JPH11147845A - Production of aldehydes and/or alcohols - Google Patents

Production of aldehydes and/or alcohols

Info

Publication number
JPH11147845A
JPH11147845A JP31491197A JP31491197A JPH11147845A JP H11147845 A JPH11147845 A JP H11147845A JP 31491197 A JP31491197 A JP 31491197A JP 31491197 A JP31491197 A JP 31491197A JP H11147845 A JPH11147845 A JP H11147845A
Authority
JP
Japan
Prior art keywords
acid
carboxylic acid
catalyst
reaction
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31491197A
Other languages
Japanese (ja)
Other versions
JP3780669B2 (en
Inventor
Toshiharu Yokoyama
壽治 横山
Hiroyoshi Endou
浩悦 遠藤
Naoko Katsumura
尚子 勝村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP31491197A priority Critical patent/JP3780669B2/en
Publication of JPH11147845A publication Critical patent/JPH11147845A/en
Application granted granted Critical
Publication of JP3780669B2 publication Critical patent/JP3780669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/41Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenolysis or reduction of carboxylic groups or functional derivatives thereof

Abstract

PROBLEM TO BE SOLVED: To produce aldehydes and/or alcohols in a high yield by the vapor- phase reduction of a carboxylic acid. SOLUTION: A carboxylic acid or its derivative is reduced with molecular hydrogen in vapor phase in the presence of a catalyst produced by supporting a ruthenium component, a tin component and a platinum component on a carrier. The catalyst carrier is silica and the carboxylic acid or its derivative is selected from alicyclic carboxylic acids, aromatic carboxylic acids, heterocyclic carboxylic acids and their derivatives.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルデヒド類及び/
又はアルコール類の製造方法に関する。詳しくはカルボ
ン酸又はその誘導体を、分子状水素により気相で還元す
るに際し、高活性な触媒を用いて収率良くアルデヒド類
及び/又はアルコール類を製造する方法に関する。
The present invention relates to aldehydes and / or aldehydes.
Alternatively, the present invention relates to a method for producing alcohols. More specifically, the present invention relates to a method for producing aldehydes and / or alcohols with high yield using a highly active catalyst when carboxylic acid or its derivative is reduced in the gas phase with molecular hydrogen.

【0002】[0002]

【従来の技術】アルコール類やアルデヒド類は、有機合
成中間体等として有用な化合物である。アルデヒド類、
あるいはアルコール類は種々の製造方法が知られている
が、その1つとして、カルボン酸から分子状水素を用い
て直接アルデヒド、及び/又はアルコールを製造する方
法がある。この方法は、もっとも望ましい方法と考えら
れるが、技術的に困難と考えられてきた。カルボン酸類
を分子状水素により直接水素化して、アルコールを製造
する反応は公知である。これらは反応に高い圧力を必要
とし、主に液相で反応が行われている。そのため、高圧
反応用の反応装置が必要となり、コスト面、安全面で問
題がある上に、液相反応である故に、触媒成分の溶出が
起こり、触媒寿命が短くなるという問題があった。例え
ば、特開平7−165644号には、ルテニウム−白金
−スズの担持触媒の存在下、マレイン酸等のC4 カルボ
ン酸を液相で水素化して1,4−ブタンジオール及びテ
トラヒドロフランを製造する方法が開示されている。こ
の方法も反応に高い圧力を必要とし、主に液相で反応が
行われている。また、この方法ではアルデヒドの生成は
報告されていない。気相反応で、かつ、常圧付近でカル
ボン酸類を直接水素化し、アルコールを得ることが出来
るような触媒ができれば、上記のような問題点を回避で
き、プロセス上有利であるが、そのような触媒の報告は
ほとんど存在しない。
2. Description of the Related Art Alcohols and aldehydes are compounds useful as intermediates in organic synthesis. Aldehydes,
Alternatively, various production methods for alcohols are known, and one of them is a method for directly producing aldehyde and / or alcohol from carboxylic acid using molecular hydrogen. This method is considered the most desirable method, but has been considered technically difficult. Reactions for the direct hydrogenation of carboxylic acids with molecular hydrogen to produce alcohols are known. These require a high pressure for the reaction, and the reaction is mainly performed in a liquid phase. Therefore, a reaction device for a high-pressure reaction is required, and there are problems in terms of cost and safety, and in addition, since the reaction is a liquid phase reaction, elution of a catalyst component occurs, thereby shortening the life of the catalyst. For example, JP-A-7-165644 discloses a method for producing 1,4-butanediol and tetrahydrofuran by hydrogenating a C 4 carboxylic acid such as maleic acid in a liquid phase in the presence of a supported ruthenium-platinum-tin catalyst. Is disclosed. This method also requires a high pressure for the reaction, and the reaction is mainly performed in a liquid phase. No aldehyde formation has been reported by this method. In the gas phase reaction, and directly hydrogenating carboxylic acids at around normal pressure, if a catalyst capable of obtaining an alcohol can be obtained, the above problems can be avoided and the process is advantageous. There are few reports of catalysts.

【0003】一方、カルボン酸類を直接水素化してアル
デヒドを製造する場合には、一般的に、金属酸化物類を
触媒として用い、気相で反応を行う方法が提唱されてき
ている。これら各種の金属酸化物類の中では、酸化ジル
コニウムを主成分とする触媒を用いた場合には、高いア
ルデヒド選択率を達成することが出来ることが報告され
ている。(特開昭60−152434号、特開昭60−
243037号、特開昭61−115043号参照)。
しかし、これら各種の金属酸化物類を触媒として用いた
場合は、すべて反応温度が350℃前後という高温であ
った。そのため、原料カルボン酸又はその誘導体が熱的
に不安定な場合は、反応を行うことが困難であった。ま
た、生成物が熱的に不安定な場合は、熱の為にそれらが
分解してしまうので、目的とするアルデヒドの選択率が
大きく減少してしまい、好ましい方法とは言えない。例
えば、特公平7−68155号には、ルテニウム及びス
ズをシリカ、アルミナなどの担体上に担持した触媒を用
いて、気相でカルボン酸を水素化する方法が開示されて
いる。この場合、気相反応は常圧下、250℃付近とい
う低温で反応が進行すると報告されているが、活性自体
が低い上に、アルデヒドの選択率が不十分であり、逐次
水素化反応等による副生成物の生成が多いので、実用に
耐えない。また、これら気相でのアルデヒド製造方法に
おいては、副生物としてアルコールが僅かに得られる場
合があるがその収量は低く、アルデヒドとアルコールの
併産は望めなかった。
[0003] On the other hand, when aldehydes are produced by directly hydrogenating carboxylic acids, a method in which a metal oxide is used as a catalyst to carry out a reaction in a gas phase has been generally proposed. Among these various metal oxides, it has been reported that a high aldehyde selectivity can be achieved when a catalyst containing zirconium oxide as a main component is used. (JP-A-60-152434, JP-A-60-152)
243037, JP-A-61-115043).
However, when these various metal oxides were used as catalysts, the reaction temperature was as high as about 350 ° C. Therefore, when the starting carboxylic acid or its derivative is thermally unstable, it has been difficult to carry out the reaction. Further, when the products are thermally unstable, they are decomposed due to heat, and the selectivity of the target aldehyde is greatly reduced, which is not a preferable method. For example, Japanese Patent Publication No. 7-68155 discloses a method of hydrogenating a carboxylic acid in the gas phase using a catalyst in which ruthenium and tin are supported on a carrier such as silica or alumina. In this case, it is reported that the gas phase reaction proceeds at a low temperature of around 250 ° C. under normal pressure, but the activity itself is low and the selectivity of aldehyde is insufficient, so that the secondary reaction by It is not practical for practical use due to the large amount of product produced. In addition, in these aldehyde production methods in the gas phase, alcohol may be slightly obtained as a by-product, but the yield is low and coproduction of aldehyde and alcohol cannot be expected.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記背景に
鑑み成されたものであって、気相反応で、且つ、常圧付
近の低圧でカルボン酸類を直接水素化して、アルデヒド
及び、又はアルコールを製造する方法を提供することを
目的とするものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above background, and it is an object of the present invention to directly hydrogenate carboxylic acids in a gas phase reaction and at a low pressure near normal pressure to produce an aldehyde and / or It is an object of the present invention to provide a method for producing alcohol.

【0005】[0005]

【課題を解決するための手段】本発明者等は上記目的を
達成するため、鋭意検討した結果、ルテニウム、スズ及
び白金の3成分を担体に担持させた触媒を使用すること
により、かかる目的を達成した。即ち、本発明の要旨
は、ルテニウム成分、スズ成分、及び白金成分を担体に
担持してなる触媒の存在下、分子状水素により気相で還
元することを特徴とするアルデヒド類及び、又はアルコ
ール類の製造方法に存する。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, by using a catalyst in which three components of ruthenium, tin and platinum are supported on a carrier, this object has been achieved. Achieved. That is, the gist of the present invention is that aldehydes and / or alcohols characterized in that they are reduced in the gas phase by molecular hydrogen in the presence of a catalyst comprising a ruthenium component, a tin component, and a platinum component supported on a carrier. In the manufacturing method.

【0006】以下、本発明について詳細に説明する。本
発明の出発原料は、脂肪族、脂環族、芳香族又は複素環
式のカルボン酸或いはこれらの誘導体である。脂肪族カ
ルボン酸としては、具体的には、酢酸、プロピオン酸、
酪酸、イソ酪酸、吉草酸、イソ吉草酸、ピバル酸、ヘキ
サン酸、ヘプタン酸、オクタン酸、2−エチルヘキサン
酸、ノナン酸、デカン酸、ウンデカン酸、ラルリン酸、
トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキ
サデカン酸、ステアリン酸、イソステアリン酸、ノナデ
カン酸、トリコサン酸、テトラコサン酸、アクリル酸、
メタクリル酸、10−ウンデセン酸、9−オクタデセン
酸、オレイン酸、11−エイコセン酸等の炭素数2〜2
4の飽和又は不飽和カルボン酸が挙げられる。また、シ
ュウ酸、マロン酸、ジエチルマロン酸、こはく酸、マレ
イン酸、グルタル酸、アジピン酸、デカン二酸、オクタ
デカン二酸等のポリカルボン酸も使用することが出来
る。
Hereinafter, the present invention will be described in detail. The starting material of the present invention is an aliphatic, alicyclic, aromatic or heterocyclic carboxylic acid or a derivative thereof. As the aliphatic carboxylic acid, specifically, acetic acid, propionic acid,
Butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, decanoic acid, undecanoic acid, rallic acid,
Tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, stearic acid, isostearic acid, nonadecanoic acid, tricosanoic acid, tetracosanoic acid, acrylic acid,
C2-C2 such as methacrylic acid, 10-undecenoic acid, 9-octadecenoic acid, oleic acid, and 11-eicosenoic acid
And 4 saturated or unsaturated carboxylic acids. Further, polycarboxylic acids such as oxalic acid, malonic acid, diethylmalonic acid, succinic acid, maleic acid, glutaric acid, adipic acid, decandioic acid and octadecandioic acid can also be used.

【0007】脂環族カルボン酸としては、シクロペンタ
ンカルボン酸、シクロヘキサンカルボン酸、1,4−シ
クロヘキサンジカルボン酸等が挙げられる。また、脂肪
族カルボン酸あるいは脂環式カルボン酸は、置換基とし
て、反応に不活性な基を有していても良く、そのような
置換基としては、例えばアリール基、O、S、N等の原
子を含む複素環基、エーテル基、アルコキシ基等が挙げ
られる。具体的には、フェニル酢酸、桂皮酸、グリコー
ル酸等が例示される。
The alicyclic carboxylic acids include cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, 1,4-cyclohexanedicarboxylic acid and the like. Further, the aliphatic carboxylic acid or the alicyclic carboxylic acid may have a group which is inert to the reaction as a substituent. Examples of such a substituent include an aryl group, O, S, N and the like. A heterocyclic group, an ether group, an alkoxy group or the like containing the above atom. Specifically, phenylacetic acid, cinnamic acid, glycolic acid and the like are exemplified.

【0008】芳香族カルボン酸は一般式Ar−(COO
H)nで示すことが出来る(式中、nは1又は2であ
り、Arは置換基を有していても良いアリール基を表
す。)。Arで示されるアリール基としては、通常、フ
ェニル基、ナフチル基、アントリル基が挙げられ、アリ
ール基が有しうる置換基としては、例えば、アルキル
基、シクロアルキル基、アルコキシ基、アリールオキシ
基、ハロゲン原子、ヒドロキシル基、ホルミル基、アシ
ル基等が挙げられる。具体的な化合物としては、例え
ば、安息香酸、トルイル酸、ジメチル安息香酸、シクロ
ヘキシル安息香酸、クミン酸、t−ブチル安息香酸、フ
ェニル安息香酸、アニス酸、フェノキシ安息香酸、クロ
ロ安息香酸、フルオロ安息香酸、ヒドロキシ安息香酸、
アセチル安息香酸、ナフトエ酸、ナフタレンジカルボン
酸類、アントラセンカルボン酸等のカルボン酸が挙げら
れる。また、フタル酸等も使用することができる。
The aromatic carboxylic acid has the general formula Ar- (COO)
H) It can be represented by n (in the formula, n is 1 or 2, and Ar represents an aryl group which may have a substituent). The aryl group represented by Ar typically includes a phenyl group, a naphthyl group, and an anthryl group. Examples of the substituent that the aryl group may have include, for example, an alkyl group, a cycloalkyl group, an alkoxy group, an aryloxy group, Examples include a halogen atom, a hydroxyl group, a formyl group, and an acyl group. Specific compounds include, for example, benzoic acid, toluic acid, dimethylbenzoic acid, cyclohexylbenzoic acid, cumic acid, t-butylbenzoic acid, phenylbenzoic acid, anisic acid, phenoxybenzoic acid, chlorobenzoic acid, fluorobenzoic acid , Hydroxybenzoic acid,
Carboxylic acids such as acetylbenzoic acid, naphthoic acid, naphthalenedicarboxylic acids, anthracenecarboxylic acid and the like can be mentioned. Also, phthalic acid and the like can be used.

【0009】本発明に用いられる原料の複素環式カルボ
ン酸を構成する複素環とは、その環内に、少なくとも1
個のN、S、又はO原子を有するものであり、具体的に
は、ピロール環、フラン環、チオフェン環、オキサゾー
ル環、チアゾール環、オキサゾリン環、イミダゾール
環、イミダゾリン環、ピラゾール環、ピラン環、チオピ
ラン環、ピリジン環、キノリン環、オキサジン環、チア
ジン環、ピリミジン環、ピラジン環、トリアジン環、ア
ゼピン環、オキゼピン環等が挙げられる。具体的には、
ニコチン酸、フランカルボン酸、チアゾールカルボン酸
等が挙げられる。また、複素環式カルボン酸は、置換基
として、反応に不活性な基を有していても良く、そのよ
うな置換基としては、例えばアリール基、O、S、N等
の原子を含む複素環基、エーテル基、アルコキシ基等が
挙げられる。
The heterocyclic ring constituting the starting heterocyclic carboxylic acid used in the present invention has at least one heterocyclic ring in the ring.
N, S, or O atoms, specifically, a pyrrole ring, a furan ring, a thiophene ring, an oxazole ring, a thiazole ring, an oxazoline ring, an imidazole ring, an imidazoline ring, a pyrazole ring, a pyran ring, Examples thereof include a thiopyran ring, a pyridine ring, a quinoline ring, an oxazine ring, a thiazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an azepine ring, and an oxzepine ring. In particular,
Nicotinic acid, furan carboxylic acid, thiazole carboxylic acid and the like can be mentioned. Further, the heterocyclic carboxylic acid may have, as a substituent, a group which is inert to the reaction. Examples of such a substituent include an aryl group, a heteroatom containing an atom such as O, S, and N. Examples include a ring group, an ether group, and an alkoxy group.

【0010】本発明に用いる原料としては、上述のカル
ボン酸の誘導体も使用できる。かかる誘導体としては、
例えばエステル、酸無水物等が挙げられる。エステルと
しては、脂肪族、脂環族、芳香族エステル等のいずれで
も良く、具体的には、上記に例示されたカルボン酸のメ
チルエステル、エチルエステル、n−ブチルエステル、
イソブチルエステル、オクチルエステル、シクロヘキシ
ルエステル、フェニルエステル等があり、ポリカルボン
酸の場合はハーフエステルであっても、2種のアルコー
ルとのエステルであっても良い。無水物としては、ホモ
無水物でもヘテロ無水物でも良い。芳香族カルボン酸又
は複素環式カルボン酸の誘導体としては、低級アルキル
エステルが好ましい。上記のカルボン酸及びその誘導体
の中、本発明方法の出発原料としては、脂環式カルボン
酸、芳香族カルボン酸、複素環式カルボン酸又はこれら
の誘導体を用いるのが好ましく、特に芳香族カルボン酸
又はこれらの誘導体が好ましい。
As the raw material used in the present invention, the above-mentioned carboxylic acid derivatives can also be used. Such derivatives include:
For example, esters, acid anhydrides and the like can be mentioned. The ester may be any of aliphatic, alicyclic, and aromatic esters, and specifically, methyl ester, ethyl ester, n-butyl ester of the carboxylic acid exemplified above,
There are isobutyl ester, octyl ester, cyclohexyl ester, phenyl ester and the like. In the case of polycarboxylic acid, it may be a half ester or an ester with two kinds of alcohols. The anhydride may be a homo anhydride or a hetero anhydride. As the derivative of the aromatic carboxylic acid or the heterocyclic carboxylic acid, a lower alkyl ester is preferable. Among the above-mentioned carboxylic acids and derivatives thereof, it is preferable to use an alicyclic carboxylic acid, an aromatic carboxylic acid, a heterocyclic carboxylic acid or a derivative thereof as a starting material for the method of the present invention. Or their derivatives are preferred.

【0011】本発明方法においては、ルテニウム(R
u)と白金(Pt)(以下、RuとPtを総称して、
「貴金属成分」とする。)とスズ(Sn)とを担体に担
持してなる触媒を使用する。担体としては、活性炭、グ
ラファイト、珪藻土、シリカ、アルミナ、チタニア、ジ
ルコニア、クロミア等の多孔質担体を単独又は2種以上
を組み合わせて用いることが出来る。好ましくは、シリ
カ、活性炭、又はクロミアがよく、より好ましくはシリ
カである。触媒の調製法は特に制限はなく、例えば公知
の、共沈法、浸漬法等の方法で調製できる。浸漬法によ
るときは、例えば、上記貴金属成分の化合物及びスズ化
合物を溶解可能な溶媒、例えば、水に溶解して溶液と
し、この溶液に別途調製した多孔質担体を浸漬して、担
体に貴金属成分及びスズからなる触媒成分を担持させ
る。担体に各触媒成分を担持させる方法についても特に
限定されるものではなく、全ての金属成分を一度に同時
に担持させても、各成分を個別に1つずつ担持させて
も、または成分のいくつかを組み合わせて複数回にわた
って担持させてもよい。
In the method of the present invention, ruthenium (R
u) and platinum (Pt) (hereinafter Ru and Pt are collectively referred to as
It is referred to as "noble metal component". ) And tin (Sn) supported on a carrier. As the carrier, a porous carrier such as activated carbon, graphite, diatomaceous earth, silica, alumina, titania, zirconia, and chromia can be used alone or in combination of two or more. Preferably, silica, activated carbon, or chromia is used, and more preferably, silica is used. The method for preparing the catalyst is not particularly limited, and for example, can be prepared by a known method such as a coprecipitation method or a dipping method. When the immersion method is used, for example, a solvent capable of dissolving the compound of the noble metal component and the tin compound, for example, dissolved in water to form a solution, and a separately prepared porous carrier is immersed in this solution, and the noble metal component is immersed in the carrier. And a catalyst component comprising tin. The method for supporting each catalyst component on the carrier is not particularly limited, either, all the metal components are supported simultaneously at a time, each component is supported individually one by one, or some of the components are supported. May be combined and carried multiple times.

【0012】貴金属成分(RuとPtの合計量)及び、
スズの担持量は、それぞれ金属元素換算で担体に対し
て、通常0.5〜50重量%、好ましくは1〜20重量
%である。PtはRuに対して、0.01〜10重量倍
共存させるのが活性向上の観点から好ましい。スズは、
貴金属成分に対して、通常0.1〜20重量倍共存させ
るのが、生成物の選択性向上の観点から好ましい。な
お、本発明に用いられる貴金属成分とスズの原料化合物
としては、それらの金属の硝酸、硫酸、塩酸等の鉱酸塩
が一般的に使用されるが、酢酸などの有機酸塩、水酸化
物、酸化物または錯塩も使用することができる。これら
の原料化合物としては、担体に浸漬担持する際に使用す
る溶媒、例えば水等に可溶性のものが、操作上好まし
い。
A noble metal component (total amount of Ru and Pt);
The supported amount of tin is usually 0.5 to 50% by weight, preferably 1 to 20% by weight, based on the carrier in terms of metal element. Pt is preferably present in an amount of 0.01 to 10 times the weight of Ru from the viewpoint of improving the activity. Tin is
It is usually preferable to coexist 0.1 to 20 times by weight of the noble metal component from the viewpoint of improving the selectivity of the product. As a noble metal component and a raw material compound of tin used in the present invention, mineral salts of such metals such as nitric acid, sulfuric acid and hydrochloric acid are generally used, but organic acid salts such as acetic acid and hydroxides thereof are used. , Oxides or complex salts can also be used. As these raw material compounds, those which are soluble in a solvent used when immersed and supported on a carrier, for example, water or the like, are preferable in terms of operation.

【0013】具体的には、触媒原料としてのルテニウム
化合物としては、例えば、硝酸ルテニウム、硫酸ルテニ
ウム、塩化ルテニウム、臭化ルテニウム、ヨウ化ルテニ
ウム、水酸化ルテニウム、酸化ルテニウム、ルテニウム
酸カリウム、ルテニウムアルコキシド、オキシデカクロ
ロジルテニウム酸アンモニウム、ペンタクロロアクアル
テニウム酸アンモニウム、塩化ルテニウム酸アンモニウ
ム、オキシデカクロロジルテニウム酸カリウム、ペンタ
クロロアクアルテニウム酸カリウム、過ルテニウム酸カ
リウム、硝酸ニトロシルルテニウム、オキシデカクロロ
ジルテニウム酸ナトリウム、ヘキサアンミンルテニウム
塩化物、ペンタアンミンクロロルテニウム塩化物、ヘキ
サアンミンルテニウム臭化物、ドデカカルボニルトリル
テニウム、ヘキサカルボニルテトラクロロジルテニウ
ム、トリカルボニルトリクロロルテニウム酸セシウム、
トリス(アセチルアセトナト)ルテニウム、トリカルボ
ニルビス(トリフェニルホスフィン)ルテニウム、ジク
ロロトリス(トリフェニルホスフィン)ルテニウム等が
挙げられる。
Specifically, the ruthenium compound as a catalyst raw material includes, for example, ruthenium nitrate, ruthenium sulfate, ruthenium chloride, ruthenium bromide, ruthenium iodide, ruthenium hydroxide, ruthenium oxide, potassium ruthenate, ruthenium alkoxide, Ammonium oxydecachlorodiruthenate, ammonium pentachloroaquaruthenate, ammonium ruthenate, potassium oxydecachlorodiruthenate, potassium pentachloroaquaruthenate, potassium perruthenate, nitrosylruthenium nitrate, oxydecachlorodiruthenate Sodium, hexaammineruthenium chloride, pentaamminechlororuthenium chloride, hexaammineruthenium bromide, dodecacarbonyltriruthenium, hexa Rubo sulfonyl tetrachloro diruthenium, tricarbonyl trichloro ruthenium cesium,
Tris (acetylacetonato) ruthenium, tricarbonylbis (triphenylphosphine) ruthenium, dichlorotris (triphenylphosphine) ruthenium, and the like.

【0014】触媒原料としての白金化合物としては、具
体的には、例えば、硫酸白金、塩化白金、臭化白金、ヨ
ウ化白金、酸化白金、ヘキサブロモ白金酸アンモニウ
ム、テトラクロロ白金酸アンモニウム、ジニトロジアミ
ン白金、ジニトロサルファイト白金酸、ヘキサブロモ白
金酸、ヘキサクロロ白金酸、ヘキサヒドロキシ白金酸、
ヘキサブロモ白金酸カリウム、ヘキサクロロ白金酸カリ
ウム、ヘキサヨード白金酸カリウム、ヘキサヒドロキソ
白金酸カリウム、テトラブロモ白金酸カリウム、テトラ
クロロ白金酸カリウム、ヘキサブロモ白金酸ナトリウ
ム、ヘキサクロロ白金酸ナトリウム、ヘキサヒドロキソ
白金酸ナトリウム、テトラクロロ白金酸ナトリウム、テ
トラアンミン白金塩化物、テトラアンミン白金水酸化
物、テトラシアノ白金酸等が挙げられる。触媒原料とし
てのスズ化合物としては、具体的には、例えば、硫酸ス
ズ、リン酸スズ、塩化スズ、臭化スズ、ヨウ化スズ、酸
化スズ、スズ酸カリウム、スズ酸ナトリウム、酢酸ス
ズ、スズアルコキシド、スズのアセチルアセトネート錯
体等が挙げられる。なおスズ化合物は第1スズ(II)
化合物及び第2スズ(IV)化合物のいずれであっても
良い。
Specific examples of the platinum compound as a catalyst raw material include platinum sulfate, platinum chloride, platinum bromide, platinum iodide, platinum oxide, ammonium hexabromoplatinate, ammonium tetrachloroplatinate, and dinitrodiamine platinum. , Dinitrosulfite platinate, hexabromoplatinate, hexachloroplatinate, hexahydroxyplatinate,
Potassium hexabromoplatinate, potassium hexachloroplatinate, potassium hexaiodoplatinate, potassium hexahydroxoplatinate, potassium tetrabromoplatinate, potassium tetrachloroplatinate, sodium hexabromoplatinate, sodium hexachloroplatinate, sodium hexahydroxoplatinate, tetrachloroplatinum Examples include sodium platinate, tetraammineplatinum chloride, tetraammineplatinum hydroxide, and tetracyanoplatinic acid. Specific examples of the tin compound as a catalyst raw material include tin sulfate, tin phosphate, tin chloride, tin bromide, tin iodide, tin oxide, potassium stannate, sodium stannate, tin acetate, and tin alkoxide. , Acetylacetonate complex of tin and the like. The tin compound is stannous (II)
Any of a compound and a stannic (IV) compound may be used.

【0015】多孔質担体に、触媒成分の溶液を浸漬、担
持させた後は(複数回にわたって浸漬担持処理を行う場
合には、その都度)、必要に応じて乾燥を行っても良
い。この乾燥法に関しても制限は無いが、例えば、減圧
下での乾燥、風乾による乾燥、マッフル炉中での加温乾
燥、不活性ガス気流下で100℃〜150℃の温度条件
下での乾燥等の方法が挙げられる。具体的には、乾燥
は、例えば、減圧下、50〜100℃の温度条件下で処
理した後、アルゴンガスなどの不活性ガス気流下、10
0〜150℃の温度条件下で処理する方法などによって
行う。その後、必要に応じて、焼成、還元処理を行う。
焼成処理を行う場合は、通常100℃〜600℃の温度
範囲、好ましくは、200℃〜400℃の範囲で行われ
る。
After the solution of the catalyst component is immersed and supported on the porous carrier (when the immersion supporting process is performed a plurality of times, each time), drying may be performed if necessary. Although there is no limitation on the drying method, for example, drying under reduced pressure, drying by air drying, heating drying in a muffle furnace, drying under a temperature condition of 100 ° C. to 150 ° C. under an inert gas stream, etc. Method. Specifically, for example, drying is performed under reduced pressure under a temperature condition of 50 to 100 ° C., and then under a stream of an inert gas such as argon gas.
It is carried out by a method of treating under a temperature condition of 0 to 150 ° C. Thereafter, if necessary, firing and reduction treatments are performed.
When performing a baking process, it is usually performed in a temperature range of 100 ° C to 600 ° C, preferably in a range of 200 ° C to 400 ° C.

【0016】更に、触媒は、還元処理を行うことにより
活性化をすることが望ましい。還元処理を行う場合に
は、公知の液相還元法、気相還元法が採用される。気相
還元法の場合、通常100℃〜600℃の温度範囲、好
ましくは、300℃〜500℃の範囲で行われる。ま
た、液相還元法としては、例えばホルマリン還元法、ヒ
ドラジン還元法、リチウムアルミニウムハイドライド還
元法が挙げられる。還元処理の温度が低すぎたり、また
は処理時間が短すぎる条件では、触媒が十分に活性化さ
れず、期待される効果が十分に発揮されない場合がある
ので注意を要する。還元処理を行った後の触媒の構造に
関しては、その詳細は不明であるが、触媒が十分に活性
化される様な還元条件では、貴金属成分は実質的にすべ
てが金属に還元されると推定されている。
Further, it is desirable that the catalyst is activated by performing a reduction treatment. When performing the reduction treatment, a known liquid-phase reduction method and a known gas-phase reduction method are employed. In the case of the gas phase reduction method, the reaction is usually performed at a temperature in the range of 100 ° C to 600 ° C, preferably in the range of 300 ° C to 500 ° C. Examples of the liquid phase reduction method include a formalin reduction method, a hydrazine reduction method, and a lithium aluminum hydride reduction method. Care must be taken when the temperature of the reduction treatment is too low or the treatment time is too short because the catalyst may not be sufficiently activated and the expected effect may not be sufficiently exerted. Although the details of the structure of the catalyst after the reduction treatment are unknown, it is estimated that substantially all of the noble metal components are reduced to the metal under the reducing conditions under which the catalyst is sufficiently activated. Have been.

【0017】本発明によるカルボン酸の還元反応は、こ
の様にして得られた触媒を使用し、分子状水素を用い
て、気相で実施される。本発明による触媒を用いること
によって、高圧条件を用いずに常圧付近の圧力を用い、
且つ、従来より低い温度で、カルボン酸の水素化が高活
性で起こり、アルデヒド及び/又はアルコールを高収率
で製造できる。また、本発明方法は、アルコールとアル
デヒドの両者を併産出来るというメリットもある。アル
デヒド及びアルコールの生成の割合は、原料、反応条件
によって変動する。
The reduction reaction of the carboxylic acid according to the present invention is carried out in the gas phase using the thus obtained catalyst and using molecular hydrogen. By using the catalyst according to the present invention, using a pressure near normal pressure without using high pressure conditions,
In addition, the carboxylic acid hydrogenation occurs with high activity at a lower temperature than in the past, and aldehydes and / or alcohols can be produced in high yield. Further, the method of the present invention has an advantage that both alcohol and aldehyde can be produced simultaneously. The production ratio of aldehyde and alcohol varies depending on the raw materials and reaction conditions.

【0018】なお、生成したアルコールは、一部が原料
であるカルボン酸又はカルボン酸誘導体から生成したカ
ルボン酸と反応して、カルボン酸エステルを形成する。
このカルボン酸エステルは、反応系中に戻してやること
により、再度アルコール及び/またはアルデヒドを生成
することが出来るので、本明細書中では、反応により生
成したカルボン酸エステルも、有効成分(生産物)と見
なしている。ポリカルボン酸またはその誘導体からは、
ポリアルデヒド、ヒドロキシアルデヒド、ポリオール、
アルデヒドカルボン酸またはそのエステル、ヒドロキシ
カルボン酸またはそのエステル、ラクトン等が生成する
が、その割合は、原料、反応条件により変動する。
The produced alcohol partially reacts with a carboxylic acid or a carboxylic acid produced from a carboxylic acid derivative as a raw material to form a carboxylic acid ester.
By returning this carboxylic acid ester into the reaction system, alcohol and / or aldehyde can be formed again. Therefore, in this specification, the carboxylic acid ester formed by the reaction is also used as an active ingredient (product). Is considered. From polycarboxylic acids or derivatives thereof,
Polyaldehyde, hydroxyaldehyde, polyol,
Aldehydic carboxylic acids or their esters, hydroxycarboxylic acids or their esters, lactones and the like are produced, but the ratio varies depending on the raw materials and reaction conditions.

【0019】本発明の分子状水素による還元反応におい
て、反応圧力は常圧付近で実施すれば良いが、加圧状態
としても良い。常圧から100Kg/cm2 の間で実施
できる。好ましくは1から50kg/cm2 で実施する
のがよい。また、反応温度は100℃〜500℃、好ま
しくは150℃〜400℃、より好ましくは200℃〜
300℃の間の温度が選択される。
In the reduction reaction with molecular hydrogen of the present invention, the reaction pressure may be carried out at around normal pressure, but may be in a pressurized state. It can be carried out between normal pressure and 100 kg / cm 2 . Preferably, it is carried out at 1 to 50 kg / cm 2 . Further, the reaction temperature is 100 ° C to 500 ° C, preferably 150 ° C to 400 ° C, more preferably 200 ° C to
Temperatures between 300 ° C. are selected.

【0020】本発明の水素化反応における反応方法とし
ては、前述の触媒を固定床触媒として水素気流下、反応
を行うのが良く、その場合、供給原料中のカルボン酸又
はその誘導体の濃度は、気相で20(体積)%以下、好
ましくは0.01〜10(体積)%が望ましい。この濃
度が希薄すぎると反応の能率が不良となり、他方、濃度
が高すぎると反応を促進するためにより高い反応温度を
要して選択率が不良となるばかりでなく、触媒寿命が短
くなるなど問題が生じる場合がある。なお、使用する水
素には若干の反応に悪影響を及ぼさない気体、例えば窒
素、水蒸気等が含まれていても良い。反応で生成したア
ルコール類及び/又はアルデヒド類は、蒸留などの公知
の方法によりそれぞれの成分に分離精製するか、又は、
混合物のまま、その後の工程に供給することも出来る。
As a reaction method in the hydrogenation reaction of the present invention, it is preferable to carry out the reaction under a hydrogen stream using the above-mentioned catalyst as a fixed bed catalyst. In this case, the concentration of the carboxylic acid or its derivative in the feedstock is In the gas phase, the content is preferably 20 (volume)% or less, preferably 0.01 to 10 (volume)%. If the concentration is too low, the efficiency of the reaction will be poor. On the other hand, if the concentration is too high, a higher reaction temperature will be required to promote the reaction, not only the selectivity will be poor, but also the catalyst life will be shortened. May occur. Note that the hydrogen used may contain a gas that does not adversely affect the reaction, such as nitrogen or water vapor. The alcohols and / or aldehydes generated by the reaction are separated and purified into their components by a known method such as distillation, or
The mixture can be supplied to subsequent steps as it is.

【0021】[0021]

【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明はその要旨を越えない限り、これらの
実施例に限定されるものではない。なお、以下の例にお
いて、「%」は、「重量%」を意味する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist of the present invention. In the following examples, “%” means “% by weight”.

【0022】〔触媒調製例〕 (0.4%Ru/2.9%Sn/0.4%Pt/SiO
2 の調製)容量100mlのフラスコに、RuCl3
3H2 Oを0.133g、SnCl2 ・2H2 Oを0.
689g、H2 PtCl6 ・6H2 Oを0.1g秤量
し、さらに5N−HCl水溶液を13ml加えて溶解
後、担体としてSiO2 (商品名:キャリアクトQ−1
0、10〜20メッシュ)を12gを加えて、良く振と
うした。その後回転減圧乾燥機で50℃、25mmHg
下で溶媒の水を除去した後、窒素雰囲気下、150℃で
1時間焼成処理した。その後、水素気流下で、300
℃、30分処理を行ない触媒を得た。得られた触媒は、
担体に対し、ルテニウムを0.4%、スズを2.9%、
白金を0.4%含有している。
[Catalyst Preparation Example] (0.4% Ru / 2.9% Sn / 0.4% Pt / SiO)
Preparation of 2 ) RuCl 3.
3H 2 O to 0.133 g, the SnCl 2 · 2H 2 O 0.
689g, H 2 PtCl 6 · 6H 2 O was 0.1g weighed, further dissolved by adding 13ml of 5N-HCl aqueous solution, SiO 2 (trade name as a carrier: CARIACT Q-1
(0, 10 to 20 mesh) was added and shaken well. Then, at 50 ° C, 25 mmHg in a rotary vacuum dryer.
After removing water as a solvent under the above conditions, the mixture was calcined at 150 ° C. for 1 hour in a nitrogen atmosphere. Then, under hydrogen flow, 300
The mixture was treated at 30 ° C. for 30 minutes to obtain a catalyst. The resulting catalyst is
0.4% ruthenium, 2.9% tin,
Contains 0.4% of platinum.

【0023】〔触媒調製比較例1〕 (0.4%Ru/2.9%Sn/SiO2 の調製)容量
100mlのフラスコに、RuCl3 ・3H2 Oを0.
133g、SnCl2 ・2H2 Oを0.689g秤量
し、さらに5N−HCl水溶液を13ml加えて溶解
後、担体としてSiO2 (商品名:キャリアクトQ−1
0、10〜20メッシュ)を12gを加えて、良く振と
うした。その後回転減圧乾燥機で50℃、25mmHg
下で溶媒の水を除去した後、窒素雰囲気下、150℃で
1時間焼成処理した。その後、水素気流下で、300
℃、30分処理を行ない触媒を得た。得られた触媒は、
担体に対し、ルテニウムを0.4%、スズを2.9%含
有している。
[Comparative Example 1 for Preparation of Catalyst] (Preparation of 0.4% Ru / 2.9% Sn / SiO 2 ) RuCl 3 .3H 2 O was added to a flask having a capacity of 100 ml in a flask of 0.1 ml.
After weighing 133 g and 0.689 g of SnCl 2 .2H 2 O, 13 ml of a 5N-HCl aqueous solution was added and dissolved, and then SiO 2 (trade name: Carract Q-1) was used as a carrier.
(0, 10 to 20 mesh) was added and shaken well. Then, at 50 ° C, 25 mmHg in a rotary vacuum dryer.
After removing water as a solvent under the above conditions, the mixture was calcined at 150 ° C. for 1 hour in a nitrogen atmosphere. Then, under hydrogen flow, 300
The mixture was treated at 30 ° C. for 30 minutes to obtain a catalyst. The resulting catalyst is
The carrier contains 0.4% of ruthenium and 2.9% of tin.

【0024】実施例1 (Ru/Sn/Pt/SiO2 による安息香酸の水素化
反応)触媒調製例に基づいて製造した触媒7.4mlを
管型反応器に充填し、常圧、反応温度230℃、安息香
酸の空間速度:LHSV=0.054kg/l−ca
t.・hr、水素の空間速度:GHSV=1250hr
-1の条件で、安息香酸の水素化反応を気相で行った。安
息香酸の転化率は54.7%、ベンズアルデヒド選択率
は36.2%、ベンジルアルコール選択率は53.9%
であった。ベンズアルデヒド及びベンジルアルコールの
生成速度は0.435mol/kg−cat.・hrで
あった。
Example 1 (Hydrogenation reaction of benzoic acid with Ru / Sn / Pt / SiO 2 ) 7.4 ml of the catalyst produced based on the catalyst preparation example was charged into a tubular reactor, and the reaction was carried out at normal pressure and at a reaction temperature of 230. ° C, space velocity of benzoic acid: LHSV = 0.054 kg / l-ca
t. Hr, space velocity of hydrogen: GHSV = 1250 hr
Under the conditions of -1 , the hydrogenation reaction of benzoic acid was performed in the gas phase. Benzoic acid conversion was 54.7%, benzaldehyde selectivity was 36.2%, and benzyl alcohol selectivity was 53.9%.
Met. The formation rate of benzaldehyde and benzyl alcohol is 0.435 mol / kg-cat. Hr.

【0025】比較例1 (Ru/Sn/SiO2 による安息香酸の水素化反応)
触媒調製比較例1に基づいて製造した触媒7.4mlを
管型反応器に充填し、常圧、反応温度230℃で、安息
香酸の空間速度:LHSV=0.054kg/l−ca
t.・hr、水素の空間速度:GHSV=1250hr
-1の条件で安息香酸の水素化反応を気相で行った。安息
香酸の転化率8.4%、ベンズアルデヒド選択率80.
9%、ベンジルアルコール選択率14.7%であった。
ベンズアルデヒド及びベンジルアルコールの生成速度は
0.12mol/kg−cat.・hrであった。
Comparative Example 1 (Hydrogenation reaction of benzoic acid with Ru / Sn / SiO 2 )
Catalyst Preparation 7.4 ml of the catalyst produced based on Comparative Example 1 was charged into a tubular reactor, and at a normal pressure and a reaction temperature of 230 ° C., a space velocity of benzoic acid: LHSV = 0.054 kg / l-ca
t. Hr, space velocity of hydrogen: GHSV = 1250 hr
Hydrogenation of benzoic acid was performed in the gas phase under the condition of -1 . Benzoic acid conversion 8.4%, benzaldehyde selectivity 80.
9% and benzyl alcohol selectivity was 14.7%.
The production rate of benzaldehyde and benzyl alcohol is 0.12 mol / kg-cat. Hr.

【0026】[0026]

【発明の効果】実施例に示される様に、本発明方法は、
触媒としてRu/Sn/Pt/担体を用いることによ
り、従来のRu/Sn/担体からなる触媒を用いる場合
に比し、生成速度及び転化率が著しく向上する。また、
従来気相法では困難とされていたアルコールも収率良く
得られる。
As shown in the examples, the method of the present invention comprises:
By using Ru / Sn / Pt / support as the catalyst, the production rate and the conversion are remarkably improved as compared with the case where a conventional catalyst comprising Ru / Sn / support is used. Also,
Alcohol, which has been difficult in the conventional gas phase method, can be obtained in good yield.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 47/54 C07C 47/54 // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI C07C 47/54 C07C 47/54 // C07B 61/00 300 C07B 61/00 300

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ルテニウム成分、スズ成分、及び白金成
分を担体に担持してなる触媒の存在下、カルボン酸又は
その誘導体を、分子状水素により気相で還元することを
特徴とするアルデヒド類及び、又はアルコール類の製造
方法
An aldehyde which is characterized in that a carboxylic acid or a derivative thereof is reduced in the gas phase with molecular hydrogen in the presence of a catalyst comprising a ruthenium component, a tin component, and a platinum component supported on a carrier. Or method for producing alcohols
【請求項2】 触媒担体が、シリカであることを特徴と
する請求項1記載のアルデヒド類及び、又はアルコール
類の製造方法
2. The method for producing aldehydes and / or alcohols according to claim 1, wherein the catalyst carrier is silica.
【請求項3】 カルボン酸又はその誘導体が、脂環族カ
ルボン酸、芳香族カルボン酸、複素環式カルボン酸及び
それらの誘導体から選ばれることを特徴とする請求項1
又は2記載のアルデヒド類及び、又はアルコール類の製
造方法
3. The carboxylic acid or its derivative is selected from alicyclic carboxylic acid, aromatic carboxylic acid, heterocyclic carboxylic acid and derivatives thereof.
Or the method for producing aldehydes and / or alcohols according to 2.
JP31491197A 1997-11-17 1997-11-17 Method for producing aldehydes and / or alcohols Expired - Fee Related JP3780669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31491197A JP3780669B2 (en) 1997-11-17 1997-11-17 Method for producing aldehydes and / or alcohols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31491197A JP3780669B2 (en) 1997-11-17 1997-11-17 Method for producing aldehydes and / or alcohols

Publications (2)

Publication Number Publication Date
JPH11147845A true JPH11147845A (en) 1999-06-02
JP3780669B2 JP3780669B2 (en) 2006-05-31

Family

ID=18059134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31491197A Expired - Fee Related JP3780669B2 (en) 1997-11-17 1997-11-17 Method for producing aldehydes and / or alcohols

Country Status (1)

Country Link
JP (1) JP3780669B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294703B1 (en) * 1998-06-22 2001-09-25 Mitsubishi Chemical Company Process for the manufacture of cycloalkyldimethanol
WO2011056595A1 (en) * 2009-10-26 2011-05-12 Celanese International Corporation Catalyst for the production of ethanol by hydrogenation of acetic acid comprising platinum -tin on silicaceous support
CN102149661A (en) * 2008-07-31 2011-08-10 国际人造丝公司 Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US8227644B2 (en) 2008-07-31 2012-07-24 Celanese International Corporation Direct and selective production of acetaldehyde from acetic acid utilizing a supported metal catalyst
US8455702B1 (en) 2011-12-29 2013-06-04 Celanese International Corporation Cobalt and tin catalysts for producing ethanol
WO2013103851A1 (en) * 2012-01-06 2013-07-11 Celanese International Corporation Process for producing ethanol using catalyst prepared with reduced water content
WO2013103394A1 (en) * 2012-01-06 2013-07-11 Celanese International Corporation Processes for making catalysts with metal halide precursors
US8487143B2 (en) 2008-07-31 2013-07-16 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8536383B1 (en) 2012-03-14 2013-09-17 Celanese International Corporation Rhodium/tin catalysts and processes for producing ethanol
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
US8802588B2 (en) 2012-01-23 2014-08-12 Celanese International Corporation Bismuth catalyst composition and process for manufacturing ethanol mixture
US8815768B2 (en) 2012-01-06 2014-08-26 Celanese International Corporation Processes for making catalysts with acidic precursors
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8927786B2 (en) 2012-03-13 2015-01-06 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8937203B2 (en) 2012-01-06 2015-01-20 Celanese International Corporation Multifunctional hydrogenation catalysts
US8980789B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Modified catalyst supports
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
US8993815B2 (en) 2008-07-31 2015-03-31 Celanese International Corporation Process for vapor phase hydrogenation
US9024087B2 (en) 2008-07-31 2015-05-05 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
US9040443B2 (en) 2008-07-31 2015-05-26 Celanese International Corporation Catalysts for making ethanol from acetic acid
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US9073042B2 (en) 2012-03-14 2015-07-07 Celanese International Corporation Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
US9079172B2 (en) 2012-03-13 2015-07-14 Celanese International Corporation Promoters for cobalt-tin catalysts for reducing alkanoic acids
US9126194B2 (en) 2012-02-29 2015-09-08 Celanese International Corporation Catalyst having support containing tin and process for manufacturing ethanol
US9333496B2 (en) 2012-02-29 2016-05-10 Celanese International Corporation Cobalt/tin catalyst for producing ethanol
US9447005B2 (en) 2010-02-02 2016-09-20 Celanese International Corporation Processes for producing anhydrous ethanol compositions

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294703B1 (en) * 1998-06-22 2001-09-25 Mitsubishi Chemical Company Process for the manufacture of cycloalkyldimethanol
US9024087B2 (en) 2008-07-31 2015-05-05 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8993815B2 (en) 2008-07-31 2015-03-31 Celanese International Corporation Process for vapor phase hydrogenation
US8071821B2 (en) 2008-07-31 2011-12-06 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/ tin catalyst
JP2011529496A (en) * 2008-07-31 2011-12-08 セラニーズ・インターナショナル・コーポレーション Direct and selective production of ethanol from acetic acid using a platinum / tin catalyst
US8889923B2 (en) 2008-07-31 2014-11-18 Celanese International Corporation Synthesis of ethanol from biomass
EP2392556A3 (en) * 2008-07-31 2012-03-07 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
EP2392557A3 (en) * 2008-07-31 2012-03-14 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
JP2012126731A (en) * 2008-07-31 2012-07-05 Celanese Internatl Corp Direct and selective production of ethanol from acetic acid utilizing platinum/tin catalyst
US8227644B2 (en) 2008-07-31 2012-07-24 Celanese International Corporation Direct and selective production of acetaldehyde from acetic acid utilizing a supported metal catalyst
CN102149661A (en) * 2008-07-31 2011-08-10 国际人造丝公司 Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US9040443B2 (en) 2008-07-31 2015-05-26 Celanese International Corporation Catalysts for making ethanol from acetic acid
US8461395B2 (en) 2008-07-31 2013-06-11 Celanese International Corporation Synthesis of acetaldehyde from a carbon source
US8669400B2 (en) 2008-07-31 2014-03-11 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/ tin catalyst
US8853122B2 (en) 2008-07-31 2014-10-07 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8487143B2 (en) 2008-07-31 2013-07-16 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
WO2011056595A1 (en) * 2009-10-26 2011-05-12 Celanese International Corporation Catalyst for the production of ethanol by hydrogenation of acetic acid comprising platinum -tin on silicaceous support
JP2013508423A (en) * 2009-10-26 2013-03-07 セラニーズ・インターナショナル・コーポレーション Catalyst for producing ethanol by hydrogenation of acetic acid comprising platinum-tin on a siliceous support
CN102300635A (en) * 2009-10-26 2011-12-28 国际人造丝公司 Catalyst for the production of ethanol by hydrogenation of acetic acid comprising platinum-tin on silicaceous support
AU2010315552B2 (en) * 2009-10-26 2016-05-12 Celanese International Corporation Catalyst for the production of ethanol by hydrogenation of acetic acid comprising platinum -tin on silicaceous support
US9447005B2 (en) 2010-02-02 2016-09-20 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
US8455702B1 (en) 2011-12-29 2013-06-04 Celanese International Corporation Cobalt and tin catalysts for producing ethanol
WO2013103851A1 (en) * 2012-01-06 2013-07-11 Celanese International Corporation Process for producing ethanol using catalyst prepared with reduced water content
US9308523B2 (en) 2012-01-06 2016-04-12 Celanese International Corporation Hydrogenation catalysts with cobalt-modified supports
US8865609B2 (en) 2012-01-06 2014-10-21 Celanese International Corporation Hydrogenation catalysts
US8937203B2 (en) 2012-01-06 2015-01-20 Celanese International Corporation Multifunctional hydrogenation catalysts
US8975200B2 (en) 2012-01-06 2015-03-10 Celanese International Corporation Hydrogenation catalysts with cobalt-modified supports
US8980789B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Modified catalyst supports
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
WO2013103394A1 (en) * 2012-01-06 2013-07-11 Celanese International Corporation Processes for making catalysts with metal halide precursors
US8841230B2 (en) 2012-01-06 2014-09-23 Celanese International Corporation Processes for making catalysts with metal halide precursors
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
US9381500B2 (en) 2012-01-06 2016-07-05 Celanese International Corporation Process for producing ethanol using hydrogenation catalysts
US8815768B2 (en) 2012-01-06 2014-08-26 Celanese International Corporation Processes for making catalysts with acidic precursors
US8802588B2 (en) 2012-01-23 2014-08-12 Celanese International Corporation Bismuth catalyst composition and process for manufacturing ethanol mixture
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US9126194B2 (en) 2012-02-29 2015-09-08 Celanese International Corporation Catalyst having support containing tin and process for manufacturing ethanol
US9333496B2 (en) 2012-02-29 2016-05-10 Celanese International Corporation Cobalt/tin catalyst for producing ethanol
US9079172B2 (en) 2012-03-13 2015-07-14 Celanese International Corporation Promoters for cobalt-tin catalysts for reducing alkanoic acids
US8927786B2 (en) 2012-03-13 2015-01-06 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US9486781B2 (en) 2012-03-13 2016-11-08 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US9073042B2 (en) 2012-03-14 2015-07-07 Celanese International Corporation Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
US8536383B1 (en) 2012-03-14 2013-09-17 Celanese International Corporation Rhodium/tin catalysts and processes for producing ethanol

Also Published As

Publication number Publication date
JP3780669B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP3780669B2 (en) Method for producing aldehydes and / or alcohols
KR100798557B1 (en) Method for Catalytic Hydrogenation on Rhenium-Containing Active Carbon Carrier Catalysts
JP2776933B2 (en) Production of alcohols and ethers by catalytic hydrogenation of esters
JPH04500813A (en) Ester production by hydrogenation of carboxylic acids and anhydrides
CN1043697A (en) Carboxylic acid and acid anhydride ester production by hydrogenation
EP2912002B1 (en) Promoted ruthenium catalyst for the improved hydrogenation of carboxylic acids to the corresponding alcohols
TW419456B (en) Improved catalysts for The hydrogenation of aqueous maleic acid to 1, 4-butanediol
JP6268892B2 (en) Method for producing alcohol compound
JP3812101B2 (en) Method for producing aldehydes and / or alcohols
EP3359529B1 (en) Process for the preparation of gamma-valerolactone
JP3921877B2 (en) Method for producing 1,4-cyclohexanedimethanol
JP3744023B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JPH05246915A (en) Method for hydrogenating organic carboxylic acid and/or carboxylic acid ester
JP3928313B2 (en) Method for producing aldehydes
US6958407B2 (en) Process for producing phenyl ester, and catalyst
JP3921788B2 (en) Method for producing 1,6-hexanediol
JP2013527835A (en) Method for producing lactone
JP4517594B2 (en) Method for producing phenyl ester
JP4273784B2 (en) Method for producing phenyl ester
JP2000281621A (en) Production of phenyl ester
JP3915153B2 (en) Method for producing 3-hydroxymethyl-1,6-hexanediol
JP2023167909A (en) Method for producing vicinal diol derivative and catalyst
JP4888463B2 (en) Method for producing phenyl ester
JP2001011000A (en) Method for producing 1,4-butanediol and/or tetrahydrofuran
JP2004534077A (en) Method for carbonylation of lower aliphatic alcohols using tin promoted platinum catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090317

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100317

LAPS Cancellation because of no payment of annual fees