JPH11150297A - Nitride semiconductor light-emitting element - Google Patents

Nitride semiconductor light-emitting element

Info

Publication number
JPH11150297A
JPH11150297A JP33096797A JP33096797A JPH11150297A JP H11150297 A JPH11150297 A JP H11150297A JP 33096797 A JP33096797 A JP 33096797A JP 33096797 A JP33096797 A JP 33096797A JP H11150297 A JPH11150297 A JP H11150297A
Authority
JP
Japan
Prior art keywords
positive electrode
layer
nitride semiconductor
emitting device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33096797A
Other languages
Japanese (ja)
Other versions
JP3631359B2 (en
Inventor
Tatsunori Toyoda
達憲 豊田
Yoshikazu Takaoka
高岡  美和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP33096797A priority Critical patent/JP3631359B2/en
Publication of JPH11150297A publication Critical patent/JPH11150297A/en
Application granted granted Critical
Publication of JP3631359B2 publication Critical patent/JP3631359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nitride semiconductor light-emitting element which has high luminous efficiency. SOLUTION: A nitride semiconductor light-emitting element is provided with a p-type gallium nitride semiconductor layer 13, formed on a translucent substrate 11 with one or two or more gallium nitride semiconductor layers 12,... containing a light-emitting layer inbetween, a first positive electrode 15 which is in ohmic contact with the layer 13, and a second positive electrode 15 formed on part of the electrode 15. In the second positive electrode 16, the layer formed in contact with the first positive electrode 15 is formed by using Au or Pt as a main component, so that this enables the light-emitting layer immediately below the electrode 16 to emit light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、p型窒化物半導体
層に正電極を備え、発光した光を基板を介して出力する
窒化物半導体発光素子に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a nitride semiconductor light emitting device having a positive electrode in a p-type nitride semiconductor layer and outputting emitted light through a substrate.

【0002】[0002]

【従来の技術】近年、窒化物半導体を用いた発光素子
が、青色系の発光が可能な発光素子として注目されてい
る。この窒化物半導体を用いた従来の発光素子には、p
型窒化ガリウム系半導体層上に形成された透光性を有す
る正電極を介して発光した光を出力するいわゆる半導体
側発光タイプと、透光性を有するサファイヤ基板を介し
て発光した光を出力する基板側発光タイプに大別され、
用途に応じて使い分けられている。この従来の基板側発
光タイプの窒化物半導体発光素子において、n側の負電
極は、n型窒化ガリウム系半導体層の上面の一部を露出
させて、露出された上面に形成され、p側の正電極は、
p型窒化ガリウム系半導体層のほぼ全面に形成される。
尚、p側の正電極は、p型窒化ガリウム系半導体層のほ
ぼ全面に形成された第1正電極と、その第1正電極上の
一部に形成された外部回路との接続用の第2正電極から
なる。
2. Description of the Related Art In recent years, a light emitting device using a nitride semiconductor has attracted attention as a light emitting device capable of emitting blue light. Conventional light emitting devices using this nitride semiconductor include p
So-called semiconductor-side emission type that outputs light emitted through a translucent positive electrode formed on a gallium nitride-based semiconductor layer, and outputs light emitted through a translucent sapphire substrate Broadly divided into substrate side light emitting type,
They are used properly according to the purpose. In this conventional substrate-side light emitting type nitride semiconductor light emitting device, the n-side negative electrode is formed on the exposed upper surface by exposing a part of the upper surface of the n-type gallium nitride based semiconductor layer, and the p-side negative electrode is formed. The positive electrode is
It is formed on almost the entire surface of the p-type gallium nitride based semiconductor layer.
The p-side positive electrode is a first positive electrode formed on almost the entire surface of the p-type gallium nitride-based semiconductor layer and a first positive electrode for connection to an external circuit formed on a part of the first positive electrode. It consists of two positive electrodes.

【0003】さらに、従来の窒化物半導体発光素子で
は、通常、半導体層及び電極層を保護するために、第2
正電極上及び負電極上の外部回路との接続部分とを除い
てポリイミド系樹脂膜を形成した後、例えば300℃の
温度で硬化させて保護膜を形成する。以上のように構成
された従来の窒化物半導体発光素子は、第2正電極と負
電極の外部回路との接続部分をそれぞれ、配線基板に対
向させて例えばフィリップボンディングにより接続し、
発光した光を透光性の基板を介して出力される。ここ
で、フィリップボンディングする場合、リフロー炉にお
いて例えば250〜300℃程度の温度がかけられるこ
とになる。
Further, in a conventional nitride semiconductor light emitting device, usually, a second semiconductor light emitting device is used to protect a semiconductor layer and an electrode layer.
After a polyimide resin film is formed except for a portion on the positive electrode and the negative electrode that is connected to an external circuit, the polyimide resin film is cured at, for example, a temperature of 300 ° C. to form a protective film. In the conventional nitride semiconductor light emitting device configured as described above, the connection portions of the second positive electrode and the negative electrode to the external circuit are respectively connected to the wiring substrate by, for example, Philip bonding,
The emitted light is output through a light-transmitting substrate. Here, in the case of performing the flip bonding, a temperature of, for example, about 250 to 300 ° C. is applied in a reflow furnace.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
基板側発光の窒化物半導体発光素子は、上述の第2正電
極が形成された後の保護膜形成工程又はフィリップボン
ディング工程等で、例えば250℃以上の温度がかかる
と、上記第2正電極直下の発光層における発光が、他の
部分に比較して極めて弱くなるという問題点があった。
このために、基板側発光タイプの窒化物半導体発光素子
では、発光効率をある一定以上高くすることができなか
った。
However, the conventional substrate-side light emitting nitride semiconductor light emitting device requires a temperature of, for example, 250 ° C. in a protective film forming step or a flip bonding step after the second positive electrode is formed. When the above temperature is applied, there is a problem that light emission in the light emitting layer immediately below the second positive electrode becomes extremely weak as compared with other portions.
For this reason, in the substrate-side light emitting type nitride semiconductor light emitting device, the luminous efficiency could not be increased beyond a certain level.

【0005】そこで、本発明は、上記問題点を解決し
て、発光効率の高い窒化物半導体発光素子を提供するこ
とにある。
Accordingly, an object of the present invention is to provide a nitride semiconductor light emitting device having high luminous efficiency by solving the above problems.

【0006】[0006]

【課題を解決するための手段】本発明は、上述の従来例
の問題点を解決するために、第2正電極直下の発光層に
おける発光を十分確保できる構造を鋭意検討した結果、
第2正電極に特定の金属を用いることにより、第2正電
極直下の発光層における発光を確保できることを見いだ
して完成させたものである。すなわち、本発明の窒化物
半導体発光素子は、透光性を有する基板上に発光層を含
む1又は2以上の窒化ガリウム系半導体層を介して形成
されたp型窒化ガリウム系半導体層と、該p型窒化ガリ
ウム系半導体層とオーミック接触する第1正電極と、上
記第1正電極上の一部に形成された第2正電極とを備え
た窒化物半導体発光素子であって、上記第2正電極にお
いて、上記第1正電極に接するように形成された層をA
u又はPtを主成分として形成することにより、上記第
2正電極の直下の発光層の発光を可能にしたことを特徴
とする。
According to the present invention, in order to solve the above-mentioned problems of the conventional example, as a result of earnestly studying a structure capable of sufficiently securing light emission in the light emitting layer immediately below the second positive electrode,
The present invention was completed by finding that light emission in the light emitting layer immediately below the second positive electrode can be secured by using a specific metal for the second positive electrode. That is, the nitride semiconductor light-emitting device of the present invention includes a p-type gallium nitride-based semiconductor layer formed on a light-transmitting substrate via one or more gallium nitride-based semiconductor layers including a light-emitting layer; A nitride semiconductor light emitting device comprising: a first positive electrode in ohmic contact with a p-type gallium nitride-based semiconductor layer; and a second positive electrode formed on a part of the first positive electrode, wherein In the positive electrode, a layer formed so as to be in contact with the first positive electrode is denoted by A
By forming u or Pt as a main component, light emission of the light emitting layer immediately below the second positive electrode is enabled.

【0007】また、本発明に係る窒化物半導体発光素子
では、上記第2正電極の直下の発光層における発光を十
分確保するために、上記第2正電極が、250℃以上7
50℃以下の所定の温度で熱処理されていることが好ま
しい。
Further, in the nitride semiconductor light emitting device according to the present invention, the second positive electrode is set to a temperature of 250 ° C. or more to ensure sufficient light emission in the light emitting layer immediately below the second positive electrode.
The heat treatment is preferably performed at a predetermined temperature of 50 ° C. or lower.

【0008】また、本発明に係る窒化物半導体発光素子
では、上記第1正電極として、Ni、Cr、V、Co、
Pd及びAgからなる群から選ばれた少なくとも1種の
金属を主成分として上記p型窒化ガリウム系半導体層と
接して形成された第1層と、Au、Pt及びIrからな
る群から選ばれた少なくとも1つの元素を主成分として
形成された第2層とを含む積層体が熱処理されてなるこ
とが好ましい。これによって、上記p型窒化ガリウム系
半導体層と第1正電極との間で良好なオーミック接触が
得られる。
In the nitride semiconductor light emitting device according to the present invention, Ni, Cr, V, Co,
A first layer formed mainly of at least one metal selected from the group consisting of Pd and Ag and in contact with the p-type gallium nitride based semiconductor layer; and a first layer formed of Au, Pt and Ir It is preferable that a stacked body including the second layer formed using at least one element as a main component is heat-treated. Thereby, good ohmic contact can be obtained between the p-type gallium nitride based semiconductor layer and the first positive electrode.

【0009】また、上記窒化物半導体発光素子におい
て、上記第1層は、Ni又はCoを主成分とし、上記第
2層は、Au又はPtを主成分として形成されることが
好ましい。
In the above-mentioned nitride semiconductor light emitting device, it is preferable that the first layer is formed mainly of Ni or Co, and the second layer is formed mainly of Au or Pt.

【0010】さらに、上記窒化物半導体発光素子におい
て、上記第1正電極が、400℃以上750℃以下の所
定の温度で熱処理されていることが好ましく、これによ
って、さらに良好なオーミック接触が得られる。
Further, in the nitride semiconductor light emitting device, it is preferable that the first positive electrode is heat-treated at a predetermined temperature of 400 ° C. or more and 750 ° C. or less, whereby a better ohmic contact is obtained. .

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明に係
る実施の形態について説明する。本発明に係る実施形態
の窒化物半導体発光素子は、透光性を有する基板11を
介して発光した光を出力するいわゆる基板側発光タイプ
の発光素子であって、図1に示すように、例えばサファ
イヤからなる基板11上に、例えば、Siがドープされ
たAlInGaNからなるn型窒化ガリウム系半導体層
12、例えば、InGaNからなる発光層10及び例え
ば、MgがドープされたAlInGaNからなるp型窒
化ガリウム系半導体層13が順に積層された半導体層構
造を有し、正負の電極が以下のように形成されて構成さ
れる。すなわち、1つの側面(第1側面)から所定の幅
にp型窒化ガリウム系半導体層及び発光層が除去されて
露出されたn型窒化ガリウム系半導体層12の上面にn
側の負電極14が形成され、p型窒化ガリウム系半導体
層13の上面のほぼ全面にp側の第1正電極15が形成
される。そして、第1正電極15上の負電極14から離
れた位置に第2正電極16が形成され、負電極14上及
び第2正電極16上の開口部を除き、各電極及び各半導
体層を覆うように絶縁膜17が形成される。
Embodiments of the present invention will be described below with reference to the drawings. The nitride semiconductor light-emitting device of the embodiment according to the present invention is a so-called substrate-side light-emitting device that outputs light emitted through a substrate 11 having a light-transmitting property. An n-type gallium nitride based semiconductor layer 12 made of, for example, AlInGaN doped with Si, for example, a light emitting layer 10 made of InGaN, and a p-type gallium nitride made of, for example, AlInGaN doped with Mg, are formed on a substrate 11 made of sapphire. It has a semiconductor layer structure in which the system semiconductor layers 13 are sequentially stacked, and is formed by forming positive and negative electrodes as follows. That is, the n-type gallium nitride-based semiconductor layer 12 exposed by removing the p-type gallium nitride-based semiconductor layer and the light-emitting layer to a predetermined width from one side surface (first side surface) has n
The negative electrode 14 is formed on the side, and the p-side first positive electrode 15 is formed on almost the entire upper surface of the p-type gallium nitride based semiconductor layer 13. Then, a second positive electrode 16 is formed on the first positive electrode 15 at a position distant from the negative electrode 14. Except for the openings on the negative electrode 14 and the second positive electrode 16, each electrode and each semiconductor layer are formed. An insulating film 17 is formed to cover.

【0012】ここで、本実施形態の窒化物半導体発光素
子は、第2正電極16を、Au又はPtのいずれかを主
成分として形成したことを特徴とし、上記第2正電極1
6の直下の発光層10における十分な発光を確保してい
る。尚、本実施形態では、第2正電極16の直下の発光
層10において良好な発光を確保するために、第2正電
極16を所定の温度で熱処理することが好ましい。尚、
第2正電極16の熱処理は、第2正電極16の直下の発
光層10においてさらに良好な発光を確保するために、
250℃以上750℃以下の所定の温度で行われること
が好ましい。また、以上の実施形態では、第2正電極1
6を、Au又はPtのいずれかを主成分として形成した
が、本発明はこれに限らず、第2正電極16のうちの少
なくとも第1正電極と接する部分を、Au又はPtのい
ずれかを主成分として形成すればよい。以上のように構
成しても、上記第2正電極16の直下の発光層10にお
ける十分な発光を確保できる。尚、本発明の電極構成は
窒化物半導体発光素子に限らず、窒化物半導体受光素子
に適用することもできる。この場合、例えば本実施形態
の活性層10に代えて光吸収層を形成する。このように
して本発明の電極構成を受光素子に適用し、基板側から
光を入射すると、第2正電極16の直下の光吸収層にお
いても、光を十分吸収させることができ、光電変換効率
の高い受光素子を構成できる。
Here, the nitride semiconductor light emitting device of the present embodiment is characterized in that the second positive electrode 16 is formed by using either Au or Pt as a main component.
Sufficient light emission in the light emitting layer 10 immediately below 6 is secured. In the present embodiment, it is preferable that the second positive electrode 16 be heat-treated at a predetermined temperature in order to secure good light emission in the light emitting layer 10 immediately below the second positive electrode 16. still,
The heat treatment of the second positive electrode 16 is performed in order to secure better light emission in the light emitting layer 10 immediately below the second positive electrode 16.
It is preferable to carry out at a predetermined temperature of 250 ° C. or more and 750 ° C. or less. In the above embodiment, the second positive electrode 1
6 is formed with Au or Pt as a main component, but the present invention is not limited to this, and at least a portion of the second positive electrode 16 that is in contact with the first positive electrode is made of either Au or Pt. It may be formed as a main component. Even with the above configuration, sufficient light emission in the light emitting layer 10 directly below the second positive electrode 16 can be ensured. The electrode configuration of the present invention is not limited to a nitride semiconductor light emitting device, but can be applied to a nitride semiconductor light receiving device. In this case, for example, a light absorption layer is formed instead of the active layer 10 of the present embodiment. In this manner, when the electrode configuration of the present invention is applied to the light receiving element and light is incident from the substrate side, the light can be sufficiently absorbed even in the light absorbing layer immediately below the second positive electrode 16, and the photoelectric conversion efficiency can be improved. Light receiving element having a high level can be formed.

【0013】[0013]

【実施例】以下、本発明に係る実施例の窒化物半導体発
光素子について説明する。本実施例の窒化物半導体発光
素子は、サファイヤからなる基板11上に、それぞれM
OCVD法を用いて、n型窒化ガリウム系半導体層1
2、発光層10及びp型窒化ガリウム系半導体層13を
成長させる。そして、n型窒化ガリウム系半導体層1
2、発光層10及びp型窒化ガリウム系半導体層13の
外周部分を塩素系のガスを用いてRIE(反応性イオン
エッチング)法で除去し、続いて、n側の負電極14を
形成するために、p型窒化ガリウム系半導体層と発光層
とを1つの側面から所定の幅に除去してn型窒化ガリウ
ム系半導体層13の上面を露出させる。そして、所定の
位置に負電極14、第1正電極15及び第2正電極16
を形成した後、負電極14及び第2正電極16上の外部
回路との接続部分を除いて、保護膜17を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a nitride semiconductor light emitting device according to an embodiment of the present invention will be described. The nitride semiconductor light emitting device of the present embodiment has M
Using the OCVD method, the n-type gallium nitride based semiconductor layer 1
2. The light emitting layer 10 and the p-type gallium nitride based semiconductor layer 13 are grown. Then, the n-type gallium nitride based semiconductor layer 1
2. To remove the outer peripheral portions of the light emitting layer 10 and the p-type gallium nitride-based semiconductor layer 13 by RIE (reactive ion etching) using a chlorine-based gas, and then to form the n-side negative electrode 14 Next, the p-type gallium nitride-based semiconductor layer and the light emitting layer are removed from one side surface to a predetermined width to expose the upper surface of the n-type gallium nitride-based semiconductor layer 13. Then, the negative electrode 14, the first positive electrode 15, and the second positive electrode 16 are provided at predetermined positions.
Is formed, a protective film 17 is formed except for a portion on the negative electrode 14 and the second positive electrode 16 which is connected to an external circuit.

【0014】本実施例の第1正電極15と第2正電極1
6とについてさらに詳細に説明すると、非透光性の第1
正電極15は、Niを主成分とするNi層をp型窒化ガ
リウム系半導体層13に接するように例えば100Åの
厚さに形成した後、Ni層上にAuを主成分とするAu
層を例えば500Åの厚さに形成する。以上のように形
成したNi層とAu層との積層体を、400℃〜700
℃の範囲の所定の温度で熱処理することにより、積層構
造を逆転させ、p型窒化ガリウム系半導体層13に接す
る側に主としてAuを分布させ、p型窒化ガリウム系半
導体層13から離れた側に主としてNiを分布させる。
また、第2正電極16は、第1正電極15上にスパッタ
リング装置等を用いて、Auを7000Åの厚さに堆積
させることにより形成する。その後、乾燥機を用いて、
300℃の温度で45分間熱処理を行い、実施例の窒化
物半導体発光素子を作成した。
The first positive electrode 15 and the second positive electrode 1 of this embodiment
6 will be described in more detail.
The positive electrode 15 is formed by forming a Ni layer containing Ni as a main component to a thickness of, for example, 100 ° so as to be in contact with the p-type gallium nitride based semiconductor layer 13, and then forming Au containing Au as a main component on the Ni layer.
The layer is formed, for example, to a thickness of 500 °. The laminated body of the Ni layer and the Au layer formed as described above was heated at 400 ° C. to 700 ° C.
By performing heat treatment at a predetermined temperature in the range of ° C., the stacked structure is reversed, Au is mainly distributed on the side in contact with the p-type gallium nitride-based semiconductor layer 13, and on the side remote from the p-type gallium nitride-based semiconductor layer 13. Ni is mainly distributed.
The second positive electrode 16 is formed on the first positive electrode 15 by depositing Au to a thickness of 7000 ° using a sputtering device or the like. Then, using a dryer,
Heat treatment was performed at a temperature of 300 ° C. for 45 minutes to produce a nitride semiconductor light emitting device of an example.

【0015】以上のように作成した実施例の窒化物半導
体発光素子を、図2に示すように、フィリップチップボ
ンディングして、基板11側から発光状態を確認した。
尚、この試料において、配線基板21上には発光素子の
正負の電極に電圧を印加するための電極23a,23b
が形成され、該電極23a,23bと第2正電極16及
び負電極14との接続はそれぞれ、導電性樹脂22a,
22bを用いて行った。
The nitride semiconductor light emitting device of the embodiment prepared as described above was subjected to flip chip bonding as shown in FIG. 2, and the light emitting state was confirmed from the substrate 11 side.
In this sample, electrodes 23a and 23b for applying a voltage to the positive and negative electrodes of the light emitting element were placed on the wiring board 21.
The electrodes 23a and 23b are connected to the second positive electrode 16 and the negative electrode 14, respectively.
22b.

【0016】以上のように構成された図2の試料に、発
光素子の順方向電流が20mAになるように電圧を印加
して、発光層10における発光強度分布を基板11側か
ら測定した。その結果を図4に示す。ここで、図4に
は、図3に示すA−A’線における位置に対する発光強
度を示していて、発光強度はc点における発光強度を1
としたときの相対値で示している。尚、本試料におい
て、a−b間は、第2正電極16の直下である。また、
a点を0としたき、b点は100μmであり、c点は1
75μmである。尚、図4において比較例として示した
ものは、第2正電極16として第1正電極に接する側に
Ni層を200Åの厚さに形成した後、Auを7000
Åの厚さに形成した以外は、本実施例と同様に構成した
ものである。
A voltage was applied to the thus configured sample of FIG. 2 so that the forward current of the light emitting element became 20 mA, and the light emission intensity distribution in the light emitting layer 10 was measured from the substrate 11 side. FIG. 4 shows the results. Here, FIG. 4 shows the emission intensity at the position along the line AA ′ shown in FIG.
It is shown as a relative value when In this sample, the space between a and b is immediately below the second positive electrode 16. Also,
Assuming that point a is 0, point b is 100 μm and point c is 1
75 μm. In FIG. 4, as a comparative example, a Ni layer is formed as the second positive electrode 16 on the side in contact with the first positive electrode to a thickness of 200 °, and then Au is deposited at 7000 nm.
The configuration is the same as that of the present embodiment, except that it is formed to a thickness of Å.

【0017】図4に示した発光強度分布から明らかなよ
うに、本実施例の窒化物半導体発光素子では、第2正電
極16の直下の発光層における発光が比較例に比べて大
きくできることがわかる。すなわち、比較例の窒化物半
導体発光素子では、300℃の熱ストレスによって、第
1正電極に均一な電流が流れずに第2正電極が形成され
ていない第1正電極部分に集中する。その結果、第2正
電極直下の発光層には電流が注入されないので、第2正
電極直下の発光層における発光強度は非常に弱いものと
なる。これに対して、本実施例の窒化物半導体発光素子
では、熱ストレスがかかっても、第1正電極に流れる電
流は、第2正電極直下においても、ほぼ均一に流すこと
ができ、第2正電極直下の発光層の発光強度をある一定
以上に保持することができる。尚、本実施例の窒化物半
導体発光素子において、c部よりa部の発光強度が低く
なっているのは、c部よりa部の方が負電極14から離
れているので、n型窒化ガリウム系半導体層12の抵抗
分により注入される電流が低くなるためと考えられる。
As is apparent from the emission intensity distribution shown in FIG. 4, in the nitride semiconductor light emitting device of this embodiment, the light emission in the light emitting layer immediately below the second positive electrode 16 can be increased as compared with the comparative example. . That is, in the nitride semiconductor light emitting device of the comparative example, due to the thermal stress of 300 ° C., a uniform current does not flow through the first positive electrode, but concentrates on the first positive electrode portion where the second positive electrode is not formed. As a result, no current is injected into the light emitting layer immediately below the second positive electrode, so that the light emitting intensity in the light emitting layer immediately below the second positive electrode becomes very weak. On the other hand, in the nitride semiconductor light emitting device of the present embodiment, even when a thermal stress is applied, the current flowing through the first positive electrode can be flowed almost uniformly immediately below the second positive electrode. The light emission intensity of the light emitting layer immediately below the positive electrode can be maintained at a certain level or more. In the nitride semiconductor light emitting device of this embodiment, the light emission intensity of the portion a is lower than that of the portion c because the portion a is farther from the negative electrode 14 than the portion c. It is considered that the injected current is reduced due to the resistance of the system semiconductor layer 12.

【0018】次に、第1正電極15及び第2正電極16
(第1の電極層1及び第2の電極層2)として種々の金
属を組み合わせて同様の検討を行った結果を表1に示し
説明する。
Next, the first positive electrode 15 and the second positive electrode 16
Table 1 shows the results of a similar study conducted by combining various metals as the (first electrode layer 1 and the second electrode layer 2).

【0019】[0019]

【表1】 [Table 1]

【0020】表1中で、○を付したものは、第2正電極
の直下の発光層において、良好な発光が確認されたもの
を示し、×は、発光強度が弱いことを示す。また、表1
の第2正電極16の欄において、(/)の左側に記載し
た元素は、第1の電極層1として形成したものを示し、
(/)の右側に記載した元素は、第2の電極層2として
形成したものを示す。また、第1正電極15の欄におい
て、(/)の左側に記載した元素は、p型窒化ガリウム
系半導体層に接するように形成された元素を示す。尚、
本検討において、第1の電極層1は、200Åの厚さに
形成し、第2電極層2は7000Åの厚さに形成して、
300℃で熱処理をした。また、熱処理温度は、250
℃から750℃の範囲であれば、良好な結果が得られる
ことを確認した。
In Table 1, the circles indicate that good light emission was observed in the light emitting layer immediately below the second positive electrode, and the crosses indicate that the light emission intensity was weak. Table 1
In the column of the second positive electrode 16, the elements described on the left side of (/) indicate those formed as the first electrode layer 1,
The elements described on the right side of (/) indicate those formed as the second electrode layer 2. Further, in the column of the first positive electrode 15, the elements described on the left side of (/) indicate elements formed so as to be in contact with the p-type gallium nitride based semiconductor layer. still,
In the present study, the first electrode layer 1 was formed to a thickness of 200 °, the second electrode layer 2 was formed to a thickness of 7000 °,
Heat treatment was performed at 300 ° C. The heat treatment temperature is 250
It was confirmed that good results were obtained when the temperature was in the range of 750 ° C to 750 ° C.

【0021】以上詳細に説明したように、本実施形態の
窒化物半導体発光素子では、第2正電極16を、Au又
はPtを主成分として形成した後、所定の温度で熱処理
している。これによって、第2正電極16直下の発光層
10に電流を注入することができ、第2正電極16直下
の発光層10においても十分発光させることができる。
ここで、第1正電極15は、Ni/Pt、Co/Pt、
Ni/Au及びCo/Auのいずれでも同様の効果を有
する。
As described in detail above, in the nitride semiconductor light emitting device of the present embodiment, the second positive electrode 16 is formed by using Au or Pt as a main component and then heat-treated at a predetermined temperature. As a result, current can be injected into the light emitting layer 10 immediately below the second positive electrode 16, and the light emitting layer 10 immediately below the second positive electrode 16 can also emit light sufficiently.
Here, the first positive electrode 15 is made of Ni / Pt, Co / Pt,
Both Ni / Au and Co / Au have the same effect.

【0022】尚、本発明では、第1正電極15の第1層
は、上記Ni、Coに限らず、例えば、Cr、V、Ag
又はPdでも良く、第1正電極の第2層は、Pt、Au
に限らず、例えば、例えば、Irでもよい。以上例示し
た上記各金属を用いることにより、p型窒化ガリウム系
半導体層13とオーミック接触が可能な第1正電極を形
成できる。すなわち、本発明は、第1正電極の金属は特
に限定されるものではなく、第1正電極は、p型窒化ガ
リウム系半導体層13とオーミック接触するものであれ
ば適用できる。尚、第1正電極15は、400℃以上7
50℃以下の所定の温度で熱処理することが好ましく、
これによって、より効果的なオーミック接触を確保でき
る。
In the present invention, the first layer of the first positive electrode 15 is not limited to Ni and Co, but may be, for example, Cr, V, Ag.
Alternatively, the second layer of the first positive electrode may be made of Pt, Au.
However, for example, Ir may be used, for example. By using each of the metals exemplified above, the first positive electrode capable of making ohmic contact with the p-type gallium nitride-based semiconductor layer 13 can be formed. That is, the present invention is not particularly limited as to the metal of the first positive electrode, and the first positive electrode can be applied as long as it makes ohmic contact with the p-type gallium nitride based semiconductor layer 13. Note that the first positive electrode 15 has a temperature
It is preferable to perform heat treatment at a predetermined temperature of 50 ° C. or less,
Thereby, more effective ohmic contact can be secured.

【0023】以上の実施形態及び実施例では、n型窒化
ガリウム系半導体層12、活性層10及びp型窒化ガリ
ウム系半導体層13を備えた窒化物半導体層素子につい
て示したが、本発明はこれに限らず、バッファ層等のそ
の他の半導体層を備えていてもよいことはいうまでもな
い。他の半導体層を備えていても本発明を適用すること
ができ、実施形態と同様の作用効果を有する。
In the above embodiments and examples, the nitride semiconductor layer device including the n-type gallium nitride-based semiconductor layer 12, the active layer 10, and the p-type gallium nitride-based semiconductor layer 13 has been described. It goes without saying that other semiconductor layers such as a buffer layer may be provided. The present invention can be applied even if another semiconductor layer is provided, and has the same operation and effect as the embodiment.

【0024】[0024]

【発明の効果】以上詳細に説明したように、本発明に係
る窒化物半導体素子は、上記第2正電極において、上記
第1正電極に接するように形成された層をAu又はPt
を主成分として形成することにより、上記第2正電極の
直下の発光層の発光が可能となる。従って、本発明によ
れば、極めて発光効率のよい窒化物半導体発光素子が提
供できる。
As described above in detail, in the nitride semiconductor device according to the present invention, in the second positive electrode, a layer formed so as to be in contact with the first positive electrode is made of Au or Pt.
Is formed as a main component, light emission of the light-emitting layer immediately below the second positive electrode becomes possible. Therefore, according to the present invention, a nitride semiconductor light emitting device having extremely high luminous efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る実施形態の窒化物半導体発光素
子の模式断面図である。
FIG. 1 is a schematic sectional view of a nitride semiconductor light emitting device according to an embodiment of the present invention.

【図2】 実施例の窒化物半導体発光素子を配線基板に
フィリップチップボンディングしたときの断面図であ
る。
FIG. 2 is a cross-sectional view when the nitride semiconductor light emitting device of the embodiment is bonded to a wiring board by flip chip bonding.

【図3】 発光状態を確認するための測定位置を示すた
めの実施例の窒化物半導体発光素子の平面図である。
FIG. 3 is a plan view of the nitride semiconductor light emitting device of the embodiment for showing a measurement position for confirming a light emitting state.

【図4】 実施例の窒化物半導体発光素子の発光状態を
示すグラフである。
FIG. 4 is a graph showing a light emitting state of the nitride semiconductor light emitting device of the example.

【符号の説明】[Explanation of symbols]

10…活性層、 11…基板、 12…n型窒化ガリウム系半導体層、 13…p型窒化ガリウム系半導体層、 14…負電極、 15…第1正電極、 16…第2正電極、 17…絶縁膜。 DESCRIPTION OF SYMBOLS 10 ... Active layer, 11 ... Substrate, 12 ... N-type gallium nitride based semiconductor layer, 13 ... P-type gallium nitride based semiconductor layer, 14 ... Negative electrode, 15 ... First positive electrode, 16 ... Second positive electrode, 17 ... Insulating film.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透光性を有する基板上に発光層を含む1
又は2以上の窒化ガリウム系半導体層を介して形成され
たp型窒化ガリウム系半導体層と、該p型窒化ガリウム
系半導体層とオーミック接触する第1正電極と、上記第
1正電極上の一部に形成された第2正電極とを備えた窒
化物半導体発光素子であって、 上記第2正電極において、上記第1正電極に接するよう
に形成された層をAu又はPtを主成分として形成する
ことにより、上記第2正電極の直下の発光層の発光を可
能にしたことを特徴とする窒化物半導体発光素子。
1. A light-emitting device comprising a light-transmitting substrate on a light-transmitting substrate.
Alternatively, a p-type gallium nitride-based semiconductor layer formed via two or more gallium nitride-based semiconductor layers, a first positive electrode in ohmic contact with the p-type gallium nitride-based semiconductor layer, And a second positive electrode formed in a portion of the nitride semiconductor light emitting device, wherein the second positive electrode includes a layer formed so as to be in contact with the first positive electrode, containing Au or Pt as a main component. A nitride semiconductor light-emitting device characterized in that light emission of a light-emitting layer immediately below the second positive electrode is enabled by being formed.
【請求項2】 上記第2正電極が、250℃以上750
℃以下の所定の温度で熱処理されている請求項1記載の
窒化物半導体発光素子。
2. The method according to claim 1, wherein the second positive electrode is at least 250 ° C. and at least 750.
2. The nitride semiconductor light-emitting device according to claim 1, wherein the nitride semiconductor light-emitting device is heat-treated at a predetermined temperature of not more than C.
【請求項3】 上記第1正電極は、Ni、Cr、V、C
o、Pd及びAgからなる群から選ばれた少なくとも1
種の金属を主成分として上記p型窒化ガリウム系半導体
層と接して形成された第1層と、Au、Pt及びIrか
らなる群から選ばれた少なくとも1つの元素を主成分と
して形成された第2層とを含む積層体が熱処理されてな
る請求項1又は2記載の窒化物半導体発光素子。
3. The first positive electrode comprises Ni, Cr, V, C
at least one selected from the group consisting of o, Pd and Ag
A first layer formed mainly of a seed metal in contact with the p-type gallium nitride-based semiconductor layer; and a first layer formed mainly of at least one element selected from the group consisting of Au, Pt and Ir. 3. The nitride semiconductor light-emitting device according to claim 1, wherein a laminate including the two layers is heat-treated.
【請求項4】 上記第1層は、Ni又はCoを主成分と
し、上記第2層は、Au又はPtを主成分として形成さ
れた請求項3記載の窒化物半導体発光素子。
4. The nitride semiconductor light emitting device according to claim 3, wherein said first layer is formed mainly of Ni or Co, and said second layer is formed mainly of Au or Pt.
【請求項5】 上記第1正電極が、400℃以上750
℃以下の所定の温度で熱処理されている請求項3又は4
記載の窒化物半導体発光素子。
5. The method according to claim 1, wherein the first positive electrode is at least 400.degree.
The heat treatment is performed at a predetermined temperature of not more than ℃.
The nitride semiconductor light-emitting device according to any of the preceding claims.
JP33096797A 1997-11-14 1997-11-14 Nitride semiconductor light emitting device Expired - Lifetime JP3631359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33096797A JP3631359B2 (en) 1997-11-14 1997-11-14 Nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33096797A JP3631359B2 (en) 1997-11-14 1997-11-14 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH11150297A true JPH11150297A (en) 1999-06-02
JP3631359B2 JP3631359B2 (en) 2005-03-23

Family

ID=18238378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33096797A Expired - Lifetime JP3631359B2 (en) 1997-11-14 1997-11-14 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3631359B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047039A1 (en) * 1999-12-22 2001-06-28 Lumileds Lighting, U.S., Llc Method of making a iii-nitride light-emitting device with increased light generating capability
WO2001084640A1 (en) * 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Gan-based light-emitting-diode chip and a method for producing a luminescent diode component
JP2002043623A (en) * 2000-07-27 2002-02-08 Nichia Chem Ind Ltd Optical semiconductor element and its manufacturing method
US6486499B1 (en) 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
EP1271662A1 (en) * 2000-03-07 2003-01-02 Toyoda Gosei Co., Ltd. Iii nitride compound semiconductor device
US6573537B1 (en) 1999-12-22 2003-06-03 Lumileds Lighting, U.S., Llc Highly reflective ohmic contacts to III-nitride flip-chip LEDs
US6878563B2 (en) 2000-04-26 2005-04-12 Osram Gmbh Radiation-emitting semiconductor element and method for producing the same
US6885035B2 (en) 1999-12-22 2005-04-26 Lumileds Lighting U.S., Llc Multi-chip semiconductor LED assembly
US6903376B2 (en) 1999-12-22 2005-06-07 Lumileds Lighting U.S., Llc Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction
JP2006041403A (en) * 2004-07-29 2006-02-09 Nichia Chem Ind Ltd Semiconductor luminous element
CN100362671C (en) * 2004-03-23 2008-01-16 丰田合成株式会社 Solid-state element and solid-state element device
WO2008084834A1 (en) * 2007-01-11 2008-07-17 Rohm Co., Ltd. Gan semiconductor light emitting element
US7679097B2 (en) 2004-10-21 2010-03-16 Nichia Corporation Semiconductor light emitting device and method for manufacturing the same
JP2011034989A (en) * 2009-07-29 2011-02-17 Showa Denko Kk Semiconductor light-emitting element and method for manufacturing the same, lamp, electronic apparatus, and mechanical apparatus
EP2273574A3 (en) * 2000-04-26 2014-01-01 OSRAM Opto Semiconductors GmbH Light-emitting diode chip on a GaN basis and method for producing a light-emitting diode component with a light-emitting diode chip on a GaN basis
US8643046B2 (en) 2009-05-14 2014-02-04 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, method for producing the same, lamp, lighting device, electronic equipment, mechanical device and electrode

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903376B2 (en) 1999-12-22 2005-06-07 Lumileds Lighting U.S., Llc Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction
KR100937879B1 (en) * 1999-12-22 2010-01-21 필립스 루미리즈 라이팅 캄파니 엘엘씨 Method of making a iii-nitride light-emitting device with increased light generating capability
WO2001047039A1 (en) * 1999-12-22 2001-06-28 Lumileds Lighting, U.S., Llc Method of making a iii-nitride light-emitting device with increased light generating capability
US6486499B1 (en) 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US6885035B2 (en) 1999-12-22 2005-04-26 Lumileds Lighting U.S., Llc Multi-chip semiconductor LED assembly
US6514782B1 (en) 1999-12-22 2003-02-04 Lumileds Lighting, U.S., Llc Method of making a III-nitride light-emitting device with increased light generating capability
US6521914B2 (en) 1999-12-22 2003-02-18 Lumileds Lighting, U.S., Llc III-Nitride Light-emitting device with increased light generating capability
US6573537B1 (en) 1999-12-22 2003-06-03 Lumileds Lighting, U.S., Llc Highly reflective ohmic contacts to III-nitride flip-chip LEDs
US6844571B2 (en) 1999-12-22 2005-01-18 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
EP1271662A1 (en) * 2000-03-07 2003-01-02 Toyoda Gosei Co., Ltd. Iii nitride compound semiconductor device
US7095059B2 (en) 2000-03-07 2006-08-22 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device
EP1271662A4 (en) * 2000-03-07 2005-04-13 Toyoda Gosei Kk Iii nitride compound semiconductor device
WO2001084640A1 (en) * 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Gan-based light-emitting-diode chip and a method for producing a luminescent diode component
EP2273574A3 (en) * 2000-04-26 2014-01-01 OSRAM Opto Semiconductors GmbH Light-emitting diode chip on a GaN basis and method for producing a light-emitting diode component with a light-emitting diode chip on a GaN basis
US6878563B2 (en) 2000-04-26 2005-04-12 Osram Gmbh Radiation-emitting semiconductor element and method for producing the same
US7319247B2 (en) 2000-04-26 2008-01-15 Osram Gmbh Light emitting-diode chip and a method for producing same
JP2002043623A (en) * 2000-07-27 2002-02-08 Nichia Chem Ind Ltd Optical semiconductor element and its manufacturing method
DE102005013264B4 (en) 2004-03-23 2019-06-19 Toyoda Gosei Co., Ltd. Manufacturing method for a solid state device
US7429750B2 (en) 2004-03-23 2008-09-30 Toyoda Gosei Co., Ltd. Solid-state element and solid-state element device
US7714333B2 (en) 2004-03-23 2010-05-11 Toyoda Gosei Co., Ltd. Solid-state element and solid-state element device
CN100362671C (en) * 2004-03-23 2008-01-16 丰田合成株式会社 Solid-state element and solid-state element device
JP2006041403A (en) * 2004-07-29 2006-02-09 Nichia Chem Ind Ltd Semiconductor luminous element
US7679097B2 (en) 2004-10-21 2010-03-16 Nichia Corporation Semiconductor light emitting device and method for manufacturing the same
USRE44163E1 (en) 2004-10-21 2013-04-23 Nichia Corporation Semiconductor light emitting device and method for manufacturing the same
WO2008084834A1 (en) * 2007-01-11 2008-07-17 Rohm Co., Ltd. Gan semiconductor light emitting element
US8643046B2 (en) 2009-05-14 2014-02-04 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, method for producing the same, lamp, lighting device, electronic equipment, mechanical device and electrode
JP2011034989A (en) * 2009-07-29 2011-02-17 Showa Denko Kk Semiconductor light-emitting element and method for manufacturing the same, lamp, electronic apparatus, and mechanical apparatus

Also Published As

Publication number Publication date
JP3631359B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
JP3505374B2 (en) Light emitting components
JP3631359B2 (en) Nitride semiconductor light emitting device
JP4597796B2 (en) Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
JP3625377B2 (en) Semiconductor light emitting device
US9099627B2 (en) Method for producing group III nitride semiconductor light-emitting device
US20070012939A1 (en) Flip chip light emitting diode and method of manufacturing the same
JP2006210879A (en) Gallium nitride-based light emitting element with led for protecting esd and its manufacturing method
WO2006082687A1 (en) GaN LIGHT EMITTING DIODE AND LIGHT EMITTING DEVICE
JPH08250768A (en) Semiconductor optical element
JP2005019939A (en) Gallium nitride light emitting diode for flip-chip bonding, and its manufacturing method
JP2008041866A (en) Nitride semiconductor element
JPH1140846A (en) P-type electrode of gallium nitride semiconductor and manufacture thereof
JP2004095959A (en) Nitride semiconductor light emitting element
CN112289915B (en) Flip light-emitting diode chip and manufacturing method thereof
JP2007081010A (en) Light-emitting device
US20070170415A1 (en) Semiconductor light emitting device
JP3356034B2 (en) Nitride semiconductor light emitting device
JP2836685B2 (en) Method for manufacturing p-type gallium nitride-based compound semiconductor
JP3556080B2 (en) Nitride semiconductor device
JPH10270761A (en) Semiconductor light-emitting device and method for manufacturing the same
JPH1012921A (en) Light-emitting semiconductor element
US9559270B2 (en) Light-emitting device and method of producing the same
CN114420003B (en) Integrated LED structure and preparation method
JP4868833B2 (en) Semiconductor light emitting element and light emitting device
TWI242300B (en) Light emitting diode and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term