JPH11142018A - Air conditioning equipment and its operating method - Google Patents

Air conditioning equipment and its operating method

Info

Publication number
JPH11142018A
JPH11142018A JP30508897A JP30508897A JPH11142018A JP H11142018 A JPH11142018 A JP H11142018A JP 30508897 A JP30508897 A JP 30508897A JP 30508897 A JP30508897 A JP 30508897A JP H11142018 A JPH11142018 A JP H11142018A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat
load
common
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30508897A
Other languages
Japanese (ja)
Other versions
JP3614626B2 (en
Inventor
Hiroari Shiba
広有 柴
Hitoshi Iijima
等 飯島
Seiji Inoue
誠司 井上
Fumio Matsuoka
文雄 松岡
Toshiaki Yoshikawa
利彰 吉川
Kunihiro Inui
邦弘 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30508897A priority Critical patent/JP3614626B2/en
Publication of JPH11142018A publication Critical patent/JPH11142018A/en
Application granted granted Critical
Publication of JP3614626B2 publication Critical patent/JP3614626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a circuit by eliminating a bypass circuit and allow a heat transfer between equipment with different loads by forming between a heat source side expansion mechanism and a load side expansion mechanism a common heat exchanger used in common by a plurality of refrigerant circuits constituted in an annular shape. SOLUTION: In a refrigerant circuit 1 used to increase a cooling capacity, a refrigerant flowing through a common heat exchanger 7 is scarcely expanded by a heat source side expansion mechanism 4a thereby to cause the refrigerant to flow to the common heat exchanger 7 in a state of high pressure liquid. Then, the refrigerant is caused to expand by a load side expansion mechanism 6a and flow to a load side heat exchanger 5a as a low pressure two phase refrigerant. In a refrigerant circuit 2 with a surplus capacity on the other hand, a refrigerant flowing through the common heat exchanger 7 is caused to expand by a heat source side expansion mechanism 4b and flow to the common heat exchanger 7 as the low pressure two phase refrigerant. Then, the refrigerant is scarcely expanded by a load side expansion mechanism 6b and flow to a load side heat exchanger 5b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空気調和装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner.

【0002】[0002]

【従来の技術】図21は、例えば特許平7-318186号公報
に示された各冷媒回路間に共通の熱交換器を備えて熱移
動を行う従来の空気調和装置の装置図である。
2. Description of the Related Art FIG. 21 is an apparatus diagram of a conventional air conditioner which performs heat transfer by providing a common heat exchanger between refrigerant circuits disclosed in, for example, Japanese Patent Application Laid-Open No. 7-318186.

【0003】図21に基づいて、回路構成を説明する。
空調ユニット1、2は室外機1と室内機6a,6b,6
cを環状に接続してなる冷凍サイクルA及びBを構成
し、熱交換器回路Cは、冷媒熱交換器用膨張弁EV1と
空調ユニット1、2それぞれに共通する冷媒熱交換器H
Eを備えており、蓄熱回路Dは蓄熱漕用膨張弁EV2と
空調ユニット1、2それぞれに共通する蓄熱漕STRを
備え、室内側熱交換器8に対して並列にバイパス弁BV
2を備えたバイパス回路を設置し、かつ熱交換回路Cを
第1二方弁KV1、及び第2二方弁KV2を介して、ま
た蓄熱回路Dを第3二方弁KV3、及び第4二方弁KV
4を介して、各空調ユニット1、2の室外側膨張弁5と
室内側膨張弁7a、7b、7cとの間に接続する。
The circuit configuration will be described with reference to FIG.
The air conditioning units 1 and 2 include the outdoor unit 1 and the indoor units 6a, 6b, 6
refrigeration cycles A and B, which are connected to each other in an annular manner, and the heat exchanger circuit C includes a refrigerant heat exchanger H common to the refrigerant heat exchanger expansion valve EV1 and the air conditioning units 1 and 2.
E, the heat storage circuit D includes a heat storage tank expansion valve EV2 and a heat storage tank STR common to each of the air conditioning units 1 and 2, and a bypass valve BV in parallel with the indoor heat exchanger 8.
2 and a heat exchange circuit C is connected via a first two-way valve KV1 and a second two-way valve KV2, and a heat storage circuit D is connected via a third two-way valve KV3 and a fourth One-way valve KV
4, the air-conditioning units 1 and 2 are connected between the outdoor-side expansion valves 5 and the indoor-side expansion valves 7a, 7b, and 7c.

【0004】次に動作を図21に基づいて説明する。昼
間冷房運転で空調ユニット1から空調ユニット2へ系統
間の熱移動を行う場合、冷媒熱交換器HEにおいて、空
調ユニット1の室外熱交換器4を出た後、冷媒熱交換器
HEに流入した高温高圧の液冷媒と、空調ユニット2の
室外熱交換器4を出た後、冷媒熱交換器用膨張弁EV1
により減圧されて冷媒熱交換器HEの第2熱交換部13
で蒸発した低温低圧の二相冷媒とが熱交換することによ
り、空調ユニット1から空調ユニット2へ系統間の熱移
動が可能になる。即ち、空調ユニット2における余剰冷
房能力分により空調ユニット1の過冷却度が増大し、室
内機6a、6b、6cでの冷房能力増大が図れ、空調ユ
ニット1の冷房負荷に対応できる。
Next, the operation will be described with reference to FIG. When heat transfer between the systems from the air conditioning unit 1 to the air conditioning unit 2 is performed in daytime cooling operation, the refrigerant heat exchanger HE exits the outdoor heat exchanger 4 of the air conditioning unit 1 and then flows into the refrigerant heat exchanger HE. After leaving the high-temperature and high-pressure liquid refrigerant and the outdoor heat exchanger 4 of the air conditioning unit 2, an expansion valve EV1 for the refrigerant heat exchanger is provided.
And the second heat exchange portion 13 of the refrigerant heat exchanger HE
The heat exchange between the low-temperature and low-pressure two-phase refrigerant evaporated in the step allows heat transfer from the air conditioning unit 1 to the air conditioning unit 2 between the systems. That is, the degree of supercooling of the air conditioning unit 1 is increased by the excess cooling capacity of the air conditioning unit 2, and the cooling capacity of the indoor units 6a, 6b, 6c can be increased, and the cooling load of the air conditioning unit 1 can be handled.

【0005】昼間暖房運転で空調ユニット1から空調ユ
ニット2へ系統間の熱移動を行う場合、冷媒熱交換器H
Eにおいて、空調ユニット2の圧縮機2吐出後、第1バ
イパス弁BV1を介して冷媒熱交換器HEに流入した高
温高圧ガス冷媒と、空調ユニット1の室内側膨張弁7
a、7b、7cにて減圧され、冷媒熱交換器HEに流入
した低温低圧2相冷媒とが熱交換することにより、空調
ユニット2から空調ユニット1へ系統間の熱移動が可能
になる。即ち、空調ユニット2における余剰暖房能力分
を空調ユニット1の蒸発能力増大に補填し、つまり暖房
能力増大が図れ、空調ユニット1の暖房負荷に対応でき
る。
When heat transfer between the systems from the air conditioning unit 1 to the air conditioning unit 2 is performed in the daytime heating operation, the refrigerant heat exchanger H
In E, after the compressor 2 is discharged from the air conditioning unit 2, the high-temperature and high-pressure gas refrigerant flowing into the refrigerant heat exchanger HE via the first bypass valve BV1 and the indoor expansion valve 7 of the air conditioning unit 1
The heat is exchanged with the low-temperature low-pressure two-phase refrigerant that has been decompressed at a, 7b, and 7c and has flowed into the refrigerant heat exchanger HE, so that heat transfer between the systems from the air conditioning unit 2 to the air conditioning unit 1 becomes possible. That is, the excess heating capacity of the air conditioning unit 2 is compensated for by the increase in the evaporation capacity of the air conditioning unit 1, that is, the heating capacity can be increased, and the heating load of the air conditioning unit 1 can be handled.

【0006】[0006]

【発明が解決しようとする課題】従来の空気調和装置は
以上のように構成されているので、複数の冷媒回路に共
通の熱移動熱交換器は液管に対して並列に接続されるた
め、バイパス回路が必要となり、またバイパス回路上に
は切換弁、膨張機構を備え、さらに主液配管にも切換弁
を備えるため、コストアップになるという問題点と、冷
媒配管構造、及び制御が複雑になるという問題点があ
る。
Since the conventional air conditioner is configured as described above, a heat transfer heat exchanger common to a plurality of refrigerant circuits is connected in parallel to a liquid pipe. A bypass circuit is required, and a switching valve and an expansion mechanism are provided on the bypass circuit, and a switching valve is also provided on the main liquid pipe, which increases the cost and complicates the refrigerant piping structure and control. There is a problem that becomes.

【0007】また、各冷媒回路の運転目的が空気調和で
あり、多様な目的を持つ回路、熱のカスケード利用につ
いては想定していない。
Further, the operation purpose of each refrigerant circuit is air conditioning, and circuits having various purposes and cascade use of heat are not assumed.

【0008】また、暖房運転時に負荷の大きい冷媒回路
の熱源側熱交換器を除霜する場合、共通熱交換器を介し
て、余剰能力のある回路の熱を除霜したい熱源側熱交換
器を備える回路側に移動させて除霜を行うことについて
は想定していない。
In the case of defrosting the heat source side heat exchanger of the refrigerant circuit having a large load during the heating operation, the heat source side heat exchanger for which it is desired to defrost the heat of the circuit having the surplus capacity through the common heat exchanger. It is not assumed that defrosting is performed by moving to the provided circuit side.

【0009】この発明は、上記のような問題点を解消す
るためになされたもので、複数の空気調和装置及び冷凍
装置において負荷が異なる装置間で熱移動を実現して能
力補填や熱の効率的利用を可能にする空気調和装置を得
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and realizes heat transfer between devices having different loads in a plurality of air conditioners and refrigeration devices, thereby compensating for the capacity and heat efficiency. The purpose of the present invention is to obtain an air conditioner that can be used effectively.

【0010】また、回路構造簡略化によるコストダウ
ン、及び制御の簡略化された空気調和装置を提供するこ
とを目的としている。
It is another object of the present invention to provide an air conditioner in which the cost is reduced by simplifying the circuit structure and the control is simplified.

【0011】また、熱負荷の平準化と熱のカスケード利
用による効率的な熱利用を可能にする空気調和装置を提
供することを目的としている。
It is another object of the present invention to provide an air conditioner that enables efficient heat utilization by leveling the heat load and utilizing heat cascade.

【0012】また、例えば低温の冷凍機器等を想定して
多目的利用、熱のカスケード利用が可能な空気調和装置
を提供することを目的としている。
It is another object of the present invention to provide an air conditioner capable of multipurpose use and heat cascade use, for example, assuming a low-temperature refrigeration equipment.

【0013】また、負荷側熱交換器の暖房運転を継続し
ながら熱源側熱交換器の除霜を行うことが可能な空気調
和装置を提供することを目的としている。
It is another object of the present invention to provide an air conditioner capable of performing defrosting of the heat source side heat exchanger while continuing the heating operation of the load side heat exchanger.

【0014】また、ある冷媒回路の冷房能力をさらに大
きくすることができる空気調和装置の運転方法を提供す
ることを目的としている。
Another object of the present invention is to provide an air conditioner operating method capable of further increasing the cooling capacity of a certain refrigerant circuit.

【0015】また、ある冷媒回路の暖房能力をさらに大
きくすることができる空気調和装置の運転方法を提供す
ることを目的としている。
Another object of the present invention is to provide an air conditioner operating method capable of further increasing the heating capacity of a certain refrigerant circuit.

【0016】また、暖房運転している暖房運転を継続し
ながらある冷媒回路の熱源側熱交換器を除霜することが
できる空気調和装置の運転方法を提供することを目的と
している。
It is another object of the present invention to provide a method of operating an air conditioner capable of defrosting a heat source side heat exchanger of a certain refrigerant circuit while continuing a heating operation during a heating operation.

【0017】また、各冷媒回路は常時共通熱交換器に冷
媒を流通しながら、冷媒回路間での熱移動を行う場合と
行わない場合との切替が可能な空気調和装置の運転方法
を提供することを目的としている。
[0017] Further, the present invention provides an air conditioner operating method capable of switching between a case where heat transfer is performed between refrigerant circuits and a case where heat transfer between the refrigerant circuits is not performed while each refrigerant circuit constantly circulates refrigerant to a common heat exchanger. It is intended to be.

【0018】[0018]

【課題を解決するための手段】この発明に係る空気調和
装置は、圧縮機または冷媒ポンプと、熱源側熱交換器
と、四方弁または冷暖切換弁と、熱源側膨張機構と、負
荷側熱交換器と、負荷側膨張機構とを環状に接続して構
成される複数の冷媒回路と、この冷媒回路の液管におい
て熱源側膨張機構と負荷側膨張機構との間に接続され、
冷媒回路によって共有される共通熱交換器とを備えたも
のである。
An air conditioner according to the present invention includes a compressor or a refrigerant pump, a heat source side heat exchanger, a four-way valve or a cooling / heating switching valve, a heat source side expansion mechanism, and a load side heat exchange. A plurality of refrigerant circuits configured by annularly connecting the load-side expansion mechanism and the load-side expansion mechanism, and connected between the heat-source-side expansion mechanism and the load-side expansion mechanism in a liquid pipe of the refrigerant circuit,
And a common heat exchanger shared by the refrigerant circuit.

【0019】また、負荷側熱交換器に冷媒を流通させな
いためのバイパス管と、三方弁とを備えたものである。
[0019] Further, a bypass pipe for preventing refrigerant from flowing through the load-side heat exchanger and a three-way valve are provided.

【0020】また、共通熱交換器に余剰冷媒を貯蔵する
液貯め部を設けたものである。
Further, the common heat exchanger is provided with a liquid storage section for storing excess refrigerant.

【0021】また、共通熱交換器に設けられ、蓄熱・蓄
冷を行うための媒体が充填された蓄熱容器を備えたもの
である。
In addition, a heat storage container provided in the common heat exchanger and filled with a medium for performing heat storage and cold storage is provided.

【0022】また、少なくとも1つの冷媒回路において
は、共通熱交換器が直列に複数接続され、該複数の共通
熱交換器はそれぞれ別々かつ任意の複数の他の冷媒回路
に共有されるものである。
In at least one of the refrigerant circuits, a plurality of common heat exchangers are connected in series, and the plurality of common heat exchangers are respectively shared by a plurality of different and arbitrary other refrigerant circuits. .

【0023】また、複数の共通熱交換器のそれぞれの間
に、前記熱源側膨張機構及び前記負荷側膨張機構と同一
作用のカスケード用膨張機構が配設されたものである。
Further, a cascade expansion mechanism having the same function as the heat source side expansion mechanism and the load side expansion mechanism is provided between each of the plurality of common heat exchangers.

【0024】また、複数の冷媒回路は、空気調和装置、
冷凍用装置、冷蔵用装置等に使用されるものを含むもの
である。
Further, the plurality of refrigerant circuits may include an air conditioner,
This includes those used for freezing equipment, refrigeration equipment, and the like.

【0025】この発明に係る空気調和装置の運転方法
は、複数冷媒回路中、冷房運転しているある冷媒回路の
冷房能力をさらに大きくする場合、ある冷媒回路におい
ては、高圧状態で冷媒を前記共通熱交換器に流通させ、
余剰能力のある他の冷媒回路において、共通熱交換器を
流通する冷媒は、低圧二相状態で前記共通熱交換器へ流
通させ、圧縮機又は冷媒ポンプの運転容量の調整して共
通熱交換器での熱移動を制御するものである。
In the method for operating an air conditioner according to the present invention, when the cooling capacity of a certain refrigerant circuit which is performing a cooling operation among a plurality of refrigerant circuits is further increased, the refrigerant is supplied to the common refrigerant circuit at a high pressure in the certain refrigerant circuit. Circulate through the heat exchanger,
In another refrigerant circuit having a surplus capacity, the refrigerant flowing through the common heat exchanger is passed to the common heat exchanger in a low-pressure two-phase state, and the operating capacity of the compressor or the refrigerant pump is adjusted so that the common heat exchanger is operated. To control the heat transfer in the

【0026】また、複数冷媒回路中、暖房運転している
ある冷媒回路の暖房能力をさらに大きくする場合、ある
冷媒回路においては、低圧二相状態で冷媒を前記共通熱
交換器に流通させ、余剰能力のある他の冷媒回路におい
て、共通熱交換器を流通する冷媒は、高圧状態で共通熱
交換器へ流通させ、圧縮機又は冷媒ポンプの運転容量の
調整して共通熱交換器での熱移動を制御するものであ
る。
In order to further increase the heating capacity of a certain refrigerant circuit which is performing a heating operation in a plurality of refrigerant circuits, in one refrigerant circuit, the refrigerant is passed through the common heat exchanger in a low-pressure two-phase state, and the excess In another capable refrigerant circuit, the refrigerant flowing through the common heat exchanger flows through the common heat exchanger in a high pressure state, and the operating capacity of the compressor or the refrigerant pump is adjusted to transfer heat in the common heat exchanger. Is controlled.

【0027】また、複数冷媒回路中、暖房運転している
ある冷媒回路の熱源側熱交換器を除霜する場合、ある冷
媒回路においては、低圧二相状態で冷媒を前記共通熱交
換器に流通させ、余剰能力のある他の冷媒回路におい
て、共通熱交換器を流通する冷媒は、高圧状態で前記共
通熱交換器へ流通させ、圧縮機又は冷媒ポンプの運転容
量の調整して共通熱交換器での熱移動を制御するもので
ある。
In the case of defrosting the heat source side heat exchanger of a refrigerant circuit that is performing a heating operation in a plurality of refrigerant circuits, the refrigerant flows through the common heat exchanger in a low-pressure two-phase state in a certain refrigerant circuit. In another refrigerant circuit having a surplus capacity, the refrigerant flowing through the common heat exchanger flows through the common heat exchanger in a high-pressure state, and the operating capacity of the compressor or the refrigerant pump is adjusted so that the common heat exchanger is operated. To control the heat transfer in the

【0028】また、冷媒回路間で熱移動を行わない場合
は、冷媒回路の全てにおいて、例えば共通熱交換器の両
端に接続している膨張機構の絞り具合をほぼ同一にする
等の調整をし、冷媒回路間で熱移動を行う場合は、例え
ば熱移動によって能力を増大する冷媒回路の共通熱交換
器の両端に接続している膨張機構の絞り具合を余剰能力
のある他の冷媒回路の共通熱交換器の両端に接続してい
る膨張機構の絞り具合を余剰能力のある他の冷媒回路の
膨張機構の絞り具合と異なるようにする等の調整をし、
圧縮機又は冷媒ポンプの運転容量の調整を伴うこともあ
るものである。
When heat transfer is not performed between the refrigerant circuits, adjustment is made in all the refrigerant circuits, for example, to make the expansion mechanisms connected to both ends of the common heat exchanger substantially the same in the degree of restriction. When heat transfer is performed between the refrigerant circuits, for example, the expansion mechanism connected to both ends of the common heat exchanger of the refrigerant circuit whose capacity is increased by the heat transfer is set to the same degree as the other refrigerant circuits having the surplus capacity. Adjusting the throttle degree of the expansion mechanism connected to both ends of the heat exchanger to be different from the throttle degree of the expansion mechanism of another refrigerant circuit having surplus capacity,
It may involve adjusting the operating capacity of the compressor or the refrigerant pump.

【0029】[0029]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態の一例を、図面を参照して説明する。図1は
この発明の実施の形態の一例を示す図で、冷媒回路図で
ある。図において、A、Bは熱源側ユニット、X、Yは
負荷側ユニット、Uは熱移動ユニット、1a、1bは圧
縮機及び加圧ポンプ、2a、2bは四方弁及び冷暖切換
弁、3a、3bは熱源側熱交換器、4a、4bは熱源側
膨張機構、5a、5bは負荷側熱交換器、6a、6bは
負荷側膨張機構、7は共通熱交換器、7a、7bは共通
熱交換器パス、10a、10bは吐出配管、11a、1
1bは熱源側ガス配管、12a、12bは負荷側ガス配
管、13a、13bは熱源側液配管、14a、14bは
負荷側液配管、15a、15bは吸入配管である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an example of an embodiment of the present invention, and is a refrigerant circuit diagram. In the figure, A and B are heat source side units, X and Y are load side units, U is a heat transfer unit, 1a and 1b are compressors and pressurizing pumps, 2a and 2b are four-way valves and cooling / heating switching valves, 3a and 3b. Is a heat source side heat exchanger, 4a and 4b are heat source side expansion mechanisms, 5a and 5b are load side heat exchangers, 6a and 6b are load side expansion mechanisms, 7 is a common heat exchanger, and 7a and 7b are common heat exchangers. Passes 10a, 10b are discharge pipes, 11a, 1
1b is a heat source side gas pipe, 12a and 12b are load side gas pipes, 13a and 13b are heat source side liquid pipes, 14a and 14b are load side liquid pipes, and 15a and 15b are suction pipes.

【0030】この発明の空気調和装置において、1つの
共通熱交換器を共有する複数の冷媒回路のうち、ある冷
媒回路の冷房能力増大方法について説明する。この場
合、冷房能力を増大させるある冷媒回路において、共通
熱交換器を流通する冷媒は、熱源側膨張機構ではほとん
ど膨張されずに高圧液状態となり共通熱交換器へ流通
し、その後、負荷側膨張機構で膨張されて低圧2相とな
り負荷側熱交換器へと流通する。
In the air conditioner of the present invention, a method of increasing the cooling capacity of a certain refrigerant circuit among a plurality of refrigerant circuits sharing one common heat exchanger will be described. In this case, in a certain refrigerant circuit for increasing the cooling capacity, the refrigerant flowing through the common heat exchanger hardly expands in the heat source side expansion mechanism, becomes a high-pressure liquid state, flows through the common heat exchanger, and then expands on the load side. It is expanded by the mechanism and becomes low-pressure two-phase and flows to the load-side heat exchanger.

【0031】一方、余剰能力のある他の冷媒回路群にお
いて、共通熱交換器を流通する冷媒は、熱源側膨張機構
で膨張されて低圧2相状態となり共通熱交換器へ流通
し、その後負荷側膨張機構ではほとんど膨張されないで
負荷側熱交換器へと流通し、また膨張機構はこのように
制御され、さらに前述の膨張機構制御と、1つの或いは
それ以上の圧縮機及び冷媒ポンプの運転容量の調整によ
り、ある回路の高圧液側から他の回路群の低圧2相側へ
熱を移動させてある回路の高圧液の過冷却度を増大させ
て冷房能力を増大する。
On the other hand, in another refrigerant circuit group having a surplus capacity, the refrigerant flowing through the common heat exchanger is expanded by the heat-source-side expansion mechanism to be in a low-pressure two-phase state, flows to the common heat exchanger, and then flows to the load side. The expansion mechanism circulates to the load side heat exchanger with little expansion, and the expansion mechanism is controlled in this manner. Further, the expansion mechanism control and the operating capacity of one or more compressors and refrigerant pumps are performed. The adjustment transfers heat from the high pressure liquid side of one circuit to the low pressure two-phase side of another circuit group to increase the degree of supercooling of the high pressure liquid in one circuit, thereby increasing the cooling capacity.

【0032】次に、冷房運転中のある冷媒回路の冷房能
力を増大させる場合の動作を図2の冷媒回路図によって
説明する。冷媒回路1は要求運転負荷が高い等、冷房能
力をさらに増大し、冷媒回路2は要求運転負荷が低い
等、余剰能力がある場合を想定する。この運転時には、
熱源側熱交換器3a、3bは凝縮器として、負荷側熱交
換器5a、5bは蒸発器として動作し、四方弁2a、2
bは冷房モードとして制御される。熱源側膨張機構4a
は冷媒をほとんど膨張させないようにして、熱源側膨張
機構4bは熱源側熱交換器3bの出口過冷却温度、或い
は負荷側熱交換器5bの出口過熱温度が目標値になるよ
うに調整され、負荷側膨張機構6aは熱源側熱交換器3
aの出口過冷却温度、或いは負荷側熱交換器5aの出口
過熱温度が目標値になるようにして、負荷側膨張機構6
bは冷媒をほとんど膨張させないように調整される。
Next, the operation for increasing the cooling capacity of a certain refrigerant circuit during the cooling operation will be described with reference to the refrigerant circuit diagram of FIG. It is assumed that the refrigerant circuit 1 further increases the cooling capacity such as a high required operation load, and the refrigerant circuit 2 has a surplus capacity such as a low required operation load. During this operation,
The heat source-side heat exchangers 3a and 3b operate as condensers, and the load-side heat exchangers 5a and 5b operate as evaporators.
b is controlled as a cooling mode. Heat source side expansion mechanism 4a
Is set so that the refrigerant hardly expands, and the heat source side expansion mechanism 4b is adjusted so that the outlet supercooling temperature of the heat source side heat exchanger 3b or the outlet superheat temperature of the load side heat exchanger 5b becomes a target value. The side expansion mechanism 6a is a heat source side heat exchanger 3
a of the load side heat exchanger 5a or the outlet superheat temperature of the load side heat exchanger 5a to a target value.
b is adjusted so that the refrigerant hardly expands.

【0033】次に冷媒の流れについて図2に基づいて説
明する。冷媒回路1において、圧縮機1aから吐出され
た高温高圧のガス冷媒は、吐出配管10a、四方弁2
a、熱源側ガス配管11aを介して熱源側熱交換器3a
へ流入し、ここで熱源側の周辺空気と熱交換されて冷さ
れ液化する。液化した冷媒は途中、熱源側液配管13a
を介して熱源側膨張機構4aを流通するが、ここではほ
とんど減圧されずに高圧の液状態のまま共通熱交換器7
へ流入し、ここで冷媒回路2側の低温低圧冷媒と熱交換
されて、高圧の液温度は低下する。その後、負荷側膨張
機構6aで減圧され、負荷側液配管14aを介して負荷
側熱交換器5aへ流入し、ここで負荷側の周辺空気と熱
交換されて加熱されガス化する。ガス化した冷媒は負荷
側ガス配管12a、四方弁2a、吸入配管15aを介し
て圧縮機1aに戻る。
Next, the flow of the refrigerant will be described with reference to FIG. In the refrigerant circuit 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 a is supplied to the discharge pipe 10 a and the four-way valve 2.
a, heat source side heat exchanger 3a through heat source side gas pipe 11a
, Where it exchanges heat with the surrounding air on the heat source side to be cooled and liquefied. The liquefied refrigerant passes through the heat source side liquid pipe 13a
Flows through the heat source side expansion mechanism 4a through the common heat exchanger 7 while being hardly depressurized and kept in a high-pressure liquid state.
And heat exchange with the low-temperature low-pressure refrigerant in the refrigerant circuit 2 side, and the high-pressure liquid temperature decreases. Thereafter, the pressure is reduced by the load-side expansion mechanism 6a and flows into the load-side heat exchanger 5a via the load-side liquid pipe 14a, where the heat is exchanged with the load-side ambient air to be heated and gasified. The gasified refrigerant returns to the compressor 1a via the load-side gas pipe 12a, the four-way valve 2a, and the suction pipe 15a.

【0034】一方、冷媒回路2において、圧縮機1bか
ら吐出された高温高圧のガス冷媒は、吐出配管10b、
四方弁2b、熱源側ガス配管11bを介して熱源側熱交
換器3bへ流入し、ここで熱源側の周辺空気と熱交換さ
れて冷され液化する。液化した冷媒は途中、熱源側液配
管13bを介して熱源側膨張機構4bで減圧されて共通
熱交換器7へ流入する。ここで冷媒回路1側の高圧液冷
媒と熱交換されて、加熱され一部ガス化する。その後負
荷側膨張機構6bを流通するが、ここではほとんど減圧
されずに負荷側液配管14bを介して負荷側熱交換器5
bへ流入し、ここで負荷側の周辺空気と熱交換されてガ
ス化する。ガス化した冷媒は負荷側ガス配管12b、四
方弁2b、吸入配管15bを介して圧縮機1bに戻る。
On the other hand, in the refrigerant circuit 2, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1b is supplied to the discharge pipe 10b,
The heat flows into the heat source side heat exchanger 3b via the four-way valve 2b and the heat source side gas pipe 11b, where the heat is exchanged with the surrounding air on the heat source side to be cooled and liquefied. The liquefied refrigerant is reduced in pressure by the heat source side expansion mechanism 4b via the heat source side liquid pipe 13b and flows into the common heat exchanger 7 on the way. Here, heat exchange is performed with the high-pressure liquid refrigerant on the refrigerant circuit 1 side, and the gas is heated and partially gasified. Thereafter, the refrigerant flows through the load-side expansion mechanism 6b. Here, the load-side heat exchanger 5 is hardly depressurized through the load-side liquid pipe 14b.
b, where it is gasified by heat exchange with the ambient air on the load side. The gasified refrigerant returns to the compressor 1b via the load-side gas pipe 12b, the four-way valve 2b, and the suction pipe 15b.

【0035】この発明の空気調和装置において、1つの
共通熱交換器を共有する複数の冷媒回路のうち、ある冷
媒回路の暖房能力増大方法について説明する。この場
合、暖房能力を増大させるある冷媒回路において、共通
熱交換器を流通する冷媒は、負荷側膨張機構で膨張され
て減圧され低圧2相状態となり共通熱交換器へ流通し、
ここで他回路を流通する高圧冷媒と熱交換し、蒸発して
ガス化する。その後、熱源側膨張機構ではほとんど膨張
されずに熱源側熱交換器へと流通し、ここでは低圧冷媒
の状態により熱源側熱交換器での蒸発作用を調整する。
In the air conditioner of the present invention, a method of increasing the heating capacity of a certain refrigerant circuit among a plurality of refrigerant circuits sharing one common heat exchanger will be described. In this case, in a certain refrigerant circuit that increases the heating capacity, the refrigerant flowing through the common heat exchanger is expanded by the load-side expansion mechanism and decompressed to a low-pressure two-phase state, and flows through the common heat exchanger.
Here, heat exchange is performed with a high-pressure refrigerant flowing through another circuit, and the refrigerant is evaporated and gasified. Thereafter, the heat-source-side expansion mechanism hardly expands and flows to the heat-source-side heat exchanger, where the state of the low-pressure refrigerant adjusts the evaporating action in the heat-source-side heat exchanger.

【0036】一方、余剰能力のある他の冷媒回路群にお
いて、共通熱交換器を流通する冷媒は、負荷側膨張機構
でほとんど膨張されずに負荷状況によって高圧ガス、2
相或いは液状態となり共通熱交換器へ流通し、ここで前
述した冷媒回路を流通する低圧2相冷媒と熱交換し、凝
縮されて高圧液となる。その後熱源側膨張機構で膨張さ
れて減圧され熱源側熱交換器へと流通する。
On the other hand, in another refrigerant circuit group having a surplus capacity, the refrigerant flowing through the common heat exchanger is hardly expanded by the load-side expansion mechanism, and the high-pressure gas and the high-pressure gas depending on the load condition.
It is in a phase or liquid state and flows to the common heat exchanger, where it exchanges heat with the low-pressure two-phase refrigerant flowing in the refrigerant circuit described above, and is condensed into a high-pressure liquid. Then, it is expanded by the heat source side expansion mechanism, decompressed, and flows to the heat source side heat exchanger.

【0037】さらに前述の膨張機構制御と、1つの或い
はそれ以上の圧縮機及び冷媒ポンプの運転容量の調整に
より、他の回路群の高圧冷媒側からある回路の低圧2相
側へ熱を移動させてある回路の低圧を高くして、圧縮機
吸込み密度の増大、ならびに圧縮機運転効率の向上によ
り、冷媒循環量を増加させることで暖房能力を増大す
る。
Further, by controlling the expansion mechanism and adjusting the operating capacity of one or more compressors and refrigerant pumps, heat is transferred from the high-pressure refrigerant side of the other circuit group to the low-pressure two-phase side of a certain circuit. By increasing the low pressure of the existing circuit, increasing the compressor suction density and improving the compressor operation efficiency, the heating capacity is increased by increasing the refrigerant circulation amount.

【0038】次に、暖房運転中のある冷媒回路の暖房能
力を増大させる場合の動作を図3に基づいて説明する。
冷媒回路1は要求運転負荷が高い等、暖房能力をさらに
増大し、冷媒回路2は要求運転負荷が低い等、余剰能力
がある場合を想定する。この運転時には、熱源側熱交換
器3a、3bは蒸発器として、負荷側熱交換器5a、5
bは凝縮器として動作し、四方弁2a、2bは暖房モー
ドとして制御され、熱源側膨張機構4aは冷媒をほとん
ど膨張させないようにして、熱源側膨張機構4bは熱源
側熱交換器3bの出口過熱温度、或いは負荷側熱交換器
5bの出口過冷却温度が目標値になるように調整され、
負荷側膨張機構6aは熱源側熱交換器3aの出口過熱温
度、或いは負荷側熱交換器5aの出口過冷却温度が目標
値になるようにして、負荷側膨張機構6bは冷媒をほと
んど膨張させないように調整される。
Next, the operation for increasing the heating capacity of a certain refrigerant circuit during the heating operation will be described with reference to FIG.
It is assumed that the refrigerant circuit 1 further increases the heating capacity such as a high required operation load, and the refrigerant circuit 2 has a surplus capacity such as a low required operation load. During this operation, the heat source side heat exchangers 3a and 3b serve as evaporators and serve as load side heat exchangers 5a and 5b.
b operates as a condenser, the four-way valves 2a and 2b are controlled in a heating mode, the heat-source-side expansion mechanism 4a hardly expands the refrigerant, and the heat-source-side expansion mechanism 4b heats the outlet of the heat-source-side heat exchanger 3b. The temperature or the supercooling temperature at the outlet of the load side heat exchanger 5b is adjusted to a target value,
The load-side expansion mechanism 6a sets the superheat temperature at the outlet of the heat source-side heat exchanger 3a or the supercool temperature at the outlet of the load-side heat exchanger 5a to a target value, and the load-side expansion mechanism 6b hardly expands the refrigerant. It is adjusted to.

【0039】次に冷媒の流れについて図3に基づいて説
明する。冷媒回路1において、圧縮機1aから吐出され
た高温高圧のガス冷媒は、吐出配管10a、四方弁2
a、負荷側ガス配管12aを介して負荷側熱交換器3a
へ流入し、ここで負荷側の周辺空気と熱交換されて冷さ
れ液化する。液化した冷媒は途中、負荷側液配管14a
を介して負荷側膨張機構6aで減圧されて共通熱交換器
7へ流入し、ここで冷媒回路2側の高温高圧冷媒と熱交
換されて、加熱されて一部蒸発する。その後、熱源側膨
張機構4aではほとんど減圧されずに熱源側液配管13
aを介して熱源側熱交換器3aへ流入し、ここで熱源側
の周辺空気と熱交換されて加熱されガス化する。ガス化
した冷媒は熱源側ガス配管11a、四方弁2a、吸入配
管15aを介して圧縮機1aに戻る。
Next, the flow of the refrigerant will be described with reference to FIG. In the refrigerant circuit 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 a is supplied to the discharge pipe 10 a and the four-way valve 2.
a, load side heat exchanger 3a via load side gas pipe 12a
Where it is cooled and liquefied by heat exchange with ambient air on the load side. The liquefied refrigerant passes through the load side liquid pipe 14a
The pressure is reduced by the load-side expansion mechanism 6a via the load-side expansion mechanism 6a and flows into the common heat exchanger 7, where the heat is exchanged with the high-temperature and high-pressure refrigerant on the refrigerant circuit 2 side, heated and partially evaporated. After that, the heat source side expansion pipe 4a hardly depressurizes the heat source side liquid piping 13
The gas flows into the heat source-side heat exchanger 3a via a, where the heat is exchanged with the surrounding air on the heat source side to be heated and gasified. The gasified refrigerant returns to the compressor 1a via the heat source side gas pipe 11a, the four-way valve 2a, and the suction pipe 15a.

【0040】尚、共通熱交換器7において冷媒回路2側
の高温高圧冷媒との熱交換による加熱量が多く、蒸発さ
れて過熱ガスになった場合は、その後、熱源側膨張機構
4aではほとんど減圧されずに熱源側液配管13aを介
して熱源側熱交換器3aへ流入するが、3aのファンを
停止させて、できるかぎり熱源側の周辺空気と熱交換さ
せないようにした後、熱源側ガス配管11a、四方弁2
a、吸入配管15aを介して圧縮機1aに戻るように制
御する。
When a large amount of heat is exchanged with the high-temperature and high-pressure refrigerant on the refrigerant circuit 2 side in the common heat exchanger 7 and evaporates into a superheated gas, the heat-source-side expansion mechanism 4a then substantially reduces the pressure. Instead, the gas flows into the heat source side heat exchanger 3a via the heat source side liquid pipe 13a, but after stopping the fan of 3a so as not to exchange heat with the surrounding air on the heat source side as much as possible, the heat source side gas pipe 11a, four-way valve 2
a, control is performed to return to the compressor 1a via the suction pipe 15a.

【0041】一方、冷媒回路2において、圧縮機1bか
ら吐出された高温高圧のガス冷媒は、吐出配管10b、
四方弁2b、負荷側ガス配管12bを介して負荷側熱交
換器5bへ流入し、ここで負荷側の周辺空気と熱交換さ
れて冷された後、負荷側液配管14bを介して負荷側膨
張機構6bを流通するが、ここではほとんど減圧されず
に共通熱交換器7へ流入する。ここで冷媒回路1側の低
圧冷媒と熱交換されて、冷されて高圧液となる。
On the other hand, in the refrigerant circuit 2, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1b is supplied to the discharge pipe 10b,
After flowing into the load side heat exchanger 5b through the four-way valve 2b and the load side gas pipe 12b, the heat is exchanged with the load side ambient air and cooled, and then the load side expansion is performed through the load side liquid pipe 14b. Although flowing through the mechanism 6b, it flows into the common heat exchanger 7 with almost no pressure reduction. Here, heat exchange is performed with the low-pressure refrigerant on the refrigerant circuit 1 side, and the refrigerant is cooled to become a high-pressure liquid.

【0042】その後熱源側膨張機構4bで減圧され、熱
源側液配管13bを介して熱源側熱交換器3bへ流入
し、ここで熱源側の周辺空気と熱交換されてガス化す
る。ガス化した冷媒は熱源側ガス配管11b、四方弁2
b、吸入配管15bを介して圧縮機1bに戻る。
Thereafter, the pressure is reduced by the heat-source-side expansion mechanism 4b and flows into the heat-source-side heat exchanger 3b via the heat-source-side liquid pipe 13b, where the heat is exchanged with the surrounding air on the heat source-side and gasified. The gasified refrigerant is supplied to the heat source side gas pipe 11b and the four-way valve 2
b, return to the compressor 1b via the suction pipe 15b.

【0043】次に、本発明の空気調和装置において、1
つの共通熱交換器を共有する複数の冷媒回路のうち、あ
る冷媒回路の熱源側熱交換器を暖房運転継続したまま除
霜する方法について説明する。この場合、除霜する熱源
側熱交換器を備えるある回路において、共通熱交換器を
流通する冷媒は、負荷側膨張機構で膨張されて低圧2相
状態となり共通熱交換器へ流通し、その後、熱源側膨張
機構でほとんど膨張されないまま熱源側熱交換器へと流
通する。
Next, in the air conditioner of the present invention, 1
A method for defrosting a heat source side heat exchanger of a certain refrigerant circuit among the plurality of refrigerant circuits sharing one common heat exchanger while the heating operation is continued will be described. In this case, in a certain circuit including a heat source side heat exchanger for defrosting, the refrigerant flowing through the common heat exchanger is expanded by the load side expansion mechanism to be in a low-pressure two-phase state and flows to the common heat exchanger, and thereafter, It flows to the heat source side heat exchanger without being expanded by the heat source side expansion mechanism.

【0044】一方、余剰能力のある他の回路群におい
て、共通熱交換器を流通する冷媒は、負荷側膨張機構で
ほとんど膨張されずに高圧液、ガス及び2相状態となり
共通熱交換器へ流通し、その後熱源側膨張機構で膨張さ
れて低圧2相となり熱源側熱交換器へと流通する。
On the other hand, in another circuit group having a surplus capacity, the refrigerant flowing through the common heat exchanger is hardly expanded by the load-side expansion mechanism and becomes a high-pressure liquid, gas and two-phase state, and flows to the common heat exchanger. Then, it is expanded by the heat-source-side expansion mechanism to become a low-pressure two-phase and flows to the heat-source-side heat exchanger.

【0045】さらに前述の膨張機構制御と、1つの或い
はそれ以上の圧縮機及び冷媒ポンプの運転容量の調整に
より、ある回路の低圧2相側へ他の回路群の高圧液、ガ
ス及び2相側の熱を移動させることで、ある回路の共通
熱交換器出口での冷媒状態を過熱度の大きい低圧ガスに
した後、熱源側熱交換器へ流通させ、そこで凝縮させる
ことで熱源側熱交換器を除霜する。
Further, by controlling the expansion mechanism described above and adjusting the operating capacity of one or more compressors and refrigerant pumps, the high-pressure liquid, gas and two-phase By transferring the heat of the heat source, the state of the refrigerant at the outlet of the common heat exchanger of a certain circuit is converted into a low-pressure gas with a high degree of superheat, and then is circulated to the heat source side heat exchanger, where it is condensed. To defrost.

【0046】次に、暖房運転中のある冷媒回路が、暖房
運転を継続しながら熱源側熱交換器を除霜する時の動作
を図4に基づいて説明する。冷媒回路1は除霜を所望す
る熱源側熱交換器を所有しており、冷媒回路2は暖房運
転中で要求運転負荷が低い等、余剰能力がある場合を想
定する。この運転時の動作は、前述したある回路の暖房
能力を他回路の余剰能力を使用して増大する場合と同一
なので詳細な動作説明は省略する。
Next, an operation when a certain refrigerant circuit during the heating operation defrosts the heat source side heat exchanger while continuing the heating operation will be described with reference to FIG. It is assumed that the refrigerant circuit 1 has a heat source side heat exchanger for which defrosting is desired, and the refrigerant circuit 2 has a surplus capacity such as a low required operation load during a heating operation. The operation at the time of this operation is the same as the case where the heating capacity of a certain circuit is increased by using the surplus capacity of another circuit as described above, and a detailed description of the operation will be omitted.

【0047】次に冷媒の流れについて図4に基づいて説
明する。冷媒回路1において、圧縮機1aから吐出され
た高温高圧のガス冷媒は、吐出配管10a、四方弁2
a、負荷側ガス配管12aを介して負荷側熱交換器5a
へ流入し、ここで負荷側の周辺空気と熱交換されて冷さ
れ液化する。液化した冷媒は途中、負荷側液配管14a
を介して負荷側膨張機構6aで減圧されて共通熱交換器
7へ流入し、ここで冷媒回路2側の高温高圧冷媒と熱交
換される。
Next, the flow of the refrigerant will be described with reference to FIG. In the refrigerant circuit 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 a is supplied to the discharge pipe 10 a and the four-way valve 2.
a, load-side heat exchanger 5a via load-side gas pipe 12a
Where it is cooled and liquefied by heat exchange with ambient air on the load side. The liquefied refrigerant passes through the load side liquid pipe 14a
The pressure is reduced by the load-side expansion mechanism 6a through the flow path and flows into the common heat exchanger 7, where the heat is exchanged with the high-temperature and high-pressure refrigerant on the refrigerant circuit 2 side.

【0048】この時、暖房能力増大運転の時よりもさら
に多い熱交換量で加熱されて蒸発し、過熱度が大きい低
圧ガスとなった後、熱源側膨張機構4aではほとんど減
圧されずに熱源側液配管13aを介して除霜を所望する
熱源側熱交換器3aへ流入する。ここで熱源側熱交換器
3aのファンは停止しており、過熱度が大きい低圧ガス
冷媒は熱源側熱交換器3aの管やフィンと熱交換されて
冷却され一部液化する。一部液化した低圧のガス冷媒は
熱源側ガス配管11a、四方弁2a、吸入配管15aを
介して圧縮機1aに戻る。
At this time, after being heated and evaporated with a larger heat exchange amount than in the heating capacity increasing operation to become a low-pressure gas having a large degree of superheat, the heat-source-side expansion mechanism 4a hardly depressurizes the heat source-side expansion mechanism 4a. It flows into the heat source side heat exchanger 3a for which defrost is desired via the liquid pipe 13a. Here, the fan of the heat-source-side heat exchanger 3a is stopped, and the low-pressure gas refrigerant having a large degree of superheat exchanges heat with the tubes and fins of the heat-source-side heat exchanger 3a to be cooled and partially liquefied. The partially liquefied low-pressure gas refrigerant returns to the compressor 1a via the heat source side gas pipe 11a, the four-way valve 2a, and the suction pipe 15a.

【0049】一方、冷媒回路2において、圧縮機1bか
ら吐出された高温高圧のガス冷媒は、吐出配管10b、
四方弁2b、負荷側ガス配管12bを介して負荷側熱交
換器5bへ流入し、ここで負荷側の周辺空気と熱交換さ
れて冷された後、負荷側液配管14bを介して負荷側膨
張機構6bを流通するが、ここではほとんど減圧されず
に共通熱交換器7へ流入する。ここで冷媒回路1側の低
圧冷媒と熱交換されて、冷されて高圧液となる。
On the other hand, in the refrigerant circuit 2, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1b is supplied to the discharge pipe 10b,
After flowing into the load side heat exchanger 5b through the four-way valve 2b and the load side gas pipe 12b, the heat is exchanged with the load side ambient air and cooled, and then the load side expansion is performed through the load side liquid pipe 14b. Although flowing through the mechanism 6b, it flows into the common heat exchanger 7 with almost no pressure reduction. Here, heat exchange is performed with the low-pressure refrigerant on the refrigerant circuit 1 side, and the refrigerant is cooled to become a high-pressure liquid.

【0050】その後熱源側膨張機構4bで減圧され、熱
源側液配管13bを介して熱源側熱交換器3bへ流入
し、ここで熱源側の周辺空気と熱交換されてガス化す
る。ガス化した冷媒は熱源側ガス配管11b、四方弁2
b、吸入配管15bを介して圧縮機1bに戻る。
Thereafter, the pressure is reduced by the heat-source-side expansion mechanism 4b and flows into the heat-source-side heat exchanger 3b through the heat-source-side liquid pipe 13b, where the heat is exchanged with the surrounding air on the heat source-side and gasified. The gasified refrigerant is supplied to the heat source side gas pipe 11b and the four-way valve 2
b, return to the compressor 1b via the suction pipe 15b.

【0051】次に、冷房運転、暖房運転が混在している
場合、冷房運転している冷媒回路の冷房能力を増大する
時の動作を図5に基づいて説明する。冷媒回路1は冷房
運転していて、要求運転負荷が高い等、冷房能力をさら
に増大し、冷媒回路2は暖房運転していて要求運転負荷
が低い等、余剰能力がある場合を想定する。この運転時
には、熱源側熱交換器3a、負荷側熱交換器5bは凝縮
器として、負荷側熱交換器5a、熱源側熱交換器3bは
蒸発器として動作し、四方弁2aは冷房モード、四方弁
2bは暖房モードとして制御され、熱源側膨張機構4
a、4bは冷媒をほとんど膨張させないようにして、負
荷側膨張機構6aは熱源側熱交換器3aの出口過冷却温
度、或いは負荷側熱交換器5aの出口過熱温度が目標値
になるように調整され、負荷側膨張機構6bは熱源側熱
交換器3bの出口過熱温度、或いは負荷側熱交換器5b
の出口過冷却温度が目標値になるように調整される。
Next, the operation when the cooling capacity of the refrigerant circuit performing the cooling operation is increased when the cooling operation and the heating operation are mixed will be described with reference to FIG. It is assumed that the refrigerant circuit 1 is performing a cooling operation and the cooling capacity is further increased, for example, the required operation load is high, and the refrigerant circuit 2 is performing a heating operation and has a surplus capacity, such as a low required operation load. During this operation, the heat source side heat exchanger 3a and the load side heat exchanger 5b operate as a condenser, the load side heat exchanger 5a and the heat source side heat exchanger 3b operate as an evaporator, the four-way valve 2a is in a cooling mode, The valve 2b is controlled in the heating mode, and the heat source side expansion mechanism 4
The load expansion mechanism 6a adjusts the outlet supercooling temperature of the heat source side heat exchanger 3a or the outlet superheat temperature of the load side heat exchanger 5a to a target value while preventing the refrigerant from expanding substantially. The load side expansion mechanism 6b is connected to the outlet superheat temperature of the heat source side heat exchanger 3b or the load side heat exchanger 5b.
Is adjusted such that the outlet subcooling temperature of the outlet becomes the target value.

【0052】次に冷媒の流れについて図5に基づいて説
明する。冷媒回路1において、圧縮機1aから吐出され
た高温高圧のガス冷媒は、吐出配管10a、四方弁2
a、熱源側ガス配管11aを介して熱源側熱交換器3a
へ流入し、ここで熱源側の周辺空気と熱交換されて冷さ
れ液化する。液化した冷媒は途中、熱源側液配管13a
を介して熱源側膨張機構4aを流通するが、ここではほ
とんど減圧されずに高圧の液状態のまま共通熱交換器7
へ流入し、ここで冷媒回路2側の低温低圧冷媒と熱交換
されて、高圧の液温度は低下する。
Next, the flow of the refrigerant will be described with reference to FIG. In the refrigerant circuit 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 a is supplied to the discharge pipe 10 a and the four-way valve 2.
a, heat source side heat exchanger 3a through heat source side gas pipe 11a
, Where it exchanges heat with the surrounding air on the heat source side to be cooled and liquefied. The liquefied refrigerant passes through the heat source side liquid pipe 13a
Flows through the heat source side expansion mechanism 4a through the common heat exchanger 7 while being hardly depressurized and kept in a high-pressure liquid state.
And heat exchange with the low-temperature low-pressure refrigerant in the refrigerant circuit 2 side, and the high-pressure liquid temperature decreases.

【0053】その後、負荷側膨張機構6aで減圧され、
負荷側液配管14aを介して負荷側熱交換器5aへ流入
し、ここで負荷側の周辺空気と熱交換されて加熱されガ
ス化する。ガス化した冷媒は負荷側ガス配管12a、四
方弁2a、吸入配管15aを介して圧縮機1aに戻る。
Thereafter, the pressure is reduced by the load-side expansion mechanism 6a.
The gas flows into the load-side heat exchanger 5a via the load-side liquid pipe 14a, where it exchanges heat with the load-side ambient air and is heated and gasified. The gasified refrigerant returns to the compressor 1a via the load-side gas pipe 12a, the four-way valve 2a, and the suction pipe 15a.

【0054】一方、冷媒回路2において、圧縮機1bか
ら吐出された高温高圧のガス冷媒は、吐出配管10b、
四方弁2b、負荷側ガス配管12bを介して負荷側熱交
換器5bへ流入し、ここで負荷側の周辺空気と熱交換さ
れて冷された後、負荷側液配管14bを介して負荷側膨
張機構6bで減圧されて共通熱交換器7へ流入する。こ
こで冷媒回路1側の高圧の液冷媒と熱交換されて、加熱
されて一部ガス化し、その後熱源側膨張機構4bを流通
するがここではほとんど減圧されずに、熱源側液配管1
3bを介して熱源側熱交換器3bへ流入し、ここで熱源
側の周辺空気と熱交換されてガス化する。ガス化した冷
媒は熱源側ガス配管11b、四方弁2b、吸入配管15
bを介して圧縮機1bに戻る。
On the other hand, in the refrigerant circuit 2, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1b is supplied to the discharge pipe 10b,
After flowing into the load side heat exchanger 5b through the four-way valve 2b and the load side gas pipe 12b, the heat is exchanged with the load side ambient air and cooled, and then the load side expansion is performed through the load side liquid pipe 14b. The pressure is reduced by the mechanism 6 b and flows into the common heat exchanger 7. Here, heat exchange is performed with the high-pressure liquid refrigerant on the refrigerant circuit 1 side, the gas is heated and partially gasified, and then flows through the heat source-side expansion mechanism 4b.
It flows into the heat source side heat exchanger 3b via 3b, where it exchanges heat with the surrounding air on the heat source side and gasifies. The gasified refrigerant is supplied to the heat source side gas pipe 11b, the four-way valve 2b, the suction pipe 15
Returning to the compressor 1b via b.

【0055】次に、冷房運転、暖房運転が混在している
場合、暖房運転している冷媒回路の暖房能力を増大する
時の動作を図6に基づいて説明する。冷媒回路1は暖房
運転していて、要求運転負荷が高い等、暖房能力をさら
に増大し、冷媒回路2は冷房運転していて要求運転負荷
が低い等、余剰能力がある場合を想定する。この運転時
には、熱源側熱交換器3a、負荷側熱交換器5bは蒸発
器として、負荷側熱交換器5a、熱源側熱交換器3bは
凝縮器として動作し、四方弁2aは暖房モード、四方弁
2bは冷房モードとして制御され、熱源側膨張機構4
a、4bは冷媒をほとんど膨張させないようにして、負
荷側膨張機構6aは負荷側熱交換器5aの出口過冷却温
度、或いは熱源側熱交換器3aの出口過熱温度が目標値
になるように調整され、負荷側膨張機構6bは負荷側熱
交換器5bの出口過熱温度、或いは熱源側熱交換器3b
の出口過冷却温度が目標値になるように調整される。
Next, the operation when increasing the heating capacity of the refrigerant circuit performing the heating operation when the cooling operation and the heating operation are mixed will be described with reference to FIG. It is assumed that the refrigerant circuit 1 performs the heating operation and further increases the heating capacity such as a high required operation load, and the refrigerant circuit 2 performs the cooling operation and has a surplus capacity such as a low required operation load. In this operation, the heat source side heat exchanger 3a and the load side heat exchanger 5b operate as an evaporator, the load side heat exchanger 5a and the heat source side heat exchanger 3b operate as a condenser, the four-way valve 2a is in a heating mode, and the four-way The valve 2b is controlled in the cooling mode, and the heat source side expansion mechanism 4
The load-side expansion mechanism 6a adjusts the outlet supercooling temperature of the load-side heat exchanger 5a or the outlet superheat temperature of the heat-source-side heat exchanger 3a to a target value. The load-side expansion mechanism 6b is connected to the outlet superheat temperature of the load-side heat exchanger 5b or the heat-source-side heat exchanger 3b.
Is adjusted such that the outlet subcooling temperature of the outlet becomes the target value.

【0056】次に冷媒の流れについて図6に基づいて説
明する。冷媒回路1において、圧縮機1aから吐出され
た高温高圧のガス冷媒は、吐出配管10a、四方弁2
a、負荷側ガス配管12aを介して負荷側熱交換器5a
へ流入し、ここで負荷側の周辺空気と熱交換されて冷さ
れ液化する。液化した冷媒は途中、負荷側液配管14a
を介して負荷側膨張機構6aで減圧されて共通熱交換器
7へ流入し、ここで冷媒回路2側の高温高圧冷媒と熱交
換されて、加熱されて一部蒸発する。
Next, the flow of the refrigerant will be described with reference to FIG. In the refrigerant circuit 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 a is supplied to the discharge pipe 10 a and the four-way valve 2.
a, load-side heat exchanger 5a via load-side gas pipe 12a
Where it is cooled and liquefied by heat exchange with ambient air on the load side. The liquefied refrigerant passes through the load side liquid pipe 14a
The pressure is reduced by the load-side expansion mechanism 6a via the load-side expansion mechanism 6a and flows into the common heat exchanger 7, where the heat is exchanged with the high-temperature and high-pressure refrigerant on the refrigerant circuit 2 side, heated and partially evaporated.

【0057】その後、熱源側膨張機構4aではほとんど
減圧されずに熱源側液配管13aを介して熱源側熱交換
器3aへ流入し、ここで負荷側の周辺空気と熱交換され
て加熱されガス化する。ガス化した冷媒は熱源側ガス配
管11a、四方弁2a、吸入配管15aを介して圧縮機
1aに戻る。尚、共通熱交換器7において冷媒回路2側
の高温高圧冷媒との熱交換による加熱量が多く、蒸発さ
れて加熱ガスになった冷媒は、その後、熱源側膨張機構
4aではほとんど減圧されずに熱源側液配管13aを介
して熱源側熱交換器3aへ流入するが、3aのファンを
停止させて、できるかぎり熱源側の周辺空気と熱交換さ
せないようにした後、熱源側ガス配管11a、四方弁2
a、吸入配管15aを介して圧縮機1aに戻させるよう
に制御する。
After that, the heat-source-side expansion mechanism 4a hardly depressurizes and flows into the heat-source-side heat exchanger 3a through the heat-source-side liquid pipe 13a, where it is exchanged with the load-side ambient air for heating and gasification. I do. The gasified refrigerant returns to the compressor 1a via the heat source side gas pipe 11a, the four-way valve 2a, and the suction pipe 15a. In the common heat exchanger 7, the amount of heat generated by heat exchange with the high-temperature and high-pressure refrigerant on the refrigerant circuit 2 side is large, and the refrigerant that has evaporated to become a heated gas is hardly depressurized by the heat-source-side expansion mechanism 4a. After flowing into the heat source side heat exchanger 3a through the heat source side liquid pipe 13a, the fan of the heat source side 3a is stopped so that heat is not exchanged with the surrounding air on the heat source side as much as possible. Valve 2
a, control is made to return to the compressor 1a via the suction pipe 15a.

【0058】一方、冷媒回路2において、圧縮機1bか
ら吐出された高温高圧のガス冷媒は、吐出配管10b、
四方弁2b、熱源側ガス配管11bを介して熱源側熱交
換器3bへ流入し、ここで熱源側の周辺空気と熱交換さ
れて冷され液化する。液化した冷媒は途中、熱源側液配
管13bを介して熱源側膨張機構4bを流通するがここ
では減圧されずに共通熱交換器7へ流入する。ここで冷
媒回路1側の低圧冷媒と熱交換されて、冷却され液温度
が低下する。その後負荷側膨張機構6bで減圧されて負
荷側液配管14bを介して負荷側熱交換器5bへ流入
し、ここで負荷側の周辺空気と熱交換されてガス化す
る。ガス化した冷媒は負荷側ガス配管12b、四方弁2
b、吸入配管15bを介して圧縮機1bに戻る。
On the other hand, in the refrigerant circuit 2, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1b is supplied to the discharge pipe 10b,
The heat flows into the heat source side heat exchanger 3b via the four-way valve 2b and the heat source side gas pipe 11b, where the heat is exchanged with the surrounding air on the heat source side to be cooled and liquefied. The liquefied refrigerant flows through the heat-source-side expansion mechanism 4b through the heat-source-side liquid pipe 13b, but flows into the common heat exchanger 7 without being depressurized. Here, heat exchange is performed with the low-pressure refrigerant on the refrigerant circuit 1 side, and the liquid is cooled to lower the liquid temperature. Thereafter, the pressure is reduced by the load-side expansion mechanism 6b and flows into the load-side heat exchanger 5b through the load-side liquid pipe 14b, where the heat is exchanged with ambient air on the load side and gasified. The gasified refrigerant is supplied to the load-side gas pipe 12b and the four-way valve 2
b, return to the compressor 1b via the suction pipe 15b.

【0059】次に、この発明の空気調和装置において、
1つの共通熱交換器を共有する複数の冷媒回路のうち、
共通熱交換器を介してある回路から別の回路へ熱移動を
行う場合と行わない場合の運転方法について説明する。
熱移動を行わない場合、全回路において、例えば、共通
熱交換器の両端に接続する膨張機構の絞り具合をほぼ同
一にする等の調整を行って、共通熱交換器を流通する各
回路ごとの冷媒間に温度差をつけないようにする。一
方、例えば、熱移動を行う場合は、熱移動によって能力
を増大する回路の膨張機構の絞り具合を余剰能力のある
他の回路群の膨張機構の絞り具合と異なるようにする等
の調整を行って、共通熱交換器を流通する冷媒におい
て、熱移動されて能力を増加する回路の冷媒と熱を供給
する他の回路群の冷媒の温度差をつけて熱移動しやすい
ようにし、さらに1つ或いはそれ以上の圧縮機及び冷媒
ポンプの運転容量を調整し、共通熱交換器内を流通する
冷媒流量を調整して熱移動の量を制御する。
Next, in the air conditioner of the present invention,
Of a plurality of refrigerant circuits sharing one common heat exchanger,
An operation method when heat transfer is performed from one circuit to another circuit via a common heat exchanger and when heat transfer is not performed will be described.
In the case where heat transfer is not performed, in all circuits, for example, adjustments such as making the expansion mechanisms connected to both ends of the common heat exchanger approximately the same are performed, and each circuit flowing through the common heat exchanger is adjusted. Avoid temperature differences between refrigerants. On the other hand, for example, in the case of performing heat transfer, adjustment is performed such that the expansion degree of the expansion mechanism of the circuit that increases the capacity by the heat transfer is different from the expansion state of the expansion mechanism of another circuit group having excess capacity. The refrigerant flowing through the common heat exchanger has a temperature difference between the refrigerant of the circuit that is heat-transferred to increase the capacity and the refrigerant of another circuit group that supplies heat so as to facilitate heat transfer. Alternatively, the operating capacity of the compressor and the refrigerant pump is adjusted, and the amount of heat transfer is controlled by adjusting the flow rate of the refrigerant flowing through the common heat exchanger.

【0060】なお、この実施形態において、図7に示す
ように吐出配管10a、10bの途中に油分離器21
a、21bを設置したり、図8に示すように吸入配管1
5a、15bの途中に液分離器22a、22bを設置し
ても基本動作及び冷媒の流れ方は、油分離器や液分離器
が無い場合と同一である。
In this embodiment, as shown in FIG. 7, an oil separator 21 is provided in the middle of the discharge pipes 10a and 10b.
a, 21b, and as shown in FIG.
Even if the liquid separators 22a and 22b are installed in the middle of 5a and 15b, the basic operation and the flow of the refrigerant are the same as those without the oil separator and the liquid separator.

【0061】以上のようにこの実施形態1では、両端に
膨張機構を備える1つの共通熱交換器を複数の冷媒回路
で共有することで、複数の冷媒回路間での熱移動を可能
にし、冷房運転、暖房運転ともに要求運転負荷に対して
最大能力が不足している冷媒回路に対して、余剰能力の
ある複数の冷媒回路群から能力を補填することを可能に
している。
As described above, in the first embodiment, a single common heat exchanger having expansion mechanisms at both ends is shared by a plurality of refrigerant circuits, so that heat can be transferred between the plurality of refrigerant circuits and cooling is performed. In both the operation and the heating operation, it is possible to supplement the capacity of a refrigerant circuit having a maximum capacity shortage with respect to a required operation load from a plurality of refrigerant circuit groups having a surplus capacity.

【0062】また、熱移動量の調整は、各冷媒回路に備
えられている熱源側膨張機構と負荷側膨張機構の制御に
より共通熱交換器で熱交換される高圧冷媒と低圧冷媒の
温度差が調整され、また余剰能力がある複数の冷媒回路
群の圧縮機容量を調整することで、回路を循環する冷媒
量を調整し、冷媒回路間を移動させる熱量を制御する空
気調和装置の提供が可能である。
The amount of heat transfer is adjusted by controlling the temperature difference between the high-pressure refrigerant and the low-pressure refrigerant exchanged by the common heat exchanger under the control of the heat-source-side expansion mechanism and the load-side expansion mechanism provided in each refrigerant circuit. By adjusting the compressor capacity of a plurality of refrigerant circuits that have been adjusted and have excess capacity, it is possible to provide an air conditioner that adjusts the amount of refrigerant circulating through the circuits and controls the amount of heat transferred between the refrigerant circuits. It is.

【0063】実施形態1をビル等に適用する場合の例を
図9に示す。X1、X2、Y1、Y2室は、あるビルの
1フロアーにある部屋である。それぞれの部屋に室内機
が設置され、X1、X2室室内機は室外機Aに接続され
1つの冷媒回路を形成し、Y1、Y2室室内機は室外機
Bに接続され1つの冷媒回路を形成する。それぞれの冷
媒回路は共通熱交換器を介して互いに不足能力を補填す
る。
FIG. 9 shows an example in which the first embodiment is applied to a building or the like. Rooms X1, X2, Y1, and Y2 are rooms on one floor of a certain building. An indoor unit is installed in each room, and the X1 and X2 indoor units are connected to the outdoor unit A to form one refrigerant circuit, and the Y1 and Y2 indoor units are connected to the outdoor unit B to form one refrigerant circuit. I do. The respective refrigerant circuits compensate for one another via a common heat exchanger.

【0064】実施の形態2.図10はこの発明の実施の
形態の他の例を示す図で、冷媒回路図である。図1の実
施の形態1の冷媒回路に三方弁8a、8b、負荷側バイ
パス管16a、16bを追加したものである。
Embodiment 2 FIG. 10 is a diagram showing another example of the embodiment of the present invention and is a refrigerant circuit diagram. The three-way valves 8a and 8b and the load-side bypass pipes 16a and 16b are added to the refrigerant circuit of the first embodiment in FIG.

【0065】図10において、三方弁8a、8b、負荷
側バイパス管16a、16bは、1つの冷媒回路におい
て全負荷側熱交換器を使用せず、かつ他の冷媒回路の能
力増加のために共通熱交換器を介して熱を供給する場合
に、負荷側熱交換器に冷媒を流通する代わりにバイパス
管を流通させるものである。
In FIG. 10, the three-way valves 8a and 8b and the load-side bypass pipes 16a and 16b do not use the entire load-side heat exchanger in one refrigerant circuit and are common to increase the capacity of the other refrigerant circuits. When heat is supplied via the heat exchanger, the bypass pipe flows instead of the refrigerant flowing through the load side heat exchanger.

【0066】この実施形態では、バイパス管に冷媒を流
通させる場合は、共通熱交換器が冷媒回路中において主
たる凝縮器及び蒸発器として作用する。
In this embodiment, when the refrigerant flows through the bypass pipe, the common heat exchanger functions as a main condenser and an evaporator in the refrigerant circuit.

【0067】この実施形態では、負荷側熱交換器群に冷
媒を流通させないためのバイパス管と三方弁を備えるこ
とで、負荷側の運転要求が無い冷媒回路が他の冷媒回路
の能力補填等のために運転する場合、停止負荷熱交換器
に冷媒を流通させないことで、停止負荷熱交換器への冷
媒流通による騒音問題を解消する空気調和装置の提供が
可能である。尚、本バイパスを使用せずに、停止負荷熱
交換器のファンを停止して、冷媒を流通させたとして
も、多少の熱損失はあるが、同一の効果は得られる。
In this embodiment, by providing a bypass pipe and a three-way valve for preventing refrigerant from flowing through the load-side heat exchanger group, a refrigerant circuit that does not require an operation on the load side can compensate for the capacity of another refrigerant circuit. Therefore, it is possible to provide an air conditioner that eliminates the noise problem due to the circulation of the refrigerant to the stop load heat exchanger by not allowing the refrigerant to flow to the stop load heat exchanger. Incidentally, even if the fan of the stop load heat exchanger is stopped and the refrigerant is allowed to flow without using the bypass, the same effect can be obtained although there is some heat loss.

【0068】実施の形態3.図11はこの発明の実施の
形態の他の例を示す図で、冷媒回路図である。実施の形
態1の共通熱交換器に余剰冷媒を貯蔵する液貯め部を設
けたものである。23は液溜め容器、23a、23bは
各冷媒回路の液溜め部である。
Embodiment 3 FIG. 11 is a diagram showing another example of the embodiment of the present invention, and is a refrigerant circuit diagram. A liquid storage unit for storing surplus refrigerant is provided in the common heat exchanger of the first embodiment. 23 is a liquid reservoir, and 23a and 23b are liquid reservoirs of each refrigerant circuit.

【0069】液溜め容器23を用いることで、各回路の
余剰冷媒をここに貯蔵することができるため、各冷媒回
路中の液溜め用容器を撤去して、コストダウンを可能に
する空気調和装置の提供を可能にする。尚、この実施形
態における熱移動方法、及び冷媒の流れ方は実施形態1
と同様なので説明を省略する。
By using the liquid storage container 23, the excess refrigerant in each circuit can be stored here, so that the liquid storage container in each refrigerant circuit is removed to reduce the cost. To be provided. The heat transfer method and the flow of the refrigerant in this embodiment are the same as those in the first embodiment.
Therefore, the description is omitted.

【0070】実施の形態4.図12はこの発明の実施の
形態の他の例を示す図で、冷媒回路図である。実施の形
態1の共通熱交換器に設けられた、蓄熱・蓄冷を行うた
めの媒体が充填された蓄熱容器24を追加したものであ
る。
Embodiment 4 FIG. 12 is a diagram showing another example of the embodiment of the present invention, and is a refrigerant circuit diagram. A heat storage container 24 provided in the common heat exchanger of the first embodiment and filled with a medium for performing heat storage and cold storage is added.

【0071】蓄熱容器24を追加することで、各回路が
深夜電力等安価な電力を使用して氷を生成し、昼間の冷
房運転需要の多いときにこれを使用して能力を補填する
ことが可能である。同時に実施の形態1で説明した能力
不足回路への他回路からの能力補填が可能であることは
言うまでもない。
By adding the heat storage container 24, each circuit can generate ice using inexpensive electric power such as midnight electric power, and use this when daytime cooling operation demand is high to supplement the capacity. It is possible. At the same time, it is needless to say that the capability insufficiency circuit described in the first embodiment can be supplemented from another circuit.

【0072】冷媒の流れ方及び共通熱交換器での基本的
な熱移動方法は実施の形態1と同一である。ここでは蓄
冷媒体に水を使用し、深夜電力で氷を生成し、昼間にそ
の氷を使用して冷房運転する例を図13に基づいて説明
する。
The flow of the refrigerant and the basic heat transfer method in the common heat exchanger are the same as in the first embodiment. Here, an example will be described with reference to FIG. 13 in which water is used as the refrigerant storage medium, ice is generated by electric power at midnight, and cooling operation is performed using the ice in the daytime.

【0073】冷媒回路1、冷媒回路2とも夜間等、電気
代が安くかつ冷房運転負荷が小さい場合は、共通熱交換
器7を蒸発器、熱源側熱交換器3a、3bを凝縮器、負
荷側熱交換器は冷房運転要求のある熱交換器だけを蒸発
器として動作し、四方弁2a、2bは冷房モードとして
制御され、熱源側膨張機構4a、4bは熱源側熱交換器
3a、3bの出口過冷却温度、或いは負荷側熱交換器5
a、5bか共通熱交換器7を流通する冷媒温度が目標値
になるように調整され、負荷側膨張機構6a、6bはほ
とんど膨張されないように調整され、各回路の運転容量
は蓄熱容器24で生成する氷量に基づいて調整される。
When both the refrigerant circuit 1 and the refrigerant circuit 2 are low in electricity cost and the cooling operation load is low, such as at night, the common heat exchanger 7 is an evaporator, the heat source side heat exchangers 3a and 3b are condensers, and the load side is a heat exchanger. The heat exchanger operates only as the evaporator using the heat exchanger requiring cooling operation, the four-way valves 2a and 2b are controlled in the cooling mode, and the heat source side expansion mechanisms 4a and 4b are connected to the outlets of the heat source side heat exchangers 3a and 3b. Subcooling temperature or load side heat exchanger 5
a, 5b or the refrigerant flowing through the common heat exchanger 7 is adjusted so as to have a target value, the load-side expansion mechanisms 6a, 6b are adjusted so as to be hardly expanded, and the operating capacity of each circuit is controlled by the heat storage container 24. Adjusted based on the amount of ice produced.

【0074】次に冷媒の流れ方を図13に基づいて示
す。冷媒回路1、冷媒回路2において、圧縮機1a、1
bから吐出された高温高圧のガス冷媒は、吐出配管10
a、10b、四方弁2a、2b熱源側ガス配管12a、
12bを介して熱源側熱交換器3a、3bへ流入し、こ
こで熱源側の周辺空気と熱交換されて冷され液化する。
液化した冷媒は途中、熱源側液配管を介して熱源側膨張
機構4a、4bを流通し、ここで減圧されて低圧2相の
まま共通熱交換器7へ流入し、ここで蓄熱容器24に滞
留している水と熱交換して、水を氷にする。
Next, the flow of the refrigerant will be described with reference to FIG. In the refrigerant circuit 1 and the refrigerant circuit 2, the compressors 1a, 1
b, the high-temperature and high-pressure gas refrigerant discharged from the discharge pipe 10
a, 10b, four-way valve 2a, 2b heat source side gas pipe 12a,
The air flows into the heat source side heat exchangers 3a and 3b via the heat source side 12b, where the heat is exchanged with the surrounding air on the heat source side to be cooled and liquefied.
The liquefied refrigerant flows through the heat source side expansion mechanisms 4a and 4b via the heat source side liquid pipes, and is decompressed and flows into the common heat exchanger 7 in a low pressure two-phase state, where it stays in the heat storage container 24. Heat exchange with the water you are making to make the water ice.

【0075】その後、負荷側膨張機構6a、6bではほ
とんど減圧されずに、負荷側液配管14a、14bを介
して負荷側熱交換器5a、5bへ流入し、ここで負荷側
の周辺空気と熱交換されて加熱されガス化する。ガス化
した低圧冷媒は負荷側ガス配管12a、12b、四方弁
2a、2b、吸入配管15a、15bを介して圧縮機1
a、1bに戻る。
After that, the pressure is hardly reduced by the load-side expansion mechanisms 6a and 6b, and flows into the load-side heat exchangers 5a and 5b via the load-side liquid pipes 14a and 14b, where the ambient air and the heat on the load side are removed. It is exchanged, heated and gasified. The gasified low-pressure refrigerant is supplied to the compressor 1 via the load-side gas pipes 12a and 12b, the four-way valves 2a and 2b, and the suction pipes 15a and 15b.
Return to a and 1b.

【0076】一方、昼間でかつ冷媒回路1、冷媒回路2
とも冷房運転負荷が大きい場合は、氷状態になっている
蓄熱容器24を通る共通熱交換器7を過冷却器、熱源側
熱交換器3a、3bを凝縮器、負荷側熱交換器5a、5
bは蒸発器として動作し、四方弁2a、2bは冷房モー
ドとして制御され、負荷側膨張機構6a、6bは熱源側
熱交換器3a、3bの出口過冷却温度、或いは負荷側熱
交換器5a、5bか共通熱交換器7を流通する冷媒温度
が目標値になるように調整され、熱源側膨張機構4a、
4bはほとんど膨張されないように調整され、各回路の
運転容量は負荷側が要求する能力に基づいて調整され
る。
On the other hand, in the daytime, the refrigerant circuit 1 and the refrigerant circuit 2
In both cases, when the cooling operation load is large, the common heat exchanger 7 passing through the heat storage container 24 in the ice state is a supercooler, the heat source side heat exchangers 3a and 3b are condensers, and the load side heat exchangers 5a and 5a.
b operates as an evaporator, the four-way valves 2a and 2b are controlled in a cooling mode, and the load-side expansion mechanisms 6a and 6b are supercooled at the outlets of the heat-source-side heat exchangers 3a and 3b or the load-side heat exchangers 5a and 5b. 5b or the temperature of the refrigerant flowing through the common heat exchanger 7 is adjusted to the target value, and the heat source side expansion mechanism 4a,
4b is adjusted so that it hardly expands, and the operating capacity of each circuit is adjusted based on the capacity required by the load side.

【0077】以上のように、この実施形態4では、実施
形態1の回路に蓄熱容器を追加したことで、例えば深夜
電力を使用して氷を生成し、昼間の冷房需要が多いとき
に冷房能力の補填を行うことで能力不足を防いだり、運
転にかかる電気代を削減する等、蓄熱・蓄冷によって能
力不足時の能力充填を実現する空気調和装置の提供を可
能にする。
As described above, in the fourth embodiment, by adding a heat storage container to the circuit of the first embodiment, ice is generated using, for example, midnight electric power, and the cooling capacity is increased when daytime cooling demand is high. The present invention makes it possible to provide an air conditioner that realizes capacity filling when capacity is insufficient by heat storage and cold storage, such as preventing capacity shortage by compensating for power and reducing electricity costs for operation.

【0078】実施形態4をビル等に適用する場合の例を
図14に示す。X1、X2、Y1、Y2室は、あるビル
の1フロアーにある部屋である。それぞれの部屋に室内
機が設置され、X1、X2室室内機は室外機Aに接続さ
れ1つの冷媒回路を形成し、Y1、Y2室室内機は室外
機Bに接続され1つの冷媒回路を形成する。それぞれの
冷媒回路は深夜電力等安価な電気を使用して蓄熱容器に
氷を作成し、昼間に氷を使用した冷房運転をする一方、
共通熱交換器を介して互いに不足能力を補填する運転も
行う。
FIG. 14 shows an example in which the fourth embodiment is applied to a building or the like. Rooms X1, X2, Y1, and Y2 are rooms on one floor of a certain building. An indoor unit is installed in each room, and the X1 and X2 indoor units are connected to the outdoor unit A to form one refrigerant circuit, and the Y1 and Y2 indoor units are connected to the outdoor unit B to form one refrigerant circuit. I do. Each refrigerant circuit creates ice in the heat storage container using inexpensive electricity such as midnight power, and performs cooling operation using ice in the daytime,
An operation is also performed through a common heat exchanger to compensate for the shortage of each other.

【0079】実施の形態5.図15はこの発明の実施の
形態の他の例を示す冷媒回路図である。実施の形態1の
冷媒回路の共通熱交換器7が7−1、7−2とに分割さ
れ、それぞれが別々の回路と共有されているものであ
る。
Embodiment 5 FIG. FIG. 15 is a refrigerant circuit diagram showing another example of the embodiment of the present invention. The common heat exchanger 7 of the refrigerant circuit of the first embodiment is divided into 7-1 and 7-2, each of which is shared with a separate circuit.

【0080】この実施形態における熱移動方法、及び冷
媒の流れ方は実施形態1と同様なので説明を省略する。
Since the heat transfer method and the flow of the refrigerant in this embodiment are the same as those in the first embodiment, the description will be omitted.

【0081】この実施形態では、1つの冷媒回路が複数
の共通熱交換器を備え、各共通熱交換器が別々の冷媒回
路と熱移動を行うことで、複数冷媒回路を経由して熱移
動を行うことができ、熱のカスケード利用によるシステ
ム全体の効率的な熱の使用を可能な空気調和装置の提供
が可能である。
In this embodiment, one refrigerant circuit includes a plurality of common heat exchangers, and each common heat exchanger performs heat transfer with a separate refrigerant circuit, so that heat transfer is performed via the plurality of refrigerant circuits. Therefore, it is possible to provide an air conditioner capable of efficiently using heat of the entire system by utilizing heat cascade.

【0082】実施の形態6.図16はこの発明の実施の
形態の他の例を示す図で、冷媒回路図である。実施の形
態5の冷媒回路の共通熱交換器の間にカスケード用膨張
機構9cが備えられているものである。
Embodiment 6 FIG. FIG. 16 is a diagram showing another example of the embodiment of the present invention, and is a refrigerant circuit diagram. The cascade expansion mechanism 9c is provided between the common heat exchangers of the refrigerant circuit of the fifth embodiment.

【0083】次に、両端に膨張機構を接続する共通熱交
換器を複数個備えるある回路が、他の低温冷凍用回路と
空調用回路の暖房能力を増大する時の動作例を図17に
基づいて説明する。冷媒回路1は低温の冷凍用回路で冷
房能力の増大を要求し、冷媒回路2は空調用回路で暖房
能力の増大を要求し、冷媒回路3は負荷側で暖房運転を
する一方、冷媒回路1、2の能力増加を補填している場
合を想定する。
Next, an example of operation when a circuit having a plurality of common heat exchangers connecting expansion mechanisms at both ends increases the heating capacity of another low-temperature refrigeration circuit and an air-conditioning circuit will be described with reference to FIG. Will be explained. The refrigerant circuit 1 requires an increase in cooling capacity in a low-temperature refrigeration circuit, the refrigerant circuit 2 requires an increase in heating capacity in an air-conditioning circuit, and the refrigerant circuit 3 performs heating operation on the load side. Assume a case where the increase in capacity of 2 is compensated.

【0084】冷媒回路1では熱源側熱交換器3aは凝縮
器として、負荷側熱交換器5aは蒸発器として動作し、
四方弁2aは冷房モードとして制御され、熱源側膨張機
構4aは冷媒をほとんど膨張させないようにして、負荷
側膨張機構6aは熱源側熱交換器3aの出口過冷却温
度、或いは負荷側熱交換器5aの出口過熱温度が目標値
になるように膨張され調整される。
In the refrigerant circuit 1, the heat source side heat exchanger 3a operates as a condenser, and the load side heat exchanger 5a operates as an evaporator.
The four-way valve 2a is controlled in a cooling mode, the heat-source-side expansion mechanism 4a hardly expands the refrigerant, and the load-side expansion mechanism 6a operates at the outlet subcooling temperature of the heat-source-side heat exchanger 3a or the load-side heat exchanger 5a. Is expanded and adjusted so that the outlet superheat temperature becomes the target value.

【0085】冷媒回路2では熱源側熱交換器3bを蒸発
器として、また負荷側熱交換器5bは凝縮器として動作
し、四方弁2bは暖房モードとして制御され、負荷側膨
張機構6bは冷媒を膨張させて、負荷側熱交換器5bの
出口過冷却温度、或いは熱源側熱交換器3bの出口過熱
温度が目標値になるように膨張して調整され、熱源側膨
張機構4bはほとんど膨張しないように調整される。
In the refrigerant circuit 2, the heat source side heat exchanger 3b operates as an evaporator, the load side heat exchanger 5b operates as a condenser, the four-way valve 2b is controlled in a heating mode, and the load side expansion mechanism 6b controls the refrigerant. It is expanded and adjusted so that the outlet supercooling temperature of the load side heat exchanger 5b or the outlet superheat temperature of the heat source side heat exchanger 3b becomes a target value, and the heat source side expansion mechanism 4b hardly expands. It is adjusted to.

【0086】冷媒回路3では負荷側熱交換器5cを凝縮
器として、熱源側熱交換器3cを蒸発器として動作し、
四方弁2cを暖房モードとした場合、熱源側膨張機構4
c及び負荷側膨張機構6cは冷媒をほとんど膨張させな
いで、またカスケード用膨張機構9cは負荷側熱交換器
5cの出口過冷却温度、或いは熱源側熱交換器3cの出
口過熱温度が目標値になるように調整される。
In the refrigerant circuit 3, the load side heat exchanger 5c operates as a condenser and the heat source side heat exchanger 3c operates as an evaporator.
When the four-way valve 2c is set to the heating mode, the heat source side expansion mechanism 4
c and the load-side expansion mechanism 6c hardly expand the refrigerant, and the cascade expansion mechanism 9c has a target value of the supercooling temperature at the outlet of the load-side heat exchanger 5c or the superheat temperature at the outlet of the heat-source-side heat exchanger 3c. Is adjusted as follows.

【0087】次に冷媒の流れについて図17に基づいて
説明する。冷媒回路1において、圧縮機1aから吐出さ
れた高温高圧のガス冷媒は、吐出配管10a、四方弁2
a、熱源側ガス配管11aを介して熱源側熱交換器3a
へ流入するが、熱交換器用ファンを停止させるため、ほ
とんど熱交換されずに高圧ガス或いは2相状態で熱源側
液配管を介して熱源側膨張機構4aを流通するが、ここ
ではほとんど減圧されずに高圧ガス或いは2相状態のま
ま共通熱交換器7−1へ流入する。ここで冷媒回路3側
の共通熱交換器7−1を流通する低圧2相冷媒と熱交換
されて凝縮し、高圧液となる。
Next, the flow of the refrigerant will be described with reference to FIG. In the refrigerant circuit 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 a is supplied to the discharge pipe 10 a and the four-way valve 2.
a, heat source side heat exchanger 3a through heat source side gas pipe 11a
Flows through the heat-source-side expansion mechanism 4a through the heat-source-side liquid pipe in a high-pressure gas or two-phase state with little heat exchange in order to stop the heat exchanger fan. Flows into the common heat exchanger 7-1 in a high-pressure gas or two-phase state. Here, the refrigerant exchanges heat with the low-pressure two-phase refrigerant flowing through the common heat exchanger 7-1 on the refrigerant circuit 3 side, condenses, and becomes a high-pressure liquid.

【0088】その後、負荷側膨張機構6aで減圧され、
負荷側液配管14aを介して負荷側熱交換器5aへ流入
し、ここで負荷側の周辺空気と熱交換されて加熱されガ
ス化する。ガス化した冷媒は負荷側ガス配管12a、四
方弁2a、吸入配管15aを介して圧縮機1aに戻る。
Thereafter, the pressure is reduced by the load-side expansion mechanism 6a.
The gas flows into the load-side heat exchanger 5a via the load-side liquid pipe 14a, where it exchanges heat with the load-side ambient air and is heated and gasified. The gasified refrigerant returns to the compressor 1a via the load-side gas pipe 12a, the four-way valve 2a, and the suction pipe 15a.

【0089】一方、冷媒回路2において、圧縮機1bか
ら吐出された高温高圧のガス冷媒は、吐出配管10b、
四方弁2b、負荷側ガス配管12bを介して負荷側熱交
換器3bへ流入し、ここで負荷側の周辺空気と熱交換さ
れて冷され液化する。液化した冷媒は途中、負荷側液配
管14bを介して負荷側膨張機構6bで減圧されて低圧
2相状態になり共通熱交換器7−2へ流入する。ここで
冷媒回路3の共通熱交換器7−2を流通する高圧液冷媒
と熱交換されて蒸発し一部ガス化する。
On the other hand, in the refrigerant circuit 2, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1b is supplied to the discharge pipe 10b,
The gas flows into the load-side heat exchanger 3b via the four-way valve 2b and the load-side gas pipe 12b, where it exchanges heat with the load-side ambient air to be cooled and liquefied. The liquefied refrigerant is reduced in pressure by the load-side expansion mechanism 6b via the load-side liquid pipe 14b, enters a low-pressure two-phase state, and flows into the common heat exchanger 7-2. Here, heat exchange is performed with the high-pressure liquid refrigerant flowing through the common heat exchanger 7-2 of the refrigerant circuit 3 to evaporate and partially gasify.

【0090】その後熱源側膨張機構4bを流通するが、
ここではほとんど減圧されずに負荷側液配管13bを介
して熱源側熱交換器3bへ流入する。ここでは低圧冷媒
状態に応じてファン風量を調整して蒸発作用を制御して
ガス化する。ガス化した低圧冷媒は熱源側ガス配管11
b、四方弁2b、吸入配管15bを介して圧縮機1bに
戻る。
After that, the gas flows through the heat source side expansion mechanism 4b.
Here, the pressure is hardly reduced and flows into the heat source side heat exchanger 3b via the load side liquid pipe 13b. Here, the air flow is adjusted according to the state of the low-pressure refrigerant to control the evaporating action and gasify the gas. The gasified low-pressure refrigerant is supplied to the heat source side gas pipe 11.
b, return to the compressor 1b via the four-way valve 2b and the suction pipe 15b.

【0091】一方、冷媒回路3において、圧縮機1cか
ら吐出された高温高圧のガス冷媒は、吐出配管10c、
四方弁2c、負荷側ガス配管12cを介して負荷側熱交
換器5cへ流入し、ここで負荷側の周辺空気と熱交換さ
れて冷された後、負荷側液配管14cを介して負荷側膨
張機構6cを流通するが、ここではほとんど減圧されず
に高圧2相状態で共通熱交換器7−2へ流入する。ここ
で冷媒回路2側の低圧2相冷媒と熱交換されて、冷され
て高圧液となる。
On the other hand, in the refrigerant circuit 3, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1c is discharged from the discharge pipe 10c.
After flowing into the load-side heat exchanger 5c through the four-way valve 2c and the load-side gas pipe 12c, the heat is exchanged with the load-side ambient air and cooled, and then the load-side expansion is performed through the load-side liquid pipe 14c. Although flowing through the mechanism 6c, the pressure is hardly reduced here and flows into the common heat exchanger 7-2 in a high-pressure two-phase state. Here, heat exchange is performed with the low-pressure two-phase refrigerant on the refrigerant circuit 2 side, and the refrigerant is cooled to become a high-pressure liquid.

【0092】その後カスケード用膨張機構9cで減圧さ
れて低圧2相状態になり共通熱交換器7−1へ流入す
る。ここで冷媒回路2側の高圧液冷媒と熱交換されて、
一部ガス化する。その後、熱源側膨張機構4cへ流通す
るがここではほとんど減圧されずに、熱源側液配管13
cを介して熱源側熱交換器3cへ流入し、ここで熱源側
の周辺空気と熱交換されてガス化する。ガス化した冷媒
は熱源側ガス配管11c、四方弁2c、吸入配管15c
を介して圧縮機1cに戻る。
Thereafter, the pressure is reduced by the cascade expansion mechanism 9c to be in a low-pressure two-phase state, and flows into the common heat exchanger 7-1. Here, heat exchange is performed with the high-pressure liquid refrigerant on the refrigerant circuit 2 side,
Partially gasifies. After that, it flows to the heat source-side expansion mechanism 4c, but is hardly depressurized here.
The gas flows into the heat source side heat exchanger 3c through the heat exchanger c, where the heat is exchanged with the surrounding air on the heat source side and gasified. The gasified refrigerant is supplied to the heat source side gas pipe 11c, the four-way valve 2c, and the suction pipe 15c.
And returns to the compressor 1c.

【0093】このように負荷が小さくかつ複数の共通熱
交換器を備える冷媒回路は、他の回路の冷房運転や暖房
運転の能力を補填することができる。
The refrigerant circuit having a small load and including a plurality of common heat exchangers can supplement the cooling operation and the heating operation of other circuits.

【0094】同様に複数の共通熱交換器を備える回路が
他の低温の冷凍用回路と空調用回路の冷房能力を増大す
ることも可能である。以下、図18に基づいて説明す
る。
Similarly, a circuit having a plurality of common heat exchangers can increase the cooling capacity of other low-temperature refrigeration circuits and air-conditioning circuits. Hereinafter, description will be made with reference to FIG.

【0095】冷媒回路1は低温の冷凍用回路で冷房能力
の増大を要求し、冷媒回路2は空調用回路で冷房能力の
増大を要求し、冷媒回路3は負荷側で暖房運転をする一
方、冷媒回路1、2の能力増加を補填している場合を想
定する。冷房及び暖房運転動作の詳細説明は省略し、こ
こではポイントだけ説明する。冷媒回路1では熱源側膨
張機構4aは冷媒をほとんど膨張させないようにして、
負荷側膨張機構6aは熱源側熱交換器3aの出口過冷却
温度、或いは負荷側熱交換器5aの出口過熱温度が目標
値になるように調整され、また熱源側熱交換器3aにお
ける外気との熱交換量を最小限に抑えた場合は共通熱交
換器内7−1を流通する冷媒は高圧ガス、或いは2相状
態になり、また熱源側熱交換器3aにおける外気との熱
交換量が多い場合は共通熱交換器7−1内を流通する冷
媒は高圧2相、或いは液状態になるように調整される。
The refrigerant circuit 1 requires an increase in cooling capacity in a low-temperature refrigeration circuit, the refrigerant circuit 2 requires an increase in cooling capacity in an air-conditioning circuit, and the refrigerant circuit 3 performs heating operation on the load side. It is assumed that the increase in the capacity of the refrigerant circuits 1 and 2 is compensated for. Detailed description of the cooling and heating operation is omitted, and only the points will be described here. In the refrigerant circuit 1, the heat source side expansion mechanism 4a hardly expands the refrigerant,
The load-side expansion mechanism 6a is adjusted so that the outlet supercooling temperature of the heat source-side heat exchanger 3a or the outlet superheat temperature of the load-side heat exchanger 5a becomes a target value. When the heat exchange amount is minimized, the refrigerant flowing through the common heat exchanger 7-1 becomes a high-pressure gas or a two-phase state, and the heat exchange amount with the outside air in the heat source side heat exchanger 3a is large. In this case, the refrigerant flowing through the common heat exchanger 7-1 is adjusted to be in a high-pressure two-phase or liquid state.

【0096】共通熱交換器7−1では冷媒回路3の共通
熱交換器7−1を流通する低圧2相冷媒と熱交換して、
冷媒回路1の共通熱交換器7−1を流通する冷媒が冷さ
れ液化する。一方、冷媒回路3の共通熱交換器7−1を
流通する冷媒の温度が低いため冷媒回路1の凝縮温度が
低くなり、結果、低温の蒸発温度生成が可能であり、冷
凍機器に対応する冷媒回路を回路群に加えることが可能
になる。
The common heat exchanger 7-1 exchanges heat with the low-pressure two-phase refrigerant flowing through the common heat exchanger 7-1 of the refrigerant circuit 3, and
The refrigerant flowing through the common heat exchanger 7-1 of the refrigerant circuit 1 is cooled and liquefied. On the other hand, since the temperature of the refrigerant flowing through the common heat exchanger 7-1 of the refrigerant circuit 3 is low, the condensation temperature of the refrigerant circuit 1 is low, and as a result, a low-temperature evaporation temperature can be generated, and the refrigerant corresponding to the refrigeration equipment Circuits can be added to a group of circuits.

【0097】冷媒回路2では熱源側膨張機構4bは冷媒
をほとんど膨張させないようにして、負荷側膨張機構6
bは熱源側熱交換器3bの出口過冷却温度、或いは負荷
側熱交換器5bの出口過熱温度が目標値になるように調
整される。共通熱交換器7−2に流通する冷媒は高圧液
状態であり、冷媒回路3の共通熱交換器7−2に流通す
る低圧2相の冷媒と熱交換を行い過冷却度が増加して冷
房能力が増加する。
In the refrigerant circuit 2, the heat source side expansion mechanism 4b hardly expands the refrigerant, and
b is adjusted so that the outlet supercooling temperature of the heat source side heat exchanger 3b or the outlet superheat temperature of the load side heat exchanger 5b becomes a target value. The refrigerant flowing through the common heat exchanger 7-2 is in a high-pressure liquid state, and exchanges heat with the low-pressure two-phase refrigerant flowing through the common heat exchanger 7-2 of the refrigerant circuit 3 to increase the degree of supercooling, thereby cooling. Ability increases.

【0098】冷媒回路3では熱源側膨張機構4c、カス
ケード用膨張機構9cでは冷媒をほとんど膨張させない
ようにして、負荷側膨張機構6cは負荷側熱交換器5c
の出口過冷却温度、或いは熱源側熱交換器3cの出口過
熱温度が目標値になるように調整され、共通熱交換器7
−1、7−2内のパス7ca、7cbを流通する冷媒は
低圧2相状態になるように調整され、それぞれ冷媒回路
1の高圧のガス、2相或いは液冷媒、冷媒回路2の高圧
液冷媒と熱交換されて暖められてガスになる。尚、冷媒
の流れ方についての説明は省略する。
In the refrigerant circuit 3, the heat source side expansion mechanism 4c and in the cascade expansion mechanism 9c, the refrigerant is hardly expanded, and the load side expansion mechanism 6c is connected to the load side heat exchanger 5c.
And the superheat temperature at the outlet of the heat source side heat exchanger 3c is adjusted to the target value.
The refrigerant flowing through the paths 7ca and 7cb in the -1 and 7-2 is adjusted so as to be in a low-pressure two-phase state, and a high-pressure gas, a two-phase or liquid refrigerant in the refrigerant circuit 1, and a high-pressure liquid refrigerant in the refrigerant circuit 2, respectively. Heat is exchanged with the gas and it is heated and turned into gas. The description of the flow of the refrigerant is omitted.

【0099】この実施形態では、両端に膨張機構を接続
した共通熱交換器を複数個備える回路において、冷媒流
れの一番上流側に位置する共通熱交換器内圧力が最も高
く、一番下流側に位置する共通熱交換器内圧力が最も低
くなり、その間に位置する複数の共通熱交換器内圧力は
流れ順に順次少しずつ低下した値を示す。圧力の高い共
通熱交換器では他の冷媒回路に熱を供給することで他の
冷媒回路の主に暖房能力を増加させたり、本回路の主に
冷房能力を増大したり等を可能にする一方、圧力の低い
共通熱交換器では、他の冷媒回路から熱を回収して本回
路の蒸発能力を補填し、主に暖房能力を増大したり、他
の冷媒回路から熱を回収して主に冷房能力を増大したり
等を可能にし、さらにそれぞれの共通熱交換器が、目的
や所望負荷量に応じて、別々の複数の冷媒回路間で熱移
動を行うことで、熱のカスケード利用による効率化、及
びシステム全体としての負荷平準化を図ることが可能に
なる。
In this embodiment, in a circuit having a plurality of common heat exchangers having expansion mechanisms connected to both ends, the pressure inside the common heat exchanger located at the most upstream side of the refrigerant flow is the highest and the most downstream side is located at the most downstream side. , The internal pressure of the common heat exchanger is lowest, and the internal pressures of the plurality of common heat exchangers located therebetween indicate values gradually decreasing in the order of flow. A high-pressure common heat exchanger supplies heat to other refrigerant circuits, thereby increasing the heating capacity of the other refrigerant circuits mainly, or increasing the cooling capacity of the main circuit, etc. In a low-pressure common heat exchanger, heat is recovered from other refrigerant circuits to compensate for the evaporation capacity of this circuit, mainly to increase the heating capacity, or to recover heat mainly from other refrigerant circuits. The cooling capacity can be increased, etc., and each common heat exchanger performs heat transfer between different refrigerant circuits according to the purpose and desired load, so that the efficiency by heat cascade use And load leveling of the entire system can be achieved.

【0100】例えば、本システムを冷凍機器を備えた店
舗に設置した例を図19に示す。X室には空気調和装置
1,2,3、Y室には空気調和装置4、5が設置され、
またX室には冷凍食品などを保存するショーケース6,
7,8が設置されている。室内機1,2,3は室外機A
に、室内機4、5は室外機Bに、ショーケース6,7,
8は室外機Cに接続され各々冷媒回路を形成する。各回
路は共通熱交換器を備え、共通熱交換器を介して他回路
の能力補填を行う。
For example, FIG. 19 shows an example in which the present system is installed in a store provided with refrigeration equipment. Air conditioners 1, 2, and 3 are installed in room X, and air conditioners 4 and 5 are installed in room Y.
In the X room, showcases 6 for storing frozen foods, etc.
7, 8 are installed. Indoor units 1, 2, and 3 are outdoor units A
The indoor units 4 and 5 are connected to the outdoor unit B, and the showcases 6, 7, and
Numerals 8 are connected to the outdoor unit C to form respective refrigerant circuits. Each circuit has a common heat exchanger, and the capacity of other circuits is supplemented through the common heat exchanger.

【0101】実施の形態7.図20はこの発明の実施の
形態の他の例を示す図で、冷媒回路図である。実施の形
態1の冷媒回路において、熱源側膨張機構3aと負荷側
熱交換器5aの間に備えられた共通熱交換器7−1aに
平行して、例えば蓄熱容器24に囲まれた共通熱交換器
7−1bを備えたものである。
Embodiment 7 FIG. FIG. 20 is a diagram showing another example of the embodiment of the present invention and is a refrigerant circuit diagram. In the refrigerant circuit of the first embodiment, for example, a common heat exchange surrounded by a heat storage container 24 in parallel with a common heat exchanger 7-1a provided between the heat source-side expansion mechanism 3a and the load-side heat exchanger 5a. 7-1b.

【0102】この場合、蓄熱容器24に生成された氷を
使用する場合と、各回路で能力を補填する場合とで、使
用する共通熱交換器を使い分けることで、より効率のよ
い運転が可能となる。尚、動作方法、及び冷媒の流れ方
は既に他の実施の形態で説明したものと重複するため省
略する。
In this case, a more efficient operation can be achieved by using a common heat exchanger to be used depending on whether the ice generated in the heat storage container 24 is used or when the capacity is supplemented in each circuit. Become. The operation method and the flow of the refrigerant are omitted because they are the same as those already described in the other embodiments.

【0103】[0103]

【発明の効果】この発明に係る空気調和装置は、圧縮機
または冷媒ポンプと、熱源側熱交換器と、四方弁または
冷暖切換弁と、熱源側膨張機構と、負荷側熱交換器と、
負荷側膨張機構とを環状に接続して構成される複数の冷
媒回路と、この冷媒回路の液管において熱源側膨張機構
と負荷側膨張機構との間に接続され、冷媒回路によって
共有される共通熱交換器とを備えた構成にしたので、共
通熱交換器用に切換弁や膨張機構を備えたバイパス回路
を設置せずに回路及び制御の簡素化が図れ、複数の冷媒
回路間において余剰能力のある回路から能力不足回路へ
必要な熱の授受を共通熱交換器を介して行い、能力不足
回路の能力補填を可能とすることで、システム全体の熱
負荷の平準化と熱のカスケード利用によるシステム全体
の効率的な熱の利用を可能にする。
The air conditioner according to the present invention includes a compressor or a refrigerant pump, a heat source side heat exchanger, a four-way valve or a cooling / heating switching valve, a heat source side expansion mechanism, a load side heat exchanger,
A plurality of refrigerant circuits configured by annularly connecting the load-side expansion mechanism, and a common pipe connected between the heat-source-side expansion mechanism and the load-side expansion mechanism in a liquid pipe of the refrigerant circuit and shared by the refrigerant circuit. With a configuration including a heat exchanger, the circuit and control can be simplified without installing a bypass circuit having a switching valve and an expansion mechanism for the common heat exchanger, and the surplus capacity between a plurality of refrigerant circuits can be achieved. The required heat is transferred from a certain circuit to the under-capacity circuit via a common heat exchanger, and the capacity of the under-capacity circuit can be compensated. Enables efficient use of heat throughout.

【0104】また、負荷側熱交換器に冷媒を流通させな
いためのバイパス管と、三方弁とを備えたので、停止負
荷熱交換器への冷媒流通による騒音問題を解消する。
Further, since a bypass pipe for preventing refrigerant from flowing through the load-side heat exchanger and a three-way valve are provided, the problem of noise caused by refrigerant flowing to the stopped load heat exchanger is eliminated.

【0105】また、共通熱交換器に余剰冷媒を貯蔵する
液貯め部を設けたので、各冷媒回路中の液溜め用容器を
撤去して、コストダウンを可能にする。
Further, since the common heat exchanger is provided with a liquid storage section for storing the surplus refrigerant, the liquid storage containers in each refrigerant circuit are removed, thereby enabling cost reduction.

【0106】また、共通熱交換器に蓄熱・蓄冷を行うた
めの媒体が充填された蓄熱容器を設けたので、各回路が
深夜電力等安価な電力を使用して蓄熱・蓄冷を可能と
し、昼間の暖房・冷房運転需要の多いときにこれを使用
して能力を補填することが可能である。
Further, since the common heat exchanger is provided with a heat storage container filled with a medium for performing heat storage and cold storage, each circuit can store and store heat using inexpensive electric power such as late-night electric power. It can be used to supplement capacity when heating / cooling operation demand is high.

【0107】また、少なくとも1つの冷媒回路において
は、共通熱交換器が直列に複数接続され、該複数の共通
熱交換器はそれぞれ別々かつ任意の複数の他の冷媒回路
に共有されるので、各共通熱交換器が別々の冷媒回路と
熱移動を行うことで、複数冷媒回路をはさんで熱移動を
行うことができ、熱のカスケード利用によるシステム全
体の効率的な熱の使用を可能とする空気調和装置の提供
が可能である。。
Further, in at least one refrigerant circuit, a plurality of common heat exchangers are connected in series, and each of the plurality of common heat exchangers is shared by a separate and arbitrary plurality of other refrigerant circuits. Since the common heat exchanger performs heat transfer with separate refrigerant circuits, heat transfer can be performed across multiple refrigerant circuits, enabling efficient use of heat of the entire system by using heat cascade. An air conditioner can be provided. .

【0108】また、複数の共通熱交換器の両端に膨張機
構が接続されるように、各共通熱交換器の間に、カスケ
ード用膨張機構が配設された構成にしたので、それぞれ
の共通熱交換器が、目的や所望負荷量に応じて、別々の
複数の冷媒回路間で熱移動を行うことで、熱のカスケー
ド利用による効率化、及びシステム全体としての負荷平
準化を図ることが可能になる。。
Further, the cascade expansion mechanism is arranged between the common heat exchangers so that the expansion mechanisms are connected to both ends of the plurality of common heat exchangers. The exchanger performs heat transfer between a plurality of separate refrigerant circuits according to the purpose and the desired load amount, so that efficiency can be improved by using heat cascade, and load leveling as a whole system can be achieved. Become. .

【0109】また、複数の冷媒回路は、空気調和装置、
冷凍用装置、冷蔵用装置等に使用されるものを含む構成
にしたので、共通熱交換器を共有する各冷媒回路は空気
調和や冷凍等、目的が異なる複数の回路間で熱の授受を
行うことも可能である。
Further, the plurality of refrigerant circuits include an air conditioner,
Because it is configured to include those used for refrigeration equipment, refrigeration equipment, etc., each refrigerant circuit sharing a common heat exchanger transfers heat between multiple circuits with different purposes such as air conditioning and refrigeration. It is also possible.

【0110】この発明に係る空気調和装置の運転方法
は、複数冷媒回路中、冷房運転しているある冷媒回路の
冷房能力をさらに大きくする場合、ある冷媒回路におい
ては、高圧状態で冷媒を前記共通熱交換器に流通させ、
余剰能力のある他の冷媒回路において、共通熱交換器を
流通する冷媒は、低圧二相状態で前記共通熱交換器へ流
通させ、圧縮機又は冷媒ポンプの運転容量の調整して共
通熱交換器での熱移動を制御することにより、ある冷媒
回路の冷房能力をさらに大きくすることができる。
[0110] The method of operating an air conditioner according to the present invention is characterized in that, when the cooling capacity of a certain refrigerant circuit that is performing a cooling operation among a plurality of refrigerant circuits is further increased, the refrigerant in the certain refrigerant circuit is subjected to the common pressure in a high pressure state. Circulate through the heat exchanger,
In another refrigerant circuit having a surplus capacity, the refrigerant flowing through the common heat exchanger is passed to the common heat exchanger in a low-pressure two-phase state, and the operating capacity of the compressor or the refrigerant pump is adjusted so that the common heat exchanger is operated. By controlling the heat transfer in the refrigerant circuit, the cooling capacity of a certain refrigerant circuit can be further increased.

【0111】また、複数冷媒回路中、暖房運転している
ある冷媒回路の暖房能力をさらに大きくする場合、ある
冷媒回路においては、低圧二相状態で冷媒を前記共通熱
交換器に流通させ、余剰能力のある他の冷媒回路におい
て、共通熱交換器を流通する冷媒は、高圧状態で共通熱
交換器へ流通させ、圧縮機又は冷媒ポンプの運転容量の
調整して共通熱交換器での熱移動を制御することによ
り、ある冷媒回路の暖房能力をさらに大きくすることが
できる。
When the heating capacity of a certain refrigerant circuit in a heating operation among a plurality of refrigerant circuits is to be further increased, in a certain refrigerant circuit, the refrigerant is passed through the common heat exchanger in a low-pressure two-phase state, so In another capable refrigerant circuit, the refrigerant flowing through the common heat exchanger flows through the common heat exchanger in a high pressure state, and the operating capacity of the compressor or the refrigerant pump is adjusted to transfer heat in the common heat exchanger. , The heating capacity of a certain refrigerant circuit can be further increased.

【0112】また、複数冷媒回路中、暖房運転している
暖房運転を継続しながらある冷媒回路の熱源側熱交換器
を除霜する場合、ある冷媒回路においては、低圧二相状
態で冷媒を前記共通熱交換器に流通させ、余剰能力のあ
る他の冷媒回路において、共通熱交換器を流通する冷媒
は、高圧状態で前記共通熱交換器へ流通させ、圧縮機又
は冷媒ポンプの運転容量の調整して共通熱交換器での熱
移動を制御することにより、暖房運転しているある冷媒
回路の熱源側熱交換器を除霜することができる。
In the case of defrosting the heat source-side heat exchanger of a refrigerant circuit that continues to perform a heating operation during a heating operation in a plurality of refrigerant circuits, in one of the refrigerant circuits, the refrigerant is discharged in a low-pressure two-phase state. In another refrigerant circuit having a surplus capacity, the refrigerant flowing through the common heat exchanger is circulated through the common heat exchanger in a high pressure state to adjust the operating capacity of the compressor or the refrigerant pump. Then, by controlling the heat transfer in the common heat exchanger, it is possible to defrost the heat source side heat exchanger of a certain refrigerant circuit that is performing the heating operation.

【0113】また、冷媒回路間で熱移動を行わない場合
は、例えば、冷媒回路の全てにおいて、共通熱交換器の
両端に接続している膨張機構の絞り具合をほぼ同一にす
る等の調整を行って共通熱交換器内を流通する冷媒間の
温度差を無くし、冷媒回路間で熱移動を行う場合は、例
えば、熱移動によって能力を増大する冷媒回路の共通熱
交換器の両端に接続している膨張機構の絞り具合を余剰
能力のある他の冷媒回路の共通熱交換器の両端に接続し
ている膨張機構の絞り具合と異なるようにする等の調整
を行って共通熱交換器内を流通する冷媒間の温度差を確
保することで熱移動を行い、圧縮機又は冷媒ポンプの運
転容量を調整することにより、冷媒回路間での熱移動量
を調整することが可能である。
In the case where heat transfer is not performed between the refrigerant circuits, for example, in all of the refrigerant circuits, adjustments such as making the expansion mechanisms connected to both ends of the common heat exchanger approximately the same degree of throttle are performed. In order to eliminate the temperature difference between the refrigerant flowing through the common heat exchanger and perform heat transfer between the refrigerant circuits, for example, connect to both ends of the common heat exchanger of the refrigerant circuit whose capacity is increased by heat transfer. The throttling degree of the expansion mechanism is adjusted to be different from the throttling degree of the expansion mechanism connected to both ends of the common heat exchanger of the other refrigerant circuit having the surplus capacity, and the inside of the common heat exchanger is adjusted. The heat transfer is performed by securing the temperature difference between the flowing refrigerants, and the heat transfer amount between the refrigerant circuits can be adjusted by adjusting the operating capacity of the compressor or the refrigerant pump.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示す冷媒回路図で
ある。
FIG. 1 is a refrigerant circuit diagram showing Embodiment 1 of the present invention.

【図2】 実施の形態1の一回路の冷房能力増加時の冷
媒の流れを示す冷媒回路図である。
FIG. 2 is a refrigerant circuit diagram illustrating a flow of a refrigerant when a cooling capacity of one circuit of the first embodiment is increased.

【図3】 実施の形態1の一回路の暖房能力増加時の冷
媒の流れを示す冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram illustrating a flow of a refrigerant when a heating capacity of one circuit of the first embodiment is increased.

【図4】 実施の形態1の一回路の暖房運転を継続しな
がら熱源側熱交換器の除霜時の冷媒の流れを示す冷媒回
路図である。
FIG. 4 is a refrigerant circuit diagram showing the flow of refrigerant when defrosting the heat source side heat exchanger while continuing the heating operation of one circuit of the first embodiment.

【図5】 実施の形態1の冷房・暖房運転混在時に一回
路の冷房能力増加時の冷媒の流れを示す冷媒回路図であ
る。
FIG. 5 is a refrigerant circuit diagram showing the flow of refrigerant when the cooling capacity of one circuit is increased when cooling and heating operations are mixed in the first embodiment.

【図6】 実施の形態1の冷房・暖房運転混在時に一回
路の暖房能力増加時の冷媒の流れを示す冷媒回路図であ
る。
FIG. 6 is a refrigerant circuit diagram showing the flow of refrigerant when the heating capacity of one circuit increases when cooling and heating operations are mixed in the first embodiment.

【図7】 実施の形態1の冷媒回路図に油分離器を設置
した場合の冷媒回路図である。
FIG. 7 is a refrigerant circuit diagram when an oil separator is installed in the refrigerant circuit diagram of the first embodiment.

【図8】 実施の形態1の冷媒回路図に液分離器を設置
した場合の冷媒回路図である。
FIG. 8 is a refrigerant circuit diagram when a liquid separator is installed in the refrigerant circuit diagram of the first embodiment.

【図9】 実施の形態1の冷媒回路をビルなどに設置し
た場合の一例を示す図である。
FIG. 9 is a diagram illustrating an example of a case where the refrigerant circuit according to the first embodiment is installed in a building or the like;

【図10】 この発明の実施の形態2を示す冷媒回路図
である。
FIG. 10 is a refrigerant circuit diagram showing Embodiment 2 of the present invention.

【図11】 この発明の実施の形態3を示す冷媒回路図
である
FIG. 11 is a refrigerant circuit diagram showing Embodiment 3 of the present invention.

【図12】 この発明の実施の形態4を示す冷媒回路図
である
FIG. 12 is a refrigerant circuit diagram showing Embodiment 4 of the present invention.

【図13】 実施の形態4の各冷媒回路が共通熱交換器
を使用して蓄熱容器に氷を生成する場合の冷媒の流れを
示す冷媒回路図である。
FIG. 13 is a refrigerant circuit diagram showing a flow of a refrigerant when each refrigerant circuit of the fourth embodiment uses a common heat exchanger to generate ice in a heat storage container.

【図14】 実施の形態4の冷媒回路をビルなどに設置
した場合の一例を示す図である。
FIG. 14 is a diagram illustrating an example of a case where the refrigerant circuit according to Embodiment 4 is installed in a building or the like.

【図15】 この発明の実施の形態5を示す冷媒回路図
である。
FIG. 15 is a refrigerant circuit diagram showing Embodiment 5 of the present invention.

【図16】 この発明の実施の形態6を示す冷媒回路図
である。
FIG. 16 is a refrigerant circuit diagram showing Embodiment 6 of the present invention.

【図17】 実施の形態6の空気調和装置の暖房運転と
冷凍機器の能力増加時の冷媒の流れを示す冷媒回路図で
ある。
FIG. 17 is a refrigerant circuit diagram illustrating the flow of refrigerant during the heating operation of the air-conditioning apparatus according to Embodiment 6 and when the capacity of the refrigeration equipment is increased.

【図18】 実施の形態6の空気調和装置の冷房運転と
冷凍機器の能力増加時の冷媒の流れを示す冷媒回路図で
ある。
FIG. 18 is a refrigerant circuit diagram showing the flow of refrigerant when the air conditioner according to Embodiment 6 performs the cooling operation and the capacity of the refrigeration equipment increases.

【図19】 実施の形態6の冷媒回路を店舗などに設置
した場合の一例を示す図である。
FIG. 19 is a diagram illustrating an example of a case where the refrigerant circuit according to Embodiment 6 is installed in a store or the like.

【図20】 この発明の実施の形態7を示す冷媒回路図
である。
FIG. 20 is a refrigerant circuit diagram showing Embodiment 7 of the present invention.

【図21】 従来の空気調和装置の冷媒回路図である。FIG. 21 is a refrigerant circuit diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

A,B 熱源側ユニット、X,Y 負荷側ユニット、U
熱移動ユニット、1a,1b,1c 圧縮機及び加圧
ポンプ、2a,2b,2c 四方弁及び冷暖切換弁、3
a,3b,3c 熱源側熱交換器、4a,4b,4c
熱源側膨張機構、5a,5b,5c 負荷側熱交換器、
6a,6b,6c 負荷側膨張機構、7,7−1,7−
2,7−1a,7−1b 共通熱交換器、7a,7b,
7ca,7cb 共通熱交換器パス、8a,8b 三方
弁、9c カスケード用膨張機構、10a,10b,1
0c 吐出配管、11a,11b,11c 熱源側ガス
配管、12a,12b,12c 負荷側ガス配管、13
a,13b,13c 熱源側液配管、14a,14b,
14c 負荷側液配管、15a,115b,15c吸入
配管、16a,16b 負荷側バイパス管、21a,2
1b 油分離器、22a,22b 液分離器、23 液
溜め容器、24 蓄熱容器。
A, B Heat source side unit, X, Y Load side unit, U
Heat transfer unit, 1a, 1b, 1c Compressor and pressurizing pump, 2a, 2b, 2c Four-way valve and cooling / heating switching valve, 3
a, 3b, 3c Heat source side heat exchanger, 4a, 4b, 4c
Heat source side expansion mechanism, 5a, 5b, 5c load side heat exchanger,
6a, 6b, 6c Load side expansion mechanism, 7, 7-1, 7-
2,7-1a, 7-1b common heat exchanger, 7a, 7b,
7ca, 7cb Common heat exchanger path, 8a, 8b Three-way valve, 9c Cascade expansion mechanism, 10a, 10b, 1
0c Discharge pipe, 11a, 11b, 11c Heat source side gas pipe, 12a, 12b, 12c Load side gas pipe, 13
a, 13b, 13c Heat source side liquid piping, 14a, 14b,
14c Load side liquid pipe, 15a, 115b, 15c suction pipe, 16a, 16b Load side bypass pipe, 21a, 2
1b oil separator, 22a, 22b liquid separator, 23 liquid storage container, 24 heat storage container.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松岡 文雄 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 吉川 利彰 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 乾 邦弘 東京都千代田区大手町二丁目6番2号 三 菱電機エンジニアリング株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Fumio Matsuoka 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Within Mitsui Electric Co., Ltd. (72) Toshiaki Yoshikawa 2-3-2 Marunouchi, Chiyoda-ku, Tokyo (72) Inventor Kunihiro Inui 2-6-1, Otemachi, Chiyoda-ku, Tokyo Mitsui Electric Engineering Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機または冷媒ポンプと、熱源側熱交
換器と、四方弁または冷暖切換弁と、熱源側膨張機構
と、負荷側熱交換器と、負荷側膨張機構とを環状に接続
して構成される複数の冷媒回路と、 この冷媒回路の液管において前記熱源側膨張機構と前記
負荷側膨張機構との間に接続され、前記冷媒回路によっ
て共有される共通熱交換器と、を備えたことを特徴とす
る空気調和装置。
1. A compressor or a refrigerant pump, a heat-source-side heat exchanger, a four-way valve or a cooling / heating switching valve, a heat-source-side expansion mechanism, a load-side heat exchanger, and a load-side expansion mechanism connected in a ring. And a common heat exchanger connected between the heat source side expansion mechanism and the load side expansion mechanism in a liquid pipe of the refrigerant circuit and shared by the refrigerant circuit. An air conditioner, characterized in that:
【請求項2】 前記負荷側熱交換器に冷媒を流通させな
いためのバイパス管と、三方弁とを備えたことを特徴と
する請求項1記載の空気調和装置。
2. The air conditioner according to claim 1, further comprising a bypass pipe for preventing a refrigerant from flowing through the load-side heat exchanger, and a three-way valve.
【請求項3】 前記共通熱交換器に余剰冷媒を貯蔵する
液貯め部を設けたことを特徴とする請求項1記載の空気
調和装置。
3. The air conditioner according to claim 1, wherein the common heat exchanger is provided with a liquid storage section for storing excess refrigerant.
【請求項4】 前記共通熱交換器に設けられ、蓄熱・蓄
冷を行うための媒体が充填された蓄熱容器を備えたこと
を特徴とする請求項1記載の空気調和装置。
4. The air conditioner according to claim 1, further comprising a heat storage container provided in the common heat exchanger and filled with a medium for performing heat storage and cold storage.
【請求項5】 少なくとも1つの前記冷媒回路において
は、前記共通熱交換器が直列に複数接続され、該複数の
共通熱交換器はそれぞれ別々かつ任意の複数の他の前記
冷媒回路に共有されることを特徴とする請求項1記載の
空気調和装置。
5. In at least one of the refrigerant circuits, a plurality of the common heat exchangers are connected in series, and each of the plurality of common heat exchangers is separated and shared by an arbitrary plurality of other refrigerant circuits. The air conditioner according to claim 1, wherein:
【請求項6】 前記複数の共通熱交換器のそれぞれの間
に、前記熱源側膨張機構及び前記負荷側膨張機構と同一
作用のカスケード用膨張機構が配設されていることを特
徴とする請求項5記載の空気調和装置。
6. A cascade expansion mechanism having the same function as the heat-source-side expansion mechanism and the load-side expansion mechanism is provided between each of the plurality of common heat exchangers. 6. The air conditioner according to 5.
【請求項7】 前記複数の冷媒回路は、空気調和装置、
冷凍用装置、冷蔵用装置等に使用されるものを含むこと
を特徴とする請求項1又は請求項5又は請求項6記載の
空気調和装置。
7. The air conditioner, wherein the plurality of refrigerant circuits include:
The air conditioner according to claim 1, wherein the air conditioner includes a device used for a freezing device, a refrigeration device, and the like.
【請求項8】 請求項1又は請求項5又は請求項6に記
載した空気調和装置の運転方法であって、 前記複数冷媒回路中、冷房運転しているある冷媒回路の
冷房能力をさらに大きくする場合、前記ある冷媒回路に
おいては、高圧状態で冷媒を前記共通熱交換器に流通さ
せ、 余剰能力のある他の前記冷媒回路において、前記共通熱
交換器を流通する冷媒は、低圧二相状態で前記共通熱交
換器へ流通させ、 前記圧縮機又は冷媒ポンプの運転容量の調整して前記共
通熱交換器での熱移動を制御することを特徴とする空気
調和装置の運転方法。
8. The method for operating an air conditioner according to claim 1, wherein the cooling capacity of one of the plurality of refrigerant circuits that is performing a cooling operation is further increased. In this case, in the certain refrigerant circuit, the refrigerant flows through the common heat exchanger in a high pressure state, and in the other refrigerant circuit having surplus capacity, the refrigerant flowing through the common heat exchanger is in a low pressure two-phase state. A method of operating an air conditioner, comprising: circulating the heat to the common heat exchanger; and adjusting the operating capacity of the compressor or the refrigerant pump to control heat transfer in the common heat exchanger.
【請求項9】 請求項1又は請求項5又は請求項6に記
載した空気調和装置の運転方法であって、 前記複数冷媒回路中、暖房運転しているある冷媒回路の
暖房能力をさらに大きくする場合、前記ある冷媒回路に
おいては、低圧二相状態で冷媒を前記共通熱交換器に流
通させ、 余剰能力のある他の前記冷媒回路において、前記共通熱
交換器を流通する冷媒は、高圧状態で前記共通熱交換器
へ流通させ、 前記圧縮機又は冷媒ポンプの運転容量の調整して前記共
通熱交換器での熱移動を制御することを特徴とする空気
調和装置の運転方法。
9. The method for operating an air conditioner according to claim 1, wherein the heating capacity of a refrigerant circuit that is performing a heating operation in the plurality of refrigerant circuits is further increased. In this case, in the certain refrigerant circuit, the refrigerant flows through the common heat exchanger in a low-pressure two-phase state, and in another refrigerant circuit having a surplus capacity, the refrigerant flowing through the common heat exchanger is in a high-pressure state. A method of operating an air conditioner, comprising: circulating the heat to the common heat exchanger; and adjusting the operating capacity of the compressor or the refrigerant pump to control heat transfer in the common heat exchanger.
【請求項10】 請求項1又は請求項5又は請求項6に
記載した空気調和装置の運転方法であって、 前記複数冷媒回路中、暖房運転しているある冷媒回路の
前記熱源側熱交換器を除霜する場合、前記ある冷媒回路
においては、低圧二相状態で冷媒を前記共通熱交換器に
流通させ、 余剰能力のある他の前記冷媒回路において、前記共通熱
交換器を流通する冷媒は、高圧状態で前記共通熱交換器
へ流通させ、 前記圧縮機又は冷媒ポンプの運転容量の調整して前記共
通熱交換器での熱移動を制御することを特徴とする空気
調和装置の運転方法。
10. The method for operating an air-conditioning apparatus according to claim 1, 5 or 6, wherein the heat source side heat exchanger of a refrigerant circuit that is performing a heating operation in the plurality of refrigerant circuits. When defrosting, in the certain refrigerant circuit, the refrigerant flows in the common heat exchanger in a low-pressure two-phase state, and in the other refrigerant circuit having excess capacity, the refrigerant flowing in the common heat exchanger is Circulating the high-pressure state to the common heat exchanger, and adjusting the operating capacity of the compressor or the refrigerant pump to control heat transfer in the common heat exchanger.
【請求項11】 請求項1又は請求項5又は請求項6に
記載した空気調和装置の運転方法であって、 前記冷媒回路間で熱移動を行わない場合は、前記冷媒回
路の全てにおいて、例えば前記共通熱交換器の両端に接
続している前記膨張機構の絞り具合をほぼ同一にする等
の調整をし、 前記冷媒回路間で熱移動を行う場合は、例えば熱移動に
よって能力を増大する前記冷媒回路の前記共通熱交換器
の両端に接続している前記膨張機構の絞り具合を余剰能
力のある前記他の冷媒回路の前記共通熱交換器の両端に
接続している前記膨張機構の絞り具合と異なるようにす
る等の調整をし、前記圧縮機又は冷媒ポンプの運転容量
の調整を伴うこともあることを特徴とする空気調和装置
の運転方法。
11. The method for operating an air conditioner according to claim 1, wherein the heat transfer is not performed between the refrigerant circuits. If the expansion mechanism connected to both ends of the common heat exchanger is adjusted such that the degree of throttle is substantially the same, and heat is transferred between the refrigerant circuits, for example, the capacity is increased by heat transfer. The degree of restriction of the expansion mechanism connected to both ends of the common heat exchanger of the refrigerant circuit is the degree of restriction of the expansion mechanism connected to both ends of the common heat exchanger of the other refrigerant circuit having surplus capacity. The operating method of the air conditioner, wherein the operating capacity of the compressor or the refrigerant pump is adjusted in some cases.
JP30508897A 1997-11-07 1997-11-07 Air conditioner and method of operating air conditioner Expired - Lifetime JP3614626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30508897A JP3614626B2 (en) 1997-11-07 1997-11-07 Air conditioner and method of operating air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30508897A JP3614626B2 (en) 1997-11-07 1997-11-07 Air conditioner and method of operating air conditioner

Publications (2)

Publication Number Publication Date
JPH11142018A true JPH11142018A (en) 1999-05-28
JP3614626B2 JP3614626B2 (en) 2005-01-26

Family

ID=17940972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30508897A Expired - Lifetime JP3614626B2 (en) 1997-11-07 1997-11-07 Air conditioner and method of operating air conditioner

Country Status (1)

Country Link
JP (1) JP3614626B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639104B1 (en) 2003-08-01 2006-10-27 오원길 Heat pump system of cooling, heating and hot water using binary refrigerating machine with two stage cascade refrigeration
WO2011014784A3 (en) * 2009-07-31 2011-04-28 Carrier Corporation Cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639104B1 (en) 2003-08-01 2006-10-27 오원길 Heat pump system of cooling, heating and hot water using binary refrigerating machine with two stage cascade refrigeration
WO2011014784A3 (en) * 2009-07-31 2011-04-28 Carrier Corporation Cooling system

Also Published As

Publication number Publication date
JP3614626B2 (en) 2005-01-26

Similar Documents

Publication Publication Date Title
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
US9683768B2 (en) Air-conditioning apparatus
US5381671A (en) Air conditioning apparatus with improved ice storage therein
WO2010137078A1 (en) Refrigeration cycle device and air-conditioning device
JP4407582B2 (en) Thermal storage air conditioner and method of operating the thermal storage air conditioner
JP3087745B2 (en) Refrigeration equipment
AU1685800A (en) Refrigerating plant
EP2584285B1 (en) Refrigerating air-conditioning device
JPH11142018A (en) Air conditioning equipment and its operating method
JP6042037B2 (en) Refrigeration cycle equipment
KR100500954B1 (en) Ice thermal storage heat pump unit
JP4270803B2 (en) Cold generation system
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP2757660B2 (en) Thermal storage type air conditioner
KR100522404B1 (en) Refrigeration System of Multi Type Air Conditioner
WO2022097680A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
EP3995761A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit
JPH05133635A (en) Cold accumulation type air conditioning apparatus
JPH1026377A (en) Heat storage type air conditioner
US20230366599A1 (en) A heat pump system
JPH11173689A (en) Heat storage type cooling device
JP3569546B2 (en) Air conditioner
KR100510850B1 (en) Pipe Laying Structure Of Outdoor Unit At Multi-Air Conditioner
JPH08313082A (en) Refrigerator
JPH11264621A (en) Control method for air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term