JPH11158545A - Method for forming exhaust valve for engine - Google Patents

Method for forming exhaust valve for engine

Info

Publication number
JPH11158545A
JPH11158545A JP34570697A JP34570697A JPH11158545A JP H11158545 A JPH11158545 A JP H11158545A JP 34570697 A JP34570697 A JP 34570697A JP 34570697 A JP34570697 A JP 34570697A JP H11158545 A JPH11158545 A JP H11158545A
Authority
JP
Japan
Prior art keywords
billet
exhaust valve
temperature
solution treatment
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34570697A
Other languages
Japanese (ja)
Other versions
JP3717294B2 (en
Inventor
Shohachi Nishiuchi
正八 西内
Masanobu Ishikawa
正信 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP34570697A priority Critical patent/JP3717294B2/en
Publication of JPH11158545A publication Critical patent/JPH11158545A/en
Application granted granted Critical
Publication of JP3717294B2 publication Critical patent/JP3717294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the creep resistance and mechanical strengths of an valve and to make machining needless or to a minimum by heating a billet having a specified compsn. essentially consisting of Cr and Ni to a specified temp., subjecting it to solution treatment, next removing scale, executing lubricating treatment and furthermore subjecting this billet to plastic working while it is held at a specified temp. SOLUTION: The billet to be used is an austenitic heat resistant steel essentially consisting of 13.5 to 19.5% Cr and 29.5 to 62.0% Ni. This billet is heated at 1050 to 1130 deg.C and is subjected to solution treatment. Scale is removed from the billet subjected to the solution treatment, which is subjected to lubricating treatment, and the treated billet is subjected to cold forging while its temp. is held to <=200 deg.C to form an exhaust valve. In this way, the big crystal grains obtd. by the solution treatment before the forging remain as they are since the quantity to be deformed is small in the valve head of the valve, and the high temp. strength and creep strength therein are made excellent, and sufficient recrystallization refining occurs by a large quantity of deformation in the axis part to improve its mechanical properties.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はエンジン用排気弁の
成形方法に関する。
The present invention relates to a method for forming an exhaust valve for an engine.

【0002】[0002]

【従来の技術】エンジン用排気弁は、エンジンの燃焼室
に臨み高温の排気ガスの流れを制御する弁であるから、
耐熱性及び耐食性が要求される。この様な排気弁の製造
技術には、例えば特開平4−193912号公報「エン
ジンバルブの製造方法」が提案され、この製造方法は同
公報の第1図のフローに基づいて、SUH35系のオー
ステナイト系弁用鋼を用いて、加熱温度と鍛造温度を1
150〜1250℃として熱間鍛造し、1050〜11
50℃で溶体化処理し、機械加工するというものであ
り、この熱間鍛造温度と溶体化処理温度に加熱すること
により、耐クリープ性に優れた排気弁を製造するもので
ある。なお、溶体化処理(solution trea
tment)は固溶化処理、固溶化熱処理と同じであっ
て、合金を固溶体範囲まで加熱し、この温度で十分保持
して成分金属を固溶させ、これを急冷する熱処理法であ
る。
2. Description of the Related Art An exhaust valve for an engine is a valve that faces a combustion chamber of an engine and controls the flow of high-temperature exhaust gas.
Heat resistance and corrosion resistance are required. For example, Japanese Unexamined Patent Publication No. 4-193912 discloses a method for manufacturing an exhaust valve. This manufacturing method is based on the SUH35-based austenitic system based on the flow shown in FIG. Heating temperature and forging temperature of 1
Hot forging at 150-1250 ° C, 1050-11
The solution is subjected to solution treatment at 50 ° C. and machined. By heating to the hot forging temperature and the solution treatment temperature, an exhaust valve having excellent creep resistance is manufactured. In addition, solution treatment (solution tree)
Tment) is the same as the solution treatment or solution heat treatment, which is a heat treatment method in which an alloy is heated to a solid solution range, sufficiently maintained at this temperature to form a solid solution of a component metal, and rapidly cooled.

【0003】[0003]

【発明が解決しようとする課題】図16は従来のSUH
35系オーステナイト鋼における溶体化温度と結晶粒度
番号との関係を調べたグラフであり、縦軸の結晶粒番号
はJIS−G−0551「鋼のオーステナイト結晶粒度
試験方法」で規定されるもので、その一部を次に示す。
FIG. 16 shows a conventional SUH.
It is a graph obtained by examining the relationship between the solution temperature and the grain size number in the 35 series austenitic steel, the grain number on the vertical axis is defined by JIS-G-0551 "Austenitic grain size test method of steel", Some of them are shown below.

【0004】[0004]

【表1】 [Table 1]

【0005】従って、粒度番号が大きいと結晶粒は小さ
く、逆に粒度番号が小さいと結晶粒は大きくなる。な
お、一般的に耐クリープ性を向上させるには結晶粒を大
きくすることが効果的であるが、その反面、結晶粒が大
きいと機械的強度が低下するという逆効果がある。
Therefore, when the particle size number is large, the crystal grains are small, and when the particle size number is small, the crystal grains are large. In general, it is effective to increase the crystal grains in order to improve the creep resistance, but on the other hand, if the crystal grains are large, there is an adverse effect that the mechanical strength decreases.

【0006】また、熱間で鍛造し、室温で機械加工する
ことになるが、熱間温度(1150℃以上)と室温(約
25℃)とでは極端に温度が異なるため、熱膨張を見込
んで鍛造を実施しても得られた鍛造品の寸法精度は良く
ない。そのために機械加工が必須となる。そこで、本発
明の目的は耐クリープ性に優れ、しかも機械的強度にも
優れ、機械加工を不要若しくは最小限にすることのでき
る成形方法を提供することにある。
Further, forging is performed hot and machining is performed at room temperature. However, since the temperature is extremely different between the hot temperature (1150 ° C. or more) and the room temperature (about 25 ° C.), thermal expansion is expected. Even if forging is performed, the dimensional accuracy of the obtained forged product is not good. Therefore, machining is essential. Accordingly, an object of the present invention is to provide a molding method that is excellent in creep resistance and mechanical strength, and that can eliminate or minimize machining.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に請求項1は、13.5%〜19.5%のCrと29.
5%〜62.0%のNiとを主成分とするオーステナイ
ト系耐熱鋼のビレットを1050℃〜1130℃に加熱
して溶体化処理する工程と、溶体化したビレットをスケ
ール除去し、潤滑処理する工程と、処理済ビレットを2
00℃を超えない温度に保ちながら塑性加工することで
排気弁にする冷間鍛造工程と、からなるエンジン用排気
弁の成形方法である。
In order to achieve the above object, the present invention provides a method for manufacturing a semiconductor device comprising the steps of: 13.5% to 19.5% of Cr;
Heat-treating a billet of austenitic heat-resistant steel containing 5% to 62.0% Ni as a main component at 1050 ° C to 1130 ° C and subjecting the solution-treated billet to scale removal and lubrication Process and processed billet 2
A cold forging process of forming an exhaust valve by plastic working while maintaining the temperature not to exceed 00 ° C.

【0008】Crが13.5%未満であると耐酸化性が
著しく低下する。また19.5%を超えるとσ相脆化が
顕著となる。そこで、Crは13.5%〜19.5%の
範囲とする。Niはオーステナイト組織を安定化するた
めの主成分であり、29.5%未満では高温強度並びに
疲労強度が不十分となり、また、62.0%超では強度
は十分であるが、非常に高価なためコストメリットがな
くなる。そこで、Niは、29.5%〜62.0%の範
囲にする。
[0008] If the Cr content is less than 13.5%, the oxidation resistance is significantly reduced. If it exceeds 19.5%, σ phase embrittlement becomes remarkable. Therefore, Cr is set in the range of 13.5% to 19.5%. Ni is a main component for stabilizing the austenite structure. If it is less than 29.5%, the high-temperature strength and fatigue strength become insufficient, and if it exceeds 62.0%, the strength is sufficient, but it is very expensive. Therefore, cost merit disappears. Therefore, Ni is set in the range of 29.5% to 62.0%.

【0009】溶体化処理温度が、1050℃未満では結
晶粒が十分に大きくならず期待する耐クリープ性が得ら
れない。逆に、1130℃を超えると結晶粒は十分に大
きくなるものの、鍛造後の表面肌に梨地状の凹凸模様が
発生し好ましくない。そこで、溶体化処理は1050℃
〜1130℃の温度で実施する。鍛造が冷間鍛造である
から、精密鍛造が可能となり、鍛造品の寸法精度が飛躍
的に高まり、機械加工を省く若しくは最小限にすること
ができる。
If the solution treatment temperature is lower than 1050 ° C., the crystal grains do not become sufficiently large, and the expected creep resistance cannot be obtained. Conversely, when the temperature exceeds 1130 ° C., the crystal grains become sufficiently large, but a pear-skin-like uneven pattern is generated on the surface skin after forging, which is not preferable. Therefore, solution treatment is performed at 1050 ° C.
Performed at a temperature of 11130 ° C. Since the forging is a cold forging, precision forging can be performed, and the dimensional accuracy of the forged product is dramatically increased, so that machining can be omitted or minimized.

【0010】請求項2は、請求項1に、得られたワーク
を1000℃〜1080℃に加熱して再度溶体化処理を
行い、次いで時効処理する工程を追加したものである。
冷間鍛造によって変形力を受けて変形応力の発生した部
分は、再溶体化処理によって再結晶微細化するが、それ
の程度は変形量に依存し、変形が大きいほど微細化す
る。1000℃未満では再結晶化は十分には進まず、期
待した機械強度が得られない。また、1080℃を超え
ると再結晶粒の成長が進み粗大化してしまい、これまた
期待した機械的強度が得られない。従って、1000℃
〜1080℃で再度溶体化処理し、その後に時効処理す
ることで、耐クリープ性にも、機械的強度にも優れたエ
ンジン用排気弁を得ることができる。
A second aspect of the present invention is the same as the first aspect, except that a step of heating the obtained workpiece to 1000 ° C. to 1080 ° C., performing a solution treatment again, and then performing an aging treatment is added.
The portion where the deformation stress is generated by receiving the deformation force by the cold forging is recrystallized and refined by the re-solution treatment, but the degree of the recrystallization depends on the amount of deformation. If the temperature is lower than 1000 ° C., recrystallization does not proceed sufficiently, and the expected mechanical strength cannot be obtained. On the other hand, when the temperature exceeds 1080 ° C., the growth of recrystallized grains proceeds and coarsens, and the expected mechanical strength cannot be obtained. Therefore, 1000 ° C
By performing the solution treatment again at 〜101080 ° C. and then performing the aging treatment, it is possible to obtain an engine exhaust valve excellent in both creep resistance and mechanical strength.

【0011】エンジン用排気弁は、エンジンの燃焼室に
臨み高温の排気ガスの流れを制御する弁であり、特に傘
部は高温に晒されるので高い耐熱性や耐食性が要求され
る。これに対して軸部は相手部品との摺動を主に考えな
ければならないので、機械的強度が要求される。この様
に、エンジン用排気弁は1つの部品でありながら、部位
毎に異なる特性が要求される。更には、小径の軸部のビ
レットからの変形量と、大径の傘部のビレットからの変
形量とが異なるので、鍛造成形は非常に難しいものとな
る。
The engine exhaust valve is a valve that faces the combustion chamber of the engine and controls the flow of high-temperature exhaust gas. In particular, since the umbrella portion is exposed to high temperatures, high heat resistance and corrosion resistance are required. On the other hand, since the shaft portion must mainly consider sliding with the mating part, mechanical strength is required. As described above, although the engine exhaust valve is a single component, different characteristics are required for each part. Furthermore, since the amount of deformation of the small diameter shaft from the billet is different from the amount of deformation of the large diameter umbrella from the billet, forging is very difficult.

【0012】そこで、本発明は、傘部と軸部との変形量
が大きく異なっていても、鍛造成形に好適で、しかも、
部位毎に要求される特性を満足させ得る最適径のビレッ
トを用意し、このビレットを用いて、適度な成形過程
(冷間鍛造)を経た後、更に再溶体化処理や時効処理を
実施するエンジン用排気弁の成形方法である。すなわ
ち、傘部は変形量が少ないことから、鍛造前の溶体化処
理で得られた大きな結晶粒がそのまま残り、高温強度、
耐クリープ性に優れる。また、軸部は大きな変形量によ
って十分な再結晶微細化が起こり、機械的特性が優れた
ものとなる。
Therefore, the present invention is suitable for forging even if the amount of deformation between the umbrella portion and the shaft portion is significantly different, and
An engine that prepares a billet with the optimum diameter that can satisfy the characteristics required for each part, uses this billet, performs an appropriate forming process (cold forging), and then performs re-solution treatment and aging treatment It is a method of forming an exhaust valve. In other words, since the umbrella portion has a small amount of deformation, large crystal grains obtained by solution treatment before forging remain as they are, high-temperature strength,
Excellent creep resistance. In addition, the shaft portion is sufficiently recrystallized and refined by a large deformation amount, and has excellent mechanical properties.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、図面は符号の向きに見る
ものとする。図1は本発明に係るエンジン用排気弁の成
形フロー図であり、実施例に比較例を併記したものであ
る。ST××はステップ番号を示す。 ST01:排気弁の素材として、次表に示す実施例1,
2,3のオーステナイト系耐熱鋼のビレットを準備す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of reference numerals. FIG. 1 is a molding flowchart of an exhaust valve for an engine according to the present invention, in which an example and a comparative example are also described. STxx indicates a step number. ST01: Examples 1 and 2 shown in the following table were used as materials for the exhaust valve.
A few austenitic heat-resistant steel billets are prepared.

【0014】[0014]

【表2】 [Table 2]

【0015】ST02:上記ビレットを炉に入れて溶体
化処理する。処理条件は次の通である。 炉内温度 1050℃〜1130℃ 保持時間 0.5時間 後処理 抽出後、直ちに水冷
ST02: The billet is put into a furnace and subjected to a solution treatment. The processing conditions are as follows. Furnace temperature 1050 ° C to 1130 ° C Holding time 0.5 hour Post-treatment Immediately after extraction, water cooling

【0016】ST03:酸化スケールを除去する。 ST04:冷間鍛造に備えて、シュウ酸塩および金属石
鹸で被膜を形成する。
ST03: The oxide scale is removed. ST04: Form a film with oxalate and metal soap in preparation for cold forging.

【0017】ST05:ビレットを冷間鍛造するが、従
来は熱間鍛造であったものが本実施例で冷間鍛造が可能
になった理由を含めて以下に詳しく述べる。図2(a)
〜(d)は本発明に係る冷間鍛造の工程図(前半、軸部
形成)である。 (a):直径D、長さLのビレット1を第1金型2(先
端に円錐面を形成する)にセットし第1パンチ3で据え
込む。 (b):先端が円錐になった中間品4(中間加工品を
「中間品」と呼ぶことにする。以下同じ。)を第2金型
5(径d2の軸部を形成する)にセットし第2パンチ6
で据え込む。 (c):径d2の軸部を有する中間品7を第3金型8
(径d3の軸部を形成する)にセットし第3パンチ9で
据え込む。 (d):径d3の軸部を有する中間品11を第4金型1
2(径d4の軸部を形成する)にセットし第4パンチ1
3で据え込む。
ST05: The billet is cold forged. The conventional hot forging is now described in detail below, including the reason why the cold forging becomes possible in this embodiment. FIG. 2 (a)
(D) is a process diagram (first half, shaft portion formation) of the cold forging according to the present invention. (A): A billet 1 having a diameter D and a length L is set in a first mold 2 (having a conical surface at the tip) and set up with a first punch 3. (B): An intermediate product 4 having a conical tip (an intermediate processed product is referred to as an “intermediate product”; the same applies hereinafter) is set in a second mold 5 (forming a shaft portion having a diameter d2). Second punch 6
Upset. (C): An intermediate product 7 having a shaft portion with a diameter d2 is placed in a third mold 8
(Forming a shaft portion with a diameter d3) and upsetting with the third punch 9. (D): An intermediate product 11 having a shaft portion having a diameter d3 is placed in a fourth mold 1
2 (forming a shaft portion of diameter d4) and the fourth punch 1
Upset at 3.

【0018】図3(a)〜(c)は本発明に係る冷間鍛
造の工程図(後半、傘部形成)である。 (a):径d4の軸部を有し、且つ径D1の傘部を有す
る中間品14を第5金型15(径D2の傘部を形成す
る)にセットし第5パンチ16で据え込む。 (b):径D2の傘部を有する中間品17を第6金型1
8(径D3の傘部を形成する)にセットし第6パンチ1
9で据え込む。 (c):以上の6工程を経て完成したエンジン用排気弁
20を示す。
3 (a) to 3 (c) are process drawings of cold forging according to the present invention (second half, formation of an umbrella portion). (A): An intermediate product 14 having a shaft portion with a diameter d4 and having an umbrella portion with a diameter D1 is set in a fifth mold 15 (forming an umbrella portion with a diameter D2) and upset with a fifth punch 16. . (B): An intermediate product 17 having an umbrella portion having a diameter D2 is formed by using a sixth mold 1
8 (forming an umbrella portion of diameter D3) and setting the sixth punch 1
Upset at 9. (C): The engine exhaust valve 20 completed through the above six steps.

【0019】図4(a),(b)は排気弁における据込
み率の説明図である。(b)の排気弁20は軸部21と
傘部22とからなり、軸部21は径d6、長さl6のス
トレート部分とする。傘部22の長さ(高さ)はL6と
する。軸部21の体積v6は(π/4)×(d6)2×
l6で求まる。(a)において、ビレット1を軸部分1
aと傘部分1bに仮想的に区分けする。具体的には軸部
分1aを前記v6相当高さ{v6÷(π/4)×D2
とし、残りを傘部分1bの高さL0とすればよい。据込
み率は据込み長さを据込み前の長さで除した値であるか
ら、本発明においては、据込み率は{(L0−L6)/
L0}×100(%)と定義する。
FIGS. 4A and 4B are explanatory diagrams of the upsetting ratio in the exhaust valve. The exhaust valve 20 in (b) includes a shaft portion 21 and an umbrella portion 22, and the shaft portion 21 is a straight portion having a diameter d6 and a length 16. The length (height) of the umbrella portion 22 is L6. The volume v6 of the shaft portion 21 is (π / 4) × (d6) 2 ×
It is determined by l6. In (a), the billet 1 is
a and an umbrella portion 1b. Specifically, the shaft portion 1a is set at the height corresponding to v6 {v6} (π / 4) × D 2 }.
The rest may be the height L0 of the umbrella portion 1b. Since the upsetting ratio is a value obtained by dividing the upsetting length by the length before the upsetting, in the present invention, the upsetting ratio is {(L0−L6) /
L0} × 100 (%) is defined.

【0020】ところで、図2,3の冷間鍛造工程でワー
ク(中間品、完成品)が熱くなることが分かった。そこ
で、温度を計測した。図5は排気弁を冷間鍛造したとき
の据込み率と表面温度の関係を示すグラフであり、横軸
は据込み率、縦軸は表面温度である。冷間鍛造では変形
しにくい素材を塑性変形するために、据込み率に比例し
て表面温度が上り、据込み率70%では約250度、据
込み率80%では約300度に達した。
By the way, it was found that the work (intermediate product, finished product) became hot in the cold forging process shown in FIGS. Then, the temperature was measured. FIG. 5 is a graph showing the relationship between the upsetting ratio and the surface temperature when the exhaust valve is cold forged. The horizontal axis represents the upsetting ratio, and the vertical axis represents the surface temperature. In order to plastically deform a material that is difficult to be deformed by cold forging, the surface temperature increased in proportion to the upsetting rate, and reached about 250 degrees at an upsetting rate of 70% and about 300 degrees at an upsetting rate of 80%.

【0021】そこで本発明者らは温度と耐熱鋼の割れの
関係を調べた。図6はオーステナイト系耐熱鋼の温度と
据込み限界との関係を示すグラフであり、横軸は試験温
度、縦軸は割れが発生したときの据込み率を示す。
Therefore, the present inventors examined the relationship between temperature and cracks in heat-resistant steel. FIG. 6 is a graph showing the relationship between the temperature of the austenitic heat-resistant steel and the upsetting limit. The horizontal axis shows the test temperature, and the vertical axis shows the upsetting ratio when a crack occurs.

【0022】図6において実施例1,2,3共に、−5
0℃〜600℃の領域では温度上昇と共に据込み限界が
小さくなる。すなわち、割れやすくなる。これが、図5
で述べた加工に伴なう温度上昇でワークが割れた原因で
あると思われる。細かくは、実施例1(30Ni−15
Cr材)では200℃で据込み限界が70%を切る。実
施例2(40Ni−15Cr材)では200℃での据込
み限界が73%、実施例3(60Ni−18Cr材)で
は200℃での据込み限界が75%であるから、いづれ
も実施例1よりは有利である。このことから、オーステ
ナイト系耐熱鋼のビレットを70%の据込み率で且つ冷
間鍛造法で排気弁にするには、ビレットや中間品の温度
を200℃以下にすれば、割れは防止できることが分か
る。ビレット(中間品を含む)を200℃を超えぬよう
に管理することで、排気弁の完全冷間鍛造化が実現し
た。冷間鍛造法であるから、スケール化の心配がなく、
加熱設備は不要となり、仕上り精度が良好となる。
Referring to FIG. 6, both of the first, second and third embodiments have -5.
In the range of 0 ° C. to 600 ° C., the upsetting limit becomes smaller as the temperature rises. That is, it is easily broken. This is shown in FIG.
It is considered that the work was broken due to the temperature rise accompanying the processing described in (1). The details are described in Example 1 (30Ni-15
In the case of (Cr material), the upsetting limit is less than 70% at 200 ° C. In Example 2 (40Ni-15Cr material), the upsetting limit at 200 ° C. was 73%, and in Example 3 (60Ni-18Cr material), the upsetting limit at 200 ° C. was 75%. It is more advantageous. From this, in order to make an austenitic heat-resistant steel billet an exhaust valve with a 70% upsetting rate and a cold forging method, cracking can be prevented by setting the temperature of the billet or intermediate product to 200 ° C. or less. I understand. By controlling billets (including intermediate products) not to exceed 200 ° C., complete cold forging of the exhaust valve was realized. Since it is a cold forging method, there is no need to worry about scaling,
No heating equipment is required, and the finishing accuracy is improved.

【0023】図7は本発明に係る鍛造金型の断面図であ
り、この鍛造金型は図3(a)に示した第5金型15で
あり、この第5金型15は超硬合金のダイ15aを合金
工具鋼(例えばSKD−JIS)のベース15bに嵌合
したものであり、円柱状のダイ15aの底のエッジを大
きく削って三角断面通路24を形成したことを特徴とと
する。
FIG. 7 is a sectional view of a forging die according to the present invention. The forging die is the fifth die 15 shown in FIG. 3A, and the fifth die 15 is a cemented carbide. The die 15a is fitted to a base 15b of alloy tool steel (for example, SKD-JIS), and the triangular cross section passage 24 is formed by largely shaving the bottom edge of the cylindrical die 15a. .

【0024】図8は本発明に係る鍛造金型の平面図であ
り、ベース15bに冷却剤の供給路25及び排出路26
を開け、供給路26を通じて例えば冷却水を三角断面通
路24へ供給する。冷却水は三角断面通路24を巡る間
にダイ15aを強制冷却したのち、排出路26を通じて
排出する。27は給水ホース、28は排水ホースであ
る。ダイ15aを強制冷却したことにより、ワークを2
00℃を超えないようにしたものである。
FIG. 8 is a plan view of a forging die according to the present invention, and a coolant supply passage 25 and a discharge passage 26 are provided in a base 15b.
The cooling water is supplied to the triangular cross section passage 24 through the supply passage 26. The cooling water forcibly cools the die 15 a while passing through the triangular cross section passage 24, and then discharges it through the discharge passage 26. 27 is a water supply hose and 28 is a drain hose. By forcibly cooling the die 15a, the work
The temperature should not exceed 00 ° C.

【0025】なお、三角断面通路24は上記した通り
に、ベース15bにダイ15aを嵌合する構造の金型で
あれば、極めて容易に形成することができ、型代の高騰
を抑えるこができる。しかし、水等の冷却剤を流すこと
が重要であるため、断面形状、形成箇所、本数は任意で
ある。
As described above, the triangular cross section passage 24 can be formed extremely easily as long as it is a mold having a structure in which the die 15a is fitted to the base 15b, and a rise in the mold cost can be suppressed. . However, since it is important to flow a cooling agent such as water, the cross-sectional shape, the location to be formed, and the number are arbitrary.

【0026】また本実施例では、第5金型15並びに第
6金型18に前記三角断面通路24を設け、他の第1〜
第4金型2,5,8,12には、三角断面通路24を設
けなかった。その理由は次の通である。図2(a)〜
(d)は実質的に軸部形成工程である。軸部はビレット
1を縮径することで得られる。オーステナイト系耐熱鋼
やマルテンサイト系耐熱鋼は延性には乏しいものの圧縮
には強い。軸部形成に伴なう縮径は表面を圧縮するもの
であるから、仮に200℃を超えても割れの発生する心
配はない。よって、第1〜第4金型2,5,8,12は
無冷却とした。一方、図3(a),(b)は傘部形成工
程であり、傘部は拡径して得られる。オーステナイト系
耐熱鋼やマルテンサイト系耐熱鋼は圧縮には強いが引張
りには弱い。傘部形成に伴なう拡径は表面に引張りが作
用する。従って、200℃を超えると割れが心配とな
る。よって、第5金型15並びに第6金型18を強制冷
却するようにしたものである。
In this embodiment, the fifth mold 15 and the sixth mold 18 are provided with the triangular section passage 24, and
The fourth molds 2, 5, 8, and 12 were not provided with the triangular section passage 24. The reason is as follows. FIG.
(D) is substantially a shaft portion forming step. The shaft portion is obtained by reducing the diameter of the billet 1. Austenitic heat-resistant steel and martensitic heat-resistant steel are poor in ductility but strong in compression. Since the diameter reduction accompanying the formation of the shaft portion compresses the surface, even if it exceeds 200 ° C., there is no fear of cracking. Therefore, the first to fourth molds 2, 5, 8, and 12 were not cooled. On the other hand, FIGS. 3A and 3B show an umbrella portion forming step, and the umbrella portion is obtained by expanding the diameter. Austenitic heat-resistant steel and martensitic heat-resistant steel are strong in compression but weak in tension. The diameter expansion accompanying the formation of the umbrella causes a tension to act on the surface. Therefore, when the temperature exceeds 200 ° C., there is a concern about cracking. Therefore, the fifth mold 15 and the sixth mold 18 are forcibly cooled.

【0027】第5金型15並びに第6金型18のみを冷
却金型にしたことで、諸経費の高騰を押えるこができ
る。しかし、第1〜第4金型2,5,8,12をも冷却
金型にすることは差支えない。また、冷却剤は十分に冷
却することが望ましく、安価な水の他、不凍液、冷凍機
用冷媒であればよい。
By using only the fifth mold 15 and the sixth mold 18 as cooling molds, it is possible to suppress a rise in various costs. However, the first to fourth dies 2, 5, 8, and 12 may be used as cooling dies. Further, it is desirable that the coolant is sufficiently cooled. In addition to inexpensive water, an antifreeze and a refrigerant for a refrigerator may be used.

【0028】図9は本発明に係る冷却方式の別実施例を
示す図であり、第5金型15と第5パンチ16との間の
中間品14を冷却ノズル31,31から噴射した冷却ガ
スで強制冷却するものである。冷却ガスは冷凍機で十分
に冷やした空気が好適である。この例は、中間品14の
傘部を狙って、冷却ガスを吹きつけたので、即効性があ
り、且つ金型費を低く抑えることができる。しかし、冷
却ガスは熱容量が冷却液に比べて格段に小さいので、大
きな中間品14には不向きである。
FIG. 9 is a view showing another embodiment of the cooling system according to the present invention, in which a cooling gas is injected from the cooling nozzles 31, 31 to the intermediate product 14 between the fifth die 15 and the fifth punch 16. For forced cooling. The cooling gas is preferably air sufficiently cooled by a refrigerator. In this example, since the cooling gas is blown to the umbrella portion of the intermediate product 14, it has an immediate effect, and the die cost can be reduced. However, the cooling gas has a much smaller heat capacity than the cooling liquid, and is not suitable for the large intermediate product 14.

【0029】そこで、図7の金型冷却と図9のガスによ
る直接冷却との双方を組合わせ、お互いの長所を引出す
ようにしてもよい。
Therefore, it is also possible to combine both the mold cooling shown in FIG. 7 and the direct cooling by gas shown in FIG. 9 to bring out the advantages of each other.

【0030】図1に戻って、ST05を経たものを第1
次排気弁とし、この第1次排気弁を完成した排気弁とす
ることはできる。この第1次排気弁の機械的強度を向上
することを目的に、再度溶体化処理することは有益であ
る。 ST06:第1次排気弁を次の要領で再度溶体化処理を
行う。 炉内温度 1000℃〜1080℃ 保持時間 0.5時間 後処理 抽出後、直ちに水冷 次いで、時効処理を実施する。 炉内温度 700℃〜800℃ 保持時間 4時間 後処理 空冷 これで、機械的強度は高まる。
Returning to FIG. 1, the one after ST05
The primary exhaust valve may be a completed exhaust valve. It is useful to perform the solution treatment again for the purpose of improving the mechanical strength of the primary exhaust valve. ST06: Solution treatment of the primary exhaust valve is performed again in the following manner. Furnace temperature 1000 ° C. to 1080 ° C. Holding time 0.5 hour Post-treatment Immediately after extraction, water-cooling is followed by aging treatment. Furnace temperature 700 ° C to 800 ° C Holding time 4 hours Post-treatment Air cooling This increases the mechanical strength.

【0031】比較例は、ST101〜ST105からな
るが、1150℃〜1250℃での熱間鍛造、1050
℃〜1150℃での溶体化処理、機械加工を基本工程と
したものである。これに対して、実施例は、1050℃
〜1130℃での溶体化処理、200℃以下での冷間鍛
造、必要に応じて実施する1000℃〜1080℃での
再度の溶体化処理を基本工程とするものである。即ち、
本実施例は冷間鍛造を円滑に実施するために、溶体化処
理(1050℃〜1130℃)でビレットを軟化処理し
たこと。冷間鍛造に伴なう内部歪などを再度の溶体化処
理(1000℃〜1080℃)で是正して機械的強度を
改善したものである。
The comparative example consists of ST101 to ST105, but hot forging at 1150 ° C. to 1250 ° C.
The solution treatment at a temperature of 1 to 1150 ° C and machining are the basic steps. On the other hand, in the example, 1050 ° C.
The basic steps are a solution treatment at 1130 ° C., a cold forging at 200 ° C. or lower, and a re-solution treatment at 1000 ° C. to 1080 ° C. which is performed as necessary. That is,
In the present embodiment, the billet was softened by a solution treatment (1050 ° C. to 1130 ° C.) in order to smoothly perform cold forging. The mechanical strength is improved by correcting internal strain and the like due to cold forging again by solution treatment (1000 ° C. to 1080 ° C.).

【0032】[0032]

【実施例】本発明に係る実施例を次に説明する。 ビレットの材質:オーステナイト系耐熱鋼(前記実施例
1,2,3相当品) 溶体化処理の条件: 炉内温度 1120℃ 保持時間 0.5時間 後処理 抽出後、直ちに水冷
Embodiments of the present invention will be described below. Billet material: Austenitic heat-resistant steel (equivalent to the above Examples 1, 2 and 3) Solution treatment conditions: Furnace temperature 1120 ° C Holding time 0.5 hour Post-treatment Immediately after extraction, water cooling

【0033】得られた処理品を、スケール除去し、潤滑
処理し、200℃以下で冷間鍛造して、第1次排気弁を
得た。図10は第1次排気弁の断面模式図であり、第1
次排気弁41は、断面の大部分が次図で示す結晶粒度で
あった。図11は第1次排気弁の断面の顕微鏡写真(拡
大倍率100)であり、この写真から結晶粒度は、塑性
変形でつぶれて見えるが、約「3.5」であることが判
明した。
The treated product was descaled, lubricated, and cold forged at 200 ° C. or lower to obtain a first exhaust valve. FIG. 10 is a schematic cross-sectional view of the primary exhaust valve.
Most of the cross section of the secondary exhaust valve 41 had the crystal grain size shown in the following figure. FIG. 11 is a photomicrograph (magnification: 100) of a cross section of the primary exhaust valve. From this photo, it was found that the crystal grain size was about “3.5”, although it appeared to be crushed by plastic deformation.

【0034】上記第1次排気弁41を再度溶体化処理し
て第2次排気弁とした。 再度溶体化処理の条件: 炉内温度 1050℃ 保持時間 0.5時間 後処理 抽出後、直ちに水冷
The first exhaust valve 41 was subjected to solution treatment again to form a second exhaust valve. Solution treatment condition again: Furnace temperature 1050 ° C Holding time 0.5 hour Post-treatment Immediately after extraction, water cooling

【0035】図12は第2次排気弁の断面模式図であ
り、第2次排気弁42の傘部43は、コア44と中間層
45と表層46とが明らかに結晶粒度が異なり、軸部4
7はほぼ一様であった。鍛造での変形量に依存して再結
晶化の程度が変化し、大きな変形部位ほど再結晶化が進
み微細な粒度になったことにより、前記の結晶粒度の違
いとなって現れている。
FIG. 12 is a schematic sectional view of the secondary exhaust valve. The umbrella portion 43 of the secondary exhaust valve 42 has a core 44, an intermediate layer 45, and a surface layer 46 that are clearly different in crystal grain size and a shaft portion. 4
7 was almost uniform. The degree of recrystallization changes depending on the amount of deformation in forging, and the larger the deformed part, the more recrystallization progresses to a finer grain size.

【0036】図13(a),(b)は第2次排気弁のコ
ア及び中間層の断面の顕微鏡写真(拡大倍率100)で
ある。コア44の結晶粒度は約「3.5」であった。中
間層45の結晶粒度は約「4.5」であった。図14
(a),(b)は第2次排気弁の表層及び軸部の断面の
顕微鏡写真(拡大倍率100)である。表層46の結晶
粒度は約「7.0」であった。軸部47の結晶粒度は約
「7.0」であった。
FIGS. 13A and 13B are micrographs (magnification: 100) of the cross section of the core and the intermediate layer of the secondary exhaust valve. The crystal grain size of the core 44 was about “3.5”. The crystal grain size of the intermediate layer 45 was about “4.5”. FIG.
(A) and (b) are micrographs (magnification: 100) of a cross section of a surface layer and a shaft portion of the secondary exhaust valve. The crystal grain size of the surface layer 46 was about “7.0”. The crystal grain size of the shaft portion 47 was about “7.0”.

【0037】結晶粒度が7.0であれば結晶粒径は十分
に小さく、機械的強度は高い。一方、結晶粒度が3.5
〜4.5であれば結晶粒径は十分に大きく、高温クリー
プ強度が高い。傘部の表層46はバルブシートに当るた
め機械強度が高い程よい。軸部47も圧縮軸力が作用す
るため機械強度は高い程よい。この点において、表層4
6,軸部47ともに結晶粒度が7.0であって機械的強
度は十分に高い。そして、コア44や中間層45は結晶
粒度が3.5〜4.5であるため高温クリープ強度が高
いため、優れた排気弁が得られたことになる。
When the crystal grain size is 7.0, the crystal grain size is sufficiently small and the mechanical strength is high. On the other hand, the crystal grain size is 3.5
If it is ~ 4.5, the crystal grain size is sufficiently large and the high temperature creep strength is high. Since the surface layer 46 of the umbrella portion hits the valve seat, the higher the mechanical strength, the better. Since the shaft portion 47 also receives a compressive axial force, the higher the mechanical strength, the better. In this regard, surface layer 4
6 and the shaft portion 47 have a crystal grain size of 7.0 and a sufficiently high mechanical strength. Since the core 44 and the intermediate layer 45 have a crystal grain size of 3.5 to 4.5 and have a high high-temperature creep strength, an excellent exhaust valve is obtained.

【0038】図15は本発明のオーステナイト鋼(実施
例1,2,3)における溶体化温度と結晶粒度番号との
関係を調べたグラフである。実施例1,2,3において
は、1050℃〜1130℃で溶体化処理すると、結
晶粒度番号3〜5.5が得られる。しかし、1130℃
を超えると結晶が粗大化し、鍛造後に表面に梨地状の凹
凸模様が発生する。また、1050℃以下では結晶粒は
大きくならず、軟化も不十分で冷間鍛造が困難になるこ
と、及び排気弁に求められる高温クリープ特性が得られ
ない。従って、溶体化処理は1050℃〜1130℃で
実施する。
FIG. 15 is a graph showing the relationship between the solution temperature and the grain size number in the austenitic steel of the present invention (Examples 1, 2, and 3). In Examples 1, 2, and 3, when the solution treatment is performed at 1050 ° C. to 1130 ° C., crystal grain size numbers of 3 to 5.5 are obtained. However, 1130 ° C
If it exceeds 300, the crystal becomes coarse, and after forging, a satin-like uneven pattern is generated on the surface. At 1050 ° C. or lower, the crystal grains do not become large, and the softening is insufficient, so that cold forging becomes difficult, and the high-temperature creep characteristics required for the exhaust valve cannot be obtained. Therefore, the solution treatment is performed at 1050C to 1130C.

【0039】また実施例1,2,3において、100
0℃〜1080℃で再度の溶体化処理をすると、表層及
び軸部は結晶粒度番号が4.5〜7.5となり、結晶粒
が微細化されたことにより、機械的強度が高まる。
In Examples 1, 2 and 3, 100
When the solution treatment is performed again at 0 ° C. to 1080 ° C., the surface layer and the shaft portion have a crystal grain size number of 4.5 to 7.5, and the mechanical strength increases due to the refined crystal grains.

【0040】[0040]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1は、鍛造が冷間鍛造であるから、精密鍛
造が可能となり、鍛造品の寸法精度が飛躍的に高まり、
機械加工を省く若しくは最小限にすることができる。
According to the present invention, the following effects are exhibited by the above configuration. According to claim 1, since the forging is a cold forging, precision forging is possible, and the dimensional accuracy of the forged product is dramatically increased.
Machining can be omitted or minimized.

【0041】請求項2は、請求項1に、得られたワーク
を1000℃〜1080℃に加熱して再度溶体化処理を
行い、次いで時効処理する工程とを追加したものであ
る。再度溶体化処理後の時効処理で、鍛造品の結晶粒度
の調整を行い、高温クリープ強度の高い傘部と、機械的
強度の高い軸部とを併せ持った排気弁を得ることができ
る。
A second aspect of the present invention is the same as the first aspect, except that the obtained work is heated to 1000 ° C. to 1080 ° C., subjected to a solution treatment again, and then subjected to an aging treatment. By the aging treatment after the solution treatment again, the grain size of the forged product is adjusted, and an exhaust valve having both an umbrella part having high high-temperature creep strength and a shaft part having high mechanical strength can be obtained.

【0042】そして、本発明の成形方法によれば、成分
範囲が異なる他の材料においても、溶体化処理して冷間
鍛造成形及び加工した後に、再度溶体化処理して時効処
理を施すことにより、1つの製品で求められる要件が部
位毎に異なる製品、例えば耐クリープ性が要求される、
傘部の変形量(歪量)が小さくて軸部の変形量(歪量)
が大きい製品、特にエンジンバルブなどの自動車エンジ
ン部品などを生産することが可能である。
According to the molding method of the present invention, even for other materials having different component ranges, after solution treatment, cold forging and processing, and then solution treatment again and aging treatment are performed. , Requirements for one product are different for each part, for example, creep resistance is required,
The amount of deformation (strain) of the umbrella is small and the amount of deformation (strain) of the shaft
It is possible to produce products having a large size, in particular, automobile engine parts such as engine valves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るエンジン用排気弁の成形フロー図FIG. 1 is a flow chart of forming an exhaust valve for an engine according to the present invention.

【図2】本発明に係る冷間鍛造の工程図(前半、軸部形
成)
FIG. 2 is a process diagram of the cold forging according to the present invention (first half, shaft portion formation).

【図3】本発明に係る冷間鍛造の工程図(後半、傘部形
成)
FIG. 3 is a process diagram of cold forging according to the present invention (second half, umbrella portion formation)

【図4】排気弁における据込み率の説明図FIG. 4 is an explanatory diagram of an upsetting ratio in an exhaust valve.

【図5】排気弁を冷間鍛造したときの据込み率と表面温
度の関係を示すグラフ
FIG. 5 is a graph showing the relationship between the upsetting ratio and the surface temperature when the exhaust valve is cold forged.

【図6】オーステナイト系耐熱鋼の温度と据込み限界と
の関係を示すグラフ
FIG. 6 is a graph showing the relationship between the temperature of an austenitic heat-resistant steel and the upsetting limit.

【図7】本発明に係る鍛造金型の断面図FIG. 7 is a sectional view of a forging die according to the present invention.

【図8】本発明に係る鍛造金型の平面図FIG. 8 is a plan view of a forging die according to the present invention.

【図9】本発明に係る冷却方式の別実施例を示す図FIG. 9 is a diagram showing another embodiment of the cooling system according to the present invention.

【図10】第1次排気弁の断面模式図FIG. 10 is a schematic cross-sectional view of a primary exhaust valve.

【図11】第1次排気弁の断面の顕微鏡写真(拡大倍率
100)
FIG. 11 is a micrograph (100 magnification) of a cross section of a primary exhaust valve.

【図12】第2次排気弁の断面模式図FIG. 12 is a schematic cross-sectional view of a secondary exhaust valve.

【図13】第2次排気弁のコア及び中間層の断面の顕微
鏡写真(拡大倍率100)
FIG. 13 is a micrograph (magnification: 100) of a cross section of the core and the intermediate layer of the secondary exhaust valve.

【図14】第2次排気弁の表層及び軸部の断面の顕微鏡
写真(拡大倍率100)
FIG. 14 is a micrograph (100 magnification) of a cross section of a surface layer and a shaft portion of a secondary exhaust valve.

【図15】本発明のオーステナイト鋼(実施例1,2,
3)における溶体化温度と結晶粒度番号との関係を調べ
たグラフ
FIG. 15 shows an austenitic steel according to the present invention (Examples 1, 2, 2).
Graph showing the relationship between solution temperature and grain size number in 3)

【図16】従来のSUH35系オーステナイト鋼におけ
る溶体化温度と結晶粒度番号との関係を調べたグラフ
FIG. 16 is a graph showing the relationship between the solution temperature and the grain size number of a conventional SUH35 austenitic steel.

【符号の説明】[Explanation of symbols]

1…ビレット、2,5,8,12,15,18…金型、
20…エンジン用排気弁、41…第1次排気弁、42…
第2次排気弁。
1. Billet, 2, 5, 8, 12, 15, 18 ... Mold,
20 ... engine exhaust valve, 41 ... primary exhaust valve, 42 ...
Secondary exhaust valve.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 13.5%〜19.5%のCrと29.
5%〜62.0%のNiとを主成分とするオーステナイ
ト系耐熱鋼のビレットを1050℃〜1130℃に加熱
して溶体化処理する工程と、 溶体化したビレットをスケール除去し、潤滑処理する工
程と、 処理済ビレットを200℃を超えない温度に保ちながら
塑性加工することで排気弁にする冷間鍛造工程と、から
なるエンジン用排気弁の成形方法。
1. 13.5% to 19.5% of Cr and 29.
Heat-treating a billet of austenitic heat-resistant steel mainly containing 5% to 62.0% Ni to 1050 ° C to 1130 ° C to perform solution treatment; scale-removing the solution-formed billet and performing lubrication treatment A method for forming an exhaust valve for an engine, comprising: a step; and a cold forging step of forming an exhaust valve by plastically processing the treated billet at a temperature not exceeding 200 ° C.
【請求項2】 13.5%〜19.5%のCrと29.
5%〜62.0%のNiとを主成分とするオーステナイ
ト系耐熱鋼のビレットを1050℃〜1130℃に加熱
して溶体化処理する工程と、 溶体化したビレットをスケール除去し、潤滑処理する工
程と、 処理済ビレットを200℃を超えない温度に保ちながら
排気弁の形状に塑性加工すること冷間鍛造工程と、 得られたワークを1000℃〜1080℃に加熱して再
度溶体化処理を行い、次いで時効処理する工程と、から
なるエンジン用排気弁の成形方法。
2. 13.5% to 19.5% of Cr and 29.
Heat-treating a billet of austenitic heat-resistant steel mainly containing 5% to 62.0% Ni to 1050 ° C to 1130 ° C to perform solution treatment; scale-removing the solution-formed billet and performing lubrication treatment A cold forging step of plastically processing the processed billet into the shape of an exhaust valve while maintaining the temperature of the treated billet at a temperature not exceeding 200 ° C., and heating the obtained work piece to 1000 ° C. to 1080 ° C. to perform solution treatment again. Performing an aging treatment, and then performing an aging treatment.
JP34570697A 1997-12-02 1997-12-02 Engine exhaust valve molding method Expired - Fee Related JP3717294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34570697A JP3717294B2 (en) 1997-12-02 1997-12-02 Engine exhaust valve molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34570697A JP3717294B2 (en) 1997-12-02 1997-12-02 Engine exhaust valve molding method

Publications (2)

Publication Number Publication Date
JPH11158545A true JPH11158545A (en) 1999-06-15
JP3717294B2 JP3717294B2 (en) 2005-11-16

Family

ID=18378419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34570697A Expired - Fee Related JP3717294B2 (en) 1997-12-02 1997-12-02 Engine exhaust valve molding method

Country Status (1)

Country Link
JP (1) JP3717294B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188905A3 (en) * 2000-09-13 2003-04-09 Eaton Corporation Seat faced engine valves and method of making the same
WO2010010636A1 (en) * 2008-07-25 2010-01-28 日鍛バルブ株式会社 Exhaust poppet valve and solution treatment method of poppet valve
CN102251084A (en) * 2011-07-04 2011-11-23 南京迪威尔重型锻造股份有限公司 Heat treatment process of steel forging for hydraulic cylinder of deep-sea oil recovery equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188905A3 (en) * 2000-09-13 2003-04-09 Eaton Corporation Seat faced engine valves and method of making the same
WO2010010636A1 (en) * 2008-07-25 2010-01-28 日鍛バルブ株式会社 Exhaust poppet valve and solution treatment method of poppet valve
CN102105603A (en) * 2008-07-25 2011-06-22 日锻阀门株式会社 Exhaust poppet valve and solution treatment method of poppet valve
JP5383682B2 (en) * 2008-07-25 2014-01-08 日鍛バルブ株式会社 Exhaust poppet valve and solution treatment method for the valve
US8689761B2 (en) 2008-07-25 2014-04-08 Nittan Valve Co., Ltd. Exhaust poppet valve and solution heat treatment method of the same
CN102251084A (en) * 2011-07-04 2011-11-23 南京迪威尔重型锻造股份有限公司 Heat treatment process of steel forging for hydraulic cylinder of deep-sea oil recovery equipment

Also Published As

Publication number Publication date
JP3717294B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
KR0148414B1 (en) Titanium alloy bar suitable for producing engine valve
JP2000317738A (en) Manufacture of stainless steel bolt
JPH03140447A (en) Forging of microcrystalline titanium powder and method of its manufacture
US8828160B2 (en) Method for producing a forging from a gamma titanium aluminum-based alloy
CN109112449A (en) A method of eliminating aluminum alloy die forgings residual stress
US4741080A (en) Process for providing valve members having varied microstructure
CN114682728A (en) Method for manufacturing metal ring by beryllium-copper alloy and metal ring
JPH09508670A (en) Superalloy forging method and related composition
JP4340754B2 (en) Steel having high strength and excellent cold forgeability, and excellent molded parts such as screws and bolts or shafts having excellent strength, and methods for producing the same.
CN113102546B (en) GH4202 nickel-based high-temperature alloy pipe and preparation method thereof
JP3717294B2 (en) Engine exhaust valve molding method
Ahmadi et al. Effects of solution treatment and sheath on mechanical properties of Al7075 processed by ECAP
JP2017078206A (en) α+β TYPE TITANIUM ALLOY HOT EXTRUSION SHAPE MATERIAL HAVING UNIFORM ACICULAR STRUCTURE AND EXCELLENT IN TENSILE PROPERTY
CN112108598B (en) Deformed high-temperature alloy blade forging and die forging method thereof
JPH0688166A (en) Die for hot working excellent in heat cracking resistance
RU2255136C1 (en) Method of plastic working of the high-temperature resistant alloys bars used for production of gas-turbine engine compressor blades
JPH10291008A (en) Tool for hot making tube and its manufacture
JPS6345320A (en) T-head bolt
JPH1161247A (en) Cold forging method of engine valve
RU2691471C1 (en) Method of production of rolled sheet from titanium alloy of grade bt8
JP7209237B2 (en) Method for manufacturing nickel-based alloy product or titanium-based alloy product
JPS5925963A (en) Manufacture of hot rolled ti alloy plate
JPH1181932A (en) Method of forming intake valve for engine
JP7485919B2 (en) Titanium alloy rod and its manufacturing method
JPS58221226A (en) Manufacture of machine structural steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Effective date: 20050210

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Effective date: 20050830

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090909

LAPS Cancellation because of no payment of annual fees