JPH1012921A - Light-emitting semiconductor element - Google Patents

Light-emitting semiconductor element

Info

Publication number
JPH1012921A
JPH1012921A JP16187796A JP16187796A JPH1012921A JP H1012921 A JPH1012921 A JP H1012921A JP 16187796 A JP16187796 A JP 16187796A JP 16187796 A JP16187796 A JP 16187796A JP H1012921 A JPH1012921 A JP H1012921A
Authority
JP
Japan
Prior art keywords
layer
light
type
conductive layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16187796A
Other languages
Japanese (ja)
Other versions
JP3746569B2 (en
Inventor
Atsushi Ichihara
淳 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP16187796A priority Critical patent/JP3746569B2/en
Publication of JPH1012921A publication Critical patent/JPH1012921A/en
Application granted granted Critical
Publication of JP3746569B2 publication Critical patent/JP3746569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Abstract

PROBLEM TO BE SOLVED: To provide a high luminance with less power consumption by forming a light-emitting layer to be held between P-type and N-type semiconductor layers on a substrate, and sequentially forming a first conductive layer, a substantially transparent second conductive layer and an electrode layer on the semiconductor layer. SOLUTION: In this blue-color LED device, a P-type GaN layer (P-type semiconductor layer) 3 and an N-type GaN layer (N-type semiconductor layer) 4 are formed via a buffer layer 2 made of GaN on a substrate 1 made of sapphire. Then, an InGaN layer A (light-emitting layer) 5 is formed between the P-type GaN layer 3 and the N-type GaN layer 4. In addition, a translucent NiAu layer (first conductive layer) 6 made of a Ni-Au alloy is formed on the P-type GaN layer 3, and a substantially transparent ITO layer (second conductive layer) 7 is formed on the NiAu layer 6. An anode electrode layer (electrode layer) 8, circular in a plan view, made of Al is formed at a substantially center portion on the ITO layer 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光半導体素子に
関し、特に、発光層からの光の取り出し効率が向上し得
る発光半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting semiconductor device, and more particularly, to a light emitting semiconductor device capable of improving light extraction efficiency from a light emitting layer.

【0002】[0002]

【従来の技術】従来、発光半導体素子は、例えば青色L
ED素子を例にとると、図2に示すように、サファイア
(Al23)等からなる略透明状の基板31と、この基
板31上にMOCVD装置を用いた気相成長方法等によ
り(GaN等からなるバッファ層(図示せず)を介し
て)形成されたGaN等からなるP型半導体層32及び
N型半導体層33と、これらP型半導体層32及びN型
半導体層33間に介設されたInGaN等からなる発光
層34と、P型半導体層32上に形成されたNiAu等
の合金からなる透光性の第1導電層35と、この第1導
電層35上に形成されたTi、Al等からなる不透光性
の陽極側の電極層36と、N型半導体層33上のうちエ
ッチングにより除去されて露出状態となった部分にT
i、Al等からなる陰極側の電極層37とを備えたもの
であり、この発光層34から発せられる光をこの素子の
電極層36側の面(以下発光面とする)から取り出すも
のである。 第1導電層35に用いられるAuは、第1
導電層の中では青色光や緑色光のような約500nm以
下の波長光に対する透過率が非常に良好なものであり、
InGaN層等からなる発光層34からの光が透過しや
すい。
2. Description of the Related Art Conventionally, a light-emitting semiconductor device has a
Taking an ED element as an example, as shown in FIG. 2, a substantially transparent substrate 31 made of sapphire (Al 2 O 3 ) and the like, and a vapor phase growth method using an MOCVD apparatus on this substrate 31 ( A P-type semiconductor layer 32 and an N-type semiconductor layer 33 made of GaN or the like formed via a buffer layer (not shown) made of GaN or the like, and an intervening layer between the P-type semiconductor layer 32 and the N-type semiconductor layer 33. The light emitting layer 34 made of InGaN or the like, the light transmitting first conductive layer 35 made of an alloy such as NiAu formed on the P-type semiconductor layer 32, and the light emitting layer 34 formed on the first conductive layer 35 are formed. A non-translucent anode-side electrode layer 36 made of Ti, Al, or the like, and a portion of the N-type semiconductor layer 33 which has been removed by etching and exposed to T.
and a cathode-side electrode layer 37 made of i, Al, or the like. Light emitted from the light-emitting layer 34 is extracted from the surface of the element on the electrode layer 36 side (hereinafter referred to as a light-emitting surface). . Au used for the first conductive layer 35 is the first conductive layer 35.
In the conductive layer, the transmittance for light having a wavelength of about 500 nm or less, such as blue light and green light, is very good,
Light from the light emitting layer 34 composed of an InGaN layer or the like is easily transmitted.

【0003】上記ITO層7は、その厚み寸法が100
0〜2000オングストローム程度となっている。上記
第1導電層35は、蒸着等によりP型半導体層32上に
形成され、その後に400℃程度の温度下でアニールし
合金化され、P型半導体層32との接合面での抵抗率を
低く下げられた状態で(できるだけオーミック接合とな
るように)形成されている。第1導電層35と電極層3
6との接合面は、複数の凹凸部が形成された非常に表面
状態の悪いものとなっている。
The above-mentioned ITO layer 7 has a thickness of 100
It is about 0 to 2000 angstroms. The first conductive layer 35 is formed on the P-type semiconductor layer 32 by vapor deposition or the like, and is then annealed and alloyed at a temperature of about 400 ° C. to reduce the resistivity at the joint surface with the P-type semiconductor layer 32. It is formed in a state of being lowered (to obtain an ohmic junction as much as possible). First conductive layer 35 and electrode layer 3
6 has a very poor surface condition in which a plurality of uneven portions are formed.

【0004】また、第1導電層35は、その上面側に位
置する電極層36とのオーミック接合を得るためのもの
でもある。さらに、第1導電層35は、電極層36から
の電流を抵抗の高いP型半導体層32に流れる前に表面
方向(図中の左右方向)に分散するように広げ、発光層
34内を流れる面積を大きくさせることにより、該発光
層34における発光面積を大きくするために、その厚み
寸法を50オングストローム程度の厚いものとしてい
る。
The first conductive layer 35 is also for obtaining an ohmic junction with the electrode layer 36 located on the upper surface side. Further, the first conductive layer 35 spreads so as to disperse the current from the electrode layer 36 in the surface direction (left-right direction in the drawing) before flowing to the high-resistance P-type semiconductor layer 32, and flows in the light emitting layer 34. In order to increase the light emitting area in the light emitting layer 34 by increasing the area, the thickness thereof is set to be as large as about 50 angstroms.

【0005】[0005]

【発明が解決しようとする課題】このため、発光層34
から発せられる光は、その一部が厚み寸法の大きな第1
導電層35内で吸収されてしまうので、光の取り出し効
率が極めて悪くなる。一方、電極層36の下方に位置す
る発光層34では、電極層36から発光層34へ流れる
電流量が多く、発生する光の量が最も多いのだが、この
光は複数の凹凸部が形成され表面状態の悪い上記電極層
36の接合面で散乱したり吸収されてしまうので、光の
取り出し効率が極めて悪くなる。
Therefore, the light emitting layer 34
The light emitted from the first part has a large thickness dimension.
Since the light is absorbed in the conductive layer 35, the light extraction efficiency is extremely low. On the other hand, in the light-emitting layer 34 located below the electrode layer 36, the amount of current flowing from the electrode layer 36 to the light-emitting layer 34 is large and the amount of generated light is the largest, but this light has a plurality of uneven portions. Since the light is scattered or absorbed at the bonding surface of the electrode layer 36 having a poor surface condition, the light extraction efficiency is extremely low.

【0006】このため、この半導体素子を用いて所定の
発光量を得るためには、これに付加する電流量を大きく
する必要があるので、消費電力が非常に大きくなってし
まうといった問題がある。特に、半導体発光素子は、近
年例えば携帯電話等の電源を内蔵した電子機器に用いら
れる場合が多く、電子機器を極力長時間継続して使用す
るために、その消費電力(内蔵電源に対する)が小さい
状態で大きな輝度を得られるものが要求されている。
[0006] Therefore, in order to obtain a predetermined light emission amount using this semiconductor element, it is necessary to increase the amount of current added thereto, resulting in a problem that the power consumption becomes extremely large. In particular, in recent years, semiconductor light-emitting elements are often used in electronic devices having a built-in power supply, such as mobile phones, for example, and their power consumption (relative to the built-in power supply) is small because the electronic devices are used for as long as possible. What can obtain a large luminance in a state is demanded.

【0007】本発明は、このような事情に鑑みてなされ
たものであって、少ない消費電力で大きな輝度を得るこ
とが可能な、光の取り出し効率が良好となる発光半導体
素子を提供することを課題とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a light-emitting semiconductor device which can obtain a large luminance with low power consumption and which has good light extraction efficiency. Make it an issue.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、基板と、この基板上にP型とN型の半導
体層に挟まれるように形成された発光層と、前記半導体
層上に形成された第1導電層と、この第1導電層上に形
成された略透明の第2導電層と、この第2導電層上に形
成された電極層と、を備えた発光半導体素子を提供する
ものである。
In order to solve the above-mentioned problems, the present invention provides a substrate, a light emitting layer formed on the substrate so as to be sandwiched between P-type and N-type semiconductor layers, A light emitting semiconductor device comprising: a first conductive layer formed thereon; a substantially transparent second conductive layer formed on the first conductive layer; and an electrode layer formed on the second conductive layer. Is provided.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を、発
光半導体素子として青色LED素子を例にとり、図を参
照しつつ説明するが、本発明はこれらに限定されるもの
でない。図1は、青色LED素子の断面を示す概略図で
ある。この青色LED素子は、サファイア(Al23
からなる基板1と、この基板1上にGaNからなるバッ
ファ層2を介して形成されたP型GaN層(P型半導体
層)3及びN型GaN層4(N型半導体層)と、これら
P型GaN層3及びN型GaN層4の間に形成されたI
nGaN層(発光層)5と、P型GaN層3上に形成さ
れた透光性のNiとAuとの合金からなるNiAu層
(第1導電層)6と、このNiAu層6上に形成された
ほぼ透明のITO(Indium-Tin-Oxide)層(第2導電
層)7と、このITO層7上の略中央部分に形成された
Alからなる平面視略円形状の陽極電極層(電極層)8
(平面視の図示はしない)とを備えたものであり、In
GaN層5及びその周辺のP型GaN層3及びN型Ga
N層4において青色光が発せられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking a blue LED element as an example of a light emitting semiconductor element, but the present invention is not limited to these. FIG. 1 is a schematic diagram showing a cross section of a blue LED element. This blue LED element is made of sapphire (Al 2 O 3 )
A P-type GaN layer (P-type semiconductor layer) 3 and an N-type GaN layer 4 (N-type semiconductor layer) formed on the substrate 1 via a buffer layer 2 of GaN, Formed between the n-type GaN layer 3 and the n-type GaN layer 4
An nGaN layer (light emitting layer) 5, a NiAu layer (first conductive layer) 6 formed of an alloy of translucent Ni and Au formed on the P-type GaN layer 3, and formed on the NiAu layer 6. A substantially transparent ITO (Indium-Tin-Oxide) layer (second conductive layer) 7 and a substantially circular anode electrode layer (electrode layer) made of Al formed at a substantially central portion on the ITO layer 7. ) 8
(Not shown in a plan view).
GaN layer 5 and its surrounding P-type GaN layer 3 and N-type Ga
Blue light is emitted in the N layer 4.

【0010】N型GaN層4は、基板1上の端部におい
て露出した状態となっており、この露出したN型GaN
層4上にはTiとAlとの積層構造からなる陰極電極層
9が形成されている。上記NiAu層6には、その略中
央部分に貫通穴6aが穿設されており、ITO層7がこ
の貫通穴6a内に入り込むように形成されている。この
貫通穴6aは、陽極電極層8とほぼ同一形状となってい
る。尚、NiAu層6の厚み寸法は、15オングストロ
ーム程度である。
The N-type GaN layer 4 is exposed at an end on the substrate 1, and the exposed N-type GaN
On the layer 4, a cathode electrode layer 9 having a laminated structure of Ti and Al is formed. The NiAu layer 6 has a through hole 6a formed at a substantially central portion thereof, and the ITO layer 7 is formed so as to enter the through hole 6a. This through hole 6a has substantially the same shape as the anode electrode layer 8. The thickness of the NiAu layer 6 is about 15 Å.

【0011】このような構造を有する青色LED素子で
は、陽極電極層8からの電流がITO層7内で十分に面
方向に広がるので、ITO層7下の光を吸収するNiA
u層6を薄くすることが可能となり、InGaN層5か
らの光がNiAu層6内で吸収される率を低くできるた
め、光の取り出し効率が非常に良好となる。また、陽極
電極層8下に位置するNiAu層6には貫通穴6aが存
在し、この位置ではP型GaN層3とITO層7とが接
触した状態となる。従って、P型GaN層3とITO層
7との接合面におけるpn接合が、陽極電極層8からI
nGaN層5に向かう電流の流れ方向に対して逆方向の
接合となり、この接合面では電流が流れなくなるので、
この流れなくなる電流の分だけその他の部分(陽極電極
層8下以外の部分)に電流が集中して流れるため、In
GaN層5からの光は、不透光性の陽極電極層8に反射
して拡散してしまう率が減少し、光の取り出し効率がよ
り良好となる。
In the blue LED device having such a structure, since the current from the anode electrode layer 8 spreads sufficiently in the plane direction in the ITO layer 7, NiA absorbing the light under the ITO layer 7 can be used.
Since the thickness of the u layer 6 can be reduced and the rate at which light from the InGaN layer 5 is absorbed in the NiAu layer 6 can be reduced, the light extraction efficiency becomes very good. The NiAu layer 6 located under the anode electrode layer 8 has a through hole 6a, and the P-type GaN layer 3 and the ITO layer 7 are in a contact state at this position. Therefore, the pn junction at the junction between the P-type GaN layer 3 and the ITO layer 7 is
The junction is in the opposite direction to the direction of current flow toward the nGaN layer 5, and no current flows at this junction surface.
Since the current intensively flows to other portions (the portions other than under the anode electrode layer 8) by the amount of the current that stops flowing, In
The rate at which the light from the GaN layer 5 is reflected and diffused by the light-impermeable anode electrode layer 8 is reduced, and the light extraction efficiency is further improved.

【0012】さらに、本実施例の青色LED素子では、
陽極電極層8をITO層7上に接合しているので、陽極
電極層8の接合面は、従来のようにNiAu層6と陽極
電極層8とを合金化したときにNiAu層6下面の表面
状態が悪くなってしまうということもほぼなく、鏡面状
態を維持できるため、たとえInGaN層5からの光が
陽極電極層8に反射しても拡散する率が減少され、反射
した後に上方に光が発せられやすく、その分だけ光の取
り出し効率が良好となる。
Further, in the blue LED element of this embodiment,
Since the anode electrode layer 8 is bonded on the ITO layer 7, the bonding surface of the anode electrode layer 8 is formed on the surface of the lower surface of the NiAu layer 6 when the NiAu layer 6 and the anode electrode layer 8 are alloyed in the conventional manner. Since the state is hardly deteriorated and the mirror state can be maintained, even if the light from the InGaN layer 5 is reflected on the anode electrode layer 8, the diffusion rate is reduced, and the light is reflected upward after the reflection. The light is easily emitted, and the light extraction efficiency is improved accordingly.

【0013】本実施例における第1導電層としてのNi
Au層6の厚み寸法は、15オングストローム程度とし
ているが、これに限定されるものでなく、第1導電層と
しての導電状態を得られ且つ従来よりも薄い5〜40オ
ングストローム程度の範囲であればよく、10〜20オ
ングストローム程度であれば光の透過率及び電流の面方
向への広がりを両方満足させやすいのでより好ましい。
In this embodiment, Ni as the first conductive layer
The thickness of the Au layer 6 is about 15 angstroms, but is not limited to this. If the conductive state as the first conductive layer can be obtained and the thickness is about 5 to 40 angstroms which is thinner than the conventional one. It is more preferable that the thickness is about 10 to 20 Å because it is easy to satisfy both the light transmittance and the spread of the current in the plane direction.

【0014】また、本実施例におけるITO層7の厚み
寸法は、1000〜2000オングストローム程度であ
るが、形成条件により抵抗率、透過率が共に下がる膜厚
にすれば良く、このITO層7は好ましくは比抵抗5Ω
cm以下であって発光波長に対する透過率85%以上の
ものがよい。さらに、本実施例では、第2導電層の材料
としてITOを用いているが、これに限定されるもので
なく、In23系、SnO2系やZnO2系のほぼ透明の
導電膜を用いてもよい。
The thickness of the ITO layer 7 in this embodiment is about 1,000 to 2,000 angstroms. However, the thickness may be reduced so that both the resistivity and the transmittance are reduced depending on the forming conditions. Is the specific resistance 5Ω
cm or less and a transmittance of 85% or more with respect to the emission wavelength is preferred. Furthermore, in the present embodiment, ITO is used as the material of the second conductive layer, but the present invention is not limited to this, and an almost transparent conductive film of In 2 O 3 , SnO 2, or ZnO 2 is used. May be used.

【0015】また、本実施例におけるNiAu層6の貫
通穴6aを、陽極側電極層の形状とほぼ同一形状として
いるが、これに限定されるものでなく、発光させたい部
分のみに第1導電層を残すようにすればよい。さらに、
本実施例では、陽極側電極層の材料としてAlを用いて
いるが、これに限定するものでなく、光に対する反射率
の高いAg等の金属材料を用いてもよい。また、陰極側
電極層の材料としてTiとAlの積層を用いているが、
これに限定するものでなく、Al等の金属を用いてもよ
い。
The through-hole 6a of the NiAu layer 6 in this embodiment has substantially the same shape as the shape of the anode-side electrode layer, but is not limited to this. What is necessary is just to leave a layer. further,
In this embodiment, Al is used as the material of the anode-side electrode layer. However, the present invention is not limited to this, and a metal material such as Ag having a high light reflectance may be used. In addition, a laminate of Ti and Al is used as a material of the cathode side electrode layer,
The present invention is not limited to this, and a metal such as Al may be used.

【0016】加えて、本実施例では、P型GaN層3上
に第1導電層としてNiAu層6を形成しているが、こ
れに限定するものでなく、Au層、Cu層またはこれら
の合金層であってもよい。また、この第1導電層の形成
は、蒸着以外にイオン注入方法等により高密度にイオン
を注入して表面を金属化させてもよい。また、本実施例
では、基板上にバッファ層を介してN型半導体層、発光
層及びP型半導体層を下から順に形成しているが、これ
に限定されるものでなく、N型半導体層とP型半導体層
とが逆となった構造のものでもよく、この場合にはP型
の第2導電層を形成すればよい。
In addition, in this embodiment, the NiAu layer 6 is formed as the first conductive layer on the P-type GaN layer 3. However, the present invention is not limited to this. It may be a layer. In forming the first conductive layer, ions may be implanted at a high density by an ion implantation method or the like in addition to vapor deposition to metallize the surface. Further, in this embodiment, the N-type semiconductor layer, the light-emitting layer, and the P-type semiconductor layer are sequentially formed from below on the substrate via the buffer layer. However, the present invention is not limited to this. In this case, a P-type second conductive layer may be formed.

【0017】さらに、本実施例では、発光半導体素子と
してGaN系LED素子を例にとり説明しているが、こ
れに限定するものでなく、GaAs系材料等の基板を用
いた様々なLED素子にも適用可能であり、例えば、G
aAs基板上にZnSeからなるバッファ層を介してM
gZnSSeからなるP型及びN型の半導体層を形成
し、これら半導体層間にZnSSeからなる発光層を形
成し、さらに、P型層上に上記実施例で記載したような
第1導電層、透明電極層及び金属電極層を形成したZn
Se系LED素子にも適用可能である。尚、本発明は、
P型もしくはN型半導体層上の第1導電層及び第2導電
層の構造に特徴を有するものであり、N型もしくはP型
半導体層下の構造組成及び成分比については、これを限
定するものでない。
Further, in this embodiment, a GaN-based LED device is described as an example of a light-emitting semiconductor device, but the present invention is not limited to this, and various LED devices using a substrate such as a GaAs-based material can be used. Applicable, for example, G
M is formed on the aAs substrate via a buffer layer made of ZnSe.
g P-type and N-type semiconductor layers made of ZnSSe are formed, a light emitting layer made of ZnSSe is formed between these semiconductor layers, and a first conductive layer and a transparent electrode as described in the above embodiment are further formed on the P-type layer. Layer and metal electrode layer formed Zn
It is also applicable to Se-based LED elements. In addition, the present invention
The structure is characterized by the structure of the first conductive layer and the second conductive layer on the P-type or N-type semiconductor layer, and the structure composition and component ratio under the N-type or P-type semiconductor layer are limited. Not.

【0018】尚、本実施例の発光半導体素子は、発光層
をほぼ同一の材質であるP型半導体層及びN型半導体層
で挟んだいわゆるダブルヘテロ構造であるが、これに限
定されるものでなく、本発明はPN接合のみであるホモ
接合型のLED素子にも適用可能である。
The light-emitting semiconductor device of this embodiment has a so-called double hetero structure in which a light-emitting layer is sandwiched between a P-type semiconductor layer and an N-type semiconductor layer, which are substantially the same material. However, the present invention is not limited to this. Instead, the present invention is also applicable to a homojunction type LED element having only a PN junction.

【0019】[0019]

【発明の効果】以上の説明からも明らかなように、本発
明によれば、次のような効果を奏する。 (1)電極層からの電流が第2導電層内で十分に面方向
に広がるので、第2導電層下の抵抗の高い第1導電層を
薄くすることが可能となり、発光層からの光が第1導電
層内で吸収される率を低くできるため、光の取り出し効
率が非常に良好となる。 (2)電極層下に位置する第1導電層には貫通穴が存在
し、この位置ではP型GaN系クラッド層と第2導電層
とが接触した状態となる。従って、P型GaNクラッド
層と第2導電層との接合面におけるpn接合が、電極層
からGaN系発光層に向かう電流の流れ方向に対して逆
方向の接合となり、この接合面では電流が流れなくなる
ので、この流れなくなる電流の分だけその他の部分(電
極層下以外の部分)に電流が集中して流れるため、Ga
N系発光層からの光は、不透光性の電極層に反射して拡
散してしまう率が減少し、光の取り出し効率がより良好
となる。 (3)電極層を第2導電層上に接合しているので、電極
層の接合面は、従来のように第1導電層と電極層とを合
金化したときに第1導電層下面の表面状態が悪くなって
しまうということもほぼなく、鏡面状態を維持できるた
め、たとえGaN系発光層からの光が電極層に反射して
も拡散する率が減少され、反射した後に上方に光が発せ
られやすく、その分だけ光の取り出し効率が良好とな
る。
As is clear from the above description, the present invention has the following effects. (1) Since the current from the electrode layer spreads sufficiently in the plane direction in the second conductive layer, the first conductive layer having a high resistance under the second conductive layer can be thinned, and light from the light emitting layer can be reduced. Since the rate of absorption in the first conductive layer can be reduced, the light extraction efficiency becomes very good. (2) There is a through hole in the first conductive layer located below the electrode layer, and at this position, the P-type GaN-based cladding layer and the second conductive layer are in contact with each other. Therefore, the pn junction at the junction between the P-type GaN cladding layer and the second conductive layer is a junction in the direction opposite to the direction of current flow from the electrode layer to the GaN-based light-emitting layer. Since the current intensively flows in other portions (the portions other than below the electrode layer) by the amount of the current that no longer flows, Ga
The rate at which light from the N-based light emitting layer is reflected and diffused by the light-impermeable electrode layer is reduced, and the light extraction efficiency is further improved. (3) Since the electrode layer is bonded to the second conductive layer, the bonding surface of the electrode layer becomes the surface of the lower surface of the first conductive layer when the first conductive layer and the electrode layer are alloyed as in the related art. Since the mirror condition can be maintained almost without deterioration of the state, even if the light from the GaN-based light emitting layer is reflected on the electrode layer, the diffusion rate is reduced, and light is emitted upward after reflection. And the light extraction efficiency is improved accordingly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施例の青色LED素子を示す要部断面
図である。
FIG. 1 is a sectional view of a main part showing a blue LED element of the present embodiment.

【図2】 従来の青色LED素子を示す要部断面図で
ある。
FIG. 2 is a sectional view of a main part showing a conventional blue LED element.

【符号の説明】[Explanation of symbols]

1 基板 2 バッファ層 3 P型GaN層 4 N型GaN層 5 InGaN層 6 NiAu層 7 ITO層 8 陽極電極層 9 陰極電極層 DESCRIPTION OF SYMBOLS 1 Substrate 2 Buffer layer 3 P-type GaN layer 4 N-type GaN layer 5 InGaN layer 6 NiAu layer 7 ITO layer 8 Anode electrode layer 9 Cathode electrode layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板と、この基板上にP型とN型の半導
体層に挟まれるように形成された発光層と、前記半導体
層上に形成された第1導電層と、この第1導電層上に形
成された略透明の第2導電層と、この第2導電層上に形
成された電極層と、を備えた発光半導体素子。
1. A substrate, a light emitting layer formed on the substrate so as to be sandwiched between P-type and N-type semiconductor layers, a first conductive layer formed on the semiconductor layer, and a first conductive layer formed on the semiconductor layer. A light emitting semiconductor device comprising: a substantially transparent second conductive layer formed on a layer; and an electrode layer formed on the second conductive layer.
【請求項2】 前記第1導電層には、前記電極層の下方
に位置する部位に貫通穴が設けられていることを特徴と
する請求項1に記載の発光半導体素子。
2. The light emitting semiconductor device according to claim 1, wherein a through hole is provided in the first conductive layer at a position below the electrode layer.
【請求項3】 前記第1導電層は、その厚み寸法が5乃
至40オングストロームであることを特徴とする請求項
1もしくは請求項2に記載の発光半導体素子。
3. The light emitting semiconductor device according to claim 1, wherein the first conductive layer has a thickness of 5 to 40 angstroms.
【請求項4】 前記半導体層及び発光層がGaN系材料
からなる請求項1〜請求項3に記載の発光半導体素子。
4. The light emitting semiconductor device according to claim 1, wherein said semiconductor layer and said light emitting layer are made of a GaN-based material.
JP16187796A 1996-06-21 1996-06-21 Light emitting semiconductor device Expired - Fee Related JP3746569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16187796A JP3746569B2 (en) 1996-06-21 1996-06-21 Light emitting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16187796A JP3746569B2 (en) 1996-06-21 1996-06-21 Light emitting semiconductor device

Publications (2)

Publication Number Publication Date
JPH1012921A true JPH1012921A (en) 1998-01-16
JP3746569B2 JP3746569B2 (en) 2006-02-15

Family

ID=15743688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16187796A Expired - Fee Related JP3746569B2 (en) 1996-06-21 1996-06-21 Light emitting semiconductor device

Country Status (1)

Country Link
JP (1) JP3746569B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044495A (en) * 1999-07-29 2001-02-16 Showa Denko Kk AlGaInP LIGHT EMITTING DIODE
US6287947B1 (en) 1999-06-08 2001-09-11 Lumileds Lighting, U.S. Llc Method of forming transparent contacts to a p-type GaN layer
EP1320894A1 (en) * 2000-07-26 2003-06-25 American Xtal Technology, Inc. IMPROVED WINDOW FOR GaN LED
US6818467B2 (en) 2002-03-25 2004-11-16 Pohang University Of Science And Technology Foundation P-type ohmic electrode in gallium nitride based optical device and fabrication method thereof
US6872649B2 (en) 1999-04-15 2005-03-29 Sumitomo Electric Industries, Ltd. Method of manufacturing transparent conductor film and compound semiconductor light-emitting device with the film
US6936859B1 (en) 1998-05-13 2005-08-30 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
JP2005317676A (en) * 2004-04-27 2005-11-10 Sony Corp Semiconductor light emitting device, manufacturing method thereof and semiconductor light emitting apparatus
JP2006074042A (en) * 2004-08-31 2006-03-16 Samsung Electro Mech Co Ltd Reflecting electrode, and compound semiconductor light-emitting device having the same
KR100737093B1 (en) 2005-01-05 2007-07-06 엘지이노텍 주식회사 Semiconductor lighting emitting device
KR100828878B1 (en) * 2007-04-06 2008-05-09 엘지이노텍 주식회사 Semiconductor lighting emitting device and semiconductor lighting emitting apparatus having the same
CN100426544C (en) * 2000-05-26 2008-10-15 奥斯兰姆奥普托半导体有限责任公司 Light-emitting-diode chip comprising a sequence of gan-based epitaxial layer which emit radiation, and a method for producing the same
JP2015037176A (en) * 2013-08-16 2015-02-23 隆達電子股▲ふん▼有限公司 Light emitting diode and manufacturing method of the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936859B1 (en) 1998-05-13 2005-08-30 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
US7109529B2 (en) 1998-05-13 2006-09-19 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
US6872649B2 (en) 1999-04-15 2005-03-29 Sumitomo Electric Industries, Ltd. Method of manufacturing transparent conductor film and compound semiconductor light-emitting device with the film
US6876003B1 (en) 1999-04-15 2005-04-05 Sumitomo Electric Industries, Ltd. Semiconductor light-emitting device, method of manufacturing transparent conductor film and method of manufacturing compound semiconductor light-emitting device
US6287947B1 (en) 1999-06-08 2001-09-11 Lumileds Lighting, U.S. Llc Method of forming transparent contacts to a p-type GaN layer
JP2001044495A (en) * 1999-07-29 2001-02-16 Showa Denko Kk AlGaInP LIGHT EMITTING DIODE
CN100426544C (en) * 2000-05-26 2008-10-15 奥斯兰姆奥普托半导体有限责任公司 Light-emitting-diode chip comprising a sequence of gan-based epitaxial layer which emit radiation, and a method for producing the same
EP1320894A1 (en) * 2000-07-26 2003-06-25 American Xtal Technology, Inc. IMPROVED WINDOW FOR GaN LED
EP1320894A4 (en) * 2000-07-26 2007-02-14 Lumei Optoelectronics Corp IMPROVED WINDOW FOR GaN LED
USRE42636E1 (en) 2000-07-26 2011-08-23 Dalian Lumei Optoelectronics Corporation Window for gallium nitride light emitting diode
KR100491968B1 (en) * 2002-03-25 2005-05-27 학교법인 포항공과대학교 Fabrication method of P-type ohmic electrode in gallium nitride based optical device
US6818467B2 (en) 2002-03-25 2004-11-16 Pohang University Of Science And Technology Foundation P-type ohmic electrode in gallium nitride based optical device and fabrication method thereof
JP2005317676A (en) * 2004-04-27 2005-11-10 Sony Corp Semiconductor light emitting device, manufacturing method thereof and semiconductor light emitting apparatus
WO2005106974A1 (en) * 2004-04-27 2005-11-10 Sony Corporation Semiconductor light emitting element, semiconductor light emitting device and method for manufacturing semiconductor light emitting element
US7700959B2 (en) 2004-04-27 2010-04-20 Sony Corporation Semiconductor light-emitting device, semiconductor light-emitting apparatus, and method of manufacturing semiconductor light-emitting device
JP2006074042A (en) * 2004-08-31 2006-03-16 Samsung Electro Mech Co Ltd Reflecting electrode, and compound semiconductor light-emitting device having the same
KR100737093B1 (en) 2005-01-05 2007-07-06 엘지이노텍 주식회사 Semiconductor lighting emitting device
KR100828878B1 (en) * 2007-04-06 2008-05-09 엘지이노텍 주식회사 Semiconductor lighting emitting device and semiconductor lighting emitting apparatus having the same
JP2015037176A (en) * 2013-08-16 2015-02-23 隆達電子股▲ふん▼有限公司 Light emitting diode and manufacturing method of the same
US9130108B2 (en) 2013-08-16 2015-09-08 Lextar Electronics Corporation Light-emitting diode and method for manufacturing thereof

Also Published As

Publication number Publication date
JP3746569B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
US6693352B1 (en) Contact structure for group III-V semiconductor devices and method of producing the same
KR100631840B1 (en) Nitride semiconductor light emitting device for flip chip
US5760423A (en) Semiconductor light emitting device, electrode of the same device and method of manufacturing the same device
US9281439B2 (en) Nitride semiconductor element and method for producing same
US6586773B2 (en) Semiconductor light-emitting device
KR100799857B1 (en) Electrode structure and semiconductor light-emitting device provided with the same
JP3333356B2 (en) Semiconductor device
KR100631976B1 (en) Group iii-nitride light emitting device
US7821026B2 (en) Light emitting diode device and manufacturing method therof
JP3720341B2 (en) Semiconductor light emitting device
US20050236636A1 (en) GaN-based light-emitting diode structure
US6946685B1 (en) Light emitting semiconductor method and device
JP2005175462A (en) Semiconductor luminous element and manufacturing method of the same
US20080283858A1 (en) Light-emitting diode and method for manufacturing same
EP1530242B1 (en) Semiconductor light emitting device
JPH1012921A (en) Light-emitting semiconductor element
JP2000077713A (en) Semiconductor light-emitting element
JP2003243705A (en) Light emitting semiconductor method and device
JP2007214569A (en) Flip-chip light-emitting device
KR100674875B1 (en) Flip chip type light emitting device
US20060234411A1 (en) Method of manufacturing nitride semiconductor light emitting diode
JP2004200303A (en) Light emitting diode
CN1866559B (en) Nitride semiconductor light emitting device
JP2941743B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
KR100631970B1 (en) Nitride semiconductor light emitting device for flip chip

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051124

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees