型軽量化され、電子機器に使用されるプリント回路板
も多層回路板となっている。多層回路板への電子部品の
搭載も表面実装方式が主流となってきた。多層回路板の
回路層間の絶縁層は、一般に、ガラス繊維織布を基材と
してこれにエポキシ樹脂を含浸し硬化させたもので構成
されている。多層回路板に電子部品を搭載する場合、電
子部品と絶縁層(基板)の熱膨張係数をできるだけマッ
チングさせる必要があるが、ガラス繊維織布とエポキシ
樹脂の組合せによる基板は、搭載する電子部品より熱膨
張係数がかなり大きい。基板とこれに半田付により搭載
した電子部品の間の熱膨張係数差が大きいと、使用中の
冷熱サイクルで前記熱膨張係数差に起因して発生した応
力が半田接続部に集中し、半田接続部にクラックを生じ
ることがある。これらの観点から、多層回路板の基板と
して、負の熱膨張係数を有するアラミド繊維不織布を基
材とし、これに熱硬化性樹脂を含浸した構成が注目され
るようになってきた。
2. Description of the Related Art Electronic equipment has been reduced in size and weight by increasing the density of components, and printed circuit boards used in electronic equipment have also become multilayer circuit boards. Surface mounting has become the mainstream for mounting electronic components on multilayer circuit boards. The insulating layer between circuit layers of a multilayer circuit board is generally made of a glass fiber woven fabric as a base material, which is impregnated with an epoxy resin and cured. When mounting electronic components on a multilayer circuit board, it is necessary to match the thermal expansion coefficients of the electronic components and the insulating layer (substrate) as much as possible. The coefficient of thermal expansion is quite large. If the thermal expansion coefficient difference between the board and the electronic component mounted thereon by soldering is large, the stress generated due to the thermal expansion coefficient difference in the cooling and heating cycle during use concentrates on the solder connection portion, and the solder connection Cracks may occur in the part. From these viewpoints, as a substrate of a multilayer circuit board, a structure in which an aramid fiber nonwoven fabric having a negative coefficient of thermal expansion is used as a base material and impregnated with a thermosetting resin has been attracting attention.

【0003】多層回路板の製造法は、例えば、次のよう
な方法で回路の多層化を行なう。
In a method of manufacturing a multilayer circuit board, for example, a circuit is multilayered by the following method.

【0004】(1)芯材回路板の両面又は片面上に、プ
リプレグを加熱加圧成形により一体化しプリプレグ中の
樹脂を硬化させた絶縁層を設け、当該絶縁層上に回路を
形成する工程を1回行なうか、同工程を2回以上繰り返
す所謂ビルドアップ法 (2)芯材回路板の両面又は片面に、プリプレグを介し
て金属箔を加熱加圧成形により一体化し、前記金属箔を
エッチング加工して回路を形成する方法 (3)複数枚の芯材回路板同士の間ならびに表面に配置
した金属箔と芯材回路板の間にプリプレグを介在させ、
これらを加熱加圧成形により一体化し、前記金属箔をエ
ッチング加工して回路を形成する方法 これらの回路を多層化する製造法において、プリプレグ
としてアラミド繊維不織布を基材としたプリプレグを使
用し、低熱膨張の基板を構成するのである。
(1) A step of forming an insulating layer in which a prepreg is integrated by heating and pressing and hardening a resin in the prepreg is provided on both surfaces or one surface of a core material circuit board, and a circuit is formed on the insulating layer. A so-called build-up method that is performed once or the same process is repeated two or more times. (2) A metal foil is integrated on both sides or one side of a core circuit board by heat and pressure molding via a prepreg, and the metal foil is etched. (3) A prepreg is interposed between a plurality of core material circuit boards and between a metal foil disposed on the surface and the core material circuit board,
A method for forming these circuits by integrating these by heat and pressure molding and etching the metal foil. In a production method for forming these circuits into a multilayer, a prepreg using an aramid fiber nonwoven fabric as a base material is used as a prepreg. It constitutes the expansion substrate.

【0005】[0005]

【発明が解決しようとする課題】ところで、多層回路板
は、近年の電子機器や電子部品の小型化、それに伴う回
路パターンの細線化により、板厚の薄いものが用いれら
れるようになってきた。この薄物多層回路板に要求され
る事項は、回路埋め性(回路を多層化する成形時に内層
の回路パターン間の凹部にボイドが残らないようにする
こと)、寸法安定性及び耐湿性の確保である。一般に、
回路埋め性は、多層回路板の製造に使用するプリプレグ
の樹脂含有量を増加させると解消できることが判ってい
る。しかし、プリプレグの樹脂含有量を多くすると基板
の熱膨張係数が大きくなってしまう。また、アラミド繊
維不織布を基材とするプリプレグを使用して回路の多層
化をした多層回路板は、寸法安定性、耐湿性が不十分で
ある。
By the way, a multilayer circuit board is becoming thinner due to the recent miniaturization of electronic devices and electronic components and the accompanying thinning of circuit patterns. The requirements for this thin multi-layer circuit board are circuit fillability (to prevent voids from remaining in the recesses between the inner circuit patterns when molding the circuit into multiple layers), dimensional stability and moisture resistance. is there. In general,
It has been found that circuit fillability can be eliminated by increasing the resin content of the prepreg used in the production of multilayer circuit boards. However, when the resin content of the prepreg is increased, the thermal expansion coefficient of the substrate increases. Further, a multilayer circuit board in which a circuit is multilayered using a prepreg having an aramid fiber nonwoven fabric as a base material has insufficient dimensional stability and moisture resistance.

【0006】本発明が解決しようとする課題は、アラミ
ド繊維不織布基材プリプレグを使用して、熱膨張係数が
小さく、回路埋め性、寸法安定性及び耐湿性のよい多層
回路板を製造することである。そのためのプリプレグを
提供することを目的とする。
The problem to be solved by the present invention is to produce a multilayer circuit board having a small coefficient of thermal expansion, good circuit fillability, dimensional stability and moisture resistance by using an aramid fiber nonwoven fabric prepreg. is there. The purpose is to provide a prepreg for that purpose.

【0007】[0007]

【課題を解決するための手段】本発明に係る多層回路板
製造用プリプレグは、アラミド繊維不織布を基材とする
ものであり、上記課題を解決するために二つの要件を必
要とする。その一つは、プリプレグの厚みを熱硬化性樹
脂含浸前のアラミド繊維不織布の厚みの110〜200
%に制限することである。二つ目は、熱硬化性樹脂含浸
前のアラミド繊維不織布の引張強度を1〜6kgf/cmに
することである。このようなプリプレグを使用して、上
述した(1)〜(3)のような方法で回路の多層化を行
なう。
The prepreg for producing a multilayer circuit board according to the present invention is based on an aramid fiber nonwoven fabric, and needs two requirements to solve the above-mentioned problems. One is that the thickness of the prepreg is 110 to 200 times the thickness of the aramid fiber nonwoven fabric before impregnation with the thermosetting resin.
%. Second, the tensile strength of the aramid fiber nonwoven fabric before impregnation with a thermosetting resin is set to 1 to 6 kgf / cm. Using such a prepreg, the circuit is multi-layered by the method as described in (1) to (3) above.

【0008】ガラス繊維織布を基材とするプリプレグ
は、ガラス繊維織布の基材嵩密度が高いために、含浸し
た樹脂が基材表面に上付きして樹脂層を形成している。
このようなプリプレグを使用して回路の多層化の加熱加
圧成形を行なう場合は、前記上付きした樹脂層が溶融し
内層の回路パターン間の凹部へ流動して回路埋め性を確
保する。従って、プリプレグの樹脂含有量を殊更増加し
なくても良好な回路埋め性を確保できると認識されてい
る。一方、アラミド繊維不織布を基材とするプリプレグ
は、樹脂が基材表面よりもむしろ基材中に浸透してい
る。このプリプレグを使用して回路の多層化の加熱加圧
成形を行なう場合は、溶融した樹脂の流動と基材の変形
により回路埋め性を確保する。多層化の加熱加圧成形に
より、内層の回路パターン間の凹部へ樹脂が流動すると
共に当該凹部へ変形した基材が入り込むことにより回路
埋め性を確保するのである。このような新たな観点か
ら、プリプレグの厚さを熱硬化性樹脂含浸前のアラミド
繊維不織布の厚みの110〜200%に制限する。11
0%未満では、プリプレグの厚みが薄く、多層化時の加
熱加圧でプリプレグから樹脂が流出せず、回路間の凹部
を樹脂で十分埋めることができないのでボイドを生じ
る。また、200%を越えても、プリプレグの厚みが厚
すぎて、多層化時の加熱加圧で基材が十分変形せず、回
路間の凹部にボイドを生じる。
In a prepreg using a glass fiber woven fabric as a base material, the impregnated resin is superposed on the surface of the base material to form a resin layer because the glass fiber woven fabric has a high substrate bulk density.
In the case where such a prepreg is used to form a circuit under heating and pressurization, the superposed resin layer is melted and flows into the recesses between the circuit patterns of the inner layer to ensure circuit filling. Therefore, it is recognized that good circuit filling properties can be ensured without particularly increasing the resin content of the prepreg. On the other hand, in a prepreg having an aramid fiber nonwoven fabric as a base material, the resin has penetrated into the base material rather than the surface of the base material. In the case of performing the heating and press-molding of a multilayer circuit using this prepreg, the circuit filling property is ensured by the flow of the molten resin and the deformation of the base material. The resin is allowed to flow into the concave portions between the circuit patterns of the inner layer and the deformed base material enters into the concave portions by the multi-layered heat-press molding, whereby the circuit filling property is ensured. From such a new viewpoint, the thickness of the prepreg is limited to 110 to 200% of the thickness of the aramid fiber nonwoven fabric before the thermosetting resin impregnation. 11
If it is less than 0%, the thickness of the prepreg is too thin, and the resin does not flow out of the prepreg by heating and pressurizing at the time of multi-layering. Further, even if it exceeds 200%, the thickness of the prepreg is too large, the base material is not sufficiently deformed by heating and pressurizing at the time of multilayering, and voids are generated in concave portions between circuits.

【0009】次に、熱硬化性樹脂含浸前のアラミド繊維
不織布の引張強度が1kgf/cm未満の弱いものである
と、回路の多層化の加熱加圧成形時に流動する樹脂の流
れにより、基材に伸びるところと収縮するところがで
き、これが製造した多層回路板の寸法安定性を低下させ
る。従って、アラミド繊維不織布の引張強度を1kgf/c
m以上にする必要がある。ところで、アラミド繊維不織
布の引張強度の大小は、不織布を構成している繊維同士
の結合がどの程度強いかで決まる。そして、この結合
は、繊維同士の絡み合いや樹脂バインダによる繊維同士
の結着により確保される。アラミド繊維不織布の引張強
度を大きくするためには、繊維同士の絡み合いを多くし
たり繊維同士を結着する樹脂バインダの使用量を増やす
か樹脂バインダの硬化度を高めることになる。しかし、
アラミド繊維不織布の引張強度を大きくするこのような
手段は、いずれもアラミド繊維不織布への熱硬化性樹脂
の含浸性を低下させる。引張強度を大きくする程、アラ
ミド繊維不織布の表面が薄い膜で覆われた状態に近づい
ていくからである。引張強度を大きくすることによるア
ラミド繊維不織布の前記含浸性の低下は、製造した多層
回路板の耐湿性、耐熱性の低下の原因となるので、アラ
ミド繊維不織布の引張強度を6kgf/cm以下に制限する
必要がある。多層回路板の寸法安定性と耐湿性の確保の
観点から、アラミド繊維不織布の引張強度は、1〜6kg
f/cmの範囲に留める必要があるのである。さらに好ま
しくは、3〜6kgf/cmの範囲とする。
Next, if the aramid fiber non-woven fabric before the thermosetting resin impregnation has a weak tensile strength of less than 1 kgf / cm, the flow of the resin flowing at the time of heat and pressure molding for multilayering of the circuit causes the base material to flow. There are areas where the layers expand and contract, which lowers the dimensional stability of the manufactured multilayer circuit board. Therefore, the tensile strength of the aramid fiber nonwoven fabric is 1 kgf / c
m or more. By the way, the magnitude of the tensile strength of the aramid fiber nonwoven fabric is determined by the strength of the bonding between the fibers constituting the nonwoven fabric. This connection is ensured by entanglement of the fibers and binding of the fibers by the resin binder. In order to increase the tensile strength of the aramid fiber nonwoven fabric, it is necessary to increase the entanglement of the fibers, increase the amount of the resin binder used for binding the fibers, or increase the degree of curing of the resin binder. But,
Any of these means for increasing the tensile strength of the aramid fiber nonwoven fabric reduces the impregnation of the aramid fiber nonwoven fabric with the thermosetting resin. This is because the surface of the aramid fiber nonwoven fabric becomes closer to a state covered with a thinner film as the tensile strength increases. Since the decrease in the impregnating property of the aramid fiber non-woven fabric due to the increase in the tensile strength causes a decrease in the moisture resistance and heat resistance of the manufactured multilayer circuit board, the tensile strength of the aramid fiber non-woven fabric is limited to 6 kgf / cm or less. There is a need to. From the viewpoint of securing the dimensional stability and moisture resistance of the multilayer circuit board, the tensile strength of the aramid fiber nonwoven fabric is 1 to 6 kg.
It is necessary to stay within the range of f / cm. More preferably, it is in the range of 3 to 6 kgf / cm.

【0010】[0010]

【発明の実施の形態】引張強度が1〜6kgf/cmのアラ
ミド繊維不織布の製造は、例えば、次のようにして行な
う。一つは、アラミド繊維を抄造して、不織布を構成し
ている繊維同士を樹脂バインダ(例えば、水溶性エポキ
シ樹脂)で結合する方法である。アラミド繊維を抄造し
た不織布上に樹脂バインダをスプレーして硬化させ、繊
維同士を結着する。引張強度の調整は、バインダの使用
量やバインダの硬化度を調整することにより行なう。不
織布中の樹脂バインダの含有量は、好ましくは5〜15
重量%である。また、カレンダ処理により厚みの調整も
適宜する。二つ目は、アラミド繊維としてパラ系とメタ
系のアラミド繊維を併用して不織布を抄造し、メタ系ア
ラミド繊維を加熱溶融ないしは軟化させてパラ系アラミ
ド繊維に絡み合わせる方法である。メタ系アラミド繊維
がパラ系アラミド繊維に熱融着し、また、メタ系アラミ
ド繊維同士が熱融着した構成となっている。引張強度の
調整は、メタ系アラミド繊維の加熱溶融ないしは軟化の
程度ならびにこのときの不織布圧縮程度を調整して、メ
タ系アラミド繊維の絡み合いを調整することにより行な
う。例えば、抄造した不織布を、温度280〜350
℃,線圧力150〜250kgf/cmに設定した熱ロール
の間に通すことにより、メタ系アラミド繊維を加熱溶融
ないしは軟化させ繊維同士の絡み合いを達成する。不織
布中のメタ系アラミド繊維の含有量は、耐熱性の観点か
ら、好ましくは5〜30重量%である。三つ目は、上記
二つ目の方法に樹脂バインダの使用を組合わせる方法で
ある。パラ系とメタ系のアラミド繊維を併用して抄造し
た不織布上に樹脂バインダをスプレーして硬化させ、繊
維同士を結着する。そして、不織布を熱ロールの間に通
すことによりメタ系アラミド繊維を溶融ないし軟化させ
繊維同士の絡み合いを達成する。不織布中の樹脂バイン
ダの含有量とメタ系アラミド繊維の含有量は上記と同様
の量が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The production of aramid fiber nonwoven fabric having a tensile strength of 1 to 6 kgf / cm is carried out, for example, as follows. One is a method in which aramid fibers are formed and fibers constituting the nonwoven fabric are bonded to each other with a resin binder (for example, a water-soluble epoxy resin). A resin binder is sprayed and cured on a nonwoven fabric made of aramid fibers to bind the fibers together. The tensile strength is adjusted by adjusting the amount of the binder used and the degree of curing of the binder. The content of the resin binder in the nonwoven fabric is preferably 5 to 15
% By weight. In addition, the thickness is appropriately adjusted by calendar processing. The second is a method in which a nonwoven fabric is formed by using para- and meta-aramid fibers in combination as the aramid fibers, and the meta-aramid fibers are heated and melted or softened to be entangled with the para-aramid fibers. The configuration is such that the meta-aramid fibers are thermally fused to the para-aramid fibers, and the meta-aramid fibers are thermally fused to each other. The tensile strength is adjusted by adjusting the degree of heat melting or softening of the meta-aramid fiber and the degree of compression of the nonwoven fabric at this time to adjust the entanglement of the meta-aramid fiber. For example, the formed non-woven fabric is treated at a temperature of 280-350.
C. and a linear pressure of 150 to 250 kgf / cm are passed through a hot roll to heat and melt or soften the meta-aramid fiber to achieve entanglement between the fibers. The content of the meta-aramid fiber in the nonwoven fabric is preferably 5 to 30% by weight from the viewpoint of heat resistance. The third is a method in which the use of a resin binder is combined with the second method. A resin binder is sprayed and cured on a nonwoven fabric made by using para- and meta-aramid fibers in combination to bind the fibers together. Then, by passing the nonwoven fabric between the heat rolls, the meta-aramid fibers are melted or softened to achieve the entanglement between the fibers. The content of the resin binder and the content of the meta-aramid fiber in the nonwoven fabric are preferably the same as those described above.

【0011】上記のようなアラミド繊維不織布に、エポ
キシ樹脂等の熱硬化性樹脂を含浸乾燥して、プリプレグ
とする。プリプレグの厚みを樹脂含浸前のアラミド繊維
不織布の厚みの110〜200%とする調整は、アラミ
ド繊維不織布を基材としてこれに樹脂ワニスを含浸する
ときに、スクイズロールにより樹脂含有量を調整するこ
とにより行なう。このようにして製造したプリプレグを
使用して多層回路板を製造する方法は、従来の技術で説
明した(1)〜(3)の方法を採用することができる。
(1)のビルドアップ法は、例えば、芯材回路板の両面
又は片面に前記プリプレグを介して金属箔を加熱加圧成
形により一体化し当該金属箔をエッチング加工して回路
を形成し、さらに、同様にプリプレグを介して金属箔を
加熱加圧成形により一体化し回路形成を行なう工程を繰
り返す方法である。ビルドアップ法の別の方法は、芯材
回路板の両面又は片面に前記プリプレグを加熱加圧成形
により一体化して絶縁層を形成し当該絶縁層上にメッキ
や印刷で回路を形成する工程を繰り返す方法である。従
来の技術で説明した(2)や(3)の方法を採用する実
施の形態は、以下の実施例でさらに詳細に説明する。
The above-mentioned aramid fiber nonwoven fabric is impregnated with a thermosetting resin such as an epoxy resin and dried to obtain a prepreg. To adjust the thickness of the prepreg to be 110 to 200% of the thickness of the aramid fiber nonwoven fabric before resin impregnation, adjust the resin content with a squeeze roll when impregnating a resin varnish with the aramid fiber nonwoven fabric as a base material. Performed by As a method of manufacturing a multilayer circuit board using the prepreg manufactured as described above, the methods (1) to (3) described in the related art can be adopted.
In the build-up method of (1), for example, a metal foil is integrated on both sides or one side of a core material circuit board through the prepreg by heating and pressing, and the metal foil is etched to form a circuit. Similarly, a method in which a metal foil is integrated by heating and pressing via a prepreg to form a circuit is repeated. Another method of the build-up method is to repeat the step of forming an insulating layer by integrating the prepreg on both surfaces or one surface of the core circuit board by heating and pressing to form an insulating layer and forming a circuit on the insulating layer by plating or printing. Is the way. Embodiments employing the methods (2) and (3) described in the related art will be described in more detail in the following examples.

【0012】以上説明した発明の実施の形態において、
引張強度を確保するために、樹脂バインダによる結着と
メタ系アラミド繊維を溶融ないし軟化させることによる
繊維同士の絡み合いの両方を組合せる上記三つ目の手段
は好ましいものである。同じ引張強度を確保する場合、
三つ目の手段では、樹脂バインダによる結着と繊維同士
の絡み合いのいずれか一方の手段で不織布の引張強度を
確保するときより、不織布表面が薄い膜で覆われにく
い。不織布への樹脂の含浸性がよくなるため、多層回路
板の吸水率は低くなる。すなわち、多層回路板の耐湿性
が良好となる結果、吸湿後の耐熱性が一層優れたものと
なる。
In the embodiment of the invention described above,
In order to secure the tensile strength, the above-mentioned third means for combining both the binding by the resin binder and the entanglement of the fibers by melting or softening the meta-aramid fibers is preferable. When securing the same tensile strength,
According to the third means, the surface of the nonwoven fabric is less likely to be covered with a thin film than when the tensile strength of the nonwoven fabric is secured by any one of the means of binding by the resin binder and the entanglement of the fibers. Since the impregnation property of the resin into the nonwoven fabric is improved, the water absorption of the multilayer circuit board is reduced. That is, the moisture resistance of the multilayer circuit board is improved, so that the heat resistance after moisture absorption is further improved.

【0013】[0013]

【実施例】実施例1〜6,比較例1〜6 (アラミド繊維不織布の準備)パラ系アラミド繊維とメ
タ系アラミド繊維を併用して不織布を抄造し、水溶性エ
ポキシ樹脂バインダをスプレーし加熱乾燥して樹脂バイ
ンダを硬化させ、繊維同士を結着した。さらに、この不
織布を熱ロールの間に通してメタ系アラミド繊維を溶融
ないし軟化させると共に圧縮することにより、メタ系ア
ラミド繊維の絡み合い、熱融着を促進した。製造したア
ラミド繊維不織布は、パラ系アラミド繊維77重量%,
メタ系アラミド繊維15重量%,樹脂バインダ8重量%
の組成であり、単位重量60g/m2,厚み100μmで
ある。各実施例、比較例毎にアラミド繊維不織布の引張
強度を変えるために、樹脂バインダの硬化度を変えて、
表1に示す引張強度のアラミド繊維不織布を用意した。
アラミド繊維不織布の引張強度は、18×220mmの試
験片を用いてオートグラフで測定した。 (プリプレグの準備)次に、臭素化ビスフェノールA型
エポキシ樹脂27重量部,3官能エポキシ樹脂46重量
部,硬化剤としてフェノールノボラック樹脂27重量
部,硬化促進剤として2−エチル4−メチルイミダゾー
ル0.2重量部,溶剤としてメチルエチルケトン50重
量部からなる樹脂ワニスを調製し、このワニスを各例の
アラミド繊維不織布に含浸乾燥してプリプレグを製造し
た。各例のプリプレグのアラミド繊維不織布に対する厚
みは表1に示すとおりであり、この厚み調整は、アラミ
ド繊維不織布に樹脂ワニスを含浸しスクイズロールで樹
脂含有量を調整することにより行なった。 (芯材回路板の準備)実施例1のプリプレグを4枚重ね
合せ、その上下に銅箔(厚み18μm)を配し、これら
を、温度170℃,圧力40kgf/cm2の条件で60分間
加熱加圧成形し銅張り積層板を得た。この銅張り積層板
の銅箔をエッチング加工して所定の回路を形成し、回路
表面に黒化処理を施して芯材回路板とした。この芯材回
路板は各例で共通に使用した。 (多層回路板の製造)上記の芯材回路板の上下面に各例
のプリプレグを1枚配し、その上下面に銅箔(厚み18
μm)を配し、これらを、温度200℃,圧力50kgf
/cm2の条件で60分間加熱加圧成形して一体化した。
そして、表面の銅箔をエッチング加工して所定の回路を
形成し、多層(4層)回路板を製造した。
Examples 1 to 6 and Comparative Examples 1 to 6 (Preparation of nonwoven fabric of aramid fiber) A nonwoven fabric was formed by using para-aramid fiber and meta-aramid fiber in combination, sprayed with a water-soluble epoxy resin binder and dried by heating. The resin binder was cured to bind the fibers together. Further, the nonwoven fabric was passed between heat rolls to melt or soften and compress the meta-aramid fibers, thereby entangling the meta-aramid fibers and promoting heat fusion. The manufactured aramid fiber non-woven fabric is composed of 77% by weight of para-aramid fiber,
15% by weight of meta-aramid fiber, 8% by weight of resin binder
Having a unit weight of 60 g / m 2 and a thickness of 100 μm. In order to change the tensile strength of the aramid fiber nonwoven fabric for each of the examples and comparative examples, by changing the degree of cure of the resin binder,
An aramid fiber nonwoven fabric having the tensile strength shown in Table 1 was prepared.
The tensile strength of the aramid fiber nonwoven fabric was measured by an autograph using a test piece of 18 × 220 mm. (Preparation of Prepreg) Next, 27 parts by weight of a brominated bisphenol A type epoxy resin, 46 parts by weight of a trifunctional epoxy resin, 27 parts by weight of a phenol novolak resin as a curing agent, and 0.2 parts of 2-ethyl 4-methylimidazole as a curing accelerator. A resin varnish consisting of 2 parts by weight and 50 parts by weight of methyl ethyl ketone as a solvent was prepared, and the varnish was impregnated into the aramid fiber nonwoven fabric of each example and dried to produce a prepreg. The thickness of the prepreg of each example with respect to the aramid fiber nonwoven fabric is as shown in Table 1, and the thickness was adjusted by impregnating the resin varnish into the aramid fiber nonwoven fabric and adjusting the resin content with a squeeze roll. (Preparation of a core circuit board) Four prepregs of Example 1 were superimposed, and copper foil (thickness: 18 μm) was disposed above and below the prepregs, and these were heated at a temperature of 170 ° C. and a pressure of 40 kgf / cm 2 for 60 minutes. Press molding was performed to obtain a copper-clad laminate. A predetermined circuit was formed by etching the copper foil of the copper-clad laminate, and the circuit surface was subjected to a blackening treatment to obtain a core circuit board. This core circuit board was commonly used in each example. (Manufacture of multilayer circuit board) One prepreg of each example is arranged on the upper and lower surfaces of the core circuit board, and copper foil (thickness 18)
μm), and the temperature and the pressure are set at 200 ° C. and 50 kgf, respectively.
/ Cm 2 for 60 minutes under heat and pressure for integration.
Then, a predetermined circuit was formed by etching the surface of the copper foil, and a multilayer (four-layer) circuit board was manufactured.

【0014】[0014]

【表1】 [Table 1]

【0015】実施例7 パラ系アラミド繊維77重量%,メタ系アラミド繊維2
3重量%の含有量で樹脂バインダを用いず、メタ系アラ
ミド繊維の熱溶融ないし軟化による絡み合い、熱融着だ
けで実施例3と同様の引張強度を確保したアラミド繊維
不織布を準備した。このアラミド繊維不織布を使用し、
実施例3と同様にプリプレグを準備し、また、同様に多
層回路板を製造した。
Example 7 Para-aramid fiber 77% by weight, meta-aramid fiber 2
An aramid fiber nonwoven fabric having a 3% by weight content without using a resin binder and having the same tensile strength as in Example 3 prepared by entanglement due to thermal melting or softening of the meta-aramid fiber and heat fusion alone was prepared. Using this aramid fiber non-woven fabric,
A prepreg was prepared in the same manner as in Example 3, and a multilayer circuit board was similarly manufactured.

【0016】実施例8 アラミド繊維としてパラ系アラミド繊維のみを使用し、
樹脂バインダによる結着だけで実施例3と同様の引張強
度を確保したアラミド繊維不織布を準備した。樹脂バイ
ンダの含有量は14重量%である。このアラミド繊維不
織布を使用して、実施例3と同様にプリプレグを準備
し、また、同様に多層回路板を製造した。
Example 8 Using only para-aramid fibers as the aramid fibers,
An aramid fiber nonwoven fabric having the same tensile strength as in Example 3 was prepared by only binding with a resin binder. The content of the resin binder is 14% by weight. Using this aramid fiber nonwoven fabric, a prepreg was prepared in the same manner as in Example 3, and a multilayer circuit board was similarly manufactured.

【0017】実施例9 パラ系アラミド繊維77重量%,メタ系アラミド繊維1
5重量%,樹脂バインダ8重量%の含有量で、メタ系ア
ラミド繊維を熱溶融ないし軟化させず樹脂バインダによ
る結着だけで実施例6と同様の引張強度を確保したアラ
ミド繊維不織布を準備した。このアラミド繊維不織布を
使用し、実施例6と同様にプリプレグを準備し、また、
同様に多層回路板を製造した。
Example 9 77% by weight of para-aramid fiber, meta-aramid fiber 1
An aramid fiber nonwoven fabric having a content of 5% by weight and a resin binder of 8% by weight and having the same tensile strength as that of Example 6 was prepared by merely binding with a resin binder without thermally melting or softening the meta-aramid fiber. Using this aramid fiber nonwoven fabric, a prepreg was prepared in the same manner as in Example 6, and
Similarly, a multilayer circuit board was manufactured.

【0018】従来例 芯材回路板の上下面に配置するプリプレグとして、ガラ
ス繊維織布を基材とするプリプレグを使用し、ガラス繊
維織布の厚みに対するプリプレグの厚みを実施例3と同
様にして多層回路板を製造した。
Conventional Example As a prepreg disposed on the upper and lower surfaces of the core circuit board, a prepreg based on a glass fiber woven fabric was used, and the thickness of the prepreg relative to the thickness of the glass fiber woven fabric was set in the same manner as in Example 3. A multilayer circuit board was manufactured.

【0019】以上の実施例、比較例及び従来例の多層回
路板の評価結果を表2,表3,表4に示す。評価方法
は、次の通りである。 回路埋め性:多層回路板の断面を光学顕微鏡で観察し、
内層絶縁層のボイドの有無を確認した。 ○:ボイドなし ×:ボイド多数あり 吸水率:JIS−C−6481に準じ、多層回路板の吸
水率を測定した。 寸法変化率:340×510mmの多層回路板の四隅(各
縁から10mm内側に入ったところ)に0.9mm径の穴を
あけ、常態の穴間寸法と、260℃のリフロ炉通過後の
同寸法をX−Y測長器で測定し、常態の穴間寸法に対す
るリフロ炉通過後の同寸法の変化率を算出した。 熱膨張係数:多層回路板から切出した9×3mmの試験片
の熱膨張係数を、機械熱分析装置にて測定した。 吸湿後半田耐熱性:多層回路板から切出した25×25
mmの試験片を、8時間のプレッシャークッカー処理(1
21℃,2気圧)に供した後、300℃の半田浴に浮か
べて基板表面に膨れが発生するまでの時間を測定した。
Tables 2, 3 and 4 show the evaluation results of the multilayer circuit boards of the above Examples, Comparative Examples and Conventional Examples. The evaluation method is as follows. Circuit fillability: Observe the cross section of the multilayer circuit board with an optical microscope,
The presence or absence of voids in the inner insulating layer was confirmed. :: No void ×: Many voids Water absorption: The water absorption of the multilayer circuit board was measured according to JIS-C-6481. Dimensional change rate: Holes of 0.9 mm diameter were made at the four corners (10 mm inside from each edge) of a 340 × 510 mm multilayer circuit board, and the dimensions between normal holes and those after passing through a reflow furnace at 260 ° C were the same. The dimension was measured with an XY length measuring instrument, and the rate of change of the dimension after passing through the reflow furnace with respect to the dimension between the holes in the normal state was calculated. Thermal expansion coefficient: The thermal expansion coefficient of a 9 × 3 mm test piece cut from a multilayer circuit board was measured by a mechanical thermal analyzer. Solder heat resistance after moisture absorption: 25 × 25 cut out from multilayer circuit board
mm test piece was subjected to an 8-hour pressure cooker treatment (1
(21 ° C., 2 atm), and then floated on a 300 ° C. solder bath to measure the time required for swelling to occur on the substrate surface.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】表2〜4から明らかなように、本発明に係
る実施例のプリプレグを使用すると、回路埋め性と耐湿
性及び吸湿後半田耐熱性の良い多層回路板を製造するこ
とができる。特に、メタ系アラミド繊維の溶融ないし軟
化による繊維同士の絡み合いと樹脂バインダによる結着
の両方で不織布の引張強度を確保すると、いずれか一方
の手段で引張強度を確保するよりも、不織布への樹脂の
含浸性がよくなるため、多層回路板の吸水率は低くな
る。すなわち、多層回路板の耐湿性が良好となる結果、
吸湿後半田耐熱性も一層優れたものとなる。このこと
は、同じ引張強度のアラミド繊維不織布を使用している
実施例3(メタ系アラミド繊維の絡み合いと樹脂バイン
ダの併用による結着)と実施例6(メタ系アラミド繊維
の絡み合いのみ)ならびに実施例7(樹脂バインダによ
る結着のみ)との比較から明らかである。また、アラミ
ド繊維不織布を基材とするプリプレグを使用しているの
で、勿論、低熱膨張係数の多層回路板を製造することが
できる。
As is clear from Tables 2 to 4, the use of the prepreg of the embodiment according to the present invention makes it possible to manufacture a multilayer circuit board having good circuit filling properties, moisture resistance and solder heat resistance after moisture absorption. In particular, when securing the tensile strength of the nonwoven fabric by both the entanglement of the fibers due to melting or softening of the meta-aramid fiber and the binding by the resin binder, the resin to the nonwoven fabric is more secure than securing the tensile strength by either means. , The water absorption of the multilayer circuit board is reduced. That is, the moisture resistance of the multilayer circuit board is improved,
The solder heat resistance after moisture absorption is further improved. This is because the aramid fiber nonwoven fabric having the same tensile strength was used in Example 3 (entanglement of meta-aramid fiber and binding by using a resin binder) and Example 6 (entanglement of meta-aramid fiber only) and This is apparent from a comparison with Example 7 (only binding with a resin binder). In addition, since a prepreg using an aramid fiber nonwoven fabric as a base material is used, a multilayer circuit board having a low coefficient of thermal expansion can of course be manufactured.

【0024】さらに、実施例1〜6における各種引張強
度のアラミド繊維不織布に、プリプレグのアラミド繊維
不織布に対する厚みが130%になるように樹脂ワニス
を含浸乾燥してプリプレグを製造した。芯材回路板の上
下面にこれらプリプレグを1枚配し、上述の実施例と同
様に多層回路板を製造した。アラミド繊維不織布の引張
強度と多層回路板の寸法変化率の関係を図1に示す。ア
ラミド繊維不織布の引張強度を3〜6kgf/cmの範囲に
すると、寸法変化率を小さくする上でより好ましいこと
を理解できる。
Further, the prepreg was manufactured by impregnating and drying a resin varnish so that the thickness of the prepreg with respect to the aramid fiber nonwoven fabric was 130% with respect to the aramid fiber nonwoven fabric having various tensile strengths in Examples 1 to 6. One of these prepregs was arranged on the upper and lower surfaces of the core circuit board, and a multilayer circuit board was manufactured in the same manner as in the above-described embodiment. FIG. 1 shows the relationship between the tensile strength of the aramid fiber nonwoven fabric and the dimensional change rate of the multilayer circuit board. It can be understood that setting the tensile strength of the aramid fiber nonwoven fabric in the range of 3 to 6 kgf / cm is more preferable for reducing the dimensional change rate.

【0025】[0025]

【発明の効果】上述したように、本発明に係る多層回路
板製造用プリプレグは、アラミド繊維不織布を基材とす
るプリプレグを使用して多層回路板を製造したときの問
題点(回路埋め性、寸法安定性及び耐湿性)を解決する
ことができる。アラミド繊維不織布として、メタ系アラ
ミド繊維の溶融ないし軟化による繊維同士の絡み合いと
樹脂バインダによる結着の両方で不織布の所定引張強度
を確保したものを用いると、不織布への樹脂の含浸性を
良好に保つことができる。不織布への樹脂の含浸性が良
いと、多層回路板の耐湿性が良好となる結果、吸湿後耐
熱性を一層優れたものにすることができる。熱硬化性樹
脂含浸前のアラミド繊維不織布の引張強度を3〜6kgf
/cmの範囲にすると、多層回路板の寸法変化率をより小
さくすることができる。
As described above, the prepreg for producing a multilayer circuit board according to the present invention has problems (such as circuit filling property and circuit filling property) when a multilayer circuit board is produced using a prepreg based on an aramid fiber nonwoven fabric. Dimensional stability and moisture resistance). As the aramid fiber nonwoven fabric, when the nonwoven fabric that secures a predetermined tensile strength of the nonwoven fabric by both entanglement of the fibers due to melting or softening of the meta-based aramid fiber and binding by the resin binder is used, the impregnation of the nonwoven fabric with the resin is improved. Can be kept. When the impregnating property of the resin into the nonwoven fabric is good, the moisture resistance of the multilayer circuit board is improved, so that the heat resistance after moisture absorption can be further improved. The tensile strength of aramid fiber nonwoven fabric before impregnation with thermosetting resin is 3-6kgf
/ Cm, the dimensional change rate of the multilayer circuit board can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アラミド繊維不織布の引張強度と多層回路板の
寸法変化率の関係を示す曲線図である。
FIG. 1 is a curve diagram showing the relationship between the tensile strength of an aramid fiber nonwoven fabric and the dimensional change rate of a multilayer circuit board.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI D04H 1/42 B29C 67/14 G B29K 101:10 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI D04H 1/42 B29C 67/14 GB29K 101: 10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】アラミド繊維不織布を基材として、これに
熱硬化性樹脂を含浸乾燥したプリプレグであって、 プリプレグの厚みがアラミド繊維不織布厚みの110〜
200%であり、熱硬化性樹脂含浸前のアラミド繊維不
織布の引張強度が1〜6kgf/cmであることを特徴とす
る多層回路板製造用プリプレグ。
1. A prepreg obtained by impregnating a thermosetting resin with a nonwoven fabric of aramid fiber and drying the prepreg, wherein the thickness of the prepreg is 110 to 110 of the thickness of the nonwoven fabric of aramid fiber.
A prepreg for producing a multilayer circuit board, wherein the prepreg has a tensile strength of 1 to 6 kgf / cm, before being impregnated with a thermosetting resin.
【請求項2】熱硬化性樹脂含浸前のアラミド繊維不織布
の引張強度が3〜6kgf/cmであることを特徴とする請
求項1記載の多層回路板製造用プリプレグ。
2. The prepreg for producing a multilayer circuit board according to claim 1, wherein the tensile strength of the aramid fiber nonwoven fabric before impregnation with a thermosetting resin is 3 to 6 kgf / cm.
【請求項3】アラミド繊維不織布が、パラ系アラミド繊
維とメタ系アラミド繊維を含有し、繊維同士が熱硬化性
樹脂バインダで結着され、且つ、メタ系アラミド繊維が
熱融着ないし熱軟化によりパラ系アラミド繊維に絡み合
った構成であることを特徴とする請求項1又は2記載の
多層回路板製造用プリプレグ。
3. The aramid fiber nonwoven fabric contains para-aramid fibers and meta-aramid fibers, the fibers are bound with a thermosetting resin binder, and the meta-aramid fibers are thermally fused or softened. The prepreg according to claim 1 or 2, wherein the prepreg is entangled with para-aramid fibers.
【請求項4】芯材回路板の両面又は片面上に、プリプレ
グを加熱加圧成形により一体化し硬化させた絶縁層を設
け、当該絶縁層上に回路を形成する工程を1回行なう
か、同工程を2回以上繰り返す多層回路板の製造におい
て、前記プリプレグとして請求項1〜3のいずれかに記
載のプリプレグを使用することを特徴とする多層回路板
の製造法。
4. An insulating layer formed by integrating and curing a prepreg by heat and pressure molding on both surfaces or one surface of a core circuit board, and performing a step of forming a circuit on the insulating layer once or in the same manner. A method for producing a multilayer circuit board, comprising using the prepreg according to any one of claims 1 to 3 as the prepreg in the production of a multilayer circuit board in which the process is repeated twice or more.
【請求項5】芯材回路板の両面又は片面に、プリプレグ
を介して金属箔を加熱加圧成形により一体化し、前記金
属箔をエッチング加工して回路を形成する多層回路板の
製造において、前記プリプレグとして請求項1〜3のい
ずれかに記載のプリプレグを使用することを特徴とする
多層回路板の製造法。
5. A method for manufacturing a multilayer circuit board, comprising forming a circuit by integrating a metal foil on both sides or one side of a core material circuit board via a prepreg by heating and pressing, and etching the metal foil to form a circuit. A method for producing a multilayer circuit board, comprising using the prepreg according to claim 1 as a prepreg.
【請求項6】複数枚の芯材回路板同士の間ならびに表面
に配置した金属箔と芯材回路板の間にプリプレグを介在
させ、これらを加熱加圧成形により一体化し、前記金属
箔をエッチング加工して回路を形成する多層回路板の製
造において、前記プリプレグとして請求項1〜3のいず
れかに記載のプリプレグを使用することを特徴とする多
層回路板の製造法。
6. A prepreg is interposed between a plurality of core circuit boards and between a metal foil disposed on the surface and the core circuit board, and these are integrated by heating and pressing, and the metal foil is etched. A method for manufacturing a multilayer circuit board, comprising using the prepreg according to any one of claims 1 to 3 as the prepreg in manufacturing a multilayer circuit board for forming a circuit.
JP10046843A 1997-09-29 1998-02-27 Prepreg for multilayer circuit board and manufacture of multilayer circuit board Abandoned JPH11163537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10046843A JPH11163537A (en) 1997-09-29 1998-02-27 Prepreg for multilayer circuit board and manufacture of multilayer circuit board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-262983 1997-09-29
JP26298397 1997-09-29
JP10046843A JPH11163537A (en) 1997-09-29 1998-02-27 Prepreg for multilayer circuit board and manufacture of multilayer circuit board

Publications (1)

Publication Number Publication Date
JPH11163537A true JPH11163537A (en) 1999-06-18

Family

ID=26386984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10046843A Abandoned JPH11163537A (en) 1997-09-29 1998-02-27 Prepreg for multilayer circuit board and manufacture of multilayer circuit board

Country Status (1)

Country Link
JP (1) JPH11163537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408724A1 (en) * 2001-07-18 2004-04-14 Matsushita Electric Industrial Co., Ltd. Circuit formed substrate and method of manufacturing circuit formed substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408724A1 (en) * 2001-07-18 2004-04-14 Matsushita Electric Industrial Co., Ltd. Circuit formed substrate and method of manufacturing circuit formed substrate
EP1408724A4 (en) * 2001-07-18 2007-05-23 Matsushita Electric Ind Co Ltd Circuit formed substrate and method of manufacturing circuit formed substrate
US7356916B2 (en) 2001-07-18 2008-04-15 Matsushita Electric Industrial Co., Ltd. Circuit-formed substrate and method of manufacturing circuit-formed substrate

Similar Documents

Publication Publication Date Title
JP2612529B2 (en) Manufacturing method of multilayer printed wiring board
US6673190B2 (en) Lasable bond-ply materials for high density printed wiring boards
KR100670752B1 (en) Method for preparing copper foil with insulating layer and copper foil with insulating layer prepared by the method, and printed wiring board using the copper foil with insulating layer
JP3631385B2 (en) Laminate substrate and method for producing the same
JPH10131017A (en) Substrate for laminated board, its production, prepreg and laminated board
US20040170795A1 (en) Lasable bond-ply materials for high density printed wiring boards
JPH11131385A (en) Substrate for laminated plate, its production, prepreg and laminated board
JP3138215B2 (en) Circuit board base material and prepreg and printed circuit board using the same
JPH11163537A (en) Prepreg for multilayer circuit board and manufacture of multilayer circuit board
JP3818208B2 (en) Prepreg, laminated board and printed wiring board
JPH11100767A (en) Base material for laminate board and its production, and prepreg and laminate board
JPH11214844A (en) Production of multilayer board
JPH0744344B2 (en) Method for manufacturing multilayer printed circuit board with built-in metal core
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JP3211608B2 (en) Manufacturing method of copper-clad laminate
JP2533689B2 (en) Method for manufacturing multilayer circuit board
JP2825051B2 (en) Manufacturing method of multilayer printed circuit board
JPH04215496A (en) Manufacture of multilayer circuit board
JP2000252631A (en) Multilayer printed wiring board and its manufacture
JP3714752B2 (en) Manufacturing method of base material for laminated board
JPH02150345A (en) Copper clad laminates
JP3640138B2 (en) Pre-preg for laser drilling and storage method thereof
JP2000174438A (en) Manufacture of prepreg and manufacture of multilayer printed wiring board
JPH1119929A (en) Base material for laminated sheet, prepreg, and laminated sheet
JPS6131245A (en) Manufacture of composite laminated board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040809