JPH11153556A - Thin-film measuring device - Google Patents

Thin-film measuring device

Info

Publication number
JPH11153556A
JPH11153556A JP33352697A JP33352697A JPH11153556A JP H11153556 A JPH11153556 A JP H11153556A JP 33352697 A JP33352697 A JP 33352697A JP 33352697 A JP33352697 A JP 33352697A JP H11153556 A JPH11153556 A JP H11153556A
Authority
JP
Japan
Prior art keywords
sample
thermal expansion
measured
modulus
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33352697A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kawanaka
博之 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP33352697A priority Critical patent/JPH11153556A/en
Publication of JPH11153556A publication Critical patent/JPH11153556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently measure and evaluate the thermal expansion coefficient or Young's modulus of a thin film with fewer man-hours by an inexpensive device. SOLUTION: A thin film to be measured is formed on the upper or lower surface of a plurality of substrates with different thermal expansion coefficients and at the same time known Young's modulus and Poisson ratio while being sufficiently thinner than the substrate, and a plurality of samples 16 to be measured are prepared. The sample 16 is accommodated in a sample rest 12 and at the same time is covered with oil 18. Then, when the sample 16 is heated by a heater 14, shape change is measured by a feeler 22 of a surface displacement meter. Temperature is measured by a thermocouple 20. The measurement results are supplied to a computer 24 for calculating and evaluating the thermal expansion coefficient or Young's modulus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、薄膜材料の熱膨
張係数などの熱的特性やヤング率などの弾性的特性を測
定する薄膜測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film measuring apparatus for measuring a thermal characteristic such as a coefficient of thermal expansion of a thin film material and an elastic characteristic such as a Young's modulus.

【0002】[0002]

【背景技術と発明が解決しようとする課題】近年、電子
デバイスの小型化が急速に促進され、その製造技術も飛
躍的に向上しつつある。素子の小型化のためのもっとも
有効な手段として、スパッタ,真空蒸着,CVD(Chem
ical Vapour Deposition 化学蒸着法)などの薄膜化技
術が利用されており、これらの技術の発展に伴って薄膜
の評価技術の必要性が高まっている。
2. Description of the Related Art In recent years, miniaturization of electronic devices has been rapidly promoted, and manufacturing techniques thereof have been dramatically improved. As the most effective means for miniaturizing elements, sputtering, vacuum deposition, CVD (Chem
The use of thinning techniques such as ical vapor deposition (chemical vapor deposition) has increased, and with the development of these techniques, the necessity for thin film evaluation techniques has increased.

【0003】最近の傾向として、薄膜磁気ヘッドやマイ
クロマシンといった分野において、数十μmに及ぶ厚膜
が利用され始めてきている。このような場合、積層され
た厚膜と基板,あるいは膜と膜の界面に応力が蓄積され
やすくなる。更に、これら薄膜デバイス作製の行程中に
は、必ずといってよいほど熱処理の行程が含まれるが、
このときに加える熱と、基板及び各積層膜の熱膨張係数
の違いにより、素子内部の応力状態が過剰に変化してし
まう。これらは、薄膜デバイスを製造する上で膜剥離の
原因や、素子特性の劣化の原因となることが多い。
[0003] As a recent trend, in fields such as thin-film magnetic heads and micromachines, thick films of several tens of µm have begun to be used. In such a case, stress easily accumulates at the interface between the laminated thick film and the substrate or between the film and the film. Further, during the process of manufacturing these thin-film devices, a heat treatment process is included as a matter of course.
Due to the difference between the heat applied at this time and the coefficients of thermal expansion of the substrate and the respective laminated films, the stress state inside the element is excessively changed. These often cause film peeling and deterioration of element characteristics when manufacturing a thin film device.

【0004】一方、薄膜の熱膨張係数は、同じ材料のバ
ルク材と比べて成膜方法や成膜条件により大きく変動す
る可能性がある。また、成膜後の熱履歴により膜の状態
は刻々と変化し、単純にバルク材における熱挙動から類
推することは難しい。
On the other hand, the coefficient of thermal expansion of a thin film may vary greatly depending on the film forming method and film forming conditions as compared with a bulk material of the same material. Further, the state of the film changes every moment due to the heat history after the film formation, and it is difficult to simply infer from the thermal behavior of the bulk material.

【0005】上述した加熱時の膜の熱挙動を予測するた
めには、膜の熱膨張係数を知っておくことが不可欠であ
る。更に、素子内の応力状態を知るためには、膜のヤン
グ率などの弾性的な特性も把握しておくと好都合であ
る。更に、少ない工数で効率よく測定ができると更に都
合がよい。測定装置は、操作が簡便で製作も安価である
ことが好ましい。
In order to predict the thermal behavior of the film at the time of heating, it is essential to know the coefficient of thermal expansion of the film. Further, in order to know the stress state in the element, it is convenient to grasp elastic properties such as Young's modulus of the film. Further, it is more convenient if the measurement can be performed efficiently with a small number of man-hours. It is preferable that the measuring device is easy to operate and inexpensive to manufacture.

【0006】この発明は、以上の点に着目したもので、
その目的は、薄膜の熱膨張係数などの熱的特性やヤング
率などの弾性的特性を良好に測定することである。他の
目的は、簡便に熱膨張係数やヤング率を測定することで
ある。
The present invention focuses on the above points,
The purpose is to satisfactorily measure the thermal properties such as the coefficient of thermal expansion of the thin film and the elastic properties such as the Young's modulus. Another object is to easily measure the coefficient of thermal expansion and the Young's modulus.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するた
め、この発明は、熱膨張係数が異なるとともに、ヤング
率及びポアソン比が既知である複数の基板の表面に測定
対象の薄膜がそれぞれ形成された試料を加熱する加熱手
段;前記試料の温度を測定する温度測定手段;前記加熱
手段による加熱時における前記試料の形状変化を測定す
る変位測定手段;前記温度測定手段及び変位測定手段に
よる測定結果に基づいて、前記測定対象の薄膜の熱的特
性もしくは弾性的特性を演算する演算手段;を備えたこ
とを特徴とする。
In order to achieve the above object, the present invention provides a method of forming a thin film to be measured on a plurality of substrates having different coefficients of thermal expansion and having known Young's modulus and Poisson's ratio. Heating means for heating the sample; temperature measuring means for measuring the temperature of the sample; displacement measuring means for measuring a change in the shape of the sample during heating by the heating means; measurement results obtained by the temperature measuring means and the displacement measuring means. Calculating means for calculating a thermal characteristic or an elastic characteristic of the thin film to be measured based on the calculated characteristic.

【0008】主要な形態の一つによれば、前記試料の全
体が液体で囲まれる。他の形態によれば、前記変位測定
手段は触針式の表面変位計で構成される。更に他の形態
によれば、前記演算手段は、温度変化に伴う応力変化の
割合に基づいて演算を行う。
[0008] According to one of the main aspects, the whole of the sample is surrounded by a liquid. According to another embodiment, the displacement measuring means comprises a stylus type surface displacement meter. According to still another aspect, the calculating means performs the calculation based on a rate of a stress change accompanying a temperature change.

【0009】この発明の前記及び他の目的,特徴,利点
は、以下の詳細な説明及び添付図面から明瞭になろう。
The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態につい
て詳細に説明する。図1には、本形態における測定装置
の構成が示されている。同図において、縦20mm×横3
0mm×深さ4mmの溝10を施した銅製の試料台12は、
抵抗加熱式ヒータ14の上部に固定されている。前記溝
10の内部には、溝サイズより小さめの試料16が置か
れており、試料16全体がシリコーン油18に浸されて
いる。試料台12の側方には、熱電対20が埋め込まれ
ている。また、試料台12の上部には、触針式の表面変
位計22が設けられている。熱電対20と表面変位計2
2の出力側は、コンピュータ24に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail. FIG. 1 shows a configuration of a measuring apparatus according to the present embodiment. In the same figure, length 20mm x width 3
A copper sample stage 12 provided with a groove 10 of 0 mm x 4 mm depth,
It is fixed to the upper part of the resistance heater 14. A sample 16 smaller than the groove size is placed inside the groove 10, and the entire sample 16 is immersed in silicone oil 18. A thermocouple 20 is embedded on the side of the sample table 12. In addition, a stylus type surface displacement meter 22 is provided above the sample table 12. Thermocouple 20 and surface displacement meter 2
The output side of 2 is connected to a computer 24.

【0011】試料16全体をシリコーン油に浸すのは、
試料16の上部と下部との温度差をなくすためである。
これによって、試料上下の温度差に起因する基板自体の
変形をなくすことができる。試料台12の側方から埋め
込まれた熱電対20は、試料温度を測定するためのもの
でる。試料16の変形は、触針式の表面変形計(図示せ
ず)の触針22によって測定する。測定結果はコンピュ
ータ24に入力され、ここで以下に述べる数式に従って
熱膨張係数などの演算が行われる。
The immersion of the entire sample 16 in silicone oil is as follows.
This is for eliminating the temperature difference between the upper part and the lower part of the sample 16.
Thereby, the deformation of the substrate itself due to the temperature difference between the upper and lower portions of the sample can be eliminated. The thermocouple 20 embedded from the side of the sample stage 12 is for measuring the sample temperature. The deformation of the sample 16 is measured by a stylus 22 of a stylus type surface deformation meter (not shown). The measurement result is input to the computer 24, where the calculation of the thermal expansion coefficient and the like is performed according to the following mathematical formula.

【0012】例えば、試料16の温度を室温から150
℃まで変化させる。そして、ある温度間隔,例えば20
℃の間隔で、試料16の形状変化を測定する。具体的に
は、試料温度が20℃のとき、触針式の表面変形計の触
針を試料の左から右まで移動させ、試料16の形状変化
を測定する。次に、試料温度を40度までヒータ14で
試料台12を加熱し、試料温度が40度のとき、前記の
ように試料16の形状変化を測定する。このような測定
処理を、試料温度が150℃になるまで、20℃毎に繰
り返し行う。次に、測定試料対象を変えて、前記の測定
プロセスを繰り返す。
For example, the temperature of the sample 16 is changed from room temperature to 150
Change to ° C. Then, at a certain temperature interval, for example, 20
The shape change of the sample 16 is measured at intervals of ° C. Specifically, when the sample temperature is 20 ° C., the stylus of the stylus type surface deformation meter is moved from left to right of the sample, and the shape change of the sample 16 is measured. Next, the sample stage 12 is heated by the heater 14 to a sample temperature of 40 degrees, and when the sample temperature is 40 degrees, the shape change of the sample 16 is measured as described above. Such a measurement process is repeatedly performed every 20 ° C. until the sample temperature reaches 150 ° C. Next, the measurement process described above is repeated while changing the measurement sample object.

【0013】図2は、この測定装置を用いて、加熱温度
に対する試料16の反りの変化を測定した一例である。
この例では、熱膨張係数αの異なる2種類の基板を用い
ている。 (1)ガラス基板; 直径φ=15mm, 厚みt=0.65mm, 熱膨張係数α=120×10-7/℃, ヤング率E=5.59×1011dyn/cm2, ポアソン比=0.29
FIG. 2 shows an example in which a change in the warpage of the sample 16 with respect to the heating temperature is measured using this measuring apparatus.
In this example, two types of substrates having different thermal expansion coefficients α are used. (1) Glass substrate; diameter φ = 15 mm, thickness t = 0.65 mm, coefficient of thermal expansion α = 120 × 10 −7 / ° C., Young's modulus E = 5.59 × 10 11 dyn / cm 2 , Poisson's ratio = 0 .29

【0014】(2)石英基板; 直径φ=15mm, 厚みt=0.5mm, 熱膨張係数α=5×10-7/℃, ヤング率E=7.27×1011dyn/cm2, ポアソン比=0.17(2) Quartz substrate; diameter φ = 15 mm, thickness t = 0.5 mm, coefficient of thermal expansion α = 5 × 10 −7 / ° C., Young's modulus E = 7.27 × 10 11 dyn / cm 2 , Poisson Ratio = 0.17

【0015】これら2種の基板の上に、熱膨張係数の測
定対象となる膜厚8.7μmの複合酸化物膜を同一ロッ
ト内で同時に成膜し、2試料を作製する。これら2つの
試料16を前記測定装置で加熱し、温度変化による形状
変化を測定した。図2には、その測定結果が示されてお
り、グラフG1はガラス基板の場合、グラフG2は石英
基板の場合である。
On these two types of substrates, a 8.7 μm-thick composite oxide film whose thermal expansion coefficient is to be measured is simultaneously formed in the same lot to produce two samples. These two samples 16 were heated by the measuring device, and the shape change due to the temperature change was measured. FIG. 2 shows the measurement results. Graph G1 is for a glass substrate, and graph G2 is for a quartz substrate.

【0016】次に、試料上に形成した薄膜の熱膨張係数
や弾性率の評価手法について説明する。基板上に膜があ
る場合の熱応力σは、以下の(1)式で表される。 σ=E(αf−αs)△T ………………(1) E=Ef/(1−νf) ………………(2) ここで、 Ef:膜のヤング率, νf:膜のポアソン比, αf:膜の熱膨張係数, αs:基板の熱膨張係数, △T:温度変化 である。なお、便宜上、(2)式を膜のヤング率として扱
う。
Next, a method for evaluating the thermal expansion coefficient and the elastic modulus of the thin film formed on the sample will be described. The thermal stress σ when a film is present on the substrate is expressed by the following equation (1). σ = E (αf−αs) △ T (1) E = Ef / (1−νf) (2) where Ef: Young's modulus of the film, νf: Film , Αf: thermal expansion coefficient of the film, αs: thermal expansion coefficient of the substrate, ΔT: temperature change. For convenience, equation (2) is treated as the Young's modulus of the film.

【0017】次に、温度変化に伴う応力の変化Δσは、
試料16の反り量の変化を測定することによって、以下
の(3)式から導かれる。 Δσ=(4/3)Es・△δ・D2/{(1−νs)・d・l2} …………(3) ここで、 Es:基板のヤング率, νs:基板のポアソン比, D:基板の厚み, d:膜の厚み, l:測定長, δ:反り量(測定長lの中点における変位量) である。
Next, a change Δσ in stress due to a temperature change is:
By measuring the change in the amount of warpage of the sample 16, it is derived from the following equation (3). Δσ = (4/3) Es · △ δ · D 2 / {(1-νs) · d · l 2} ............ (3) where, Es: substrate Young's modulus of,? S: Poisson's ratio of the substrate , D: substrate thickness, d: film thickness, l: measured length, δ: warpage (displacement at the midpoint of measured length l).

【0018】従って、熱膨張係数αsの異なる2種の基
板を用いて温度に対する反り量の変化を測定することに
より、膜の熱膨張係数αf及びE(ヤング率に対応)を
求めることができる。すなわち、基板の熱膨張係数をα
s1,αs2,各基板における応力変化をΔσ1,Δσ2とす
ると、前記(1)式より、 △σ1/△T=E(αf−αs1)=C1 △σ2/△T=E(αf−αs2)=C2 …………(4) となる。従って、 αf=(C2・αs1−C1・αs2)/(C2−C1) E=(C2−C1)/(αs1−αs2) …………(5) となり、膜のαfとEを求めることができる。なお、こ
れは、熱処理による応力緩和のプロセスを理解する上で
も重要なデータとなる。
Therefore, the thermal expansion coefficients αf and E (corresponding to the Young's modulus) of the film can be obtained by measuring the change in the amount of warpage with respect to temperature using two types of substrates having different thermal expansion coefficients αs. That is, the coefficient of thermal expansion of the substrate is α
Assuming that s1, αs2 and stress changes in each substrate are Δσ1, Δσ2, from the above equation (1), Δσ1 / ΔT = E (αf−αs1) = C1 Δσ2 / ΔT = E (αf−αs2) = C2 ... (4) Therefore, αf = (C2 · αs1−C1 · αs2) / (C2−C1) E = (C2−C1) / (αs1−αs2) (5), and it is possible to obtain αf and E of the film. it can. This is important data for understanding the process of stress relaxation by heat treatment.

【0019】図2に示す測定結果の直線の傾きと、前記
(3)式から、2試料それぞれについて、温度変化に伴う
反りの変化Δσ/ΔTが求められる。更に、これらの2
つの値から、前記(4),(5)式によって膜の熱膨張係数α
fとヤング率Eが求められる。図2の測定例では、 αf=33×10-7/℃, E=16.4×1011/cm2 であった。
The inclination of the straight line of the measurement result shown in FIG.
From equation (3), the change Δσ / ΔT of the warp due to the temperature change is obtained for each of the two samples. Furthermore, these two
From the two values, the thermal expansion coefficient α
f and Young's modulus E are obtained. In the measurement example of FIG. 2, αf = 33 × 10 −7 / ° C. and E = 16.4 × 10 11 / cm 2 .

【0020】このように、本形態によれば、次のような
効果がある。 (1)図1に示すように、測定装置は構成が簡便で製作も
容易であり、非常に安価である。 (2)図2のような測定結果を利用した演算により、少な
い工数で効率的に薄膜の熱膨張係数やヤング率を測定す
ることができる。
As described above, according to the present embodiment, the following effects can be obtained. (1) As shown in FIG. 1, the measuring device has a simple configuration, is easy to manufacture, and is very inexpensive. (2) By the calculation using the measurement result as shown in FIG. 2, the coefficient of thermal expansion and the Young's modulus of the thin film can be efficiently measured with a small number of man-hours.

【0021】次に、図3を参照して、他の測定例につい
て説明する。熱膨張係数の異なる2種類の基板として、
上述したガラス基板及び石英基板を用いた。これら2種
の基板上に、熱膨張係数の測定対象となる膜厚5.02
μmのSiO2膜を同一ロット内で同時に成膜し、2つの
試料を作製する。これら試料を、前後して前記測定装置
で加熱し、温度変化による形状変化を測定した。図3に
は、その測定結果が示されており、グラフG3はガラス
基板の場合、グラフG4は石英基板の場合である。
Next, another measurement example will be described with reference to FIG. As two types of substrates with different coefficients of thermal expansion,
The above-described glass substrate and quartz substrate were used. On these two types of substrates, a film thickness of 5.02 whose thermal expansion coefficient is to be measured is set.
A μm SiO 2 film is simultaneously formed in the same lot to produce two samples. These samples were heated before and after by the measuring device, and the shape change due to the temperature change was measured. FIG. 3 shows the measurement results. Graph G3 is for a glass substrate, and graph G4 is for a quartz substrate.

【0022】同様にして、図3のグラフの傾きから、温
度変化に伴う反りの変化Δσ/ΔTを各試料毎に求め、
それらの2つの値から、膜の熱膨張係数及びヤング率を
求めた。図3の例では、 αf=5×10-7/℃, E=7.27×1011/cm2 となった。
Similarly, from the slope of the graph of FIG. 3, the change Δσ / ΔT of the warp due to the temperature change is obtained for each sample.
From these two values, the coefficient of thermal expansion and Young's modulus of the film were determined. In the example of FIG. 3, αf = 5 × 10 −7 / ° C. and E = 7.27 × 10 11 / cm 2 .

【0023】次に、図4を参照して、更に他の測定例に
ついて説明する。熱膨張係数の異なる2種類の基板とし
て、上述したガラス基板と、今度はシリコン基板を用い
た。シリコン基板の特性は、次の通りである。 直径φ=15mm, 厚みt=0.384mm, 熱膨張係数α=28×10-7/℃, ヤング率E=10.8×1011dyn/cm2, ポアソン比=0.28
Next, still another measurement example will be described with reference to FIG. As the two types of substrates having different coefficients of thermal expansion, the above-mentioned glass substrate and this time a silicon substrate were used. The characteristics of the silicon substrate are as follows. Diameter φ = 15 mm, thickness t = 0.384 mm, coefficient of thermal expansion α = 28 × 10 −7 / ° C., Young's modulus E = 10.8 × 10 11 dyn / cm 2 , Poisson's ratio = 0.28

【0024】これら2種の基板上に、熱膨張係数の測定
対象となる膜厚5.42μmの複合酸化物膜を同一ロッ
ト内で同時に成膜し、2つの試料を作製する。これら試
料を、前後して前記測定装置で加熱し、温度変化による
形状変化を測定した。図4には、その測定結果が示され
ており、グラフG5はガラス基板の場合、グラフG6は
シリコン基板の場合である。
On these two types of substrates, a composite oxide film having a film thickness of 5.42 μm whose thermal expansion coefficient is to be measured is simultaneously formed in the same lot to produce two samples. These samples were heated before and after by the measuring device, and the shape change due to the temperature change was measured. FIG. 4 shows the measurement results. Graph G5 is for a glass substrate, and graph G6 is for a silicon substrate.

【0025】同様にして、図4のグラフの傾きから、温
度変化に伴う反りの変化Δσ/ΔTを各試料毎に求め、
それらの値から膜の熱膨張係数及びヤング率を求めた。
この測定では、 αf=21×10-7/℃, E=7.21×1011/cm2 となった。
Similarly, from the slope of the graph of FIG. 4, the change Δσ / ΔT of the warp due to the temperature change is obtained for each sample.
From these values, the thermal expansion coefficient and Young's modulus of the film were determined.
In this measurement, αf = 21 × 10 −7 / ° C. and E = 7.21 × 10 11 / cm 2 .

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
熱膨張係数が異なるとともに、ヤング率及びポアソン比
が既知である複数の基板の表面に測定対象の薄膜を形成
し、これを加熱したときの試料の形状変化を測定して薄
膜の熱的特性もしくは弾性的特性を演算することとした
ので、次のような効果がある。 (1)測定装置が簡便で製作しやすく、製作費用も非常に
安価である。 (2)少ない工数で、薄膜の熱膨張係数やヤング率などの
特性を測定することができる。
As described above, according to the present invention,
Thermal expansion coefficients are different, and a thin film to be measured is formed on the surface of a plurality of substrates whose Young's modulus and Poisson's ratio are known, and the shape change of the sample when heated is measured to determine the thermal characteristics or thermal characteristics of the thin film. The calculation of the elastic characteristic has the following effects. (1) The measuring device is simple and easy to manufacture, and the manufacturing cost is very low. (2) Characteristics such as the coefficient of thermal expansion and Young's modulus of a thin film can be measured with a small number of man-hours.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.

【図2】前記測定装置による測定例を示す図である。FIG. 2 is a diagram showing a measurement example by the measuring device.

【図3】前記測定装置による測定例を示す図である。FIG. 3 is a diagram showing an example of measurement by the measuring device.

【図4】前記測定装置による測定例を示す図である。FIG. 4 is a diagram showing an example of measurement by the measuring device.

【符号の説明】[Explanation of symbols]

10…溝 12…試料台 14…ヒータ 16…試料 18…オイル 20…熱電対 22…触針(表面変位計) 24…コンピュータ DESCRIPTION OF SYMBOLS 10 ... Groove 12 ... Sample stand 14 ... Heater 16 ... Sample 18 ... Oil 20 ... Thermocouple 22 ... Contact probe (surface displacement meter) 24 ... Computer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱膨張係数が異なるとともに、ヤング率
及びポアソン比が既知である複数の基板の表面に測定対
象の薄膜がそれぞれ形成された試料を加熱する加熱手
段;前記試料の温度を測定する温度測定手段;前記加熱
手段による加熱時における前記試料の形状変化を測定す
る変位測定手段;前記温度測定手段及び変位測定手段に
よる測定結果に基づいて、前記測定対象の薄膜の熱的特
性もしくは弾性的特性を演算する演算手段;を備えたこ
とを特徴とする薄膜測定装置。
1. A heating means for heating a sample in which thin films to be measured are respectively formed on the surfaces of a plurality of substrates having different thermal expansion coefficients and a known Young's modulus and Poisson's ratio; measuring the temperature of the sample Temperature measuring means; displacement measuring means for measuring a change in shape of the sample at the time of heating by the heating means; thermal characteristics or elasticity of the thin film to be measured based on the measurement results by the temperature measuring means and the displacement measuring means. A thin film measuring device comprising: a calculating means for calculating characteristics.
【請求項2】 前記試料の全体を液体で囲むことを特徴
とする請求項1記載の薄膜測定装置。
2. The thin film measuring apparatus according to claim 1, wherein the whole of the sample is surrounded by a liquid.
【請求項3】 前記変位測定手段は触針式の表面変位計
であることを特徴とする請求項1又は2記載の薄膜測定
装置。
3. A thin film measuring apparatus according to claim 1, wherein said displacement measuring means is a stylus type surface displacement meter.
【請求項4】 前記演算手段は、温度変化に伴う応力変
化の割合に基づいて演算を行うことを特徴とする請求項
1,2,又は3のいずれかに記載の薄膜測定装置。
4. The thin-film measuring apparatus according to claim 1, wherein the calculating means performs the calculation based on a ratio of a change in stress caused by a change in temperature.
JP33352697A 1997-11-18 1997-11-18 Thin-film measuring device Pending JPH11153556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33352697A JPH11153556A (en) 1997-11-18 1997-11-18 Thin-film measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33352697A JPH11153556A (en) 1997-11-18 1997-11-18 Thin-film measuring device

Publications (1)

Publication Number Publication Date
JPH11153556A true JPH11153556A (en) 1999-06-08

Family

ID=18267035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33352697A Pending JPH11153556A (en) 1997-11-18 1997-11-18 Thin-film measuring device

Country Status (1)

Country Link
JP (1) JPH11153556A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025499B2 (en) * 2000-10-24 2006-04-11 Robert Bosch Gmbh Device for testing a material that changes shape when an electric and/or magnetic field is applied
JP2007285725A (en) * 2006-04-12 2007-11-01 Nissan Arc Ltd Measuring method of thin-film poisson ratio, and measuring instrument thereof
US10712299B2 (en) 2016-11-08 2020-07-14 Samsung Electronics Co., Ltd. Deformation measuring apparatus and method of evaluating deformation using thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025499B2 (en) * 2000-10-24 2006-04-11 Robert Bosch Gmbh Device for testing a material that changes shape when an electric and/or magnetic field is applied
JP2007285725A (en) * 2006-04-12 2007-11-01 Nissan Arc Ltd Measuring method of thin-film poisson ratio, and measuring instrument thereof
US10712299B2 (en) 2016-11-08 2020-07-14 Samsung Electronics Co., Ltd. Deformation measuring apparatus and method of evaluating deformation using thereof

Similar Documents

Publication Publication Date Title
JP4873659B2 (en) Method for directly determining the boiling point of a fluid
JP3315730B2 (en) Piezoresistive semiconductor sensor gauge and method of making same
GB2181298A (en) Platinum resistance thermometer and manufacture thereof
US5205170A (en) Mass flow sensor
JPH0244211A (en) Flow sensor
KR100911090B1 (en) Microcalorimeter device with enhanced accuracy
JPH11153556A (en) Thin-film measuring device
JPH1090084A (en) Calibration method for temperature measuring resistor on substrate such as glass substrate, glass ceramic substrate, etc.
CN100410630C (en) Flow sensor
KR100698439B1 (en) Surface acoustic wave gas sensor for detecting volatile chemicals
CN106841285B (en) Simple and novel film thermal property test structure
JPS62291001A (en) Thin film thermistor and manufacture of the same
WO2010140719A1 (en) Micro calorimeter device with improved accuracy
JP5769043B2 (en) Electrical device, integrated device, electronic circuit and temperature calibration device
JPS61116631A (en) Thin film thermistor and manufacture thereof
JPH05188021A (en) Probe for measuring thermophysical property value of thin film
Sarajlić et al. Thin-film four-resistor temperature sensor for measurements in air
JPH11260609A (en) Manufacture of detecting element for platinum resistance thermometer and detection element manufactured thereby
JPH10160698A (en) Micro sensor
JP7356486B2 (en) High speed humidity sensor and method for calibrating a high speed humidity sensor
JPS6057681B2 (en) temperature detection element
Tigli et al. Temperature stability analysis of CMOS-saw devices by embedded heater design
JPH0584867B2 (en)
JPH0769221B2 (en) Temperature sensing material, temperature sensor and temperature measuring method
JP2920510B2 (en) A method for measuring the thermal constant of a substance by heating the inner surface of a cylindrical partition