JPH11156396A - Waste water treatment method and apparatus therefor - Google Patents

Waste water treatment method and apparatus therefor

Info

Publication number
JPH11156396A
JPH11156396A JP18416098A JP18416098A JPH11156396A JP H11156396 A JPH11156396 A JP H11156396A JP 18416098 A JP18416098 A JP 18416098A JP 18416098 A JP18416098 A JP 18416098A JP H11156396 A JPH11156396 A JP H11156396A
Authority
JP
Japan
Prior art keywords
sludge
wastewater
treatment
wastewater treatment
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18416098A
Other languages
Japanese (ja)
Other versions
JP3697900B2 (en
Inventor
Takashi Seki
隆志 関
Akiko Isoi
晶子 礒井
Takuhei Kimura
拓平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP18416098A priority Critical patent/JP3697900B2/en
Publication of JPH11156396A publication Critical patent/JPH11156396A/en
Application granted granted Critical
Publication of JP3697900B2 publication Critical patent/JP3697900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

PROBLEM TO BE SOLVED: To provide a waste water treatment method wherein the use amt. of a chemical soln. or charge energy is reduced and a treatment time is short and excessive sludge is reduced in waste water treatment due to activated sludge. SOLUTION: In a waste water treatment method having a process for treating waste water with activated sludge and a process subjecting sludge containing treated water after the treatment of waste water to solid-liquid separation to take out the separated water, a process wherein a part of the separated sludge obtained by the solid-liquid separation or the whole thereof is aerobically subjected to sludge decomposition treatment in the presence of microorgansisms under an alkali condition is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排水処理汚泥を微
生物を利用して分解し、汚泥の減容化もしくは発生をな
くす排水および汚泥の処理方法およびそれに用いられる
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater and sludge which decomposes wastewater-treated sludge by using microorganisms to reduce or eliminate sludge volume, and an apparatus used for the method.

【0002】[0002]

【従来の技術】排水の生物処理の代表的な方法に、好気
的条件下でBOD成分を微生物に分解させ、後段で沈殿
・分離を行う活性汚泥法がある。この方法においては沈
殿させた汚泥の一部は曝気槽に返送するが、一部は沈殿
槽などで固液分離された後に余剰汚泥として処理する必
要がある。
2. Description of the Related Art A typical method of biological treatment of wastewater is an activated sludge method in which BOD components are decomposed into microorganisms under aerobic conditions, and sedimentation / separation is performed at a later stage. In this method, a part of the settled sludge is returned to the aeration tank, but a part of the sludge needs to be treated as excess sludge after solid-liquid separation in a settling tank or the like.

【0003】余剰汚泥は、一部、土壌改良材、コンポス
ト材料としての再利用が進められているが、大部分は産
業廃棄物として処理されている。しかしコスト面や環境
への配慮から廃棄手段以外の方法が求められている。そ
の方法の一つとして、例えば生物による嫌気的あるいは
好気的消化方法が従来より知られている。嫌気処理方法
は、メタン生成菌などの嫌気性微生物によって汚泥中の
有機物成分を分解して、メタンと二酸化炭素を生成する
ものである。この方法は汚泥の減量化とエネルギー資源
の回収を同時に行えるという利点があるが、汚泥の滞留
時間が10〜30日必要なこともあり、施設の大型化を
招くなどの問題を抱えている。好気的処理方法も同様に
長時間の滞留時間を必要とするものの、減量化率が低い
などの問題があり、最近はほとんど採用されていない。
また、汚泥を化学的または物理的に前処理した後、嫌気
的あるいは好気的に微生物処理する方法も検討されてい
る。これは汚泥を強制的に前処理することにより、後段
の微生物による処理時間を短縮することを狙った方法で
ある。例えば特開平7−116685号公報、特開平8
−19789号公報はオゾンで汚泥細胞壁を処理した
後、好気槽で汚泥の減容化を行うものであり、特開昭5
8−76200号公報は超音波で汚泥の細胞壁を破砕す
ることで減容化を期待するものである。また特開平3−
8496号公報では汚泥にアルカリまたは鉱酸を添加し
て、アルカリ条件または酸性条件下で処理した後に好気
処理するものである。特開平4−326998号公報、
特開平5−345200号公報は汚泥をアルカリ性にす
ると同時に加温することで熱アルカリ処理を行って可溶
化を進めた後、中性付近で嫌気処理をする方法である。
更に特開平8−229595号公報、特開平8−243
595号公報は汚泥の加温処理による可溶化を行う方法
である。また特開平9−136097号公報ではアルカ
リ性条件で好気性微生物の存在下で曝気し、生物処理工
程に返送する方法をとっているが、アルカリ可溶化後に
中和のために添加する酸薬品量が従来よりも少なくする
事が出来る汚泥の減容化技術を提供することを課題とし
ており、基本的にはアルカリ性条件で好気性微生物の存
在下で曝気する工程では汚泥の減容化を行っておらず、
可溶化を目標としている方法である。
[0003] Surplus sludge is partly reused as a soil conditioner or compost material, but most is treated as industrial waste. However, due to cost and environmental considerations, methods other than disposal are required. As one of the methods, for example, an anaerobic or aerobic digestion method by an organism is conventionally known. In the anaerobic treatment method, anaerobic microorganisms such as methanogens decompose organic components in sludge to generate methane and carbon dioxide. This method has the advantage that the sludge can be reduced and the energy resources can be recovered at the same time. However, the sludge needs to stay for 10 to 30 days, which causes problems such as an increase in the size of the facility. The aerobic treatment method also requires a long residence time, but has a problem such as a low weight reduction rate, and is hardly used recently.
Further, a method of chemically or physically pretreating the sludge and then anaerobically or aerobically treating the microorganism with a sludge is also being studied. This is a method aimed at shortening the treatment time by the microorganisms at the subsequent stage by forcibly pretreating the sludge. For example, Japanese Patent Application Laid-Open Nos.
Japanese Patent Laid-Open No. 19789 discloses a method of treating sludge cell walls with ozone and then reducing the volume of sludge in an aerobic tank.
Japanese Patent Publication No. 8-76200 is expected to reduce the volume by crushing the cell wall of sludge with ultrasonic waves. In addition, Japanese Unexamined Patent Publication
Japanese Patent No. 8496 discloses an aerobic treatment after adding an alkali or a mineral acid to sludge, treating the sludge under an alkaline condition or an acidic condition. JP-A-4-326998,
Japanese Unexamined Patent Publication No. 5-345200 discloses a method in which a sludge is made alkaline and heated at the same time as a hot alkali treatment is carried out to promote solubilization, followed by anaerobic treatment near neutrality.
Further, JP-A-8-229595 and JP-A-8-243
No. 595 discloses a method of solubilizing sludge by heating. Japanese Patent Application Laid-Open No. 9-136097 discloses a method in which aeration is carried out in the presence of aerobic microorganisms under alkaline conditions, and the solution is returned to the biological treatment step. It is an object of the present invention to provide a sludge volume reduction technology that can reduce the volume of sludge compared to the conventional technology.Basically, sludge volume reduction is performed in the process of aeration in the presence of aerobic microorganisms under alkaline conditions. Without
This method is aimed at solubilization.

【0004】しかしこれまでの超音波やオゾンなどの汚
泥破壊を利用した方法は設備およびランニングコストが
高くつき、酸やアルカリを添加する方法は使用薬品のコ
スト、中和のための設備および薬品コストも必要とな
り、更に高温に加熱する方法では加熱のためのコストア
ップが問題となるなど、更に画期的な方法が望まれてい
る。また、これら化学的または物理的に前処理をした
後、嫌気的あるいは好気的に微生物処理する方法では、
ごくわずかに前処理槽で減容化を行うことができたとし
ても、少なくとも前処理槽と微生物処理槽が必要にな
り、スペースを多くとる点や、微生物処理槽を活性汚泥
槽と兼ねて返送する場合でも活性汚泥槽の負荷を大きく
上げてしまうため、活性汚泥槽の処理能力に余裕がある
場合にしか適用できないといった問題があり、少ない槽
構成で可溶化のみならず減容化を大幅に行うことのでき
る方式が望まれている。
However, the conventional method using sludge destruction such as ultrasonic waves and ozone requires high equipment and running costs, and the method of adding an acid or alkali requires the cost of chemicals used, equipment and chemicals for neutralization. Further, a more innovative method is desired, for example, a method of heating to a higher temperature raises a problem of an increase in cost for heating. In addition, after these chemical or physical pre-treatment, in the method of anaerobic or aerobic microorganism treatment,
Even if the volume can be reduced very slightly in the pretreatment tank, at least a pretreatment tank and a microorganism treatment tank are required, which requires more space, and the microorganism treatment tank is returned as an activated sludge tank. In this case, the load on the activated sludge tank is greatly increased.Therefore, there is a problem that it can be applied only when there is enough processing capacity in the activated sludge tank. A method that can be performed is desired.

【0005】[0005]

【発明が解決しようとする課題】活性汚泥システムにお
ける問題点の一つとして余剰汚泥の発生が挙げられる。
本発明の目的は、長時間の処理を要せず、多大な熱エネ
ルギーを要することなく、排水処理によって発生する汚
泥を微生物を利用して分解し、汚泥の減容化もしくは発
生をなくす方法およびそのための装置を提案することで
ある。
One of the problems in the activated sludge system is the generation of excess sludge.
An object of the present invention is to provide a method for decomposing sludge generated by wastewater treatment using microorganisms without requiring long-time treatment and without requiring a large amount of heat energy, and reducing or eliminating sludge volume. It is to propose a device for that.

【0006】[0006]

【課題を解決するための手段】本発明の目的は、下記の
構成により達成される。すなわち、 1.「活性汚泥によって排水を処理する工程、および排
水を処理した後の処理水を含有する汚泥を固液分離し
て、その分離水を取り出す工程を有する排水の処理方法
であって、さらに前記固液分離して得られた分離汚泥の
一部、または全部を、アルカリ条件下で好気的に汚泥を
分解する能力を有する微生物によって処理する汚泥分解
工程を有することを特徴とする排水の処理方法。」 2.「前記汚泥分解処理の温度が40℃以上であること
を特徴とする前記排水の処理方法。」 3.「前記汚泥分解処理の条件がpH8〜13であるこ
とを特徴とする前記いずれかの排水の処理方法。」 4.「前記汚泥分解処理の条件がpH9〜12であるこ
とを特徴とする前記の排水の処理方法。」 5.「前記汚泥分解処理された処理汚泥の一部あるいは
全部を、第2の活性汚泥による排水処理工程に送ること
を特徴とする前記いずれかの排水の処理方法。」 6.「前記第2の活性汚泥による排水処理工程として、
排水を処理する第1の活性汚泥による排水処理工程を兼
用することを特徴とする前記の排水の処理方法。」 7.「前記汚泥分解工程と第2の活性汚泥による排水処
理工程との間に、固液分離工程を設けたことを特徴とす
る前記いずれかの排水の処理方法。」 8.「排水の入路、排水の入路に連通した第1の活性汚
泥を含有する排水処理手段、該廃水処理手段に連通した
固液分離手段、該固液分離手段の液体側に連通した分離
水の出路、および該固液分離手段の分離汚泥側に連通し
た汚泥分解手段を有する排水の処理装置であって、汚泥
分解手段がアルカリ条件下で好気的に汚泥を分解する能
力を有する微生物を含有することを特徴とする排水の処
理装置。」 9.「前記汚泥分解手段が処理温度を40℃以上に温度
維持可能な手段を有することを特徴とする前記の排水の
処理装置。」 10.「前記汚泥分解手段に連通した第2の活性汚泥に
よる排水処理手段を有することを特徴とする前記いずれ
かの排水の処理装置。」 11.「前記第2の活性汚泥による排水処理手段として
第1の活性汚泥を含有する排水処理手段を兼用すること
を特徴とする前記の排水の処理装置。」である。
The object of the present invention is achieved by the following constitution. That is, 1. "A method for treating wastewater, comprising a step of treating wastewater with activated sludge, and a step of solid-liquid separating sludge containing treated water after treating the wastewater, and a step of taking out the separated water. A method for treating wastewater, comprising a sludge decomposition step of treating a part or all of the separated sludge obtained by separation with a microorganism capable of aerobically decomposing sludge under alkaline conditions. 2. 2. A method for treating the wastewater, wherein the temperature of the sludge decomposition treatment is 40 ° C. or higher. 3. The method for treating any one of the wastewaters described above, wherein the condition of the sludge decomposition treatment is pH 8 to 13. 4. The method for treating wastewater as described above, wherein the condition of the sludge decomposition treatment is pH 9 to 12. 5. A method for treating any of the wastewaters described above, wherein part or all of the treated sludge that has undergone the sludge decomposition treatment is sent to a wastewater treatment step using a second activated sludge. "As a wastewater treatment step using the second activated sludge,
The method for treating wastewater as described above, wherein the wastewater treatment step also uses a wastewater treatment step using a first activated sludge for treating wastewater. 7. 7. A method for treating any of the wastewaters described above, wherein a solid-liquid separation step is provided between the sludge decomposition step and the wastewater treatment step using the second activated sludge. "Wastewater inlet, wastewater treatment means containing first activated sludge communicating with the wastewater inlet, solid-liquid separation means connected to the wastewater treatment means, and separated water connected to the liquid side of the solid-liquid separation means." And a wastewater treatment apparatus having sludge decomposing means communicating with the separated sludge side of the solid-liquid separation means, wherein the sludge decomposing means removes microorganisms capable of aerobicly decomposing sludge under alkaline conditions. Wastewater treatment device characterized by containing. " 9. The apparatus for treating wastewater, wherein the sludge decomposing means has means capable of maintaining a treatment temperature at 40 ° C. or higher. 10. Any one of the wastewater treatment apparatuses described above, further comprising a wastewater treatment unit configured to communicate with the sludge decomposition unit using second activated sludge. "The wastewater treatment apparatus described above, wherein the wastewater treatment means containing the first activated sludge is also used as the wastewater treatment means using the second activated sludge."

【0007】さらには、「少なくとも活性汚泥による排
水処理手段と、該活性汚泥による排水処理手段からの汚
泥を固液分離する手段を有する排水処理方法において、
該固液分離手段からの分離汚泥の一部あるいは全部を、
アルカリ条件下で好気的に汚泥を分解する能力を有する
微生物によって処理する汚泥分解手段を有することを特
徴とする汚泥の処理方法。」、「前記汚泥分解手段にお
ける処理温度が40℃以上であることを特徴とする前記
の汚泥の処理方法。」、「前記汚泥分解手段におけるア
ルカリ条件がpH8〜13であることを特徴とする前記
いずれかの汚泥の処理方法。」、「前記汚泥分解手段か
らの処理汚泥の一部あるいは全部を、第2の好気的な活
性汚泥による排水処理手段に送ることを特徴とする前記
いずれか記載の汚泥の処理方法。」、「前記第2の好気
的な活性汚泥による排水処理手段として、第1の活性汚
泥による排水処理手段を兼用させることを特徴とする前
記汚泥の処理方法。」、「前記汚泥分解手段と活性汚泥
による排水処理手段との間に、固液分離手段を設けたこ
とを特徴とする前記いずれかの汚泥の処理方法。」
Further, a wastewater treatment method having at least wastewater treatment means using activated sludge and means for solid-liquid separation of sludge from the wastewater treatment means using activated sludge,
Part or all of the separated sludge from the solid-liquid separation means,
A method for treating sludge, comprising a sludge decomposing means for treating with a microorganism capable of aerobicly decomposing sludge under alkaline conditions. "The sludge treatment method characterized in that the treatment temperature in the sludge decomposition means is 40 ° C. or higher.", "The alkaline condition in the sludge decomposition means is pH 8 to 13. Any of the above-mentioned sludge treatment methods. ”,“ Any or all of the treated sludge from the sludge decomposition means is sent to a second aerobic activated sludge wastewater treatment means. Sludge treatment method. "," The sludge treatment method characterized in that the second aerobic activated sludge wastewater treatment means is also used as the first activated sludge wastewater treatment means. ""A method for treating any one of the above-mentioned sludges, wherein a solid-liquid separation means is provided between the sludge decomposing means and the wastewater treatment means using activated sludge."

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0009】活性汚泥処理法で有機性排水を処理するに
あたり、少なくとも活性汚泥による排水処理による工程
と、該活性汚泥による排水処理で発生した液体を含有す
る汚泥を固液分離する工程を備えた排水処理方法におい
て、本発明は適用できる。すなわち固液分離の後、汚泥
を分解することにより、効果的な汚泥の減容化が実現で
きる。
In the treatment of organic wastewater by the activated sludge treatment method, wastewater comprising at least a step of wastewater treatment with activated sludge and a step of solid-liquid separation of sludge containing liquid generated by the wastewater treatment with activated sludge. In the processing method, the present invention can be applied. That is, after the solid-liquid separation, the sludge is decomposed, so that an effective sludge volume reduction can be realized.

【0010】固液分離汚泥としては、下水処理場、屎尿
処理場、その他の処理施設より排出される余剰汚泥や返
送汚泥を主に指しているが、その他にも上記施設から排
出される有機性の廃水や処理水など、BOD負荷に菌体
が多くあるような被処理水であれば本発明は十分に適用
される。
[0010] Solid-liquid separated sludge mainly refers to excess sludge and returned sludge discharged from sewage treatment plants, human waste treatment plants, and other treatment facilities, but also includes organic waste discharged from the above facilities. The present invention can be sufficiently applied to any water to be treated such as wastewater or treated water having a large BOD load.

【0011】活性汚泥による排水処理の工程で使用され
る手段としては曝気槽、固定濾床が挙げられ、本発明に
おいては特に限定されないが曝気槽が好ましい。
Means used in the step of wastewater treatment with activated sludge include an aeration tank and a fixed filter bed. In the present invention, although not particularly limited, an aeration tank is preferred.

【0012】固液分離工程の手段としては、沈殿槽にお
ける沈殿が最も広く実施されている。その他遠心分離、
膜分離による方法も可能である。また、沈殿槽による固
液分離の後、さらに汚泥濃縮槽を用いる方法もある。
As a means of the solid-liquid separation step, precipitation in a precipitation tank is most widely practiced. Other centrifugation,
A method using membrane separation is also possible. There is also a method of using a sludge concentration tank after solid-liquid separation in a precipitation tank.

【0013】固液分離工程で分離した分離汚泥を汚泥分
解処理手段に導入し、アルカリ・好気条件下で微生物処
理することによって汚泥を分解処理するが、この分解処
理量と固液分離汚泥量とが一致すれば、理論的には余剰
汚泥が全く発生しなくなる。しかしながら実際の余剰汚
泥中には無機性SS成分の他、分解が困難な難分解性の
有機成分が存在し、系内に蓄積されていくこともあるの
で、固液分離汚泥の一部は引き抜いて廃棄処理すること
が好ましい。もちろん、通常の活性汚泥処理法で行われ
ているように、固液分離汚泥の一部を前段の活性汚泥に
よる排水処理工程の手段に返送しても良い。
The sludge separated in the solid-liquid separation step is introduced into sludge decomposition treatment means, and the sludge is decomposed by microbial treatment under alkali and aerobic conditions. Theoretically, no excess sludge is generated. However, in actual excess sludge, in addition to inorganic SS components, hardly decomposable organic components that are difficult to decompose are present and may accumulate in the system. It is preferable to dispose it. Of course, a part of the solid-liquid separated sludge may be returned to the means for the activated sludge wastewater treatment step in the preceding stage, as is performed in the ordinary activated sludge treatment method.

【0014】本発明におけるアルカリ化の方法である
が、例えば水酸化ナトリウム、水酸化カリウム、水酸化
カルシウム、水酸化マグネシウム、炭酸ナトリウム、炭
酸水素ナトリウムなどの添加が挙げられるがこれらに限
定されない。また添加量は、汚泥の種類、温度、状態に
よって異なるが、pH 8以上を達成できる量であればよ
く、固体状態または水溶液の状態で添加すればよい。
The method of alkalizing in the present invention includes, but is not limited to, for example, addition of sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, sodium hydrogen carbonate and the like. The amount of addition depends on the type, temperature and condition of the sludge, but may be any amount that can achieve pH 8 or more, and may be added in a solid state or an aqueous state.

【0015】処理pHは8以上が好ましい。pHが8以上で
あれば、加温のみを行ったときと比較して汚泥の可溶化
が効率よく行える。しかし高すぎるpHでは薬液コストが
高くつく上に微生物の生育が困難になるために、本発明
においてはpH8から13、更にpH9〜12が好ましい。
The treatment pH is preferably 8 or more. When the pH is 8 or more, solubilization of sludge can be performed more efficiently than when only heating is performed. However, if the pH is too high, the chemical solution cost is high and the growth of microorganisms becomes difficult. Therefore, in the present invention, pH 8 to 13 and more preferably pH 9 to 12 are preferable.

【0016】温度条件は40℃以上80℃以下が適切で
ある。一般的に微生物の繁殖に好ましいと考えられる温
度条件は室温付近、例えば活性汚泥槽の微生物は20〜
30℃であり最高でも35℃前後とされている。しかし
本発明において、微生物の繁殖にあまり好ましくないと
されている高温、すなわち40℃以上の条件において高
効率の分解効率を得た。その詳細は不明であるが、高温
においては、汚泥分解に寄与しない微生物の生育が抑制
され、かつ汚泥分解に寄与する微生物の活動が活発化さ
れることによると推測される。また、熱による汚泥の可
溶化促進効果に着目すると、温度が40℃未満の時は不
十分であり、80℃以上であると温度を保つためのエネ
ルギーコストが高くつく上に、そのエネルギーコストに
見合うだけの汚泥処理を行える微生物の活動が困難にな
る。微生物の生育とエネルギーコストの両立の面から最
も効率的であるのは、温度が40〜70℃、更に好まし
くは45〜65℃であるが、分解に寄与する微生物の性
質に応じて設定すれば良い。そのために、汚泥分解手段
が40℃以上に温度維持可能な手段を有することが望ま
れる。また、分解する汚泥の濃度を適切にすることによ
り、分解の際の発熱と槽からの放熱をうまくバランスさ
せ、適切な温度を保つ方法を適用してもよい。
The temperature condition is suitably from 40 ° C. to 80 ° C. Generally, temperature conditions considered to be preferable for the propagation of microorganisms are around room temperature.
It is 30 ° C, and at most 35 ° C. However, in the present invention, high efficiency of decomposition was obtained at a high temperature, which is considered unfavorable for the propagation of microorganisms, that is, at 40 ° C. or higher. Although the details are unknown, it is speculated that at high temperatures, the growth of microorganisms that do not contribute to sludge decomposition is suppressed, and the activity of microorganisms that contribute to sludge decomposition is activated. Further, focusing on the effect of promoting the solubilization of sludge by heat, when the temperature is lower than 40 ° C., it is insufficient. When the temperature is higher than 80 ° C., the energy cost for maintaining the temperature is high and the energy cost is high. The activity of microorganisms that can perform sludge treatment as much as possible becomes difficult. The most efficient in terms of compatibility between the growth of microorganisms and energy cost is that the temperature is 40 to 70 ° C, more preferably 45 to 65 ° C, but if it is set according to the nature of the microorganisms contributing to decomposition. good. Therefore, it is desired that the sludge decomposing means has means capable of maintaining the temperature at 40 ° C. or higher. Further, a method may be employed in which the concentration of the sludge to be decomposed is appropriately adjusted so that the heat generated during the decomposition and the heat radiation from the tank are well balanced to maintain an appropriate temperature.

【0017】利用する微生物としては、pH8以上かつ4
0℃以上の条件で生育可能で、汚泥成分を栄養源とする
ことのできる微生物であれば特に限定されない。この条
件で生育できる微生物は、一般の土壌や河川水、汚泥な
どから、pHや温度の一方もしくは両方が極端に高くな
らない限りは、比較的容易に取得することが可能であ
る。またこれらの微生物による汚泥処理の際には、リン
酸カリウムやリン酸二カリウム、硫酸マグネシウム、硝
酸アンモニウムなどの無機塩を添加すると、より生育を
高めることが出来る場合もあるが、必ずしも必要という
わけではない。
The microorganism to be used is pH 8 or more and 4
The microorganism is not particularly limited as long as it can grow under the condition of 0 ° C. or higher and can use a sludge component as a nutrient source. Microorganisms that can grow under these conditions can be obtained relatively easily from general soil, river water, sludge, etc., unless one or both of the pH and temperature are extremely high. In addition, in the case of sludge treatment by these microorganisms, the addition of inorganic salts such as potassium phosphate, dipotassium phosphate, magnesium sulfate, and ammonium nitrate can sometimes increase the growth, but it is not always necessary. Absent.

【0018】本発明において、アルカリ条件下で微生物
による汚泥処理を行う条件としては好気的条件が好まし
い。そのための酸素供給源としては、通常の空気のほ
か、酸素ガス、酸素富化ガスでもよく、攪拌、通気攪
拌、エアリフトなどの方式によって供給されるがこれら
に限定されないのはもちろんである。溶存酸素が極端に
低くならない限り、分解速度の律速とはならない。
In the present invention, aerobic conditions are preferred as conditions for performing sludge treatment with microorganisms under alkaline conditions. As an oxygen supply source therefor, other than ordinary air, an oxygen gas or an oxygen-enriched gas may be used. The oxygen supply source is supplied by a method such as stirring, aeration stirring, and air lift, but is not limited to these. Unless the dissolved oxygen is extremely low, the rate of decomposition is not limited.

【0019】汚泥分解手段にて減容化された処理汚泥の
一部あるいは全部は、必要に応じて第2の活性汚泥によ
る排水処理手段に送られる。処理汚泥中の有機成分が十
分に除去されている場合にはそのまま系外に排出するこ
とも可能であるが、第2の活性汚泥による排水処理手段
に送ることで、より汚泥の分解を促進させて排出量を減
少させることができる。この時、第2の活性汚泥による
排水処理手段を新たに設けることなく、先の排水が最初
に処理される処理手段へ返送しても良い。処理汚泥が十
分に減容化されていれば、それほど高い負荷を与えずに
第1の活性汚泥による排水処理手段に返送することがで
きるため、設備のコンパクト化が可能となる。
A part or all of the treated sludge reduced in volume by the sludge decomposition means is sent to a second activated sludge wastewater treatment means as required. When the organic components in the treated sludge have been sufficiently removed, the sludge can be discharged to the outside of the system as it is. However, by sending the sludge to the second activated sludge wastewater treatment means, the decomposition of the sludge can be further promoted. Emissions can be reduced. At this time, the wastewater may be returned to the treatment means where the wastewater is treated first without newly providing a wastewater treatment means using the second activated sludge. If the volume of the treated sludge is sufficiently reduced, the sludge can be returned to the first activated sludge wastewater treatment means without applying a high load, so that the equipment can be made compact.

【0020】汚泥分解手段と活性汚泥による排水処理手
段との間に、固液分離手段を設けることもできる。固体
部分あるいは液体部分を一部引き抜いて廃棄処理した
り、前段の活性汚泥による排水処理手段に返送すること
が容易となる。
A solid-liquid separating means may be provided between the sludge decomposing means and the activated sludge wastewater treatment means. Part of the solid portion or the liquid portion can be easily withdrawn and disposed of, or returned to the activated sludge wastewater treatment means at the preceding stage.

【0021】本発明の汚泥分解手段は汚泥の可溶化を主
に行う方法とは異なり、汚泥の分解を行うものであるた
め、従来の物理的または化学的手段による可溶化や一部
微生物を介在させた可溶化の改良手段とは本質的に異な
る。
Since the sludge decomposing means of the present invention decomposes sludge, unlike the method of mainly performing solubilization of sludge, it is solubilized by conventional physical or chemical means or partially mediated by microorganisms. It is essentially different from the solubilized means of solubilisation.

【0022】以下に本発明の具体的実施例を示すが、こ
れに限定されるものではないことはもちろんである。
Hereinafter, specific examples of the present invention will be described, but it is needless to say that the present invention is not limited to these examples.

【0023】[0023]

【実施例】以下、実施例を用いて発明をさらに詳しく説
明する。
The present invention will be described below in more detail with reference to examples.

【0024】(実施例1)全国100種類以上の土壌を
採取し、少量の土壌を滅菌水に懸濁させた後、全国5カ
所の下水処理場から採取した返送汚泥をよく混合して菌
体滲出液を作製した。
(Example 1) More than 100 types of soil were collected nationwide, a small amount of soil was suspended in sterilized water, and then returned sludge collected from five sewage treatment plants nationwide was mixed well to form bacterial cells. An exudate was made.

【0025】次に、化学メーカ排水処理場から採取した
余剰汚泥を固形分が1wt%になるように希釈し、リン
酸2カリウム0.5g/l、リン酸1カリウム0.5g/l、硫酸マ
グネシウム7水和物0.2g/l、炭酸ナトリウムを10g/l添
加して、pH10の被処理液を調製した。本実施例ではこ
れらの無機塩を添加したが、実質上は必ずしも必要では
ない。更にこの被処理液を500ml容のバッフル付きフ
ラスコに95mlずつ入れ、更にあらかじめ用意しておい
た滲出液を5ml添加して振とう培養し、一部を取り出し
ては新しい被処理液と入れ替える作業を1ヶ月繰り返し
て、30℃、40℃、45℃および50℃で汚泥を分解
しうる微生物の集積培養を行った。
Next, the excess sludge collected from the wastewater treatment plant of the chemical manufacturer is diluted so that the solid content becomes 1 wt%, and potassium diphosphate 0.5 g / l, potassium monophosphate 0.5 g / l, magnesium sulfate 7 A hydrate to be treated having a pH of 10 was prepared by adding 0.2 g / l of hydrate and 10 g / l of sodium carbonate. In the present embodiment, these inorganic salts were added, but they are not essentially required. Further, 95 ml of the liquid to be treated is placed in a 500-ml baffled flask, and 5 ml of the exudate prepared in advance is added and shake-cultured. A part of the liquid is removed and replaced with a new liquid to be treated. Repeated for one month, an accumulation culture of microorganisms capable of decomposing sludge was performed at 30 ° C, 40 ° C, 45 ° C, and 50 ° C.

【0026】固形分が1wt%になるように希釈し、更
に炭酸ナトリウムでpHを10に調整した余剰汚泥液
に、得られた集積培養液を5ml添加して、2日間経過後
の汚泥処理液のMLSSの減少率を測定し、これを減容
化率として表した。なお、MLSSは下水試験法に準じ
た方法で測定し、次式から減容化率を算出した。
5 ml of the resulting concentrated culture solution was added to an excess sludge solution diluted to a solid content of 1% by weight and further adjusted to pH 10 with sodium carbonate. The MLSS reduction rate was measured and expressed as a volume reduction rate. In addition, MLSS was measured by the method according to the sewage test method, and the volume reduction rate was calculated from the following formula.

【0027】 減容化率=(MLSS1−MLSS2)/MLSS1×100(%) MLSS1;処理前の試料液のMLSS濃度(g/l) MLSS2;処理後の試料液のMLSS濃度(g/l) 2日間経過後のMLSS減容化率は30℃、40℃、4
5℃、50℃で処理の時、それぞれ19%、35%、3
6%、41%であり、40℃以上で効果が大きかった。
Volume reduction rate = (MLSS1−MLSS2) / MLSS1 × 100 (%) MLSS1: MLSS concentration of sample solution before treatment (g / l) MLSS2: MLSS concentration of sample solution after treatment (g / l) After 2 days, the MLSS volume reduction rate was 30 ° C, 40 ° C,
19%, 35%, 3% when treated at 5 ° C and 50 ° C, respectively.
6% and 41%, and the effect was significant at 40 ° C. or higher.

【0028】(実施例2)活性汚泥による排水処理手
段、それに連通した固液分離処理手段、さらに固液分離
手段の固体側に連通した汚泥分解処理手段の容器として
それぞれ12リットルの活性汚泥槽、3リットルの沈殿
槽、0.8リットルの汚泥分解処理槽を使用した。また
汚泥分解処理槽には実施例1で使用した汚泥分解菌の4
5℃における集積培養液を予め注入しておいた。
(Embodiment 2) Activated sludge wastewater treatment means, solid-liquid separation treatment means connected thereto, and a 12-liter activated sludge tank as a container for sludge decomposition treatment means connected to the solid side of the solid-liquid separation means, respectively. A 3-liter sedimentation tank and a 0.8-liter sludge decomposition treatment tank were used. In the sludge decomposition treatment tank, 4 of the sludge decomposing bacteria used in Example 1 was placed.
The enrichment culture at 5 ° C. was injected beforehand.

【0029】BOD負荷300ppmの合成排水を83
0ml/hrの流量で活性汚泥槽に供給し、通常の活性
汚泥による排水処理を行い、MLSS2g/lの処理水
を得た。この処理水を沈殿槽で固液分離してBOD負荷
が20ppmの上澄水を分離水として系外に放出した。
また汚泥はMLSSが9g/lに濃縮され、この中から
190ml/hrを活性汚泥槽に返送し、17ml/h
rを汚泥分解処理槽に送り、水酸化ナトリウムでpHを
10に調整し45℃に保ったところ、2日間の滞留時間
でMLSSを4g/lまで減容化することができた。更
にこの減容化汚泥を活性汚泥処理槽に再び戻し、同様の
処理を続けた結果、水分含有率を75%まで濃縮した汚
泥の発生量は6ml/日となった。
The synthetic wastewater with a BOD load of 300 ppm was added to 83
The water was supplied to the activated sludge tank at a flow rate of 0 ml / hr, and the wastewater was treated with ordinary activated sludge to obtain MLSS 2 g / l treated water. The treated water was subjected to solid-liquid separation in a sedimentation tank, and the supernatant water having a BOD load of 20 ppm was discharged as separated water to the outside of the system.
In the sludge, MLSS was concentrated to 9 g / l, and 190 ml / hr of this was returned to the activated sludge tank, and 17 ml / h
r was sent to a sludge decomposition treatment tank, the pH was adjusted to 10 with sodium hydroxide, and the mixture was kept at 45 ° C., whereby the MLSS could be reduced to 4 g / l with a residence time of 2 days. Furthermore, this volume-reduced sludge was returned to the activated sludge treatment tank, and the same treatment was continued. As a result, the amount of sludge whose water content was concentrated to 75% was 6 ml / day.

【0030】(比較例)活性汚泥による排水処理手段、
固液分離処理手段としてそれぞれ12リットルの活性汚
泥槽、3リットルの沈殿槽を使用した。BOD負荷30
0ppmの合成下水を830ml/hrの流量で活性汚
泥槽に供給して通常の処理を行い、MLSS2g/lの
処理水を得た。この処理水を沈殿槽で固液分離してBO
D負荷が20ppmの上澄水を系外に放出した。また汚
泥はMLSSが9g/lに濃縮され、この中から201
ml/hrを活性汚泥処理槽に返送した結果、水分含有
率を75%まで濃縮した汚泥の発生量は21ml/日と
なった。
(Comparative Example) Wastewater treatment means using activated sludge,
A 12-liter activated sludge tank and a 3-liter sedimentation tank were used as solid-liquid separation means. BOD load 30
0 ppm synthetic sewage was supplied to the activated sludge tank at a flow rate of 830 ml / hr to perform a usual treatment, and MLSS 2 g / l treated water was obtained. This treated water is solid-liquid separated in a sedimentation tank and
The supernatant water with a D load of 20 ppm was discharged out of the system. In the sludge, MLSS was concentrated to 9 g / l.
As a result of returning the ml / hr to the activated sludge treatment tank, the amount of sludge generated by concentrating the water content to 75% was 21 ml / day.

【0031】[0031]

【発明の効果】本発明の実施により、従来の活性汚泥に
よる排水処理工程に汚泥分解処理工程を設けると、汚泥
の分解処理を行うことが容易に可能となるので、余剰汚
泥の発生量を減少させることができる。
According to the present invention, if a sludge decomposition treatment step is provided in the conventional activated sludge wastewater treatment step, the sludge decomposition treatment can be easily performed, thereby reducing the amount of excess sludge generated. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例2で使用した装置の概要図である。FIG. 1 is a schematic diagram of an apparatus used in Example 2.

【図2】 比較例で使用した装置の概要図である。FIG. 2 is a schematic diagram of an apparatus used in a comparative example.

【符号の説明】[Explanation of symbols]

1 流入水 2 活性汚泥槽 3 固液分離槽 4 固液分離上澄水 5 引き抜き汚泥 6 返送汚泥 7 固液分離汚泥 8 汚泥分解処理槽 9 返送処理汚泥 DESCRIPTION OF SYMBOLS 1 Inflow water 2 Activated sludge tank 3 Solid-liquid separation tank 4 Solid-liquid separation supernatant water 5 Pull-out sludge 6 Returned sludge 7 Solid-liquid separation sludge 8 Sludge decomposition treatment tank 9 Return treatment sludge

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】活性汚泥によって排水を処理する工程、お
よび排水を処理した後の処理水を含有する汚泥を固液分
離して、その分離水を取り出す工程を有する排水の処理
方法であって、さらに前記固液分離して得られた分離汚
泥の一部、または全部を、アルカリ条件下で好気的に汚
泥を分解する能力を有する微生物によって処理する汚泥
分解工程を有することを特徴とする排水の処理方法。
1. A method for treating wastewater, comprising: a step of treating wastewater with activated sludge; and a step of solid-liquid separating sludge containing treated water after treating the wastewater, and taking out the separated water. A wastewater characterized by having a sludge decomposition step of treating a part or all of the separated sludge obtained by the solid-liquid separation with a microorganism capable of aerobicly decomposing sludge under alkaline conditions. Processing method.
【請求項2】 前記汚泥分解処理の温度が40℃以上で
あることを特徴とする請求項1記載の排水の処理方法。
2. The method for treating wastewater according to claim 1, wherein the temperature of the sludge decomposition treatment is 40 ° C. or higher.
【請求項3】 前記汚泥分解処理の条件がpH8〜13
であることを特徴とする請求項1または2記載の排水の
処理方法。
3. The condition of the sludge decomposition treatment is pH 8-13.
The method for treating wastewater according to claim 1 or 2, wherein:
【請求項4】 前記汚泥分解処理の条件がpH9〜12
であることを特徴とする請求項3記載の排水の処理方
法。
4. The condition of the sludge decomposition treatment is pH 9-12.
4. The method for treating wastewater according to claim 3, wherein:
【請求項5】 前記汚泥分解処理された処理汚泥の一部
あるいは全部を、第2の活性汚泥による排水処理工程に
送ることを特徴とする請求項1〜4いずれかの排水の処
理方法。
5. The method for treating wastewater according to claim 1, wherein a part or all of the treated sludge decomposed by the sludge is sent to a wastewater treatment step using a second activated sludge.
【請求項6】 前記第2の活性汚泥による排水処理工程
として、排水を処理する第1の活性汚泥による排水処理
工程を兼用することを特徴とする請求項5記載の排水の
処理方法。
6. The wastewater treatment method according to claim 5, wherein the wastewater treatment step using the first activated sludge for treating wastewater is also used as the wastewater treatment step using the second activated sludge.
【請求項7】 前記汚泥分解工程と第2の活性汚泥によ
る排水処理工程との間に、固液分離工程を設けたことを
特徴とする請求項5〜6いずれかの排水の処理方法。
7. The method for treating wastewater according to claim 5, wherein a solid-liquid separation step is provided between the sludge decomposition step and the wastewater treatment step using the second activated sludge.
【請求項8】 排水の入路、排水の入路に連通した第1
の活性汚泥を含有する排水処理手段、該廃水処理手段に
連通した固液分離手段、該固液分離手段の液体側に連通
した分離水の出路、および該固液分離手段の分離汚泥側
に連通した汚泥分解手段を有する排水の処理装置であっ
て、汚泥分解手段がアルカリ条件下で好気的に汚泥を分
解する能力を有する微生物を含有することを特徴とする
排水の処理装置。
8. A drainage passage, a first drainage passage communicating with the drainage passage.
Wastewater treatment means containing activated sludge, solid-liquid separation means connected to the wastewater treatment means, an outlet for separated water connected to the liquid side of the solid-liquid separation means, and communication with the separated sludge side of the solid-liquid separation means A wastewater treatment device having a sludge decomposing means, wherein the sludge decomposing means contains microorganisms capable of aerobicly decomposing sludge under alkaline conditions.
【請求項9】 前記汚泥分解手段が処理温度を40℃以
上に温度維持可能な手段を有することを特徴とする請求
項8記載の排水の処理装置。
9. The wastewater treatment apparatus according to claim 8, wherein said sludge decomposing means has means capable of maintaining a treatment temperature at 40 ° C. or higher.
【請求項10】 前記汚泥分解手段に連通した第2の活
性汚泥による排水処理手段を有することを特徴とする請
求項8〜9記載の排水の処理装置。
10. The wastewater treatment apparatus according to claim 8, further comprising a wastewater treatment unit using a second activated sludge communicating with the sludge decomposition unit.
【請求項11】 前記第2の活性汚泥による排水処理手
段として第1の活性汚泥を含有する排水処理手段を兼用
することを特徴とする請求項10記載の排水の処理装
置。
11. The wastewater treatment apparatus according to claim 10, wherein the wastewater treatment means containing the first activated sludge is also used as the wastewater treatment means using the second activated sludge.
JP18416098A 1997-07-18 1998-06-30 Wastewater treatment method and apparatus therefor Expired - Lifetime JP3697900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18416098A JP3697900B2 (en) 1997-07-18 1998-06-30 Wastewater treatment method and apparatus therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-193957 1997-07-18
JP19395797 1997-07-18
JP18416098A JP3697900B2 (en) 1997-07-18 1998-06-30 Wastewater treatment method and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH11156396A true JPH11156396A (en) 1999-06-15
JP3697900B2 JP3697900B2 (en) 2005-09-21

Family

ID=26502337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18416098A Expired - Lifetime JP3697900B2 (en) 1997-07-18 1998-06-30 Wastewater treatment method and apparatus therefor

Country Status (1)

Country Link
JP (1) JP3697900B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731750A (en) * 2016-03-16 2016-07-06 福州大学 Method for removing heavy metal in sludge by means of bioleaching by aid of mixed substrates
CN105776788A (en) * 2016-04-19 2016-07-20 福州大学 Method for removing heavy metal Cu in sludge of urban sewage treatment plant in bioleaching mode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731750A (en) * 2016-03-16 2016-07-06 福州大学 Method for removing heavy metal in sludge by means of bioleaching by aid of mixed substrates
CN105731750B (en) * 2016-03-16 2018-10-30 福州大学 A kind of method of mixed-matrix bioleaching removal sludge heavy-metal
CN105776788A (en) * 2016-04-19 2016-07-20 福州大学 Method for removing heavy metal Cu in sludge of urban sewage treatment plant in bioleaching mode
CN105776788B (en) * 2016-04-19 2019-03-08 福州大学 A kind of method that bioleaching removes heavy metal Cu in sludge from wastewater treatment plant

Also Published As

Publication number Publication date
JP3697900B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
CA2098807C (en) Waste treatment process employing oxidation
JP4729718B2 (en) Organic waste treatment methods
JP3048889B2 (en) Activated sludge treatment method and activated sludge treatment apparatus therefor
KR20120130167A (en) Improved digestion of biosolods in wastewater
JP4875864B2 (en) Biomass processing system
JP3698419B2 (en) Organic sludge reduction method and apparatus
WO2005019121A1 (en) Method and apparatus for treating organic waste
JP3738699B2 (en) Sludge treatment method and treatment apparatus, and sewage treatment method and treatment equipment using the same
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP4406749B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP3697900B2 (en) Wastewater treatment method and apparatus therefor
JP3223145B2 (en) Organic wastewater treatment method
JP3826589B2 (en) Novel microorganism and sludge treatment method using the same
JP2003334589A (en) Wastewater treatment method and treatment apparatus therefor
JP2002059190A (en) Method of treating sewage and sludge
JP2006326438A (en) Apparatus and method for treating sludge
JP2008030008A (en) Methane fermentation method of organic waste
JP2003047928A (en) Method and apparatus for treating organic waste
JP2000185299A (en) Method for reducing volume of excessive sludge
JP3699999B2 (en) Treatment method of organic sludge
JPH09253684A (en) Treatment method for organic waste water
JP2005324173A (en) Method and apparatus for treating sludge
JP2003340485A (en) Method for treating organic waste water and apparatus therefor
JPH1133573A (en) Method for obtaining sludge-decomposing microorganism, method for treatment of sludge and apparatus therefor
JP2001038397A (en) Method for decreasing volume of excess sludge and device thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5