JPH11140075A - Purification of epsilon-caprolactone - Google Patents

Purification of epsilon-caprolactone

Info

Publication number
JPH11140075A
JPH11140075A JP32240997A JP32240997A JPH11140075A JP H11140075 A JPH11140075 A JP H11140075A JP 32240997 A JP32240997 A JP 32240997A JP 32240997 A JP32240997 A JP 32240997A JP H11140075 A JPH11140075 A JP H11140075A
Authority
JP
Japan
Prior art keywords
caprolactone
distillation column
product
stage
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32240997A
Other languages
Japanese (ja)
Other versions
JP4173572B2 (en
Inventor
Takashi Ueno
貴史 上野
Kenji Oka
憲治 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP32240997A priority Critical patent/JP4173572B2/en
Publication of JPH11140075A publication Critical patent/JPH11140075A/en
Application granted granted Critical
Publication of JP4173572B2 publication Critical patent/JP4173572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pyrane Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for purifying ε-caprolactone reduced in acid value and moisture content. SOLUTION: A low-boiling fraction contained in a reactional solution is distilled off in the first distillation column to provide the first bottom liquid, which is then fed to the second distillation column having a concentrating section of three or more stages to distill off a low-boiling fraction from the column top of the second distillation column. A high-boiling substance is then taken out of the column bottom of the second distillation column to take out ε- caprolactone from any stage within the range of 30-90% of the number of stages from the feed stage of the second distillation column to the topmost stage from the side of the column bottom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ε−カプロラクト
ンの精製方法に関し、より詳しくは、酸価および水分量
を低減させたε−カプロラクトンの精製方法に関する。
The present invention relates to a method for purifying ε-caprolactone, and more particularly, to a method for purifying ε-caprolactone with reduced acid value and water content.

【0002】[0002]

【従来の技術】ε−カプロラクトンは、ポリウレタン合
成用のポリエステルポリオールやその他の成形材料の重
合体原料等の用途を有し、近年は生分解性プラスチック
の原料としても需要が伸びている有用な化合物である。
その製造方法としては、シクロヘキサノンを酸化して得
る方法が代表的なものとして知られ、このシクロヘキサ
ノンの酸化にはアセトアルデヒドとの共酸化法と、例え
ば過酢酸等の有機過酸を酸化剤として用いる酸化法とが
ある。更に、シクロヘキサノンの酸化によって得た反応
液から目的物を分離する方法として、特開昭60−16
436、特開平3−33718、特開平4−9378号
公報等に蒸留法が開示されている。
2. Description of the Related Art ε-Caprolactone is a useful compound which is used as a raw material of a polyester polyol for the synthesis of polyurethane or a polymer material of other molding materials. It is.
As the production method, a method obtained by oxidizing cyclohexanone is known as a typical method. For the oxidation of cyclohexanone, there are a co-oxidation method with acetaldehyde and an oxidation method using an organic peracid such as peracetic acid as an oxidizing agent. There is a law. Further, as a method for separating a target substance from a reaction solution obtained by oxidizing cyclohexanone, JP-A-60-16 discloses
436, JP-A-3-33718, JP-A-4-9378 and the like disclose a distillation method.

【0003】[0003]

【発明が解決しようとする課題】一方、上記方法により
得れらたε−カプロラクトンを原料として重合反応を行
うと、ε−カプロラクトン製品に含まれる不純物が重合
時の反応速度に大きく影響を与え、特にε−カプロラク
トン製品の酸価や水分量の相違により、重合反応速度が
異なる場合が多い。また、ε−カプロラクトン製品に含
まれる酸性物質や水分によって、製品自体も劣化しやす
い。
On the other hand, when a polymerization reaction is carried out using ε-caprolactone obtained by the above method as a raw material, impurities contained in the ε-caprolactone product greatly affect the reaction rate during polymerization, Particularly, the polymerization reaction rate often differs due to the difference in the acid value and the water content of the ε-caprolactone product. In addition, the product itself is liable to deteriorate due to acidic substances and moisture contained in the ε-caprolactone product.

【0004】このような酸価と水分量とを低減するた
め、従来は、反応液に含まれる低沸点の酸や水等の低沸
点留分を第一蒸留塔で留去し、第一缶出液を得、第一缶
出液を第二蒸留塔に供給し、次いで第二蒸留塔でε−カ
プロラクトンを蒸留し、高沸酸等の高沸点物と分離する
精製系を構築し、かかる精製系において第一蒸留塔の還
流比を上げた状態で留出液量を増加させたり、または第
二缶出液の抜き取り量を増加させたりしていた。
[0004] In order to reduce the acid value and the water content, conventionally, a low-boiling fraction such as a low-boiling acid or water contained in a reaction solution is distilled off in a first distillation column to form a first vessel. A effluent is obtained, the first bottom effluent is supplied to the second distillation column, then ε-caprolactone is distilled in the second distillation column, and a purification system for separating from high boiling substances such as high boiling acid is constructed. In the purification system, the amount of distillate has been increased while the reflux ratio of the first distillation column has been increased, or the amount of withdrawal of the second bottom has been increased.

【0005】しかし、第一蒸留塔留出液の増加や第二缶
出液の抜き取り量の増加により、精製収率が低下するた
め、精製収率の向上とε−カプロラクトン製品の品質の
向上とを両立させることは、極めて困難である。かかる
現状より、ε−カプロラクトンの工業的製造において、
ε−カプロラクトンの精製収率を低下させず品質を改善
でき、しかも特別の設備等を必要としないε−カプロラ
クトンの精製方法の開発が熱望されている。
[0005] However, the purification yield decreases due to an increase in the distillate of the first distillation column and an increase in the amount of withdrawal of the second bottoms, so that the purification yield and the quality of ε-caprolactone product are improved. It is extremely difficult to achieve both. From this situation, in the industrial production of ε-caprolactone,
Development of a method for purifying ε-caprolactone that can improve the quality without lowering the purification yield of ε-caprolactone and that does not require special equipment and the like has been eagerly desired.

【0006】[0006]

【課題を解決するための手段】本発明者は、第二蒸留塔
内に存在する低沸点の酸と水分とがε−カプロラクトン
と共に留出しε−カプロラクトン製品の品質悪化の原因
となること、および第二蒸留塔の特定位置からε−カプ
ロラクトンを取り出すと精製収率を悪化させず、かつ酸
価と水分量とを低減できることを見い出し、本発明を完
成させた。
The inventor of the present invention has determined that low boiling acid and water present in the second distillation column are distilled together with ε-caprolactone to cause deterioration of the quality of ε-caprolactone products, and The inventors have found that removing ε-caprolactone from a specific position in the second distillation column does not deteriorate the purification yield and can reduce the acid value and the amount of water, thus completing the present invention.

【0007】すなわち本発明は、シクロヘキサノンを酸
化して得た反応液を蒸留して不純物と分離するε−カプ
ロラクトンの精製方法において、反応液に含まれる低沸
点留分を第一蒸留塔で留去し第一缶出液を得、次いで第
一缶出液を3段以上の濃縮部を有する第二蒸留塔へ供給
し低沸点留分を第二蒸留塔塔頂から留去し、高沸点物を
第二蒸留塔塔底から抜き取り、かつ第二蒸留塔の供給段
から最上段までの段数の塔底側から30〜90%の範囲
のいずれかの段からε−カプロラクトンを取り出すこと
を特徴とするε−カプロラクトンの精製方法を提供する
ものである。また、ε−カプロラクトンを液状で取り出
すことを特徴とする前記ε−カプロラクトンの精製方法
を提供するものである。更に、シクロヘキサノンを酸化
して得た反応液が、有機過酸によりシクロヘキサノンを
酸化して得た反応液であること、またはシクロヘキサノ
ンとアルデヒドとの共酸化で得た反応液であることを特
徴とする前記ε−カプロラクトンの精製方法を提供する
ものである。以下、本発明を詳細に説明する。
That is, the present invention provides a method for purifying ε-caprolactone, in which a reaction solution obtained by oxidizing cyclohexanone is separated from impurities by distillation, wherein a low-boiling fraction contained in the reaction solution is distilled off in a first distillation column. Then, the first bottoms are supplied to a second distillation column having three or more stages of concentrating sections, and low-boiling fractions are distilled off from the top of the second distillation column to obtain high-boiling products. Is extracted from the bottom of the second distillation column, and ε-caprolactone is taken out from any of the stages in the range of 30 to 90% from the bottom of the number of stages from the supply stage to the top stage of the second distillation column. And a method for purifying ε-caprolactone. It is another object of the present invention to provide a method for purifying ε-caprolactone, comprising removing ε-caprolactone in liquid form. Further, the reaction solution obtained by oxidizing cyclohexanone is a reaction solution obtained by oxidizing cyclohexanone with an organic peracid or a reaction solution obtained by co-oxidation of cyclohexanone and an aldehyde. It is intended to provide a method for purifying the ε-caprolactone. Hereinafter, the present invention will be described in detail.

【0008】[0008]

【発明の実施の形態】本発明は、シクロヘキサノンを酸
化して得た反応液を蒸留して不純物と分離するε−カプ
ロラクトンの精製方法である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is a method for purifying ε-caprolactone, in which a reaction solution obtained by oxidizing cyclohexanone is separated from impurities by distillation.

【0009】シクロヘキサノンの酸化には、有機過酸を
酸化剤として用いる酸化法やアルデヒドとの共酸化法と
があり、いずれの酸化で得た反応液も本発明で好ましく
使用できる。
The oxidation of cyclohexanone includes an oxidation method using an organic peracid as an oxidizing agent and a co-oxidation method with an aldehyde. A reaction solution obtained by any of the oxidation methods can be preferably used in the present invention.

【0010】酸化法で使用できる有機過酸としては、過
酢酸、過プロピオン酸、過蟻酸、過イソ酪酸が例示で
き、これらの中でも過酢酸、過プロピオン酸であること
が好ましい。また、酸化には稀釈用溶媒を使用してもよ
く、好ましい溶媒として酢酸エチル、酢酸メチル等のエ
ステル類が例示できる。シクロヘキサノンの酸化反応で
は、有機過酸はシクロヘキサノン(bp155℃)を酸
化してε−カプロラクトン(bp98〜99℃/2mm
Hg)に変化させ、自らは還元され、使用した有機過酸
に対応する酢酸(bp118.2℃)、プロピオン酸
(bp141.35℃)、蟻酸(bp100.5℃)、
イソ酪酸(bp154.3℃)等の有機酸となる。この
ため、シクロヘキサノンを酸化して得た反応液には、ε
−カプロラクトン、還元されて生成した酢酸等の有機酸
および稀釈用溶媒が含まれ、更に、副生成物であるアジ
ピン酸(bp265℃/100mmHg)、オキシカプ
ロン酸、カプロラクトンのオリゴマーやポリマー等が含
まれる。ここに、還元されて生成した酢酸等の有機酸は
ε−カプロラクトンより沸点が低く、アジピン酸やオキ
シカプロン酸、カプロラクトンのオリゴマーやポリマー
等は、ε−カプロラクトンより沸点が高い。
Examples of the organic peracid which can be used in the oxidation method include peracetic acid, perpropionic acid, formic acid and perisobutyric acid, and among these, peracetic acid and perpropionic acid are preferred. Further, a solvent for dilution may be used for the oxidation, and preferred examples of the solvent include esters such as ethyl acetate and methyl acetate. In the oxidation reaction of cyclohexanone, the organic peracid oxidizes cyclohexanone (bp 155 ° C.) to form ε-caprolactone (bp 98 to 99 ° C./2 mm
Hg), which itself is reduced, and acetic acid (bp 118.2 ° C.), propionic acid (bp 141.35 ° C.), formic acid (bp 100.5 ° C.) corresponding to the organic peracid used,
Organic acids such as isobutyric acid (bp 154.3 ° C.). Therefore, the reaction solution obtained by oxidizing cyclohexanone contains ε
-Includes caprolactone, organic acids such as acetic acid generated by reduction, and diluting solvents, and further includes by-products adipic acid (bp 265 ° C / 100 mmHg), oxycaproic acid, oligomers and polymers of caprolactone, and the like. . Here, an organic acid such as acetic acid generated by reduction has a lower boiling point than ε-caprolactone, and adipic acid, oxycaproic acid, oligomers and polymers of caprolactone have a higher boiling point than ε-caprolactone.

【0011】また、共酸化法で使用できるアルデヒドと
しては、アセトアルデヒド、プロピオンアルデヒド等の
脂肪族アルデヒドおよびベンズアルデヒド、メチルベン
ズアルデヒド、ジメチルベンズアルデヒドなどの芳香族
アルデヒドが挙げられる。共酸化は、シクロヘキサノン
とアルデヒドとを含有する溶媒中に、空気または酸素ガ
ス等を供給して酸化し、反応液にはナフテン酸コバルト
等の触媒を添加してもよい。第一蒸留塔に供給する代表
的なアルデヒド共酸化プロセスの反応液としては、シク
ロヘキサノンとアセトアルデヒドとの共酸化で得られ、
酢酸、ε−カプロラクトン、アセトアルデヒド、シクロ
ヘキサノンおよび触媒を含む反応液から、触媒を分離し
た反応液が例示できる。また、シクロヘキサノンとジメ
チルベンズアルデヒドとの共酸化で得られ、ジメチル安
息香酸、ε−カプロラクトン、ジメチルベンズアルデヒ
ド、シクロヘキサノンおよび触媒を含む反応液から、触
媒およびジメチル安息香酸を分離した反応液が例示でき
る。
Aldehydes that can be used in the co-oxidation method include aliphatic aldehydes such as acetaldehyde and propionaldehyde and aromatic aldehydes such as benzaldehyde, methylbenzaldehyde and dimethylbenzaldehyde. In the co-oxidation, air or oxygen gas or the like is supplied to a solvent containing cyclohexanone and an aldehyde to oxidize the solvent, and a catalyst such as cobalt naphthenate may be added to the reaction solution. As a reaction solution of a typical aldehyde co-oxidation process supplied to the first distillation column, it is obtained by co-oxidation of cyclohexanone and acetaldehyde,
A reaction solution obtained by separating a catalyst from a reaction solution containing acetic acid, ε-caprolactone, acetaldehyde, cyclohexanone and a catalyst can be exemplified. Further, a reaction solution obtained by co-oxidation of cyclohexanone and dimethylbenzaldehyde and separating a catalyst and dimethylbenzoic acid from a reaction solution containing dimethylbenzoic acid, ε-caprolactone, dimethylbenzaldehyde, cyclohexanone and a catalyst can be exemplified.

【0012】以下、本発明のε−カプロラクトンの精製
方法を、図1を用いて説明する。なお、図1では蒸留塔
に付属する設備は省略した。
Hereinafter, the method for purifying ε-caprolactone of the present invention will be described with reference to FIG. In FIG. 1, equipment attached to the distillation column is omitted.

【0013】ε−カプロラクトンの精製は、上記反応液
を脱低沸蒸留、脱高沸蒸留して行う。 まず、シクロヘ
キサノンを酸化して得た反応液を第一蒸留塔1へライン
2より供給する。第一蒸留塔1では脱低沸蒸留を行う。
反応液が有機過酸を酸化剤とする酸化法であって、有機
過酸として過酢酸を使用した場合には、過酢酸から生成
された酢酸(以下、便宜上当該有機酸を「酢酸」として
説明する。)や、酢酸エチル等の稀釈用溶媒等の低沸点
留分3を留去するとともに未反応原料のシクロヘキサノ
ンを留出する。
The purification of ε-caprolactone is carried out by subjecting the reaction solution to low-boiling distillation and high-boiling distillation. First, a reaction solution obtained by oxidizing cyclohexanone is supplied to the first distillation column 1 from the line 2. In the first distillation column 1, low-boiling distillation is performed.
When the reaction solution is an oxidation method using an organic peracid as an oxidizing agent and peracetic acid is used as the organic peracid, acetic acid generated from peracetic acid (hereinafter, the organic acid is referred to as “acetic acid” for convenience) ), And distilling off low-boiling fraction 3 such as a diluting solvent such as ethyl acetate, and distilling off unreacted raw material cyclohexanone.

【0014】本発明の第一蒸留塔としては、棚段塔およ
び充填塔のいずれでもよい。第一蒸留塔の蒸留条件は、
反応液の供給速度、蒸留塔の種類等により適宜選択する
ことができるが、一般に、塔頂温度20〜60℃、特に
は30〜40℃、塔底温度100〜200℃、特には1
20〜180℃、塔頂圧力200mmHg以下、還流比
0.1〜10、特には0.5〜5であることが好まし
い。この蒸留条件によって、低沸点留分3として溶媒や
酢酸を効率よく留去すると共に、ε−カプロラクトンを
含む第一缶出液4を塔底から回収することできるからで
ある。尚、ε−カプロラクトンの一部も低沸点留分3と
して留去する。ε−カプロラクトンの留出率は0.5〜
3.0%である。
The first distillation column of the present invention may be either a tray column or a packed column. The distillation conditions of the first distillation column are as follows:
Although it can be appropriately selected depending on the supply rate of the reaction solution, the type of the distillation column, and the like, generally, the tower top temperature is 20 to 60 ° C, particularly 30 to 40 ° C, and the bottom temperature is 100 to 200 ° C.
The temperature is preferably 20 to 180 ° C., the top pressure is 200 mmHg or less, and the reflux ratio is 0.1 to 10, particularly preferably 0.5 to 5. Under these distillation conditions, the solvent and acetic acid can be efficiently distilled off as the low-boiling fraction 3 and the first bottoms 4 containing ε-caprolactone can be recovered from the bottom of the column. In addition, a part of ε-caprolactone is also distilled off as a low-boiling fraction 3. Distillation rate of ε-caprolactone is 0.5 to
3.0%.

【0015】次いで、第一蒸留塔1の塔底からε−カプ
ロラクトンを含む第一缶出液4(粗ε−カプロラクト
ン)を抜き取り、これを第二蒸留塔5へ供給する。第二
蒸留塔も棚段塔および充填塔のいずれでもよいが、3段
以上、より好ましくは3〜45段、特には10〜35段
の濃縮部を有することを特徴とする。具体的には、好ま
しくは全段5〜50段であり、より好ましくは15〜4
0段である。この範囲で、低沸点留分の留去や高沸点留
分の分離を効率よく行うことができるからである。この
際、濃縮部が上記範囲の段数を有すれば、第二蒸留塔へ
の供給を第二蒸留塔塔底へ行っても、第二蒸留塔中間部
へ行ってもよい。尚、本発明では、第二蒸留塔中間部と
は、第二蒸留塔の塔底および塔頂部を除いたそれらの間
の任意の段を意味する。
Next, the first bottoms 4 (crude ε-caprolactone) containing ε-caprolactone is withdrawn from the bottom of the first distillation column 1 and supplied to the second distillation column 5. The second distillation column may be either a tray column or a packed column, but is characterized by having three or more plates, more preferably 3 to 45 plates, and particularly 10 to 35 plates. Specifically, the total number of stages is preferably 5 to 50, more preferably 15 to 4
There are 0 stages. This is because, within this range, distillation of the low-boiling fraction and separation of the high-boiling fraction can be performed efficiently. At this time, as long as the enrichment section has the number of stages in the above range, the supply to the second distillation column may be performed to the bottom of the second distillation column or to the intermediate portion of the second distillation column. In the present invention, the middle part of the second distillation column means any stage between them except for the bottom and top of the second distillation column.

【0016】第二蒸留塔5では、再脱低沸蒸留と脱高沸
蒸留を行う。第二蒸留塔の蒸留条件は、第一缶出液4の
供給速度、蒸留塔の種類等により適宜選択することがで
きるが、ε−カプロラクトンの重合によるロスを少なく
するために、塔頂温度100〜140℃、好ましくは1
10〜130℃、塔底温度120〜200℃、好ましく
は130〜160℃、塔頂圧力50mmHg以下、還流
比0.1〜10、好ましくは0.3〜5である。これに
より、塔内で生成した低沸点の酸や水分等の低沸点留分
6を塔頂から効率よく留去すると共に、カプロラクトン
オリゴマー等やアジピン酸等の高沸点物を第二缶出液7
としてε−カプロラクトンと分離することができるから
である。
In the second distillation column 5, re-elimination low-boiling distillation and de-high boiling distillation are performed. The distillation conditions of the second distillation column can be appropriately selected depending on the supply speed of the first bottoms 4, the type of the distillation column, and the like. In order to reduce the loss due to the polymerization of ε-caprolactone, the top temperature is set at 100 ° C. ~ 140 ° C, preferably 1
The temperature is 10 to 130 ° C, the bottom temperature is 120 to 200 ° C, preferably 130 to 160 ° C, the top pressure is 50 mmHg or less, and the reflux ratio is 0.1 to 10, preferably 0.3 to 5. Thereby, low-boiling fractions 6 such as low-boiling acid and water generated in the column are efficiently distilled off from the top of the column, and high-boiling substances such as caprolactone oligomers and adipic acid are removed from the second bottoms 7.
Because it can be separated from ε-caprolactone.

【0017】本発明では、精製されたε−カプロラクト
ン(ε−カプロラクトン製品)を第二蒸留塔5の供給段
より上で最上段より下のいずれかの段から取り出すこと
を特徴とする。より好ましくは、供給段から最上段まで
の段数の塔底側から30〜90%、特には50〜80%
の範囲のいずれかの段から取り出すことを特徴とする。
この範囲で高沸点成分と低沸点留分の分離に優れ、ε−
カプロラクトン製品の酸価と水分量の低減に特に優れる
からである。ここに、第二蒸留塔中間部における取出段
の位置の算出方法は、例えば段数20の第二蒸留塔にお
いて供給段が塔底であり取出段が5段目である場合は、
(5/20)×100=25%、供給段が塔底であり取
出段が10段目である場合は(10/20)×100=
50%となる。さらに、第二蒸留塔の第2段目に供給
し、かつ取出段が第6段目の場合は、((6−2)/
(20−2))×100=22%となる。
The present invention is characterized in that the purified ε-caprolactone (ε-caprolactone product) is taken out from any of the stages above the feed stage of the second distillation column 5 and below the uppermost stage. More preferably, 30 to 90%, particularly 50 to 80%, of the number of stages from the feed stage to the top stage from the column bottom side
From one of the stages in the range.
Within this range, high-boiling components and low-boiling fractions are excellently separated, and ε-
This is because it is particularly excellent in reducing the acid value and the water content of the caprolactone product. Here, the method of calculating the position of the extraction stage in the intermediate portion of the second distillation column is, for example, in the case where the supply stage is the bottom and the extraction stage is the fifth stage in the second distillation column having 20 stages,
(5/20) × 100 = 25%, (10/20) × 100 = when the feed stage is the bottom and the take-out stage is the tenth stage
It becomes 50%. Furthermore, in the case of supplying to the second stage of the second distillation column and taking out the sixth stage, ((6-2) /
(20-2)) × 100 = 22%.

【0018】第二蒸留塔中間部からのε−カプロラクト
ン製品の取り出しは、ε−カプロラクトン製品を液状で
取り出すことが好ましい。気体状態で取り出すと、第二
蒸留塔内の気相側に多く分布する低沸点留分も製品と共
に取り出される結果、製品中の低沸点留分の濃度が上昇
するからある。ε−カプロラクトン製品を液状で取り出
すためには、取出段の液相部を抜き出せばよい。
In the removal of the ε-caprolactone product from the intermediate portion of the second distillation column, it is preferable to remove the ε-caprolactone product in a liquid state. When taken out in a gaseous state, low-boiling fractions, which are largely distributed on the gas phase side in the second distillation column, are also taken out together with the product, so that the concentration of the low-boiling fraction in the product increases. In order to take out the ε-caprolactone product in a liquid state, the liquid phase at the take-out stage may be taken out.

【0019】本発明の精製方法によれば、通常ε−カプ
ロラクトン製品は、酸価0.07〜0.10mgKOH
/gであり水分は70〜120ppmとなる。従って、
本発明のε−カプロラクトン製品を用いて重合反応を行
うと反応速度を改善することができると共に、ε−カプ
ロラクトン製品の劣化を防止することができる。
According to the purification method of the present invention, the ε-caprolactone product usually has an acid value of 0.07 to 0.10 mg KOH
/ G, and the water content is 70 to 120 ppm. Therefore,
When a polymerization reaction is carried out using the ε-caprolactone product of the present invention, the reaction rate can be improved, and deterioration of the ε-caprolactone product can be prevented.

【0020】[0020]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。なお
「%およびppm」は、特に示す場合を除くほか「重量
%および重量ppm」を示す。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples. “% And ppm” indicate “% by weight and ppm by weight” except where otherwise indicated.

【0021】(測定項目) (1)酸価:ε−カプロラクトン製品1g当たり1/1
0NのKOH溶液による中和に必要な滴定量より算出し
た。 (2)水分:カールフィッシャー型水分分析計で分析し
た。
(Measurement items) (1) Acid value: 1/1 per g of ε-caprolactone product
It was calculated from the titer required for neutralization with a 0N KOH solution. (2) Moisture: Analyzed with a Karl Fischer moisture analyzer.

【0022】(参考例1)内容積2リットルの流通式反
応器にシクロヘキサノンを60g/Hrで、30%の過
酢酸の酢酸エチル溶液を170.5g/Hr(純過酢酸
としては51.4g/Hr、シクロヘキサノンに対して
1.1モル倍)で供給し、反応温度50℃で連続反応さ
せた。得られた反応液の組成は、ε−カプロラクトン2
8.78%、未反応シクロヘキサノン0.52%、未反
応過酢酸1.31%、副生アジピン酸0.59%、カプ
ロラクトン重合物0.30%、酢酸21.16%、溶媒
酢酸エチル47.34%であった。次いで、得られた反
応液を15段の目皿式蒸留塔の第一蒸留塔へ供給し、塔
頂温度35℃、塔底温度160℃、塔頂圧力60Tor
r、還流比1.0で脱低沸蒸留し、脱溶媒、脱酢酸し、
ε−カプロラクトンを含む第一缶出液を得た。
Reference Example 1 In a flow-through reactor having an internal volume of 2 liters, cyclohexanone was added at 60 g / Hr and a 30% solution of peracetic acid in ethyl acetate was added at 170.5 g / Hr (pure peracetic acid was 51.4 g / Hr). (1.1 mol times with respect to Hr and cyclohexanone) and continuously reacted at a reaction temperature of 50 ° C. The composition of the obtained reaction solution was ε-caprolactone 2
8.78%, unreacted cyclohexanone 0.52%, unreacted peracetic acid 1.31%, by-product adipic acid 0.59%, caprolactone polymer 0.30%, acetic acid 21.16%, solvent ethyl acetate 47. 34%. Then, the obtained reaction solution was supplied to the first distillation column of a 15-plate dish distillation column, where the top temperature was 35 ° C, the bottom temperature was 160 ° C, and the top pressure was 60 Torr.
r, low-boiling distillation at a reflux ratio of 1.0, solvent removal and acetic acid removal,
A first bottoms containing ε-caprolactone was obtained.

【0023】(参考例2)内容積2リットルのバッチ式
反応器にシクロヘキサノン450g/Hrと溶媒酢酸エ
チル1160gおよび触媒として6%Co含有ナフテン
酸コバルト0.08gを仕込んだ。これにアセトアルデ
ヒド360gを5時間かけて滴下し、反応温度40℃に
維持した。アセトアルデヒド仕込開始から滴下終了後1
時間まで酸素ガス2.2リットル/Hrを供給した。得
られた反応液の組成は、ε−カプロラクトン10.4
%、未反応シクロヘキサノン11.7%、酢酸13.8
%、未反応アセトアルデヒド8.4%、副生アジピン酸
0.3%、カプロラクトン重合物0.50%、溶媒酢酸
エチル55.0%であった。次いで、得られた反応液を
15段の目皿式蒸留塔の第一蒸留塔へ供給し、塔頂温度
20℃、塔底温度180℃、塔頂圧力170Torr、
還流比1.0で脱低沸蒸留し、脱溶媒、脱酢酸し、ε−
カプロラクトンを含む第一缶出液を得た。
REFERENCE EXAMPLE 2 450 g / Hr of cyclohexanone, 1160 g of ethyl acetate solvent and 0.08 g of cobalt naphthenate containing 6% Co as a catalyst were charged into a batch type reactor having an internal volume of 2 liters. 360 g of acetaldehyde was added dropwise thereto over 5 hours, and the reaction temperature was maintained at 40 ° C. 1 after the end of dropping from the start of acetaldehyde charge
2.2 liter / Hr of oxygen gas was supplied until the time. The composition of the obtained reaction solution was ε-caprolactone 10.4
%, Unreacted cyclohexanone 11.7%, acetic acid 13.8
%, Unreacted acetaldehyde 8.4%, by-product adipic acid 0.3%, caprolactone polymer 0.50%, and solvent ethyl acetate 55.0%. Next, the obtained reaction solution was supplied to the first distillation column of a 15-plate dish distillation column, and the top temperature was 20 ° C., the bottom temperature was 180 ° C., the top pressure was 170 Torr,
Low-boiling distillation at a reflux ratio of 1.0, solvent removal and acetic acid removal, ε-
A first bottoms containing caprolactone was obtained.

【0024】(実施例1)参考例1で得た第一缶出液を
直径40mmのガラス製の真空ジャケットを有する20
段のオルダーショー式蒸留塔の塔底へ319g/Hrで
供給し、塔頂温度119℃、塔底温度144℃、塔頂圧
力15Torr、還流比(R/D=100)一定で蒸留
し、塔底から第二缶出液を80.35g/Hrで抜き取
り、塔頂から低沸点留分を3.6g/Hrで留去し、ε
−カプロラクトン製品を第二蒸留塔の塔底を含めず数え
た下から10段目から液状(235.05g/H,第二
蒸留塔における製品収率73.7%)で取り出した。ε
−カプロラクトン製品の品質を分析した結果、酸価が
0.078mgKOH/gであり、水分は70ppmで
あった。
(Example 1) The first bottom liquid obtained in Reference Example 1 was prepared using a glass vacuum jacket having a diameter of 40 mm.
319 g / Hr was supplied to the bottom of the Oldershaw distillation column, and distillation was performed at a top temperature of 119 ° C., a bottom temperature of 144 ° C., a top pressure of 15 Torr, and a constant reflux ratio (R / D = 100). , A second bottom liquid is withdrawn at 80.35 g / Hr, a low boiling fraction is distilled off at 3.6 g / Hr from the top of the column, and ε
-The caprolactone product was taken out in liquid form (235.05 g / H, product yield in the second distillation column: 73.7%) from the 10th stage from the bottom, not including the bottom of the second distillation column. ε
As a result of analyzing the quality of the caprolactone product, the acid value was 0.078 mgKOH / g, and the water content was 70 ppm.

【0025】(実施例2)第一缶出液を第二蒸留塔塔底
へ325.4g/Hrで供給し、塔底から80.76g
/Hrで第二缶出液を抜き取り、塔頂から低沸点留分を
3.4g/Hrで留去し、ε−カプロラクトンを第二蒸
留塔の塔底を含めず数えた下から15段目から液状(2
41.24g/H,第二蒸留塔における製品収率74.
1%)で取り出した以外は、実施例1と同様に操作し
た。ε−カプロラクトン製品の品質を分析した結果、酸
価は0.070KOHmg/gであり、水分は80pp
mであった。
(Example 2) The first bottom product was fed to the bottom of the second distillation column at 325.4 g / Hr, and 80.76 g from the bottom of the column.
/ Hr, the low-boiling fraction was distilled off from the top of the column at 3.4 g / Hr, and ε-caprolactone was counted from the bottom of the second distillation column, excluding the bottom, at the 15th stage from the bottom. To liquid (2
41.24 g / H, product yield in the second distillation column
(1%). As a result of analyzing the quality of the ε-caprolactone product, the acid value was 0.070 KOHmg / g, and the water content was 80 pp.
m.

【0026】(実施例3)第一缶出液を第二蒸留塔塔底
へ322.7g/Hrで供給し、塔底から78.94g
/Hrで第二缶出液を抜き取り、塔頂から低沸点留分を
3.5g/Hrで留去し、ε−カプロラクトンを第二蒸
留塔の塔底を含めず数えた下から15段目から気体状態
(240.26g/H,第二蒸留塔における製品収率7
4.5%)で取り出した以外は、実施例1と同様に操作
した。ε−カプロラクトン製品の品質を分析した結果、
酸価は0.100KOHmg/gであり、水分は120
ppmであった。
Example 3 First bottom product was fed to the bottom of the second distillation column at 322.7 g / Hr, and 78.94 g from the bottom of the second distillation column.
/ Hr, the low-boiling fraction was distilled off from the top of the column at 3.5 g / Hr, and ε-caprolactone was counted from the bottom of the second distillation column, excluding the bottom, at the 15th stage from the bottom. To gaseous state (240.26 g / H, product yield in second distillation column 7
(4.5%). As a result of analyzing the quality of ε-caprolactone product,
The acid value is 0.100 KOHmg / g and the water content is 120
ppm.

【0027】(比較例1)第一缶出液を第二蒸留塔塔底
へ323.5g/Hrで供給し、塔底から85.3g/
Hrで第二缶出液を抜き取り、塔頂からε−カプロラク
トンを留出させて取り出した(238.2g/H,第二
蒸留塔における製品収率73.6%)以外は、実施例1
と同様に操作した。ε−カプロラクトン製品の品質を分
析した結果、酸価は0.131KOHmg/gであり、
水分は180ppmであった。
(Comparative Example 1) The first bottom product was fed to the bottom of the second distillation column at 323.5 g / Hr, and 85.3 g / Hr from the bottom of the second distillation column.
Example 1 was repeated except that the second bottom liquid was withdrawn with Hr, and ε-caprolactone was distilled off from the top of the column (238.2 g / H, product yield in the second distillation column: 73.6%).
The same operation was performed. As a result of analyzing the quality of the ε-caprolactone product, the acid value was 0.131 KOHmg / g,
The water content was 180 ppm.

【0028】(比較例2)第一缶出液を第二蒸留塔塔底
へ324.1g/Hrで供給し、塔底から77.21g
/Hrで第二缶出液を抜き取り、塔頂から低沸点留分を
3.3g/Hrで留去し、ε−カプロラクトンを第二蒸
留塔の塔底を含めず数えた下から5段目から液状(24
3.59g/H,第二蒸留塔における製品収率75.2
%)で取り出した以外は、実施例1と同様に操作した。
ε−カプロラクトン製品の品質を分析した結果、酸価は
0.175KOHmg/gであり、水分は60ppmで
あった。
(Comparative Example 2) First bottom product was supplied to the bottom of the second distillation column at 324.1 g / Hr, and 77.21 g from the bottom of the column.
/ Hr, the low-boiling fraction was distilled off at 3.3 g / Hr from the top of the column, and ε-caprolactone was counted from the bottom of the second distillation column, excluding the bottom, at the fifth bottom stage. To liquid (24
3.59 g / H, product yield in the second distillation column 75.2
%), Except that it was removed in the same manner as in Example 1.
As a result of analyzing the quality of the ε-caprolactone product, the acid value was 0.175 KOHmg / g, and the water content was 60 ppm.

【0029】(実施例4)参考例2で得た第一缶出液を
第二蒸留塔塔底へ323.8g/Hrで供給し、塔底か
ら第二缶出液を85.2g/Hrで抜き取り、塔頂から
低沸点留分を3.3g/Hrで留去し、ε−カプロラク
トン製品を第二蒸留塔の塔底を含めず数えた下から15
段目から気体(235.3g/H,第二蒸留塔における
製品収率72.7%)で取り出した以外は、実施例1と
同様に操作した。ε−カプロラクトン製品の品質を分析
した結果、酸価が0.082mgKOH/gであり、水
分は79ppmであった。
Example 4 The first bottom product obtained in Reference Example 2 was fed to the bottom of the second distillation column at a rate of 323.8 g / Hr, and the second bottom product from the bottom was 85.2 g / Hr. And the low-boiling fraction was distilled off at 3.3 g / Hr from the top of the column, and the ε-caprolactone product was counted from the bottom of the second distillation column, counting from the bottom not including the bottom.
The same operation as in Example 1 was performed, except that gas was taken out from the column (235.3 g / H, product yield in the second distillation column: 72.7%). As a result of analyzing the quality of the ε-caprolactone product, the acid value was 0.082 mgKOH / g, and the water content was 79 ppm.

【0030】(比較例3)参考例2で得た第一缶出液を
第二蒸留塔塔底へ325.3g/Hrで供給し、塔底か
ら86.1g/Hrで第二缶出液を抜き取り、塔頂から
ε−カプロラクトンを留出させて取り出した(23
9..2g/H,第二蒸留塔における製品収率73.5
%)以外は、実施例1と同様に操作した。ε−カプロラ
クトン製品の品質を分析した結果、酸価は0.144K
OHmg/gであり、水分は195ppmであった。
(Comparative Example 3) The first bottom product obtained in Reference Example 2 was supplied to the bottom of the second distillation column at 325.3 g / Hr, and the second bottom product was supplied from the bottom at 86.1 g / Hr. And ε-caprolactone was distilled off from the top of the column and taken out (23).
9. . 2 g / H, product yield in the second distillation column 73.5
%), Except that the operation was the same as in Example 1. As a result of analyzing the quality of the ε-caprolactone product, the acid value was 0.144K.
OH mg / g and water was 195 ppm.

【0031】(結果)第一缶出液供給量、供給段、第二
缶出液の抜き取り量をほぼ一定にし、ε−カプロラクト
ン製品の取り出し段を変化させて、酸価と水分量とを調
べた結果、第二蒸留塔塔頂部からε−カプロラクトン製
品を取り出した比較例1および比較例3と比べ、酸価と
水分量との双方を低減することができた。
(Results) The acid value and the water content were examined by making the supply amount of the first bottom liquid, the supply stage, and the extraction amount of the second bottom liquid almost constant, and changing the extraction stage of the ε-caprolactone product. As a result, both the acid value and the water content could be reduced as compared with Comparative Examples 1 and 3 in which the ε-caprolactone product was taken out from the top of the second distillation column.

【0032】[0032]

【発明の効果】本発明によれば、従来の設備を使用し効
率よくε−カプロラクトンを精製することができる。本
発明の精製方法により得られたε−カプロラクトン製品
は、収率が悪化せずに従来の方法により得た製品より酸
価と水分量とが少ない。
According to the present invention, ε-caprolactone can be efficiently purified using conventional equipment. The ε-caprolactone product obtained by the purification method of the present invention has less acid value and water content than the product obtained by the conventional method without deteriorating the yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ε−カプロラクトンの精製方法を示す工程
図。
FIG. 1 is a process chart showing a method for purifying ε-caprolactone.

【符号の説明】[Explanation of symbols]

1 第一蒸留塔 2 ライン 3 低沸点留分 4 第一缶出液 5 第二蒸留塔 6 低沸点留分 7 第二缶出液 8 ε−カプロラクトン製品の取り出し部 DESCRIPTION OF SYMBOLS 1 First distillation column 2 Line 3 Low boiling point fraction 4 First bottoms 5 Second distillation column 6 Low boiling point fraction 7 Second bottoms 8 Removal part of ε-caprolactone product

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シクロヘキサノンを酸化して得た反応液
を蒸留して不純物と分離するε−カプロラクトンの精製
方法において、反応液に含まれる低沸点留分を第一蒸留
塔で留去し第一缶出液を得、次いで第一缶出液を3段以
上の濃縮部を有する第二蒸留塔へ供給し低沸点留分を第
二蒸留塔塔頂から留去し、高沸点物を第二蒸留塔塔底か
ら抜き取り、かつ第二蒸留塔の供給段から最上段までの
段数の塔底側から30〜90%の範囲のいずれかの段か
らε−カプロラクトンを取り出すことを特徴とするε−
カプロラクトンの精製方法。
In a method for purifying ε-caprolactone, wherein a reaction solution obtained by oxidizing cyclohexanone is separated from impurities by distillation, a low-boiling fraction contained in the reaction solution is distilled off in a first distillation column. A bottom product is obtained, and then the first bottom product is supplied to a second distillation column having three or more concentrating units, and a low-boiling fraction is distilled off from the top of the second distillation column to remove a high-boiling product from the second distillation column. Ε-caprolactone is withdrawn from the bottom of the distillation column, and ε-caprolactone is taken out from any stage within a range of 30 to 90% from the bottom of the number of stages from the supply stage to the top stage of the second distillation column.
A method for purifying caprolactone.
【請求項2】 第二蒸留塔からのε−カプロラクトンの
取り出しを、第二蒸留塔の供給段から最上段までの段数
の塔底側から50〜80%の範囲のいずれかの段から行
うことを特徴とする請求項1記載のε−カプロラクトン
の精製方法。
2. The removal of ε-caprolactone from the second distillation column is carried out from any stage within a range from 50 to 80% from the bottom of the number of stages from the supply stage to the top stage of the second distillation column. The method for purifying ε-caprolactone according to claim 1, wherein
【請求項3】 ε−カプロラクトンを液状で取り出すこ
とを特徴とする請求項1または2記載のε−カプロラク
トンの精製方法。
3. The method for purifying ε-caprolactone according to claim 1, wherein ε-caprolactone is taken out in a liquid state.
【請求項4】 シクロヘキサノンを酸化して得た反応液
が、有機過酸によりシクロヘキサノンを酸化して得た反
応液であることを特徴とする請求項1〜3のいずれかに
記載のε−カプロラクトンの精製方法。
4. The ε-caprolactone according to claim 1, wherein the reaction solution obtained by oxidizing cyclohexanone is a reaction solution obtained by oxidizing cyclohexanone with an organic peracid. Purification method.
【請求項5】 シクロヘキサノンを酸化して得た反応液
が、シクロヘキサノンとアルデヒドとの共酸化で得た反
応液であることを特徴とする請求項1〜3のいずれかに
記載のε−カプロラクトンの精製方法。
5. The ε-caprolactone according to claim 1, wherein the reaction solution obtained by oxidizing cyclohexanone is a reaction solution obtained by co-oxidation of cyclohexanone and an aldehyde. Purification method.
JP32240997A 1997-11-07 1997-11-07 Method for purifying ε-caprolactone Expired - Fee Related JP4173572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32240997A JP4173572B2 (en) 1997-11-07 1997-11-07 Method for purifying ε-caprolactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32240997A JP4173572B2 (en) 1997-11-07 1997-11-07 Method for purifying ε-caprolactone

Publications (2)

Publication Number Publication Date
JPH11140075A true JPH11140075A (en) 1999-05-25
JP4173572B2 JP4173572B2 (en) 2008-10-29

Family

ID=18143351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32240997A Expired - Fee Related JP4173572B2 (en) 1997-11-07 1997-11-07 Method for purifying ε-caprolactone

Country Status (1)

Country Link
JP (1) JP4173572B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2353525A (en) * 1999-08-26 2001-02-28 Mitsubishi Gas Chemical Co Process for producing E-caprolactone
CN105646434A (en) * 2014-11-11 2016-06-08 中国石油化工股份有限公司 Method for reducing acidity and moisture content of caprolactone product
US11208394B2 (en) 2018-09-17 2021-12-28 Regents Of The University Of Minnesota Chemical process to manufacture branched-caprolactone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2353525A (en) * 1999-08-26 2001-02-28 Mitsubishi Gas Chemical Co Process for producing E-caprolactone
GB2353525B (en) * 1999-08-26 2004-03-17 Mitsubishi Gas Chemical Co Process for producing E-caprolactone
CN105646434A (en) * 2014-11-11 2016-06-08 中国石油化工股份有限公司 Method for reducing acidity and moisture content of caprolactone product
CN105646434B (en) * 2014-11-11 2018-05-22 中国石油化工股份有限公司 A kind of method for reducing caprolactone product acidity and moisture
US11208394B2 (en) 2018-09-17 2021-12-28 Regents Of The University Of Minnesota Chemical process to manufacture branched-caprolactone

Also Published As

Publication number Publication date
JP4173572B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
EP0551111B1 (en) Process for purifying acrylic acid to high purity in the production of acrylic acid
JPH0840974A (en) Method for purifying acrylic acid
RU2004134339A (en) METHOD FOR REMOVING IRON-CONTAINING POLLUTANTS FROM LIQUID STREAMS IN THE PROCESS OF PRODUCTION AND / OR CLEANING OF AROMATIC ACIDS
EP1298120B1 (en) Method for producing (meth)acrylic acid
RU2177937C2 (en) Method of treating reaction mixtures resulting from oxidation of cyclohexane
JPS60115532A (en) Production of butadiene
JP4759153B2 (en) Distillation method of (meth) acrylic acid solution
JPH05246941A (en) Method for purifying acrylic acid in high yield in production of acrylic acid
KR100375780B1 (en) Method for recovering acrylic acid
JP4173572B2 (en) Method for purifying ε-caprolactone
US20040220427A1 (en) Process for producing (meth)acrylic acid
JPH0987273A (en) Purification of epsilon-caprolactone
EP0132450B1 (en) Method of purifying methacrylic acid
JP3880128B2 (en) Acrylic acid recovery method
JP4698823B2 (en) Process for producing ε-caprolactone
US6160159A (en) Preparation of dimethyl terephthalate via the air oxidation of p-tolualdehyde
JPS6016436B2 (en) Purification method of ε-caprolactone
US6063938A (en) Process for producing ε-caprolactone
JP4147354B2 (en) Process for producing ε-caprolactone
JPH115788A (en) Purification of epsilon-caprolactone
JPH08311059A (en) Purification of epsilon-caprolactone
JPH10237012A (en) Recovery of acrylic acid
CN110114330B (en) Method for separating formaldehyde from crude acrylic acid
JP3150909B2 (en) Purification method of glyoxylates
JPS60252446A (en) Purification of methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees