JPH0340293B2 - - Google Patents

Info

Publication number
JPH0340293B2
JPH0340293B2 JP56148063A JP14806381A JPH0340293B2 JP H0340293 B2 JPH0340293 B2 JP H0340293B2 JP 56148063 A JP56148063 A JP 56148063A JP 14806381 A JP14806381 A JP 14806381A JP H0340293 B2 JPH0340293 B2 JP H0340293B2
Authority
JP
Japan
Prior art keywords
light
heat medium
solar cell
heat
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56148063A
Other languages
Japanese (ja)
Other versions
JPS5849860A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56148063A priority Critical patent/JPS5849860A/en
Publication of JPS5849860A publication Critical patent/JPS5849860A/en
Publication of JPH0340293B2 publication Critical patent/JPH0340293B2/ja
Granted legal-status Critical Current

Links

Classifications

    • H01L31/055
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 この発明は、太陽光を熱及び電気に変換する太
陽光エネルギー変換器に関し、さらに詳しくは太
陽光を効率よく熱及び電気に変換できる太陽光エ
ネルギー変換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar energy converter that converts sunlight into heat and electricity, and more particularly to a solar energy converter that can efficiently convert sunlight into heat and electricity.

従来、熱エネルギー変換器の一種である太陽熱
集熱器の集熱板に、電気変換器としての太陽電池
を取り付けた太陽光エネルギー変換器が提案され
ている。しかし、これらの太陽光エネルギー変換
器においては前記太陽電池が集熱板上に取り付け
られており、太陽光が照射されると太陽電池自体
が高温となる。太陽電池の出力特性は、第1図の
例に示すごとく高温となれば一般に低下する。従
つて、従来の太陽光エネルギー変換器においては
太陽電池の変換効率が太陽電池の面積にかかわら
ず昇温と共に低下するという欠点があつた。
Conventionally, a solar energy converter has been proposed in which a solar cell as an electrical converter is attached to a heat collection plate of a solar heat collector, which is a type of thermal energy converter. However, in these solar energy converters, the solar cells are mounted on a heat collecting plate, and when irradiated with sunlight, the solar cells themselves become hot. The output characteristics of a solar cell generally decrease as the temperature increases, as shown in the example of FIG. Therefore, conventional solar energy converters have the disadvantage that the conversion efficiency of the solar cells decreases as the temperature rises, regardless of the area of the solar cells.

さらに、前記した従来の太陽光エネルギー変換
器においては、太陽電池は通常集熱板の受光面全
体に取り付けられるため、大面積の太陽電池が必
要であつた。そして、大面積の太陽電池はコスト
が高くなる点不利でありかつ製造が困難であり、
小面積の太陽電池に比して単位面積当りの変換効
率が低いという欠点を有している。
Furthermore, in the conventional solar energy converter described above, the solar cells are usually attached to the entire light-receiving surface of the heat collecting plate, so a large-area solar cell is required. Large-area solar cells are disadvantageous in that they are expensive and difficult to manufacture.
It has the disadvantage that the conversion efficiency per unit area is lower than that of small-area solar cells.

また、第2図に非晶質シリコン太陽電池の感度
スペクトルBを一例として示すように太陽電池が
効率よく電気エネルギーに変換できる波長は狭い
範囲に限定されているため、太陽光スペクトルA
のうちこの波長領域以外のスペクトルが従来では
有効に利用されていないという問題もあつた。
In addition, as shown in Figure 2 as an example of the sensitivity spectrum B of an amorphous silicon solar cell, the wavelength that solar cells can efficiently convert into electrical energy is limited to a narrow range, so the sunlight spectrum A
There was also a problem in that the spectrum outside this wavelength range was not effectively utilized in the past.

この発明はこれらの種々の問題点を解消すべく
なされたものであり、従来の太陽熱エネルギー変
換器に比してエネルギー変換効率が優れ、ことに
太陽電池の電気エネルギー変換効率が顕著に優れ
ている太陽光エネルギー変換器を提供するもので
ある。
This invention was made to solve these various problems, and has superior energy conversion efficiency compared to conventional solar thermal energy converters, and in particular, the electrical energy conversion efficiency of solar cells is significantly superior. A solar energy converter is provided.

かくしてこの発明によれば、熱媒管、この熱媒
管に熱媒を送る熱媒導入管、その熱媒管と熱伝的
に接合した集熱板、及び太陽電池からなる太陽光
エネルギー変換器であつて、集熱板の受光面に、
太陽電池の有効感度スペクトル内に蛍光極大波長
を有する蛍光体を含有する透光層を被着すると共
にこの透光層の側面に太陽電池を設け、且つこの
太陽電池の受光面が透光層に向けて配設されたこ
とを特徴とする太陽光エネルギー変換器が提供さ
れる。
Thus, according to the present invention, there is provided a solar energy converter comprising a heat medium pipe, a heat medium introduction pipe that sends a heat medium to the heat medium pipe, a heat collecting plate thermally connected to the heat medium pipe, and a solar cell. And on the light receiving surface of the heat collecting plate,
A light-transmitting layer containing a phosphor having a fluorescence maximum wavelength within the effective sensitivity spectrum of the solar cell is deposited, a solar cell is provided on the side surface of this light-transmitting layer, and the light-receiving surface of this solar cell is on the light-transmitting layer. A solar energy converter is provided, characterized in that the solar energy converter is disposed toward the solar energy.

この発明において、透光層の側面に設けられた
太陽電池の外面に、熱媒導入管を熱的伝導状態で
接合し、更にこれを集熱板に接合した熱媒管に直
列に接続する流路を付設することにより、熱媒が
太陽電池の外面から集熱板方向に流れるように構
成すれば、太陽電池が冷却され低温を保つことが
でき前述したようにエネルギー変換効率がより上
昇し、かつ太陽電池が保持する熱量をも集熱でき
この発明の効果がより発揮される点から好まし
い。
In this invention, a heat medium introduction tube is connected in a thermally conductive state to the outer surface of the solar cell provided on the side surface of the light-transmitting layer, and this is further connected in series to the heat medium tube bonded to the heat collecting plate. If the heat medium is configured to flow from the outer surface of the solar cell toward the heat collecting plate by adding a passage, the solar cell can be cooled and kept at a low temperature, and as mentioned above, the energy conversion efficiency will further increase. Moreover, it is preferable because the amount of heat held by the solar cell can also be collected, and the effects of the present invention can be more effectively exerted.

一方、熱媒管及び集熱板を透光性外管により包
囲して密封した構成を適用することもでき、この
場合この発明による太陽光エネルギー変換器を雨
風等の外部の環境から保護できる点で望ましく、
さらに透光性外管内を真空断熱すれば集熱板の対
流等による熱損失が減少できこの発明の効果がよ
り発揮される点で好ましい。
On the other hand, it is also possible to apply a configuration in which the heat medium pipe and the heat collecting plate are surrounded and sealed by a transparent outer tube, and in this case, the solar energy converter according to the present invention can be protected from the external environment such as rain and wind. Preferably,
Furthermore, it is preferable to vacuum insulate the inside of the light-transmitting outer tube because heat loss due to convection of the heat collecting plate can be reduced and the effects of the present invention can be more effectively achieved.

なお、この発明において太陽電池は透光層の少
なくとも一側面に設けられておればよく、場合に
よつては側面全体に設けられていてもよく、少な
くともその受光面が透光層と密接されるよう設け
られておればよい。
In this invention, the solar cell may be provided on at least one side of the light-transmitting layer, and in some cases may be provided on the entire side surface, and at least its light-receiving surface is in close contact with the light-transmitting layer. It is sufficient if it is set up like this.

以下、添加図面によりこの発明を詳しく説明す
る。
The present invention will be explained in detail below with reference to additional drawings.

第4図はその発明の太陽光エネルギー変換器の
一具体例を示す要部平面図であり、第5図は第4
図におけるE―E′断面図である。図において内部
に水等の熱媒を流す銅パイプからなる熱媒管1
は、エポキシ系接着剤からなる接合層7を介して
銅又はアルミニウムからなる長尺状の集熱板2の
下面でかつ長手方向に平行に熱的伝導状態で接合
されている。集熱板2の受光面(上面)には、こ
の発明の透光層である、蛍光体Hostasol
Orange(蛍光体のカラーインデツクスにおけるソ
ルベントイエロー98番とソルベントオレンジ63番
との混合物)を含有するガラス又はアクリル樹脂
からなる長尺状の透光性基板3(厚み約1〜50mm
程度)が被着されている。該透光性基板3の両側
面にはそれぞれ帯状の非晶質シリコン太陽電池5
がその受光面が対向するよう基板3に密接して配
置されている。そして、該太陽電池5の外側面に
はそれぞれ熱媒管1に直列に接続された熱媒導入
管6がエポキシ系接着剤からなる接合層7′を介
して熱的伝導状態で接合されている。なお、4は
太陽光のエネルギー変換に有効な波長領域(通
常、可視と一部の紫外領域)のみを選択的に透過
させる選択透過膜であり、この選択透過膜を設け
なくてもこの発明の実施には何んらさしつかえは
ない。
FIG. 4 is a plan view of the main part showing a specific example of the solar energy converter of the invention, and FIG.
It is a sectional view taken along line EE' in the figure. In the figure, heat medium pipe 1 consists of a copper pipe through which a heat medium such as water flows.
are bonded in a thermally conductive state parallel to the longitudinal direction on the lower surface of the elongated heat collecting plate 2 made of copper or aluminum via a bonding layer 7 made of an epoxy adhesive. The light-receiving surface (upper surface) of the heat collecting plate 2 is coated with the phosphor Hostasol, which is the light-transmitting layer of the present invention.
A long translucent substrate 3 (thickness approximately 1 to 50 mm) made of glass or acrylic resin containing Orange (a mixture of Solvent Yellow No. 98 and Solvent Orange No. 63 in the phosphor color index).
degree) is coated. Strip-shaped amorphous silicon solar cells 5 are provided on both sides of the transparent substrate 3, respectively.
are arranged closely to the substrate 3 so that their light-receiving surfaces face each other. Heat medium introduction tubes 6 connected in series to the heat medium tubes 1 are bonded to the outer surfaces of the solar cells 5 through bonding layers 7' made of epoxy adhesive in a thermally conductive state. . Note that 4 is a selectively transmitting film that selectively transmits only the wavelength range effective for energy conversion of sunlight (usually visible and some ultraviolet regions), and the present invention can be achieved even without providing this selectively transmitting film. There are no hindrances to its implementation.

以下、上記構成の太陽光エネルギー変換器の作
用効果について述べる。
The effects of the solar energy converter having the above configuration will be described below.

まず、図中矢印の方向から太陽光線が照射し選
択透過膜4を透過して透光性基板3内に入光す
る。入光した光の一部は透光性基板3内に蛍光体
Hostasol Orangeを励起して蛍光せしめる。第
3図にこの具体例で用いた蛍光体の波長性を示
す。第3図においてCは蛍光体の吸光スペクトル
領域、Dは蛍光体の蛍光スペクトル領域をそれぞ
れ示している。すなわち、第2図及び第3図から
明らかなように太陽光スペクトルAのうち非晶質
シリコン太陽電池が低感度である波長約0.35〜約
0.5μmの光が蛍光体に吸収され非晶質シリコン太
陽電池が優れた感度を示す波長約0.55〜約0.6μm
の光に変換される。蛍光体から発する蛍光は透光
性基板内で等方的に広がるが、全反射の効果によ
り多重反射してほとんど透光性基板の両側面に集
光されそれぞれ非晶質シリコン太陽電池の受光面
に入射する。この入射光は上記太陽電池の感度ス
ペクトルBの有効感度領域(約0.55〜0.6μm)の
ピークとほぼ一致しているため高効率で電気エネ
ルギーに変換される。すなわち光の波長変換を行
なう蛍光体を含む透光性基板により効果的に集光
できるため、小面積の太陽電池により大面積の太
陽電池と同等の光エネルギー変換を行なうことが
できる。もちろん、太陽光自体が有する約0.55〜
0.6μmの光も多重反射して太陽電池に効率よく集
光される。さらに、太陽電池自体が直接太陽光線
で照射されないため温度上昇も従来に比して少な
く太陽電池自体の変換効率も良好に保たれ、優れ
た光エネルギー変換効率を保持することができ
る。
First, sunlight is irradiated from the direction of the arrow in the figure, passes through the selective transmission film 4, and enters the transparent substrate 3. A portion of the incident light is absorbed by the phosphor inside the translucent substrate 3.
Excite Hostasol Orange to make it fluoresce. FIG. 3 shows the wavelength characteristics of the phosphor used in this specific example. In FIG. 3, C indicates the absorption spectrum region of the phosphor, and D indicates the fluorescence spectral region of the phosphor. That is, as is clear from FIGS. 2 and 3, in the sunlight spectrum A, amorphous silicon solar cells have low sensitivity at wavelengths of about 0.35 to about
A wavelength of approximately 0.55 to approximately 0.6 μm where 0.5 μm light is absorbed by the phosphor and amorphous silicon solar cells exhibit excellent sensitivity.
is converted into light. Fluorescence emitted from the phosphor spreads isotropically within the translucent substrate, but due to the effect of total internal reflection, it undergoes multiple reflections and is mostly focused on both sides of the translucent substrate, each facing the light-receiving surface of the amorphous silicon solar cell. incident on . Since this incident light almost coincides with the peak of the effective sensitivity range (approximately 0.55 to 0.6 μm) of the sensitivity spectrum B of the solar cell, it is converted into electrical energy with high efficiency. That is, since light can be effectively focused by a light-transmitting substrate containing a phosphor that converts the wavelength of light, a small-area solar cell can convert light energy equivalent to a large-area solar cell. Of course, sunlight itself has about 0.55 ~
Light with a diameter of 0.6 μm also undergoes multiple reflections and is efficiently focused on the solar cells. Furthermore, since the solar cell itself is not directly irradiated with sunlight, the temperature rise is smaller than in the past, and the conversion efficiency of the solar cell itself is maintained at a good level, making it possible to maintain excellent light energy conversion efficiency.

一方、蛍光体が吸収しない波長の光を主体とす
る下方向の光は透光性基板3を透過して集熱板2
に吸収され熱エネルギーとして利用される。この
場合、透光性基板3は集熱板の放熱防止材料とし
ても働き、熱エネルギー変換効率をも上昇させる
効果を有している。
On the other hand, downward light, which is mainly composed of wavelengths that are not absorbed by the phosphor, passes through the transparent substrate 3 and passes through the heat collecting plate 3.
is absorbed and used as heat energy. In this case, the transparent substrate 3 also functions as a heat radiation prevention material for the heat collecting plate, and has the effect of increasing the thermal energy conversion efficiency.

また、低温の水等の熱媒体は、熱媒導入管6を
それぞれ通つて太陽電池5を冷却し、しかる後に
熱媒管1に導入され集熱板2によつて加熱され高
温になつて外部に導かれ利用される(第4図中、
矢印参照)。従つて、太陽電池は常に冷却され側
面に設けた効果と共に低温に保たれるため、従来
に比して遥かに優れた電気エネルギー変換効率が
得られる。
In addition, a heat medium such as low-temperature water passes through heat medium introduction pipes 6 to cool the solar cells 5, and is then introduced into heat medium pipe 1, heated by heat collecting plate 2, and heated to a high temperature outside. (In Figure 4,
(see arrow). Therefore, the solar cell is constantly cooled and kept at a low temperature together with the effect provided on the side, so that far superior electrical energy conversion efficiency can be obtained compared to the conventional method.

この発明に用いる太陽電池としては、上記非晶
質シリコン太陽電池以外に、単結晶シリコン太陽
電池、Ga―As系太陽電池、Ge―系太陽電池、
Cd―Te系太陽電池等の当該分野で用いられる
種々の太陽電池を適用することができる。なお、
この場合用いる蛍光体としては少なくとも適用す
る太陽電池の感度スペクトルの有効感度領域内に
蛍光波長ピークを有するものであればよく、前記
非晶シリコン太陽電池とHostasol Orangeの組
合せのごとく太陽電池の感度スペクトルの有効感
度ピーク附近に蛍光波長ピークを有するものが好
ましい。このような蛍光波長ピークをもつ蛍光体
は、例えば蛍光体のカラーインデツクスにおける
ソルベントイエロー98番、ソルベントイエロー
126番及びソルベントオレンジ63番等を適当な混
合比で混合することによつて得られ、混合比を代
えることによつて蛍光波長を変化させることがで
き、種々の太陽電池に適用することができる。な
お、これ以外に種々の有機蛍光体も使用可能であ
る。
In addition to the amorphous silicon solar cells described above, solar cells used in this invention include single crystal silicon solar cells, Ga-As solar cells, Ge solar cells,
Various solar cells used in the field, such as Cd--Te solar cells, can be applied. In addition,
The phosphor used in this case may be one that has a fluorescence wavelength peak within the effective sensitivity range of the sensitivity spectrum of the applied solar cell, such as the combination of the amorphous silicon solar cell and Hostasol Orange. It is preferable to have a fluorescence wavelength peak near the effective sensitivity peak of . Phosphors with such fluorescence wavelength peaks are, for example, Solvent Yellow No. 98 and Solvent Yellow in the phosphor color index.
Obtained by mixing No. 126 and Solvent Orange No. 63 at an appropriate mixing ratio, the fluorescence wavelength can be changed by changing the mixing ratio, and it can be applied to various solar cells. . Note that various other organic phosphors can also be used.

また、前述したように、具体例で述べた太陽光
エネルギー変換器を第6図にその断面を示すごと
くガラス製等の透光性外管内に設置し内部を真空
断熱すると更に有効に熱エネルギーを取り出すこ
とができより好ましい。なお、第6図において8
は透光性外管を示し9は固定用に適当数設けられ
たステーを示す。
In addition, as mentioned above, if the solar energy converter described in the specific example is installed inside a translucent outer tube made of glass or the like, and the inside is vacuum insulated, as the cross section is shown in Figure 6, thermal energy can be more effectively converted. It is more preferable because it can be taken out. In addition, in Figure 6, 8
9 indicates a translucent outer tube, and 9 indicates an appropriate number of stays provided for fixing.

この発明による太陽光エネルギー変換器は、太
陽電池を従来よりも低温に保つことができ、かつ
従来利用できない波長域の光を蛍光体を含む透光
層を用いることにより太陽電池の感度特性に合致
した波長に変換し効果的に集光できるため、小面
積の太陽電池でも太陽光エネルギー高効率で電気
エネルギーに変換できコストを低減することがで
き、かつ熱エネルギーも効率よく変換利用できる
という種々の利点を有している。
The solar energy converter according to the present invention can keep solar cells at a lower temperature than conventional ones, and matches the sensitivity characteristics of solar cells by using a transparent layer containing phosphor to transmit light in a wavelength range that is conventionally unavailable. Because it can convert light into a specific wavelength and effectively focus it, even a small-sized solar cell can convert solar energy into electrical energy with high efficiency, reducing costs, and can also efficiently convert and utilize thermal energy. It has advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、非晶質シリコン太陽電池の出力特性
の一例を示すグラフである。第2図は、太陽光の
放射スペクトル及び非晶質シリコン太陽電池の感
度スペクトルを示すグラフである。第3図は、こ
の発明の具体例で用いた蛍光体の吸光スペクトル
及び蛍光スペクトルを示すグラフである。第4図
は、この発明の太陽光エネルギー変換器の一具体
例を示す要部平面図であり、第5図は、第4図に
おけるE―E′断面図である。第6図は、この発明
の太陽光エネルギー変換器の他の具体例を示す第
5図相当の断面図である。 1……熱媒管、2……集熱板、3……透光性基
板、4……選択透過膜、5……非晶質シリコン太
陽電池、6……熱媒導入管、7,7′……接合層、
8……透光性外管、9……ステー。
FIG. 1 is a graph showing an example of the output characteristics of an amorphous silicon solar cell. FIG. 2 is a graph showing the radiation spectrum of sunlight and the sensitivity spectrum of an amorphous silicon solar cell. FIG. 3 is a graph showing the absorption spectrum and fluorescence spectrum of the phosphor used in the specific example of this invention. FIG. 4 is a plan view of essential parts of a specific example of the solar energy converter of the present invention, and FIG. 5 is a sectional view taken along the line EE' in FIG. FIG. 6 is a sectional view corresponding to FIG. 5 showing another specific example of the solar energy converter of the present invention. DESCRIPTION OF SYMBOLS 1... Heat medium tube, 2... Heat collection plate, 3... Transparent substrate, 4... Selective transmission film, 5... Amorphous silicon solar cell, 6... Heat medium introduction tube, 7,7 ′... bonding layer,
8...translucent outer tube, 9...stay.

Claims (1)

【特許請求の範囲】 1 熱媒管、この熱媒管に熱媒を送る熱媒導入
管、その熱媒管と熱伝的に接合した集熱板、及び
太陽電池からなる太陽エネルギー変換器であつ
て、集熱板の受光面に、太陽電池の有効感度スペ
クトル内に蛍光極大波長を有する蛍光体を含有す
る透光層を被着すると共にこの透光層の側面に太
陽電池を設け、且つこの太陽電池の受光面が透光
層に向けて配設されたことを特徴とする太陽エネ
ルギー変換器。 2 熱媒管に熱媒を送る熱媒導入管が、太陽電池
の外面に熱伝的に接合されてなる特許請求の範囲
第1項記載の変換器。 3 熱媒管を熱伝的に接合した集熱板全体が透光
性外管で包囲密封されてなる特許請求の範囲第1
項又は第2項に記載の変換器。
[Scope of Claims] 1. A solar energy converter consisting of a heat medium pipe, a heat medium introduction pipe that sends a heat medium to the heat medium pipe, a heat collecting plate thermally connected to the heat medium pipe, and a solar cell. A light-transmitting layer containing a phosphor having a maximum fluorescence wavelength within the effective sensitivity spectrum of the solar cell is deposited on the light-receiving surface of the heat collecting plate, and a solar cell is provided on the side surface of this light-transmitting layer. A solar energy converter characterized in that the light-receiving surface of this solar cell is disposed toward a light-transmitting layer. 2. The converter according to claim 1, wherein the heat medium introduction tube for feeding the heat medium to the heat medium tube is thermally connected to the outer surface of the solar cell. 3. Claim 1, in which the entire heat collecting plate to which heat transfer pipes are thermally connected is surrounded and sealed with a transparent outer tube.
or the converter according to item 2.
JP56148063A 1981-09-18 1981-09-18 Solar energy converter Granted JPS5849860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56148063A JPS5849860A (en) 1981-09-18 1981-09-18 Solar energy converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56148063A JPS5849860A (en) 1981-09-18 1981-09-18 Solar energy converter

Publications (2)

Publication Number Publication Date
JPS5849860A JPS5849860A (en) 1983-03-24
JPH0340293B2 true JPH0340293B2 (en) 1991-06-18

Family

ID=15444355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56148063A Granted JPS5849860A (en) 1981-09-18 1981-09-18 Solar energy converter

Country Status (1)

Country Link
JP (1) JPS5849860A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69434394T2 (en) * 1993-12-14 2006-04-27 Citizen Watch Co., Ltd. solar cell battery
EP2202220A1 (en) 2007-09-19 2010-06-30 Fujifilm Corporation Acetylene compound, salt thereof, condensate thereof, and composition thereof
JP5371449B2 (en) 2008-01-31 2013-12-18 富士フイルム株式会社 Resin, pigment dispersion, colored curable composition, color filter using the same, and method for producing the same
WO2009119827A1 (en) 2008-03-27 2009-10-01 富士フイルム株式会社 Original plate for lithographic printing plate, and method for production of lithographic printing plate using the same
JP5507054B2 (en) 2008-03-28 2014-05-28 富士フイルム株式会社 Polymerizable composition, color filter, method for producing color filter, and solid-state imaging device
JP5305793B2 (en) 2008-03-31 2013-10-02 富士フイルム株式会社 Relief printing plate and method for producing relief printing plate
JP5444933B2 (en) 2008-08-29 2014-03-19 富士フイルム株式会社 Negative-type planographic printing plate precursor and planographic printing method using the same
JP5127651B2 (en) 2008-09-30 2013-01-23 富士フイルム株式会社 Colored curable composition, color filter, method for producing the same, and solid-state imaging device
KR20100073084A (en) * 2008-12-22 2010-07-01 삼성전자주식회사 Photohvoltaic-thermal hybrid apparatus and assembly method thereof
JP2011154367A (en) 2009-12-28 2011-08-11 Fujifilm Corp Method of preparing lithographic printing plate
BR112014002574A2 (en) 2011-08-22 2019-12-17 Fujifilm Corp A manufacturing method of a planographic printing original plate and a lithographic printing plate
JP5432960B2 (en) 2011-08-24 2014-03-05 富士フイルム株式会社 Planographic printing plate precursor and lithographic printing plate preparation method
US9780233B2 (en) 2012-08-10 2017-10-03 Sharp Kabushiki Kaisha Solar cell module, solar cell module assembly, and solar photovoltaic power generation system
JP7306359B2 (en) 2020-10-08 2023-07-11 トヨタ自動車株式会社 Photoelectric conversion device for photovoltaic power generation

Also Published As

Publication number Publication date
JPS5849860A (en) 1983-03-24

Similar Documents

Publication Publication Date Title
JPH0340293B2 (en)
US4184895A (en) Structure for conversion of solar radiation to electricity and heat
US20040055631A1 (en) Hybrid solar energy collector
WO2009125722A1 (en) Optical member for light concentration and concentrator photovoltaic module
US4238247A (en) Structure for conversion of solar radiation to electricity and heat
GB1580564A (en) Device for converting light energy into thermal energy
CN102364714A (en) Solar thermoelectric conversion
US10594256B2 (en) Photovoltaic thermal collector
JP2010263115A (en) Solar light collector
WO2011086747A1 (en) Solar cell module and solar energy generating device
TW201032339A (en) Solar cell
CN209710039U (en) Photovoltaic and photothermal solar system
JPH1114161A (en) Hybrid-type solar cell device
CN110086425B (en) Solar photovoltaic photo-thermal system and manufacturing process thereof
KR20180091619A (en) Integrated Solar Energy Acquiring Apparatus
US4251288A (en) Photovoltaic device with specially arranged luminescent collector and cell
JP2004317117A (en) Solar heat collector with solar power generation function
SI23059A (en) Collector for collecting and converting solar energy
CN209982429U (en) Photovoltaic and photo-thermal integrated device
JPS595807B2 (en) Hybrid solar collector
JPS6122217B2 (en)
JPS6060777A (en) Converter for solar energy
CN106057939A (en) Concentrated solar cell pack with heat exchanger
JPH03267655A (en) Solar energy collector
JPH03263549A (en) Solar energy collector