JPH1114161A - Hybrid-type solar cell device - Google Patents

Hybrid-type solar cell device

Info

Publication number
JPH1114161A
JPH1114161A JP9168912A JP16891297A JPH1114161A JP H1114161 A JPH1114161 A JP H1114161A JP 9168912 A JP9168912 A JP 9168912A JP 16891297 A JP16891297 A JP 16891297A JP H1114161 A JPH1114161 A JP H1114161A
Authority
JP
Japan
Prior art keywords
heat
solar cell
plate
heat collecting
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9168912A
Other languages
Japanese (ja)
Inventor
Jiro Okajima
次郎 岡島
Mariko Nakano
真理子 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9168912A priority Critical patent/JPH1114161A/en
Publication of JPH1114161A publication Critical patent/JPH1114161A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the cooling and heat collection of a solar cell by providing the solar cell on the surface of a heat-collecting plate where a heat-collecting pipe is provided, by providing a transparent plate on the surface of the solar cell via a void layer, and by allowing a selection transparency film where transmittance is high in ultraviolet, visible, and near-infrared ray regions and emissivity is low in a far-infrared ray region to be adhered onto the rear surface of the solar cell. SOLUTION: A solar cell 1 is covered with transparent filler 2 such as ethylene vinyl acetate from both surfaces, and a heat-collecting plate 4 consisting of a metal plate with superior heat conduction and a plastic plate such as polypropylene is mounted on the rear surface of the transparent filler 2. Then, an energy conversion part 6 is constituted of a lead wire 3 for electrically connecting a solar cell 1, the transparent filler 2, and a plurality of solar cells 1 one another, the heat-collecting plate 4, and a heat-collecting pipe 5 being provided on the heat-collecting plate 4, and a transparent plate 7 is arranged via the energy conversion part 6 and a void layer 9. A selection transparency film 8 where transmittance is high in ultraviolet, visible, and near-infrared ray regions and emissivity is low in a far-infrared ray region is adhered onto the rear surface of the transparent plate 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、結晶系シリコ
ン、アモルファスシリコン等を用いたハイブリッド型太
陽電池装置に関し、特にの熱回収機構を改良したハイブ
リッド型太陽電池装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid solar cell device using crystalline silicon, amorphous silicon or the like, and more particularly to a hybrid solar cell device having an improved heat recovery mechanism.

【0002】[0002]

【従来の技術】図6は、例えば特公平4−69438号
公報に示された従来のハイブリッド型太陽電池装置を示
す構成図である。図において、21は透光性基板である
ガラス基板、22はガラス基板1の下面に酸化錫(Sn
2 )、酸化インジウム(In2 3 )等が蒸着されて
形成された透明電極、23は透明電極2の下面にグロー
放電による薄膜作成工程により形成された半導体薄膜で
あるアモルフアスシリコン膜、24はアモルフアスシリ
コン膜23の下面に蒸着により形成されたアルミニウム
電極、25はアモルフアスシリコン膜23が吸収する約
0.8μm以下の波長領域の光を透過し、かつ、アモル
フアスシリコン膜23が透過する約0.8μmよりも長
波長領域の光を吸収して熱に変換する熱吸収層であり、
熱吸収層25をガラス基板21の上面に形成し、透明電
極22、アモルフアスシリコン膜23、アルミニウム電
極24および熱吸収層25により半尊体薄膜太陽電池2
6が構成されている。
2. Description of the Related Art FIG. 6 is a block diagram showing a conventional hybrid solar cell device disclosed in, for example, Japanese Patent Publication No. 4-43838. In the figure, 21 is a glass substrate which is a light-transmitting substrate, and 22 is tin oxide (Sn oxide) on the lower surface of the glass substrate 1.
O 2 ), a transparent electrode formed by depositing indium oxide (In 2 O 3 ) or the like; 23, an amorphous silicon film which is a semiconductor thin film formed on the lower surface of the transparent electrode 2 by a thin film forming process by glow discharge; Reference numeral 24 denotes an aluminum electrode formed on the lower surface of the amorphous silicon film 23 by vapor deposition, 25 denotes a light transmitting in a wavelength region of about 0.8 μm or less which is absorbed by the amorphous silicon film 23, and A heat absorbing layer that absorbs light in a wavelength region longer than about 0.8 μm and transmits the heat,
The heat absorbing layer 25 is formed on the upper surface of the glass substrate 21, and the transparent electrode 22, the amorphous silicon film 23, the aluminum electrode 24, and the heat absorbing layer 25 form the semi-thin film solar cell 2.
6 are constituted.

【0003】4は絶縁接着層28によりアルミニウム電
極24の下面に接着された銅、鉄等の良熱伝導性の金属
からなる集熱板、5は集熱板4に接着された熱媒管また
はヒートパイプからなる集熱管であり、集熱板4および
集熱管5により集熱体27が構成されると共に、集熱体
27、ガラス基板21が電池に接続されてエネルギー変
換部29が構成され、変換部28が透光板7からなる容
器内に収納されて太陽エネルギー変換装置30が構成さ
れている。
Reference numeral 4 denotes a heat collecting plate made of a metal having good thermal conductivity such as copper or iron adhered to the lower surface of the aluminum electrode 24 by an insulating adhesive layer 28, and 5 denotes a heat medium tube or a heat medium tube adhered to the heat collecting plate 4. A heat collecting tube composed of a heat pipe, a heat collecting body 27 is constituted by the heat collecting plate 4 and the heat collecting tube 5, and the heat converting body 27 and the glass substrate 21 are connected to a battery to form an energy conversion section 29. The conversion unit 28 is housed in a container made of the light-transmitting plate 7 to constitute a solar energy conversion device 30.

【0004】次に動作について説明する。光がガラス基
板21側から入射すると、波長が約0.8μm以下の光
は太陽電池5に吸収されて電気エネルギーに変換され、
また約0.8μmより長波長の光は熱吸収層25によっ
て吸収され、これによって熱吸収層25の有する熱エネ
ルギーは増加し、その熱エネルギーは太陽電池26を介
して集熱体27に熱伝導されるように構成されており、
太陽光の全波長領域にわたる光のエネルギーを熱及び電
気エネルギーに有効に変換する。
Next, the operation will be described. When light is incident from the glass substrate 21 side, light having a wavelength of about 0.8 μm or less is absorbed by the solar cell 5 and converted into electric energy,
Light having a wavelength longer than about 0.8 μm is absorbed by the heat absorbing layer 25, thereby increasing the heat energy of the heat absorbing layer 25, and transferring the heat energy to the heat collector 27 via the solar cell 26. It is configured to be
It effectively converts light energy over the entire wavelength range of sunlight into heat and electrical energy.

【0005】[0005]

【発明が解決しようとする課題】以上説明したように、
従来のハイブリッド太陽電池装置では、太陽電池にアモ
ルフアスシリコンを使う構造となっているので、通常の
太陽光発電システムで広く使われている結晶系シリコン
太陽電池では、図7の太陽電池セルの絶対分光感度特性
に示すように、0.3〜1.2μmの波長範囲に感度が
あるため、0.8μm以下の光でないと発電効率が低下
するので、上記の構成は適用できないという欠点があっ
た。
As described above,
The conventional hybrid solar cell device has a structure in which amorphous silicon is used for the solar cell. Therefore, in a crystalline silicon solar cell widely used in a normal solar power generation system, the absolute value of the solar cell shown in FIG. As shown in the spectral sensitivity characteristics, since there is sensitivity in the wavelength range of 0.3 to 1.2 μm, the power generation efficiency is reduced unless the light is 0.8 μm or less. .

【0006】この発明は、上記のような問題点を解消す
るためになされたもので、太陽電池の冷却及び熱回収
を、簡単な構成で製造し易く、信頼性が高く、効率的に
できる結晶系シリコン、アモルファスシリコン等を用い
たハイブリッド型太陽電池装置を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a crystal which can easily manufacture a solar cell with a simple structure, has high reliability, and can efficiently perform cooling and heat recovery. It is an object of the present invention to provide a hybrid solar cell device using system silicon, amorphous silicon, or the like.

【0007】[0007]

【課題を解決するための手段】この発明に係る太陽電池
装置は、集熱する熱媒体が流れる集熱管を設けた集熱板
と、この集熱板の表面に設けられた太陽電池と、この太
陽電池の表面に空隙層を介して設けられた透明板と、こ
の透明板の裏面に付着され、紫外域、可視域及び近赤外
域で透過率が高く、遠赤外域で放射率が低い選択透過膜
とを備える。
A solar cell device according to the present invention includes a heat collecting plate provided with a heat collecting tube through which a heat medium to collect heat flows, a solar cell provided on the surface of the heat collecting plate, A transparent plate provided with a gap layer on the surface of the solar cell, and a high transmittance in the ultraviolet, visible, and near-infrared regions, and a low emissivity in the far-infrared region. A permeable membrane.

【0008】また、選択透過膜の膜厚を、集熱管の入口
から出口方向に向かうにしたがって厚くするようにした
ものである。
Further, the thickness of the permselective membrane is increased from the entrance to the exit of the heat collection tube.

【0009】また、空隙層内に不活性ガスを封入したも
のである。
In addition, an inert gas is sealed in the void layer.

【0010】また、集熱板の裏面にあらかじめ定められ
た温度で相変化する潜熱蓄熱材を固着したものである。
Further, a latent heat storage material which changes phase at a predetermined temperature is fixed to the back surface of the heat collecting plate.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の実施の形態1を図につ
いて説明する。図1は実施の形態1を示すハイブリッド
型太陽電池装置の断面図、図2はハイブリッド型太陽電
池装置の斜視図である。図において、1は結晶系シリコ
ン、アモルフアスシリコン等の太陽電池、2は太陽電池
1を両面から包み込む形にエチレンビニルアセテート等
の透明充填材、3は複数個の太陽電池1どうしを電気的
に接続するリード線、4は透明充填材2の裏面に取り付
けられた銅、アルミ、鉄、等の熱伝導のよい金属板やポ
リプロピレン等のプラスチック板から成る集熱板、5は
集熱板4と熱伝導が行われるように接続され、集熱板4
の熱を集熱する熱媒体流路である集熱管、5aは集熱管
入口、5bは集熱管出口である。6は太陽電池1、透明
充填材2、リード線3、集熱板4、及び集熱管5から構
成されるエネルギー変換部、11はエネルギー変換部6
の裏面に配置された断熱材である。7はエネルギー変換
部6と空隙層9を介して配置された透明板、8はガラス
等の透明板7の裏面に付着させた選択透過膜、12はケ
ースである。
Embodiment 1 FIG. Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a hybrid solar cell device according to Embodiment 1, and FIG. 2 is a perspective view of the hybrid solar cell device. In the figure, 1 is a solar cell made of crystalline silicon, amorphous silicon or the like, 2 is a transparent filler such as ethylene vinyl acetate, etc., which wraps the solar cell 1 from both sides, and 3 is an electrically connected solar cell. The lead wire 4 to be connected is a heat collecting plate made of a metal plate having good heat conductivity such as copper, aluminum, iron or the like or a plastic plate such as polypropylene attached to the back surface of the transparent filler 2, and 5 is a heat collecting plate 4. The heat collecting plate 4 is connected so as to conduct heat.
A heat collection tube, 5a is a heat collection tube inlet, and 5b is a heat collection tube outlet, which is a heat medium flow path for collecting the heat of the above. Reference numeral 6 denotes an energy conversion unit including a solar cell 1, a transparent filler 2, a lead wire 3, a heat collection plate 4, and a heat collection tube 5, and 11 denotes an energy conversion unit.
Is a heat insulating material disposed on the back surface of the. Reference numeral 7 denotes a transparent plate disposed via the energy conversion unit 6 and the gap layer 9, reference numeral 8 denotes a permselective membrane attached to the back surface of the transparent plate 7 such as glass, and reference numeral 12 denotes a case.

【0012】選択透過膜8は、紫外線、可視域及び近赤
外域で透過率が高く、遠赤外域で放射率が低い特性を持
つものである。すなわち、近赤外域と遠赤外域との境界
である、光の波長が2μm前後を基準として、これ以下
の波長が透過率が高く、これ以上の波長の放射率が低い
ものである。選択透過膜8は、例えば、Ag、Al、A
u、Cr、Cu、Ni、Ti等の遠赤外域で放射率の低
い金属か、または、屈折率の大きい誘電体で挟んだ構造
の薄膜や半導体物質に不純物を添加して遠赤外域で放射
率の低い特性を持つようにした透明導電膜等がある。
The selectively permeable film 8 has such characteristics that the transmittance is high in the ultraviolet, visible and near infrared regions, and the emissivity is low in the far infrared region. That is, based on a light wavelength of about 2 μm, which is a boundary between the near-infrared region and the far-infrared region, a wavelength lower than this has a higher transmittance and a wavelength higher than this has a lower emissivity. The permselective membrane 8 is made of, for example, Ag, Al, A
Metals with low emissivity in the far-infrared region, such as u, Cr, Cu, Ni, Ti, or thin films or semiconductor materials with a structure sandwiched by dielectrics with a large refractive index are doped with impurities to emit in the far-infrared region There is a transparent conductive film or the like having characteristics with a low rate.

【0013】次に動作について説明する。光が透明板7
側から入射すると、透明板7、選択透過膜8、空隙層
9、透明充填材2を透過して太陽電池1に至る。太陽電
池1が例えば、結晶系シリコンであれば、光は透過せ
ず、ほとんどが太陽電池1に吸収される。このとき、太
陽電池1の発電効率分が電気に変換され、残りは熱とな
って充填材2、集熱板4、集熱管5に熱伝導によって移
動し、集熱管5内を流れる熱媒体と対流熱伝達により熱
交換され熱回収が成される。
Next, the operation will be described. Light is transparent plate 7
When the light enters from the side, the light passes through the transparent plate 7, the selectively permeable film 8, the gap layer 9, and the transparent filler 2 to reach the solar cell 1. If the solar cell 1 is, for example, crystalline silicon, light is not transmitted, and most is absorbed by the solar cell 1. At this time, the power generation efficiency of the solar cell 1 is converted into electricity, and the remainder becomes heat, which moves to the filler 2, the heat collecting plate 4, and the heat collecting tube 5 by heat conduction, and a heat medium flowing through the heat collecting tube 5. Heat is exchanged by convective heat transfer to recover heat.

【0014】一方、高温になったエネルギー変換部6か
ら透明板7方向に対流、放射により熱損失が生じる。対
流による熱損失は空隙層9により防ぐことができるが、
放射による熱損失は、通常、透過板7に使われる透明ガ
ラスの放射率と透明充填材2に使われるエチレンピニル
アセテートの放射率は黒色塗装と同じ0.9以上であ
り、透明板7だけの場合は、放射による熱損失は免れな
い。しかし、選択透過膜8は遠赤外域で放射率は0.9
未満なので放射が少なく、放射による熱損失が防止され
る。
On the other hand, heat loss occurs due to convection and radiation from the high temperature energy converter 6 toward the transparent plate 7. Heat loss due to convection can be prevented by the void layer 9,
The heat loss due to radiation is usually 0.9% or more, the emissivity of transparent glass used for the transparent plate 7 and the emissivity of ethylene pinyl acetate used for the transparent filler 2 are the same as those of black paint. In the case of, heat loss due to radiation is inevitable. However, the selectively permeable film 8 has an emissivity of 0.9 in the far infrared region.
Since it is less than the above, radiation is small and heat loss due to radiation is prevented.

【0015】なお、選択透過膜8の放射率は、太陽電池
の用途等により、0.2〜0.8の間のものが使用され
る。図3は選択透過膜8の効果を示す図であり、放射率
が0.2〜0.8の場合、集熱効果が約40〜50%と
なる。
The emissivity of the selectively permeable film 8 is between 0.2 and 0.8 depending on the use of the solar cell. FIG. 3 shows the effect of the permselective film 8. When the emissivity is 0.2 to 0.8, the heat collecting effect is about 40 to 50%.

【0016】以上のように、この実施の形態1において
は、太陽電池の種類にかかわらず、透明板7の裏面に選
択透過膜8を付着したので、表面透明板7からの放射熱
損失を防止することができ、集熱管5による集熱効率を
向上させることができ、発電と熱回収とあわせて、エネ
ルギーの有効活用ができる。また、選択透過膜8は透明
板7に付着させ易いので、製造をし易くすることができ
る。
As described above, in the first embodiment, since the permselective film 8 is attached to the back surface of the transparent plate 7 irrespective of the type of the solar cell, radiation heat loss from the front transparent plate 7 is prevented. The heat collection efficiency of the heat collection tube 5 can be improved, and the effective use of energy can be achieved in addition to power generation and heat recovery. In addition, since the permselective membrane 8 is easily attached to the transparent plate 7, manufacturing can be facilitated.

【0017】実施の形態2.この発明の実施の形態2は
実施の形態1の図1、2に示す構成において、選択透過
膜の膜厚を、集熱管の入口から出口方向に向かうにした
がって厚くするようにし、選択透過膜8の放射率を、集
熱管入口5aから集熱管出口5bに向かうにしたがって
小さくなるようにしたものである。
Embodiment 2 FIG. In the second embodiment of the present invention, in the configuration shown in FIGS. 1 and 2 of the first embodiment, the thickness of the permselective membrane is increased from the inlet to the outlet of the heat collection tube. Is decreased from the heat collecting tube inlet 5a toward the heat collecting tube outlet 5b.

【0018】上記の構成の動作を次に説明する。集熱管
入口5aから熱媒体が流入し、エネルギー変換部6によ
り集熱され熱媒体の温度は集熱管出口5b方向に向かう
にしたがって上昇してくる。これを図4(a)(b)の
集熱効率線図について説明する。図において縦軸が集熱
効率η=集熱量/光の強度(日射量)、横軸が集熱効率
変数R=(集熱温度−外気温度)/光の強度(日射量)
で表す。ここで選択透過膜8の放射率が集熱管5集熱管
入口5aから集熱管出口5b方向に向かって同一であっ
た場合、図4(a)に示すように集熱管入口5aから集
熱管出口5b部の集熱効率ηは減少することになる。図
4(b)は選択透過膜8の放射率を集熱管5集熱管入口
5aから集熱管出口5b方向に向かって小さくなるよう
に形成した場合を示し、図において、Aは集熱管入口5
aの放射率大のときの集熱効率線図であり、Bは集熱管
出口5bの放射率小のときの集熱効率線図である。図に
示すように、集熱管入口5a(放射率大)から集熱管出
口5b部分(放射率小)に向けて放射率が減少するので
集熱効率ηは減少しない。
The operation of the above configuration will now be described. The heat medium flows in from the heat collecting tube inlet 5a, is collected by the energy conversion unit 6, and the temperature of the heat medium rises toward the heat collecting tube outlet 5b. This will be described with reference to the heat collection efficiency diagrams of FIGS. In the figure, the vertical axis represents the heat collection efficiency η = heat collection amount / light intensity (solar radiation), and the horizontal axis represents the heat collection efficiency variable R = (heat collection temperature−outside air temperature) / light intensity (solar radiation).
Expressed by Here, when the emissivity of the permselective membrane 8 is the same from the heat collecting tube 5 to the heat collecting tube outlet 5b in the direction from the heat collecting tube inlet 5a to the heat collecting tube outlet 5b, as shown in FIG. The heat collection efficiency η of the section will decrease. FIG. 4B shows a case where the emissivity of the permselective membrane 8 is formed so as to decrease from the heat collecting tube 5 to the heat collecting tube outlet 5b in the direction of the heat collecting tube inlet 5a.
6A is a heat collection efficiency diagram when the emissivity is high, and B is a heat collection efficiency diagram when the emissivity at the heat collection tube outlet 5b is low. As shown in the figure, since the emissivity decreases from the heat collecting tube inlet 5a (high emissivity) toward the heat collecting tube outlet 5b (low emissivity), the heat collecting efficiency η does not decrease.

【0019】以上のように、選択透過膜8の放射率を集
熱管入口5aから集熱管出口5b方向に向かって小さく
なるようにしたので、集熱管入口から集熱管出口方向に
向かって集熱効率ηを減少させることなく、熱回収を効
率的にすることができる。
As described above, since the emissivity of the permselective membrane 8 is reduced from the inlet 5a of the heat collecting tube to the outlet 5b of the heat collecting tube, the heat collection efficiency η increases from the inlet of the heat collecting tube to the outlet of the heat collecting tube. Without reducing the heat recovery.

【0020】実施の形態3.この発明の実施の形態3は
実施の形態1を示す図1の空隙層9図に不活性ガスを封
入したものである。
Embodiment 3 The third embodiment of the present invention is the same as the first embodiment except that an inert gas is sealed in the void layer 9 shown in FIG.

【0021】上記の構成における動作について次に説明
する。通常、空気内には水分が含まれており、空隙層9
が空気であった場合には若干の水分が含まれている。選
択透過膜8、例えば、Ag、Al、Au、Cr、Cu、
Ni、Ti等の遠赤外領域で放射率の低い金属薄膜等で
は、空気中の水分と反応して酸化化合物となり酸化、劣
化の起こった場合、熱損失が増える可能性がある。ここ
で空隙層9内に窒素等の不活性ガスを封入しておけば選
択透過膜8の劣化を防止することができるとともに、冬
期の結露による透明板7の透過率低下を防止することが
できる。
The operation of the above configuration will now be described. Usually, air contains moisture, and the air gap layer 9
If it is air, it contains some water. Permselective membrane 8, for example, Ag, Al, Au, Cr, Cu,
In the case of a metal thin film such as Ni or Ti having a low emissivity in the far-infrared region, it reacts with moisture in the air to become an oxidized compound, and when oxidation or deterioration occurs, heat loss may increase. Here, if an inert gas such as nitrogen is sealed in the void layer 9, deterioration of the permselective membrane 8 can be prevented, and a decrease in the transmittance of the transparent plate 7 due to dew condensation in winter can be prevented. .

【0022】以上のように、空隙層9内に窒素等の不活
性ガスを封入したので、選択透過膜8の劣化を防止する
ことができるとともに、冬期の結露による透明板7の透
過率低下を防止することができ、信頼性を高くすること
ができる。
As described above, since the inert gas such as nitrogen is sealed in the gap layer 9, deterioration of the permselective membrane 8 can be prevented, and the transmittance of the transparent plate 7 due to dew in winter can be reduced. Can be prevented, and the reliability can be increased.

【0023】なお、空隙層9内を真空にするか、シリカ
ゲル等の乾燥剤を設置しても同様の効果が得られる。
The same effect can be obtained by evacuating the inside of the gap layer 9 or installing a drying agent such as silica gel.

【0024】実施の形態4.以下、この発明の実施の形
態4を図について説明する。図5は実施の形態を示すハ
イブリッド型太陽電池装置の断面図である。なお、図1
と同一または相当部分には、同じ符号を付し、説明を省
略する。図において、13はエネルギー変換部6の裏面
と断熱材11の間に設けられた潜熱蓄熱材である。
Embodiment 4 Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a cross-sectional view of the hybrid solar cell device showing the embodiment. FIG.
The same or corresponding parts are denoted by the same reference numerals and description thereof will be omitted. In the figure, reference numeral 13 denotes a latent heat storage material provided between the back surface of the energy conversion unit 6 and the heat insulating material 11.

【0025】次に動作について説明する。夏期等に日射
が強く外気温度が高いときに集熱をしない場合、エネル
ギー変換部6の温度は100℃以上に上昇する。このと
き、例えば、50℃で相変化する潜熱蓄熱材13を配置
しておけばエネルギー変換部6の温度は50℃近傍まで
しか上がらず、温度上昇による太陽電池1の発電効率低
下を防止すると共に、エネルギー変換部6の加熱による
劣化、熱膨張による破壊を防止することができる。ここ
での潜熱蓄熱材13は30〜60℃で相変化するものが
好ましく、例えば、硫酸ソーダ系、酢酸ソーダ系、パラ
フィン系等の潜熱蓄熱材がある。
Next, the operation will be described. If heat is not collected when the solar radiation is strong and the outside air temperature is high in summer or the like, the temperature of the energy conversion unit 6 rises to 100 ° C. or more. At this time, for example, if the latent heat storage material 13 that changes phase at 50 ° C. is arranged, the temperature of the energy conversion unit 6 rises only up to around 50 ° C. In addition, it is possible to prevent the energy conversion unit 6 from deteriorating due to heating and breaking due to thermal expansion. It is preferable that the latent heat storage material 13 changes its phase at 30 to 60 ° C., and examples thereof include sodium sulfate-based, sodium acetate-based, and paraffin-based latent heat storage materials.

【0026】以上のように、この実施の形態において
は、エネルギー変換部6の裏面に潜熱蓄熱材13を配置
したので、夏期等に日射が強く外気温度が高いときに集
熱をしない場合、エネルギー変換部6の温度上昇を抑
え、温度上昇による太陽電池1の発電効率低下を防止す
ると共に、エネルギー変換部6の加熱による劣化、熱膨
張による破壊を防止することができ、信頼性の高いハイ
ブリッド型太陽電池装置を得ることができる。
As described above, in this embodiment, since the latent heat storage material 13 is arranged on the back surface of the energy conversion unit 6, when heat is not collected when the solar radiation is strong and the outside air temperature is high in the summer, etc. A highly reliable hybrid type that can suppress a rise in temperature of the conversion unit 6 and prevent a decrease in power generation efficiency of the solar cell 1 due to a rise in temperature, and also prevent deterioration of the energy conversion unit 6 due to heating and destruction due to thermal expansion. A solar cell device can be obtained.

【0027】なお、通常、集熱した熱媒体は蓄熱槽(タ
ンク)に蓄えられ、負荷側に供給されるが、潜熱蓄熱材
13を蓄熱槽代わりに利用することも可能であり、蓄熱
槽のない給湯システムであるタンクレスのシステムにも
適用することができる。
Normally, the collected heat medium is stored in a heat storage tank (tank) and supplied to the load side. However, the latent heat storage material 13 can be used instead of the heat storage tank. It can also be applied to tankless systems, which are not hot water supply systems.

【0028】[0028]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に示すような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0029】この発明に係る太陽電池装置は、集熱する
熱媒体が流れる集熱管を設けた集熱板と、この集熱板の
表面に設けられた太陽電池と、この太陽電池の表面に空
隙層を介して設けられた透明板と、この透明板の裏面に
付着され、紫外域、可視域及び近赤外域で透過率が高
く、遠赤外域で放射率が低い選択透過膜とを備えたの
で、放射熱損失を防止することができ、集熱効率を向上
させることができ、発電と熱回収をあわせてエネルギー
の有効活用ができる。
[0029] A solar cell device according to the present invention includes a heat collecting plate provided with a heat collecting tube through which a heat medium for collecting heat flows, a solar cell provided on the surface of the heat collecting plate, and a gap formed on the surface of the solar cell. A transparent plate provided with a layer, and a selectively permeable film attached to the back surface of the transparent plate, having a high transmittance in the ultraviolet, visible, and near-infrared regions, and a low emissivity in the far-infrared region. Therefore, radiant heat loss can be prevented, heat collection efficiency can be improved, and energy can be effectively used by combining power generation and heat recovery.

【0030】また、選択透過膜の膜厚を、集熱管の入口
から出口方向に向かうにしたがって厚くするようにした
ので、入口から出口部分に向けて集熱効率を減少させる
ことなく熱回収を効率的に行うことができる。
Further, since the thickness of the permselective membrane is increased from the inlet to the outlet of the heat collecting tube, heat can be efficiently collected without decreasing the heat collecting efficiency from the inlet to the outlet. Can be done.

【0031】また、空隙層内に不活性ガスを封入したの
で、選択透過膜の劣化を防止することができるととも
に、冬期の結露による透明板の透過率低下を防止するこ
とができる。
Further, since the inert gas is sealed in the void layer, it is possible to prevent the permselective membrane from deteriorating and to prevent the transmittance of the transparent plate from deteriorating due to dew condensation in winter.

【0032】また、集熱板の裏面にあらかじめ定められ
た温度で相変化する潜熱蓄熱材を固着したので、集熱を
しない場合、エネルギー変換部の温度上昇を抑え、温度
上昇による太陽電池の発電効率低下を防止すると共に、
エネルギー変換部の加熱による劣化、熱膨張による破壊
を防止することができる。
Further, since a latent heat storage material that changes phase at a predetermined temperature is fixed to the back surface of the heat collecting plate, when heat collection is not performed, the temperature rise of the energy conversion unit is suppressed, and the power generation of the solar cell due to the temperature rise is suppressed. While preventing a decrease in efficiency,
It is possible to prevent deterioration of the energy conversion unit due to heating and breakage due to thermal expansion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1を示すハイブリッド
型太陽電池装置の断面図である。
FIG. 1 is a cross-sectional view of a hybrid solar cell device according to a first embodiment of the present invention.

【図2】 この発明の実施の形態1を示すハイブリッド
型太陽電池装置斜視図である。
FIG. 2 is a perspective view of a hybrid solar cell device according to Embodiment 1 of the present invention.

【図3】 この発明の実施の形態1の選択透過膜の効果
を示す図である。
FIG. 3 is a diagram showing an effect of the permselective membrane according to the first embodiment of the present invention.

【図4】 この発明の実施の形態2における集熱効率線
図である。
FIG. 4 is a heat collection efficiency diagram according to Embodiment 2 of the present invention.

【図5】 この発明の実施の形態4を示すハイブリッド
型太陽電池装置の断面図である。
FIG. 5 is a sectional view of a hybrid solar cell device according to a fourth embodiment of the present invention.

【図6】 従来のハイブリッド型太陽電池装置構成図で
ある。
FIG. 6 is a configuration diagram of a conventional hybrid solar cell device.

【図7】 太陽電池セルの絶対分光感度特性図である。FIG. 7 is an absolute spectral sensitivity characteristic diagram of a solar cell.

【符号の説明】[Explanation of symbols]

1 太陽電池、2 透明充填材、3 リード線、4 集
熱板、5 集熱管、5a 集熱管入口、5b 集熱管出
口、6 エネルギー変換部、7 透明板、8選択透過
膜、9 空隙層、11 断熱層、12 ケース、13
潜熱蓄熱材。
Reference Signs List 1 solar cell, 2 transparent filler, 3 lead wire, 4 heat collecting plate, 5 heat collecting tube, 5a heat collecting tube inlet, 5b heat collecting tube outlet, 6 energy conversion unit, 7 transparent plate, 8 selective permeable membrane, 9 void layer, 11 heat insulation layer, 12 cases, 13
Latent heat storage material.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集熱する熱媒体が流れる集熱管を設けた
集熱板と、 この集熱板の表面に設けられた太陽電池と、 この太陽電池の表面に空隙層を介して設けられた透明板
と、 この透明板の裏面に付着され、紫外域、可視域及び近赤
外域で透過率が高く、遠赤外域で放射率が低い選択透過
膜とを備えたことを特徴とするハイブリッド型太陽電池
装置。
1. A heat collecting plate provided with a heat collecting tube through which a heat medium to collect heat flows, a solar cell provided on a surface of the heat collecting plate, and a solar cell provided on a surface of the solar cell via a gap layer. A hybrid type comprising: a transparent plate; and a selectively permeable film attached to a back surface of the transparent plate and having a high transmittance in an ultraviolet region, a visible region, and a near infrared region, and a low emissivity in a far infrared region. Solar cell device.
【請求項2】 選択透過膜の膜厚を、集熱管の入口から
出口方向に向かうにしたがって厚くするようにしたこと
を特徴とする請求項第1項記載のハイブリッド型太陽電
池装置。
2. The hybrid solar cell device according to claim 1, wherein the thickness of the permselective membrane is increased from the inlet to the outlet of the heat collection tube.
【請求項3】 空隙層内に不活性ガスを封入したことを
特徴とする請求項第1項記載のハイブリッド型太陽電池
装置。
3. The hybrid solar cell device according to claim 1, wherein an inert gas is sealed in the void layer.
【請求項4】 集熱板の裏面にあらかじめ定められた温
度で相変化する潜熱蓄熱材を固着したことを特徴とする
請求項第1項記載のハイブリッド型太陽電池装置。
4. The hybrid solar cell device according to claim 1, wherein a latent heat storage material that changes phase at a predetermined temperature is fixed to the back surface of the heat collecting plate.
JP9168912A 1997-06-25 1997-06-25 Hybrid-type solar cell device Pending JPH1114161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9168912A JPH1114161A (en) 1997-06-25 1997-06-25 Hybrid-type solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9168912A JPH1114161A (en) 1997-06-25 1997-06-25 Hybrid-type solar cell device

Publications (1)

Publication Number Publication Date
JPH1114161A true JPH1114161A (en) 1999-01-22

Family

ID=15876875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9168912A Pending JPH1114161A (en) 1997-06-25 1997-06-25 Hybrid-type solar cell device

Country Status (1)

Country Link
JP (1) JPH1114161A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230437A (en) * 2000-02-18 2001-08-24 Sanyo Electric Co Ltd Solar battery module
JP2002100795A (en) * 2000-09-20 2002-04-05 Matsushita Electric Works Ltd Unit and system for solar power generation
JP2009016475A (en) * 2007-07-03 2009-01-22 Kenji Umetsu Solar light cogeneration device
JP2009283640A (en) * 2008-05-22 2009-12-03 Kenji Umetsu Solar photovoltaic power generation module with heat sink
JP2011190991A (en) * 2010-03-15 2011-09-29 Tokyo Gas Co Ltd Heat collector integral type solar cell module
JP2011222824A (en) * 2010-04-12 2011-11-04 Lden Co Ltd Waste heat recovery method with solar cell module and waste heat recovery apparatus therewith
WO2012001198A3 (en) * 2010-06-30 2012-07-19 Cupa Innovacion, S.L.U. Cover panel that collects solar energy
JP2012527124A (en) * 2009-05-14 2012-11-01 マディコ インコーポレイテッド Heat radiation protection sheet and sealing material for photovoltaic modules
US20130160821A1 (en) * 2010-05-18 2013-06-27 Solimpeks Enerji Sanayi Ve Ticaret A.S. Method for Producing a Solar Energy Conversion Module and a Module Produced by Same
JP2014520501A (en) * 2011-05-31 2014-08-21 パワー・パネル・インコーポレイテッド Photovoltaic panel for power panel
JP2014212273A (en) * 2013-04-19 2014-11-13 株式会社翠光トップライン Photovoltaic power generation module
JP2016156611A (en) * 2009-10-05 2016-09-01 ハンター ダグラス インク Solar energy collector, and thermal storage device
CN114093971A (en) * 2021-10-22 2022-02-25 华南理工大学 Combined cooling, heating and power system and method with solar heat collection and passive cooling cooperation

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230437A (en) * 2000-02-18 2001-08-24 Sanyo Electric Co Ltd Solar battery module
JP2002100795A (en) * 2000-09-20 2002-04-05 Matsushita Electric Works Ltd Unit and system for solar power generation
JP2009016475A (en) * 2007-07-03 2009-01-22 Kenji Umetsu Solar light cogeneration device
JP2009283640A (en) * 2008-05-22 2009-12-03 Kenji Umetsu Solar photovoltaic power generation module with heat sink
JP2012527124A (en) * 2009-05-14 2012-11-01 マディコ インコーポレイテッド Heat radiation protection sheet and sealing material for photovoltaic modules
JP2015038999A (en) * 2009-05-14 2015-02-26 マディコ インコーポレイテッド Heat dissipating protective sheets and encapsulant for photovoltaic modules
JP2016156611A (en) * 2009-10-05 2016-09-01 ハンター ダグラス インク Solar energy collector, and thermal storage device
JP2011190991A (en) * 2010-03-15 2011-09-29 Tokyo Gas Co Ltd Heat collector integral type solar cell module
JP2011222824A (en) * 2010-04-12 2011-11-04 Lden Co Ltd Waste heat recovery method with solar cell module and waste heat recovery apparatus therewith
US20130160821A1 (en) * 2010-05-18 2013-06-27 Solimpeks Enerji Sanayi Ve Ticaret A.S. Method for Producing a Solar Energy Conversion Module and a Module Produced by Same
AU2011256881B2 (en) * 2010-05-18 2015-11-26 Solimpeks Enerji Sanayi Ve Ticaret A.S. A method for producing a solar energy conversion module and a module produced by same
ES2400765A1 (en) * 2010-06-30 2013-04-12 Cupa Innovacion, S.L.U. Cover panel that collects solar energy
WO2012001198A3 (en) * 2010-06-30 2012-07-19 Cupa Innovacion, S.L.U. Cover panel that collects solar energy
JP2014520501A (en) * 2011-05-31 2014-08-21 パワー・パネル・インコーポレイテッド Photovoltaic panel for power panel
JP2014212273A (en) * 2013-04-19 2014-11-13 株式会社翠光トップライン Photovoltaic power generation module
CN114093971A (en) * 2021-10-22 2022-02-25 华南理工大学 Combined cooling, heating and power system and method with solar heat collection and passive cooling cooperation
CN114093971B (en) * 2021-10-22 2024-03-19 华南理工大学 Combined cooling, heating and power system and method combining solar heat collection and passive cooling

Similar Documents

Publication Publication Date Title
KR100287086B1 (en) Solar cell-mounted collectors and passive solar devices
WO2017148230A1 (en) Photovoltaic module, hybrid photovoltaic/thermal module and manufacturing method thereof
JPH09213984A (en) Solar energy converter, building and temperature control method of optoelectric transducer
US20080105298A1 (en) Front electrode for use in photovoltaic device and method of making same
JPH1114161A (en) Hybrid-type solar cell device
JPS6257113B2 (en)
US20080105293A1 (en) Front electrode for use in photovoltaic device and method of making same
JPH10110670A (en) Solar light and heat compound generation device
JP2002043594A (en) Optical transmission type thin film solar cell module
JP4898145B2 (en) Concentrating solar cell module
JPH0340293B2 (en)
Platz et al. Hybrid collectors using thin-film technology
EP2897180B1 (en) Photovoltaic device with fiber array for sun tracking
JPH09210472A (en) Solar energy collection panel and passive solar system
KR101405279B1 (en) solar cell module
US20170338766A1 (en) Hybrid flow solar thermal collector
JPS5831253A (en) Solar-heat collecting cylinder with solar cell
WO2014176881A1 (en) Tubular concentrating photovoltaic cell assembly
JP2007149796A (en) Photovoltaic device, manufacturing method thereof and photovoltaic generator
JPH0469438B2 (en)
JP4305387B2 (en) Use structure of variable reflective material (VAREM)
US20120199197A1 (en) Solar cell
JPS6122217B2 (en)
JPS595807B2 (en) Hybrid solar collector
JP2002147868A (en) Photothermal hybrid module