JPH10237012A - Recovery of acrylic acid - Google Patents

Recovery of acrylic acid

Info

Publication number
JPH10237012A
JPH10237012A JP4614797A JP4614797A JPH10237012A JP H10237012 A JPH10237012 A JP H10237012A JP 4614797 A JP4614797 A JP 4614797A JP 4614797 A JP4614797 A JP 4614797A JP H10237012 A JPH10237012 A JP H10237012A
Authority
JP
Japan
Prior art keywords
acrylic acid
solvent
azeotropic
acetic acid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4614797A
Other languages
Japanese (ja)
Other versions
JP3937495B2 (en
Inventor
Kazuhiko Sakamoto
一彦 坂元
Fumio Shibusawa
文生 渋沢
Hitoshi Nakahara
整 中原
Takahiro Takeda
隆裕 武田
Masatoshi Kamioka
正敏 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP04614797A priority Critical patent/JP3937495B2/en
Priority to US09/031,068 priority patent/US6084127A/en
Priority to DE69806074T priority patent/DE69806074T2/en
Priority to EP98301479A priority patent/EP0861820B1/en
Priority to IDP980295A priority patent/ID19974A/en
Priority to KR10-1998-0006604A priority patent/KR100375780B1/en
Publication of JPH10237012A publication Critical patent/JPH10237012A/en
Application granted granted Critical
Publication of JP3937495B2 publication Critical patent/JP3937495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain acrylic acid at a high yield from aqueous solution of acrylic acid obtained by contact of the gaseous product by catalytic gas-phase oxidation of propylene and/or acrolein, by introducing the solution into a distillation tower for azeotropic separation in the presence of a specific azeotropic solvent. SOLUTION: This recovery of acrylic acid comprises collecting, as an aqueous acylic acid solution, an acrylic acid-containing gas obtained by catalytic gas- phase oxidation of propylene and/or acrolein by its contact with water, introducing the aqueous acrylic acid solution into a distillation tower for azeotropic separation to distillate the solution in the presence of an azeotropic solvent [a solvent mixture of solvent A (ethyl acrylate, methyl methacrylate, vinyl acrylate, etc.) and solvent B (toluene, heptane, 1-heptene, methylcyclohexane, etc.) at a mixing ratio of solvent A to solvent B in the range of (10:90)-(75:25)].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアクリル酸の回収方
法に関する。詳しくは、本発明はプロピレンおよび/ま
たはアクロレインを分子状酸素含有ガスを用いて接触気
相酸化して得られるアクリル酸含有ガスを水と接触させ
て捕集し、得られるアクリル酸水溶液を特定の共沸溶剤
の存在下に蒸留してアクリル酸を効率よく分離、回収す
る方法に関する。
The present invention relates to a method for recovering acrylic acid. In more detail, the present invention contacts and collects an acrylic acid-containing gas obtained by subjecting propylene and / or acrolein to catalytic gas-phase oxidation using a molecular oxygen-containing gas with water and collects the obtained acrylic acid aqueous solution in a specific manner. The present invention relates to a method for efficiently separating and recovering acrylic acid by distillation in the presence of an azeotropic solvent.

【0002】[0002]

【従来の技術】プロピレンおよび/またはアクロレイン
を接触気相酸化してアクリル酸を製造することは工業的
に広く行われている。この方法は、通常、プロピレンお
よび/またはアクロレインを分子状酸素を用いて接触気
相酸化する酸化工程、この接触気相酸化により得られる
アクリル酸含有ガスを水と接触させて捕集する捕集工
程、および捕集工程で得られるアクリル酸水溶液からア
クリル酸を分離、回収する回収工程からなる。
2. Description of the Related Art The production of acrylic acid by catalytic vapor phase oxidation of propylene and / or acrolein is widely practiced on an industrial scale. This method generally comprises an oxidation step of subjecting propylene and / or acrolein to catalytic gas phase oxidation using molecular oxygen, and a collecting step of bringing an acrylic acid-containing gas obtained by the catalytic gas phase oxidation into contact with water to collect the gas. And a collecting step of separating and collecting acrylic acid from the aqueous acrylic acid solution obtained in the collecting step.

【0003】ところで、上記アクリル酸含有ガス中には
酢酸、ギ酸、アセトアルデヒド、ホルムアルデヒドなど
の副生物が含まれており、これらのなかでも酢酸の量が
比較的多い。このため、高純度のアクリル酸を得るため
には、酢酸を除去する必要があるが、アクリル酸中の酢
酸を蒸留によって除去しようとすると、蒸留温度が高く
なり(酢酸の沸点は118.1℃)、アクリル酸の重合
が起こり易くなる。また、アクリル酸と酢酸とは比揮発
度が小さいため、単純に蒸留によって分離することは困
難であるなどの問題がある。
Incidentally, the acrylic acid-containing gas contains by-products such as acetic acid, formic acid, acetaldehyde, and formaldehyde, and among these, the amount of acetic acid is relatively large. For this reason, in order to obtain high-purity acrylic acid, it is necessary to remove acetic acid. However, if acetic acid in acrylic acid is to be removed by distillation, the distillation temperature increases (the boiling point of acetic acid is 118.1 ° C.). ), The polymerization of acrylic acid is likely to occur. In addition, acrylic acid and acetic acid have a small specific volatility, and thus have a problem that it is difficult to simply separate them by distillation.

【0004】そこで、アクリル酸水溶液から高純度のア
クリル酸を分離、回収するために、すなわちアクリル酸
を酢酸および水から分離し、実質的に酢酸および水を含
まない高純度のアクリル酸を回収するために、アクリル
酸水溶液を共沸分離塔に導き、ここで共沸溶剤の存在下
に蒸留を行い、酢酸−水−溶剤からなる三成分系の共沸
蒸留を利用して、共沸分離塔の塔頂から酢酸、水および
溶剤の共沸混合物を留出させ、塔底からはアクリル酸を
得る、いわゆる共沸脱水法が採用されている。なお、酢
酸以外の不純物はいずれも低沸点のため共沸蒸留によら
なくても容易に除去することができる。
[0004] Therefore, in order to separate and recover high-purity acrylic acid from an aqueous solution of acrylic acid, that is, to separate acrylic acid from acetic acid and water, and recover high-purity acrylic acid containing substantially no acetic acid and water. For this purpose, an aqueous acrylic acid solution is led to an azeotropic separation tower, where distillation is performed in the presence of an azeotropic solvent, and azeotropic separation is performed using a ternary azeotropic distillation composed of acetic acid-water-solvent. The azeotropic dehydration method of distilling an azeotropic mixture of acetic acid, water and a solvent from the top of the column and obtaining acrylic acid from the bottom of the column is employed. Since impurities other than acetic acid have low boiling points, they can be easily removed without using azeotropic distillation.

【0005】例えば、特公昭63−10691号公報に
は、共沸溶剤としてトルエンなどの炭化水素を加えて共
沸蒸留を行う方法が記載されている。
For example, Japanese Patent Publication No. Sho 63-10691 describes a method of performing azeotropic distillation by adding a hydrocarbon such as toluene as an azeotropic solvent.

【0006】特公昭46−34691および特公昭46
−18967号公報には、共沸溶剤として酢酸エチル、
酢酸ブチル、ジブチルエーテル、酢酸エチル、ヘキサ
ン、ヘプタン、メタクリル酸エチル、アクリル酸プロピ
ルなどを用いる方法が記載されている。
Japanese Patent Publication Nos. 46-4691 and 46-4691
-18967 discloses that ethyl acetate is used as an azeotropic solvent,
A method using butyl acetate, dibutyl ether, ethyl acetate, hexane, heptane, ethyl methacrylate, propyl acrylate and the like is described.

【0007】また、特開平5−246941号公報に
は、共沸溶剤としてジエチルケトン、メチルプロピルケ
トン、メチルイソブチルケトン、メチル−tert−ブ
チルケトンおよび酢酸n−プロピルから得らばれる少な
くとも一つとトルエン、ヘプタンおよびメチルシクロヘ
キサンから選ばれる少なくとも一つとを組み合せ使用す
る方法が記載されている。
Japanese Patent Application Laid-Open No. Hei 5-246941 discloses that at least one obtained from diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl tert-butyl ketone and n-propyl acetate as an azeotropic solvent, toluene and heptane And a method of using in combination with at least one selected from methylcyclohexane.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、本発明
者らの研究によれば、前記従来方法には次のような種々
の問題があることが判明した。
However, according to the study of the present inventors, it has been found that the conventional method has the following various problems.

【0009】すなわち、特公昭63−10691号公報
記載の方法の場合、酢酸の分離が十分でないことから、
共沸分離塔および酢酸を分離するための酢酸分離塔にお
ける2回の蒸留操作が必要となる。また、共沸分離塔の
塔底付近までトルエンなどの難水溶性の共沸溶剤が存在
するために、共沸分離塔内の液が油相および水相の2相
に分離してしまい、重合防止剤が均一に溶解せず、水相
において高濃度に分配したアクリル酸が重合を起こし易
くなる。
That is, in the case of the method described in JP-B-63-10691, the separation of acetic acid is not sufficient.
Two distillation operations in the azeotropic separation tower and the acetic acid separation tower for separating acetic acid are required. Further, since a poorly water-soluble azeotropic solvent such as toluene is present near the bottom of the azeotropic separation tower, the liquid in the azeotropic separation tower is separated into two phases, an oil phase and an aqueous phase, and the polymerization is carried out. The inhibitor does not dissolve uniformly, and acrylic acid distributed at a high concentration in the aqueous phase is liable to undergo polymerization.

【0010】特公昭46−34691および特公昭46
−18967号公報記載の共沸溶剤を用いる場合、一回
の蒸留操作で高純度のアクリル酸を回収しようとして
も、酢酸、水および溶剤のいずれかの分離が不十分であ
り、そこから高沸点不純物を除去しても高純度のアクリ
ル酸製品は得られない。
Japanese Patent Publication Nos. 46-4691 and 46-4691
In the case of using the azeotropic solvent described in JP-18967-A, even if an attempt is made to recover high-purity acrylic acid by a single distillation operation, the separation of any one of acetic acid, water and the solvent is insufficient, and a high boiling point Even if impurities are removed, a high-purity acrylic acid product cannot be obtained.

【0011】また、特開平5−246941号公報に記
載のように1回の蒸留操作で高純度のアクリル酸を回収
する方法の場合、共沸分離塔内、特にその中段から上段
にかけてアクリル酸が高濃度に存在するために塔内にお
けるアクリル酸の重合性が無視できなくなることもあ
る。このように、共沸分離塔におけるアクリル酸の重合
性が高いと塔内でアクリル酸のポリマーが堆積して共沸
分離塔の長期連続運転が困難となる。
In the case of a method for recovering high-purity acrylic acid by one distillation operation as described in Japanese Patent Application Laid-Open No. Hei 5-246,941, acrylic acid is recovered in the azeotropic separation column, especially from the middle to the upper stage. Due to the high concentration, the polymerizability of acrylic acid in the tower may not be negligible. As described above, when the polymerizability of acrylic acid in the azeotropic separation tower is high, a polymer of acrylic acid is deposited in the tower, and it becomes difficult to operate the azeotropic separation tower continuously for a long time.

【0012】かくして、本発明は、上記従来技術の問題
点を解決し、アクリル酸水溶液を共沸分離塔に導入して
共沸蒸留により脱水する際に、共沸分離塔内におけるア
クリル酸の重合を防止するものであり、しかも酢酸を酢
酸−水−溶剤からなる共沸混合物として共沸分離塔の塔
頂から留去することにより、実質的に酢酸を含まない高
純度のアクリル酸を塔底から効率よく回収する方法を提
供しようとするものである。
[0012] Thus, the present invention solves the above-mentioned problems of the prior art, and when acrylic acid aqueous solution is introduced into an azeotropic separation column and dehydrated by azeotropic distillation, polymerization of acrylic acid in the azeotropic separation column is carried out. Acetic acid is distilled off from the top of the azeotropic separation column as an azeotrope composed of acetic acid-water-solvent, whereby high-purity acrylic acid containing substantially no acetic acid is removed from the bottom of the column. It is intended to provide a method for efficiently recovering from the same.

【0013】[0013]

【課題を解決するための手段】本発明者らの研究によれ
ば、共沸溶剤として、アクリル酸エチル、メタクリル酸
メチル、アクリル酸ビニル、酢酸アリル、酢酸イソプロ
ペニル、プロピオン酸ビニルおよびクロトン酸メチルか
ら選ばれる少くとも一種とトルエン、ヘプタン、1−ヘ
プテン、メチルシクロヘキサン、シクロヘプテン、シク
ロヘプタジエン、シクロヘプタトリエン、2,4−ジメ
チル−1,3−ペンタジエン、メチルシクロヘキセンお
よびメチレンシクロヘキサンから選ばれる少なくとも一
種とを含む混合溶剤、好ましくはアクリル酸エチルおよ
びメタクリル酸メチルから選ばれる少なくとも一種とト
ルエンおよびヘプタンから選ばれる少なくとも一種とを
含む混合溶剤を使用することにより上記課題が解決でき
ることを知り、この知見に基づいて本発明を完成するに
至った。
According to the study of the present inventors, ethyl acrylate, methyl methacrylate, vinyl acrylate, allyl acetate, isopropenyl acetate, vinyl propionate and methyl crotonate are used as azeotropic solvents. And at least one selected from toluene, heptane, 1-heptene, methylcyclohexane, cycloheptene, cycloheptadiene, cycloheptatriene, 2,4-dimethyl-1,3-pentadiene, methylcyclohexene and methylenecyclohexane It has been found that the above problem can be solved by using a mixed solvent containing, preferably, at least one selected from ethyl acrylate and methyl methacrylate and at least one selected from toluene and heptane. This has led to the completion of the present invention based on the findings.

【0014】すなわち、本発明は、プロピレンおよび/
またはアクロレインを接触気相酸化して得られるアクリ
ル酸含有ガスを水と接触させてアクリル酸水溶液として
捕集し、このアクリル酸水溶液を共沸分離塔に導入し、
共沸溶剤の存在下に蒸留してアクリル酸を分離、回収す
る際に、上記共沸溶剤として下記の溶剤Aおよび溶剤B
を含む混合溶剤を用いることを特徴とするアクリル酸の
回収方法である。
That is, the present invention provides propylene and / or
Alternatively, an acrylic acid-containing gas obtained by subjecting acrolein to catalytic gas phase oxidation is brought into contact with water to be collected as an aqueous acrylic acid solution, and this aqueous acrylic acid solution is introduced into an azeotropic separation tower,
When the acrylic acid is separated and recovered by distillation in the presence of an azeotropic solvent, the following azeotropic solvents, solvent A and solvent B, are used.
A method for recovering acrylic acid, characterized by using a mixed solvent containing:

【0015】溶剤A:アクリル酸エチル、メタクリル酸
メチル、アクリル酸ビニル、酢酸アリル、酢酸イソプロ
ペニル、プロピオン酸ビニルおよびクロトン酸メチルか
ら選ばれる少なくとも一種。
Solvent A: at least one selected from ethyl acrylate, methyl methacrylate, vinyl acrylate, allyl acetate, isopropenyl acetate, vinyl propionate and methyl crotonate.

【0016】溶剤B:トルエン、ヘプタン、1−ヘプテ
ン、メチルシクロヘキサン、シクロヘプテン、シクロヘ
プタジエン、シクロヘプタトリエン、2,4−ジメチル
−1,3−ペンタジエン、メチルシクロヘキセンおよび
メチレンシクロヘキサンから選ばれる少なくとも一種。
Solvent B: at least one selected from toluene, heptane, 1-heptene, methylcyclohexane, cycloheptene, cycloheptadiene, cycloheptatriene, 2,4-dimethyl-1,3-pentadiene, methylcyclohexene and methylenecyclohexane.

【0017】[0017]

【発明の実施の形態】本発明の特徴は、アクリル酸水溶
液を共沸分離塔に導入し、ここで共沸溶剤の存在下に蒸
留してアクリル酸を分離、回収する際に、共沸溶剤とし
て、前記の溶剤Aと溶剤Bとを含む混合溶剤を用いる点
にある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The feature of the present invention is that an acrylic acid aqueous solution is introduced into an azeotropic separation column, where it is distilled in the presence of an azeotropic solvent to separate and recover acrylic acid. Is that a mixed solvent containing the solvent A and the solvent B is used.

【0018】本発明の混合溶剤を使用することにより、
共沸分離塔内におけるアクリル酸の重合を効果的に防止
することができる。
By using the mixed solvent of the present invention,
The polymerization of acrylic acid in the azeotropic separation tower can be effectively prevented.

【0019】また、本発明の混合溶剤を使用することに
より、共沸分離塔における1回の蒸留操作により、共沸
分離塔の塔頂から酢酸、水および溶剤を留出させ、塔底
からは実質的に酢酸を含まない高純度のアクリル酸を回
収することができる。したがって、本発明の方法によれ
ば、共沸分離塔におけるアクリル酸水溶液の蒸留によ
り、しかもアクリル酸の重合を防止しながら、実質的に
酢酸を含まない高純度のアクリル酸を分離、回収するこ
とができる。
Further, by using the mixed solvent of the present invention, acetic acid, water and the solvent are distilled off from the top of the azeotropic separation column by one distillation operation in the azeotropic separation column, and High-purity acrylic acid containing substantially no acetic acid can be recovered. Therefore, according to the method of the present invention, it is possible to separate and recover high-purity acrylic acid containing substantially no acetic acid by distillation of an aqueous solution of acrylic acid in an azeotropic separation tower, and while preventing polymerization of acrylic acid. Can be.

【0020】また、本発明の混合溶剤は、共沸分離塔の
塔底から酢酸を含む粗アクリル酸を回収し、これを酢酸
分離塔に導入して酢酸を分離し、実質的に酢酸を含まな
い高純度のアクリル酸を得るという、2回の蒸留操作に
より高純度のアクリル酸を製造する場合にも適用するこ
とができる。この場合も、共沸分離塔内でのアクリル酸
の重合を効果的に防止することができる。したがって、
本発明の方法によれば、共沸分離塔および酢酸分離塔に
おける2回の蒸留により、しかも共沸分離塔内でのアク
リル酸の重合を防止しながら、実質的に酢酸を含まない
高純度のアクリル酸を分離、回収することができる。
In the mixed solvent of the present invention, crude acrylic acid containing acetic acid is recovered from the bottom of the azeotropic separation tower, and is introduced into an acetic acid separation tower to separate acetic acid, thereby substantially containing acetic acid. The present invention can also be applied to the case of producing high-purity acrylic acid by performing two distillation operations, ie, obtaining high-purity acrylic acid. Also in this case, the polymerization of acrylic acid in the azeotropic separation tower can be effectively prevented. Therefore,
According to the method of the present invention, high-purity substantially free of acetic acid is obtained by two distillations in an azeotropic separation column and an acetic acid separation column, and while preventing polymerization of acrylic acid in the azeotropic separation column. Acrylic acid can be separated and recovered.

【0021】上記1回の蒸留操作でアクリル酸を回収す
る方法、あるいは2回の蒸留操作によってアクリル酸を
回収する方法のいずれの方法を選択するかは酢酸回収の
必要性の有無、排水処理法などを考慮して適宜決定する
ことができる。
The method of recovering acrylic acid by one distillation operation or the method of recovering acrylic acid by two distillation operations is determined by the necessity of acetic acid recovery, the wastewater treatment method, and the like. It can be appropriately determined in consideration of such factors.

【0022】溶剤Aのうちでもアクリル酸エチルおよび
メタクリル酸メチルが好適に用いられる。また、溶剤B
のうちでもトルエンおよびヘプタンが好適に用いられ
る。
Among the solvents A, ethyl acrylate and methyl methacrylate are preferably used. Solvent B
Among them, toluene and heptane are preferably used.

【0023】したがって、本発明の混合溶剤の好適例と
しては、アクリル酸エチル+トルエン、アクリル酸エチ
ル+ヘプタン、メタクリル酸メチル+トルエン、メタク
リル酸メチル+ヘプタン、アクリル酸エチル+メタクリ
ル酸メチル+トルエン、アクリル酸エチル+メタクリル
酸メチル+ヘプタン、およびアクリル酸エチル+メタク
リル酸メチル+トルエン+ヘプタンを挙げることができ
る。
Accordingly, preferred examples of the mixed solvent of the present invention include ethyl acrylate + toluene, ethyl acrylate + heptane, methyl methacrylate + toluene, methyl methacrylate + heptane, ethyl acrylate + methyl methacrylate + toluene, Ethyl acrylate + methyl methacrylate + heptane and ethyl acrylate + methyl methacrylate + toluene + heptane can be mentioned.

【0024】上記アクリル酸エチル、メタクリル酸メチ
ル、トルエンおよびヘプタンはいずれも工業的に入手可
能なものをそのまま使用することができる。
As the above-mentioned ethyl acrylate, methyl methacrylate, toluene and heptane, those commercially available can be used as they are.

【0025】溶剤Aと溶剤Bとの混合比率は、重量比で
10:90〜75:25、好ましくは20:80〜5
0:50である。溶剤Aの割合が多すぎると共沸分離塔
の塔底における酢酸濃度が高くなり、アクリル酸水溶液
から1回の蒸留により実質的に酢酸を含まない高純度の
アクリル酸を得るのが困難となる。一方、溶剤Bの割合
が多すぎると、共沸分離塔内で液が油相および水相に分
離して、アクリル酸の重合を防止することができなくな
る。
The mixing ratio of the solvent A and the solvent B is 10:90 to 75:25, preferably 20:80 to 5 by weight.
0:50. If the proportion of the solvent A is too large, the acetic acid concentration at the bottom of the azeotropic separation tower becomes high, and it becomes difficult to obtain high-purity acrylic acid containing substantially no acetic acid by a single distillation from an aqueous acrylic acid solution. . On the other hand, if the proportion of the solvent B is too large, the liquid separates into an oil phase and an aqueous phase in the azeotropic separation tower, and it becomes impossible to prevent the polymerization of acrylic acid.

【0026】図1は、1回の蒸留操作により高純度のア
クリル酸を回収する方法の工程図であり、以下、この図
1に基づいて本発明を説明する。
FIG. 1 is a process diagram of a method for recovering high-purity acrylic acid by one distillation operation. Hereinafter, the present invention will be described with reference to FIG.

【0027】プロピレンおよび/またはアクロレインを
分子状酸素を用いて接触気相酸化して得たアクリル酸含
有ガスをライン1からアクリル酸捕集塔101に導入
し、ライン2から導入した水と接触させてライン4から
アクリル酸および酢酸などの副生物を含むアクリル酸水
溶液を得る。ライン2からアクリル酸捕集塔101に供
給する水としては、ライン13から水を供給して用いて
もよいが、後述するように溶剤回収塔103の塔底から
排出される酢酸水溶液を用いるのが好適である。アクリ
ル酸水溶液はそのまま共沸蒸留塔102に導入するが、
必要に応じて、アクロレイン放散塔(図示してない)に
導入してアクリル酸水溶液中に溶解しているアクロレイ
ンを放散させた後に共沸蒸留塔102に導入してもよ
い。この場合、放散したアクロレインを回収して反応系
に循環するのがよい。
An acrylic acid-containing gas obtained by subjecting propylene and / or acrolein to catalytic gas-phase oxidation using molecular oxygen is introduced from a line 1 into an acrylic acid collecting tower 101, and brought into contact with water introduced from a line 2. Thus, an aqueous acrylic acid solution containing by-products such as acrylic acid and acetic acid is obtained from the line 4. As the water supplied from the line 2 to the acrylic acid collecting tower 101, water may be supplied from the line 13 and used. However, an aqueous acetic acid solution discharged from the bottom of the solvent recovery tower 103 is used as described later. Is preferred. Acrylic acid aqueous solution is directly introduced into the azeotropic distillation column 102,
If necessary, the acrolein dissolved in the aqueous acrylic acid solution may be introduced into an acrolein stripping tower (not shown), and then introduced into the azeotropic distillation tower 102. In this case, it is preferable to collect the released acrolein and circulate it to the reaction system.

【0028】共沸分離塔102では、アクリル酸水溶液
をライン4から、共沸溶剤をライン5からそれぞれ供給
して蒸留を行い、塔頂から酢酸、水および共沸溶剤から
なる共沸混合物を留出させ、塔底からは実質的に酢酸を
含まないアクリル酸が得られる。
In the azeotropic separation column 102, an acrylic acid aqueous solution is supplied from a line 4 and an azeotropic solvent is supplied from a line 5, and distillation is performed. An azeotropic mixture comprising acetic acid, water and an azeotropic solvent is distilled from the top of the column. And acrylic acid substantially free of acetic acid is obtained from the bottom of the column.

【0029】共沸分離塔102に供給するアクリル酸水
溶液の組成は、ライン2からアクリル酸捕集塔101に
供給する水の量やその他の運転条件で変化するが、通常
行われているアクリル酸の製造条件下では、アクリル酸
50〜80重量%、酢酸2〜5重量%および水20〜4
0重量%(合計100重量%)の範囲のものが一般的で
ある。
The composition of the aqueous acrylic acid solution supplied to the azeotropic separation tower 102 varies depending on the amount of water supplied from the line 2 to the acrylic acid collecting tower 101 and other operating conditions. Under the production conditions of 50 to 80% by weight of acrylic acid, 2 to 5% by weight of acetic acid and 20 to 4% of water
Those having a range of 0% by weight (total 100% by weight) are generally used.

【0030】共沸分離塔102の塔頂から留出した実質
的に酢酸、水および共沸溶剤からなる共沸混合物は貯槽
20に導入し、ここで主として共沸溶剤からなる有機相
と、主として酢酸および水からなる水相とに分離する。
有機相はライン5を経て共沸分離塔102に循環する。
一方、水相はライン8を経て溶剤回収塔103に導入し
て、蒸留し、この溶剤回収塔の塔頂から共沸溶剤を留出
させ、ライン9を経て貯槽20に戻し、塔底からはライ
ン14を経て実質的に酢酸および水からなる酢酸水溶液
を抜きだして系外に排出する。なお、酢酸水溶液はライ
ン10からアクリル酸捕集塔101に循環させて、ライ
ン1からのアクリル酸含有ガスと接触させる捕集水とし
て用いることによって有効に活用することができる。
The azeotropic mixture substantially consisting of acetic acid, water and the azeotropic solvent distilled from the top of the azeotropic separation column 102 is introduced into the storage tank 20, where the organic phase mainly consisting of the azeotropic solvent, Separate into an aqueous phase consisting of acetic acid and water.
The organic phase is circulated through line 5 to azeotropic separation column 102.
On the other hand, the aqueous phase is introduced into the solvent recovery tower 103 via the line 8 and distilled, and the azeotropic solvent is distilled off from the top of the solvent recovery tower, returned to the storage tank 20 via the line 9, and returned from the bottom of the tower. An aqueous acetic acid solution consisting essentially of acetic acid and water is withdrawn through line 14 and discharged out of the system. The aqueous acetic acid solution can be effectively utilized by being circulated from the line 10 to the acrylic acid collecting tower 101 and used as collected water to be brought into contact with the acrylic acid-containing gas from the line 1.

【0031】共沸分離塔102の塔底から抜き出したア
クリル酸は酢酸を実質的に含まない高純度なものであ
り、ライン15を経てエステル化工程に送り、そのまま
アクリル酸エステルの製造原料として用いることができ
る。
The acrylic acid extracted from the bottom of the azeotropic separation column 102 is a high-purity acrylic acid substantially free of acetic acid, sent to the esterification step via the line 15, and used as it is as a raw material for producing an acrylic ester. be able to.

【0032】なお、更に高純度のアクリル酸製品を得る
ために、共沸分離塔102の塔底から抜き出したアクリ
ル酸をライン7を経て高沸点物分離塔104に導入して
蒸留してもよい。高沸点物分離塔の塔底からはライン1
2を経て重合防止剤などの高沸点物を抜き出し、塔頂か
らライン11を経て高純度のアクリル酸製品を得る。な
お、上記各工程における運転は、この種のプロセスに一
般に用いられている条件下に行うことができる。例え
ば、共沸分離塔102の場合、次のような条件下(定常
運転時)に運転することにより、酢酸濃度が0.05重
量%以下の高純度のアクリル酸が得られる。
In order to obtain a higher-purity acrylic acid product, acrylic acid extracted from the bottom of the azeotropic separation tower 102 may be introduced into the high-boiling matter separation tower 104 via the line 7 and distilled. . Line 1 from the bottom of the high boiling point separation tower
2, high-boiling substances such as polymerization inhibitors are extracted, and a high-purity acrylic acid product is obtained from the top of the column via line 11. The operation in each of the above steps can be performed under conditions generally used for this type of process. For example, in the case of the azeotropic separation column 102, high-purity acrylic acid having an acetic acid concentration of 0.05% by weight or less can be obtained by operating under the following conditions (at the time of steady operation).

【0033】操作圧力:100〜200mmHg、 塔頂部温度:45〜55℃、 アクリル酸水溶液供給部(水溶液供給段)温度:70〜
90℃、 塔底部温度:100〜110℃、 還流比(単位時間当りの還流液の全モル数/単位時間当
りの留出液の全モル数):1.1〜1.6 また、共沸分離塔におけるアクリル酸の重合を防止する
ために、通常、重合防止剤を添加するが、本発明におい
ても、これら一般に用いられている重合防止剤を添加す
るのがよい。
Operating pressure: 100 to 200 mmHg, tower top temperature: 45 to 55 ° C., acrylic acid aqueous solution supply section (aqueous solution supply stage) temperature: 70 to
90 ° C., tower bottom temperature: 100 to 110 ° C., reflux ratio (total moles of reflux liquid per unit time / total moles of distillate per unit time): 1.1 to 1.6 In order to prevent the polymerization of acrylic acid in the separation tower, a polymerization inhibitor is usually added. In the present invention, it is preferable to add these generally used polymerization inhibitors.

【0034】上記1回の蒸留操作により高純度のアクリ
ル酸を得る方法は、酢酸分離塔が不必要となりアクリル
酸製造工程を簡略化できて、アクリル酸の製造コストを
著しく低減させることができるとの利点がある。
The method for obtaining high-purity acrylic acid by one distillation operation does not require an acetic acid separation column, which simplifies the acrylic acid production process and significantly reduces the production cost of acrylic acid. There are advantages.

【0035】次に、2回の蒸留操作により高純度のアク
リル酸を得る方法は、図1に示した1回の蒸留操作によ
り高純度のアクリル酸を得る工程図において、共沸分離
塔102の底部から抜き出した酢酸を含む粗アクリル酸
から酢酸を分離するための酢酸分離塔を設ける点を除け
ば、基本的には図1と同じ工程にしたがって行うことが
できる。
Next, the method of obtaining high-purity acrylic acid by two distillation operations is described in the step diagram of obtaining high-purity acrylic acid by one distillation operation shown in FIG. Except for providing an acetic acid separation column for separating acetic acid from crude acrylic acid containing acetic acid extracted from the bottom, the process can be basically performed according to the same steps as in FIG.

【0036】すなわち、共沸分離塔102の底部から抜
き出した粗アクリル酸を酢酸分離塔に導入し、ここで酢
酸を分離して、実質的に酢酸を含まない高純度のアクリ
ル酸を回収する。この高純度のアクリル酸はエステル化
工程に送り、そのままアクリル酸エステルの製造原料と
して用いることができる。もちろん、この高純度のアク
リル酸をさらに高沸点物分離塔104に導入して、高沸
点物を分離し、更に高純度のアクリル酸製品とすること
もできる。
That is, the crude acrylic acid extracted from the bottom of the azeotropic separation tower 102 is introduced into the acetic acid separation tower, where acetic acid is separated, and high-purity acrylic acid containing substantially no acetic acid is recovered. This high-purity acrylic acid is sent to the esterification step and can be used as it is as a raw material for producing an acrylic ester. Of course, this high-purity acrylic acid can be further introduced into the high-boiling substance separation column 104 to separate the high-boiling substances to obtain a higher-purity acrylic acid product.

【0037】上記2回の蒸留操作によりアクリル酸を分
離、回収する際の共沸分離塔102の運転条件について
は、塔底から抜き出す粗アクリル酸中の酢酸濃度などに
より変わるので一概に特定できないが、例えば次の条件
下(定常運転時)に運転することができる。
The operating conditions of the azeotropic separation column 102 for separating and recovering acrylic acid by the above-mentioned two distillation operations vary depending on the concentration of acetic acid in the crude acrylic acid extracted from the bottom of the column, but cannot be specified unconditionally. For example, it can be operated under the following conditions (at the time of steady operation).

【0038】操作圧力:100〜200mmHg、 塔頂部温度:40〜50℃、 アクリル酸水溶液供給部(供給段)温度:45〜70
℃、 塔底部温度:95〜105℃、 還流比(単位時間当りの還流液の全モル数/単位時間当
りの留出液の全モル数):1.0〜1.3 上記のような条件下で蒸留することにより、酢酸濃度が
1〜9重量%の粗アクリル酸が得られる。
Operating pressure: 100 to 200 mmHg, tower top temperature: 40 to 50 ° C., acrylic acid aqueous solution supply section (supply stage) temperature: 45 to 70
° C, tower bottom temperature: 95-105 ° C, reflux ratio (total number of moles of reflux liquid per unit time / total number of moles of distillate per unit time): 1.0-1.3 Distillation at the bottom gives crude acrylic acid with an acetic acid concentration of 1 to 9% by weight.

【0039】上記の粗アクリル酸をさらに酢酸分離塔に
導入し、ここで酢酸を分離することにより高純度アクリ
ル酸を得ることができる。なお、酢酸分離塔における蒸
留操作は常法により一般に用いられている条件下に実施
することができる。
The above-mentioned crude acrylic acid is further introduced into an acetic acid separation tower, where acetic acid is separated to obtain high-purity acrylic acid. The distillation operation in the acetic acid separation column can be carried out by a conventional method under conditions generally used.

【0040】[0040]

【実施例】以下、実施例を挙げて本発明を更に具体的に
説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples.

【0041】実施例1 図1に示す工程にしたがってアクリル酸の回収を行っ
た。
Example 1 Acrylic acid was recovered according to the process shown in FIG.

【0042】プロピレンを分子状酸素含有ガスにより接
触気相酸化して得た混合ガスをアクリル酸捕集塔101
に導いて水と接触させて捕集した。この捕集したアクリ
ル酸水溶液をアクロレイン放散塔(図示してない)に導
いてアクロレインを放散させ、水30重量%、酢酸3.
0重量%を含むアクリル酸水溶液を得た。このアクリル
酸水溶液を段数50段、段間隔147mmのシーブトレ
ーを備え、塔頂部に留出管、中央部に原料供給管、塔底
部に塔底液抜き出し管を備えた共沸分離塔102に導入
し、共沸溶剤としてメタクリル酸メチルとトルエンとの
混合溶剤(混合重量比35:65)用いて、このアクリ
ル酸水溶液の蒸留を行った。
A mixed gas obtained by subjecting propylene to catalytic gas phase oxidation with a molecular oxygen-containing gas is supplied to an acrylic acid collecting tower 101.
And collected by contact with water. The collected aqueous solution of acrylic acid was led to an acrolein stripping tower (not shown) to emit acrolein, and 30% by weight of water and acetic acid 3.
An aqueous solution of acrylic acid containing 0% by weight was obtained. This aqueous solution of acrylic acid was introduced into an azeotropic separation column 102 equipped with a sieve tray having 50 stages and a 147 mm spacing between the stages, a distilling tube at the top of the column, a raw material supply tube at the center, and a bottom liquid extracting tube at the bottom of the column. The acrylic acid aqueous solution was distilled using a mixed solvent of methyl methacrylate and toluene (35:65 by weight) as an azeotropic solvent.

【0043】使用した重合防止剤の量はアクリル酸蒸発
蒸気量に対して、ジブチルジチオカルバミン酸銅が15
ppm、酢酸マンガンが22.5ppm、ハイドロキノ
ンが75ppm、フェノチアジンが75ppmであり、
酢酸マンガンは原料供給管より原料に溶解した形で、そ
の他は塔頂より還流液に溶解した形で塔内に供給した。
また、アクリル酸蒸発蒸気量に対して0.3容量%の分
子状酸素を塔底部に供給した。なお、ここにいう蒸発蒸
気量とは、蒸留塔のリボイラーから加えられた熱量に相
当して、塔底から蒸発するモノマーの蒸気の総量を意味
する。
The amount of the polymerization inhibitor used was 15 parts by weight of copper dibutyldithiocarbamate based on the amount of vaporized acrylic acid vapor.
ppm, manganese acetate is 22.5 ppm, hydroquinone is 75 ppm, phenothiazine is 75 ppm,
Manganese acetate was supplied into the column in a form dissolved in the raw material from the raw material supply pipe, and the others were dissolved in the reflux liquid from the top of the column.
Further, 0.3% by volume of molecular oxygen with respect to the amount of vaporized acrylic acid was supplied to the bottom of the column. Here, the amount of evaporated vapor corresponds to the amount of heat added from the reboiler of the distillation column, and means the total amount of monomer vapor evaporated from the bottom of the column.

【0044】定常運転時における運転状態は、共沸分離
塔102の塔頂温度50℃、塔底温度105℃、塔頂圧
力160mmHg、還流比(単位時間当りの還流液の全
モル数/単位時間当りの留出液の全モル数)1.32、
ライン4からのアクリル酸水溶液供給量9.3リットル
/時であった。ライン8の水相は酢酸7.6重量%、ア
クリル酸0.6重量%を含み、一方共沸分離塔102の
塔底からライン15を経て抜き出される液はアクリル酸
96.9重量%、酢酸0.03重量%、その他3.10
重量%を含み、溶剤は検出限界(1ppm)以下であっ
た。
The operating conditions during the steady operation are as follows: the top temperature of the azeotropic separation column 102 is 50 ° C., the bottom temperature is 105 ° C., the top pressure is 160 mmHg, and the reflux ratio (total moles of reflux liquid per unit time / unit time) Total number of moles of distillate per unit) 1.32,
The supply amount of the aqueous acrylic acid solution from the line 4 was 9.3 liter / hour. The aqueous phase of line 8 contains 7.6% by weight of acetic acid and 0.6% by weight of acrylic acid, while the liquid withdrawn from the bottom of the azeotropic separation column 102 via line 15 is 96.9% by weight of acrylic acid, Acetic acid 0.03% by weight, other 3.10
% By weight, and the solvent was below the detection limit (1 ppm).

【0045】ライン8から得られた水相は溶剤回収塔1
03に導入され、その塔頂からライン9を経て溶剤が回
収され、一方塔底からは酢酸水溶液がライン14を経由
して取り出される。その組成は酢酸8.1重量%、アク
リル酸0.64重量%、水残余であり、アクリル酸捕集
塔101にリサイクルし、接触気相酸化後の混合ガスと
接触させる為の吸収捕集剤として使用した。
The aqueous phase obtained from the line 8 is supplied to the solvent recovery tower 1
The solvent is recovered from the top of the column via a line 9, while an aqueous acetic acid solution is removed from the bottom of the column via a line 14. The composition is 8.1% by weight of acetic acid, 0.64% by weight of acrylic acid, and the balance of water, which is recycled to the acrylic acid collecting tower 101 and brought into contact with the mixed gas after the catalytic gas phase oxidation. Used as

【0046】上記の条件で共沸分離塔102を約14日
間連続運転したところ、常に安定した状態が得られ、運
転停止後、蒸留塔内の点検を行なった結果においても重
合物の発生は全く認められなかった。
When the azeotropic separation column 102 was continuously operated for about 14 days under the above-mentioned conditions, a stable state was always obtained. After the operation was stopped, the inside of the distillation column was inspected. I was not able to admit.

【0047】比較例1 実施例1において、共沸溶剤としてメタクリル酸メチル
のみを用い、還流比を1.24にした以外は実施例1と
同様にしてアクリル酸水溶液の共沸蒸留運転を行なっ
た。
Comparative Example 1 An azeotropic distillation operation of an aqueous acrylic acid solution was performed in the same manner as in Example 1 except that only methyl methacrylate was used as the azeotropic solvent and the reflux ratio was 1.24. .

【0048】定常運転時におけるライン8の水相は酢酸
6.3重量%、アクリル酸4.5重量%を含み、アクリ
ル酸は実施例1の約8倍も多かった。一方、共沸分離塔
102の塔底からライン15を経て抜き出される液はア
クリル酸96.2重量%、酢酸0.3重量%、その他
3.5重量%を含んでおり、酢酸は実施例1の10倍も
多かった。
The water phase in the line 8 during the steady operation contained 6.3% by weight of acetic acid and 4.5% by weight of acrylic acid, and the amount of acrylic acid was about 8 times as large as that of Example 1. On the other hand, the liquid withdrawn from the bottom of the azeotropic separation column 102 via the line 15 contains 96.2% by weight of acrylic acid, 0.3% by weight of acetic acid, and 3.5% by weight of acetic acid. Ten times more than one.

【0049】上記の条件で共沸分離塔102を連続運転
したところ、運転開始から5日後に塔内の圧損失が認め
られ運転を継続することが困難であった。運転を停止
し、解体点検を実施したところ、塔内にポップコーンポ
リマーの生成を認めた。
When the azeotropic separation column 102 was continuously operated under the above conditions, pressure loss in the column was recognized 5 days after the start of operation, and it was difficult to continue the operation. The operation was stopped, and a dismantling inspection was performed. As a result, generation of popcorn polymer was confirmed in the tower.

【0050】このようにメタクリル酸メチルのみの使用
では共沸分離塔102において高純度のアクリル酸を回
収しようとすると塔内でのアクリル酸の重合を防止する
ことは不可能であった。
As described above, when only methyl methacrylate is used, it is impossible to prevent polymerization of acrylic acid in the azeotropic separation column 102 in order to recover high-purity acrylic acid in the column.

【0051】比較例2 実施例1において共沸溶剤としてメチルイソブチルケト
ンとトルエンの混合溶剤(混合重量比65:35)を用
い、還流比を1.42にした以外は実施例1と同様にし
てアクリル酸水溶液の蒸留運転を行なった。
Comparative Example 2 The procedure of Example 1 was repeated, except that a mixed solvent of methyl isobutyl ketone and toluene (mixing weight ratio: 65:35) was used as the azeotropic solvent, and the reflux ratio was 1.42. The distillation operation of the acrylic acid aqueous solution was performed.

【0052】定常運転時におけるライン8の水相は酢酸
6.9重量%、アクリル酸0.5重量%を含み、一方共
沸分離塔102の塔底からライン15を経て抜き出され
る液はアクリル酸96.9重量%、酢酸0.08重量
%、溶剤0.002重量%、その他3.02重量%を含
んでいた。
The water phase in line 8 during steady operation contains 6.9% by weight of acetic acid and 0.5% by weight of acrylic acid, while the liquid extracted from the bottom of azeotropic separation column 102 via line 15 is acrylic. It contained 96.9% by weight of acid, 0.08% by weight of acetic acid, 0.002% by weight of solvent and 3.02% by weight.

【0053】上記の条件で共沸分離塔102を約14日
間連続運転したところ、ほとんど安定した状態が得られ
たが、運転停止後に蒸留塔内の解体点検を行なったとこ
ろ、塔内に少量のポップコーンポリマーの生成が認めら
れた。
When the azeotropic separation column 102 was continuously operated for about 14 days under the above conditions, an almost stable state was obtained. However, after the operation was stopped, the distillation column was inspected for disassembly. The formation of popcorn polymer was observed.

【0054】実施例2 実施例1において共沸溶剤としてアクリル酸エチルとト
ルエンの混合溶剤(混合重量比35:65)を用いた以
外は実施例1と同様にしてアクリル酸水溶液の蒸留運転
を行なった。
Example 2 A distillation operation of an aqueous acrylic acid solution was carried out in the same manner as in Example 1 except that a mixed solvent of ethyl acrylate and toluene (mixing weight ratio: 35:65) was used as an azeotropic solvent. Was.

【0055】定常運転時におけるライン8の水相は酢酸
7.3重量%、アクリル酸0.5重量%を含み、一方共
沸分離塔102の塔底からライン15を経て抜き出され
る液はアクリル酸97.2重量%、酢酸 0.03重量
%、その他2.80重量%を含み、溶剤は検出限界(1
ppm)以下であった。
The aqueous phase of line 8 during steady operation contains 7.3% by weight of acetic acid and 0.5% by weight of acrylic acid, while the liquid withdrawn from the bottom of azeotropic separation column 102 via line 15 is acrylic. It contains 97.2% by weight of acid, 0.03% by weight of acetic acid, and 2.80% by weight of other components.
ppm) or less.

【0056】上記の条件で共沸分離塔102を約14日
間連続運転したところ、常に安定した状態が得られ、運
転停止後、蒸留塔内の点検を行なった結果においても重
合物の発生は全く認められなかった。
When the azeotropic separation column 102 was continuously operated for about 14 days under the above-mentioned conditions, a stable state was always obtained. After the operation was stopped, the inside of the distillation column was inspected. I was not able to admit.

【0057】比較例3 実施例1において、共沸溶剤としてアクリル酸エチルの
みを用い、還流比を1.24にした以外は実施例1と同
様にしてアクリル酸水溶液の蒸留運転を行なった。
Comparative Example 3 A distillation operation of an aqueous acrylic acid solution was carried out in the same manner as in Example 1, except that only ethyl acrylate was used as the azeotropic solvent, and the reflux ratio was 1.24.

【0058】定常運転時におけるライン8の水相は酢酸
6.5重量%、アクリル酸4.9重量%を含みアクリル
酸は実施例1の約8倍も多かった。一方、共沸分離塔1
02の塔底からライン15を経て抜き出される液はアク
リル酸96.5重量%、酢酸0.3重量%、その他3.
2重量%を含んでおり、酢酸は実施例1の10倍も多か
った。上記の条件で共沸分離塔102を連続運転したと
ころ、運転開始から6日後に塔内の圧損失が認められ運
転を継続することが困難であった。運転を停止し、解体
点検を実施したところ、塔内にポップコーンポリマーの
生成が認められた。
The water phase in the line 8 during the steady operation contained 6.5% by weight of acetic acid and 4.9% by weight of acrylic acid, and the amount of acrylic acid was about 8 times as large as that of Example 1. On the other hand, the azeotropic separation column 1
The liquid extracted from the bottom of the column No. 02 via the line 15 is 96.5% by weight of acrylic acid, 0.3% by weight of acetic acid, and others.
It contained 2% by weight, and acetic acid was 10 times as large as that of Example 1. When the azeotropic separation column 102 was continuously operated under the above conditions, pressure loss in the column was recognized 6 days after the start of operation, and it was difficult to continue the operation. When the operation was stopped and the dismantling inspection was performed, generation of popcorn polymer was observed in the tower.

【0059】このようにアクリル酸エチルのみの使用で
は共沸分離塔102において高純度のアクリル酸を回収
しようとすると塔内でのアクリル酸の重合を防止するこ
とは不可能であった。
As described above, when only ethyl acrylate is used, it is impossible to prevent polymerization of acrylic acid in the azeotropic separation column 102 in order to recover high-purity acrylic acid in the column.

【0060】実施例3 実施例1において共沸溶剤としてアクリル酸エチルとヘ
プタンの混合溶剤(混合重量比35:65)を用い、還
流比を1.24にした以外は実施例1と同様にしてアク
リル酸水溶液の蒸留運転を行なった。
Example 3 The procedure of Example 1 was repeated, except that a mixed solvent of ethyl acrylate and heptane (35:65 by weight) was used as the azeotropic solvent, and the reflux ratio was 1.24. The distillation operation of the acrylic acid aqueous solution was performed.

【0061】定常運転時におけるライン8の水相は酢酸
7.6重量%、アクリル酸0.5重量%を含み、一方共
沸分離塔102の塔底からライン15を経て抜き出され
る液はアクリル酸97.1重量%、酢酸0.05重量
%、その他2.85重量%を含み、溶剤は検出限界(1
ppm)以下であった。
The water phase of line 8 during steady operation contains 7.6% by weight of acetic acid and 0.5% by weight of acrylic acid, while the liquid withdrawn from the bottom of azeotropic separation column 102 via line 15 is acrylic. It contains 97.1% by weight of acid, 0.05% by weight of acetic acid and 2.85% by weight of other solvents.
ppm) or less.

【0062】上記の条件で共沸分離塔102を約14日
間連続運転したところ、常に安定した状態が得られ、運
転停止後、蒸留塔内の点検を行なった結果においても重
合物の発生は全く認められなかった。
When the azeotropic separation column 102 was continuously operated for about 14 days under the above conditions, a stable state was always obtained. After the operation was stopped, the inside of the distillation column was inspected. I was not able to admit.

【0063】実施例4 実施例1において共沸溶剤としてメタクリル酸メチルと
ヘプタンの混合溶剤(混合重量比35:65)を用い、
還流比を1.24にした以外は実施例1と同様にしてア
クリル酸水溶液の蒸留運転を行なった。
Example 4 In Example 1, a mixed solvent of methyl methacrylate and heptane (mixing weight ratio 35:65) was used as an azeotropic solvent.
The distillation operation of the acrylic acid aqueous solution was performed in the same manner as in Example 1 except that the reflux ratio was 1.24.

【0064】定常運転時におけるライン8の水相は酢酸
7.3重量%、アクリル酸0.6重量%を含み、一方共
沸分離塔102の塔底からライン15を経て抜き出され
る液はアクリル酸97.2重量%、酢酸0.04重量
%、その他2.76重量%を含み、溶剤は検出限界(1
ppm)以下であった。
The water phase in line 8 during steady operation contains 7.3% by weight of acetic acid and 0.6% by weight of acrylic acid, while the liquid withdrawn from the bottom of azeotropic separation column 102 via line 15 is acrylic. It contains 97.2% by weight of acid, 0.04% by weight of acetic acid, and 2.76% by weight of others.
ppm) or less.

【0065】上記の条件で共沸分離塔102を約14日
間連続運転したところ、常に安定した状態が得られ、運
転停止後、蒸留塔内の点検を行なった結果においても重
合物の発生は全く認められなかった。
When the azeotropic separation column 102 was operated continuously for about 14 days under the above conditions, a stable state was always obtained. After the operation was stopped, the inside of the distillation column was inspected, and no polymer was generated. I was not able to admit.

【0066】実施例5 プロピレンを分子状酸素含有ガスにより接触気相酸化し
て得た混合ガスをアクリル酸捕集塔に導いて水と接触さ
せて捕集したアクリル酸水溶液をアクロレイン放散塔に
導いてアクロレインを放散させ、水30重量%、酢酸
3.0重量%を含むアクリル酸水溶液を得た。段数50
段、段間隔147mmのシーブトレーを備え、塔頂部に
留出管、中央部に原料供給管、塔底部に塔底液抜き出し
管を備えた共沸分離塔を用い、共沸溶剤としてメタクリ
ル酸メチルとトルエンとの混合溶剤(混合重量比35:
65)を用いて、このアクリル酸水溶液の蒸留運転を行
った。
Example 5 A mixed gas obtained by subjecting propylene to catalytic gas-phase oxidation with a molecular oxygen-containing gas was introduced into an acrylic acid collecting tower, which was brought into contact with water, and the collected acrylic acid aqueous solution was introduced into an acrolein stripping tower. To disperse acrolein to obtain an aqueous acrylic acid solution containing 30% by weight of water and 3.0% by weight of acetic acid. Number of stages 50
An azeotropic separation column equipped with a sieve tray having a step and a step interval of 147 mm, a distillation pipe at the top of the tower, a raw material supply pipe at the center, and a bottom liquid withdrawal pipe at the bottom of the tower is used. As the azeotropic solvent, methyl methacrylate is used. Mixed solvent with toluene (mixed weight ratio 35:
65), the operation of distilling the aqueous acrylic acid solution was performed.

【0067】使用した重合防止剤の量はアクリル酸蒸発
蒸気量に対して、ジブチルジチオカルバミン酸銅が15
ppm、ハイドロキノンが150ppmであり、いずれ
も塔頂より還流液に溶解した形で塔内に供給した。ま
た、アクリル酸蒸発蒸気量に対して0.3容量%の分子
状酸素を塔底部に供給した。
The amount of the polymerization inhibitor used was 15 parts by weight of copper dibutyldithiocarbamate based on the amount of vaporized acrylic acid vapor.
ppm and hydroquinone were 150 ppm, and both were supplied into the column in a form dissolved in the reflux liquid from the top of the column. Further, 0.3% by volume of molecular oxygen with respect to the amount of vaporized acrylic acid was supplied to the bottom of the column.

【0068】定常運転時における運転状態は、共沸分離
塔の塔頂温度47℃、塔底温度102℃、塔頂圧力16
0mmHg、還流比(単位時間当りの還流液の全モル数
/単位時間当りの留出液の全モル数)1.17、アクリ
ル酸水溶液供給量10.7リットル/時であった。この
共沸分離塔の塔頂より得られた水相は酢酸1.5重量
%、アクリル酸0.7重量%を含み、一方塔底から経て
抜き出される液はアクリル酸95.1重量%、酢酸2.
2重量%、その他2.7重量%を含んでいた。
The operating conditions during steady-state operation were as follows: the top temperature of the azeotropic separation column was 47 ° C., the bottom temperature was 102 ° C., and the top pressure was 16 ° C.
0 mmHg, reflux ratio (total number of moles of reflux liquid per unit time / total number of moles of distillate per unit time) 1.17, and supply amount of acrylic acid aqueous solution was 10.7 liter / hour. The aqueous phase obtained from the top of this azeotropic separation column contains 1.5% by weight of acetic acid and 0.7% by weight of acrylic acid, while the liquid withdrawn from the bottom of the column is 95.1% by weight of acrylic acid, Acetic acid2.
2% by weight and 2.7% by weight.

【0069】上記の条件で共沸分離塔を約14日間連続
運転したところ、常に安定した状態が得られ、運転停止
後、蒸留塔内の点検を行なった結果においても重合物の
発生は全く認められなかった。
When the azeotropic separation column was continuously operated for about 14 days under the above conditions, a stable state was always obtained. After the operation was stopped, the inside of the distillation column was inspected. I couldn't.

【0070】比較例4 実施例5において、共沸溶剤としてトルエンのみを用
い、還流比を1.20にした以外は実施例5と同様にし
てアクリル酸水溶液の共沸蒸留運転を行なった。定常運
転時における共沸分離塔の塔頂より得られる水相は酢酸
4.2重量%、アクリル酸0.4重量%を含み、塔底よ
り抜き出される液はアクリル酸94.1重量%、酢酸
1.8重量%、その他4.1重量%を含んでいた。
Comparative Example 4 An azeotropic distillation operation of an aqueous acrylic acid solution was carried out in the same manner as in Example 5, except that only toluene was used as the azeotropic solvent and the reflux ratio was 1.20. The aqueous phase obtained from the top of the azeotropic separation column during steady operation contains 4.2% by weight of acetic acid and 0.4% by weight of acrylic acid, and the liquid withdrawn from the bottom of the column is 94.1% by weight of acrylic acid. It contained 1.8% by weight of acetic acid and 4.1% by weight.

【0071】上記の条件で共沸分離塔を連続運転したと
ころ、運転開始から4日後に塔内の圧損失が認められ運
転を継続することが困難であった。運転を停止し、解体
点検を実施したところ、塔内に粘性ポリマーの生成を認
めた。
When the azeotropic separation column was continuously operated under the above conditions, pressure loss in the column was recognized four days after the start of operation, and it was difficult to continue the operation. When the operation was stopped and the disassembly inspection was performed, the formation of a viscous polymer in the tower was observed.

【0072】比較例5 実施例1において、共沸溶剤としてメタクリル酸エチル
とトルエンとの混合溶剤(混合重量比50:50)を用
い、還流比を1.01にした以外は実施例1と同様にし
てアクリル酸水溶液の共沸蒸留運転を行なった。
Comparative Example 5 The same procedure as in Example 1 was carried out except that a mixed solvent of ethyl methacrylate and toluene (mixing weight ratio: 50:50) was used as the azeotropic solvent and the reflux ratio was 1.01. The azeotropic distillation operation of the aqueous acrylic acid solution was carried out.

【0073】定常状態におけるライン8の水相は酢酸
7.0重量%、アクリル酸1.3重量%を含み、アクリ
ル酸は実施例1の2倍であった。一方、共沸分離塔10
2の塔底からライン15を経て抜き出される液はアクリ
ル酸96.5重量%、酢酸0.12重量%、溶剤0.0
05重量%、その他3.38重量%を含んでおり、酢酸
は実施例1より一桁多く、溶剤は実施例1の50倍以上
であった。
In the steady state, the aqueous phase of line 8 contained 7.0% by weight of acetic acid and 1.3% by weight of acrylic acid, and the amount of acrylic acid was twice that of Example 1. On the other hand, the azeotropic separation column 10
26.5% by weight of acrylic acid, 0.12% by weight of acetic acid, 0.02% by weight of solvent
It contained 0.5% by weight and 3.38% by weight. The amount of acetic acid was one digit higher than that of Example 1, and the amount of the solvent was 50 times or more that of Example 1.

【0074】このように炭素数6のメタクリル酸エチル
とトルエンとの混合溶剤を使用した場合、一回の蒸留操
作では十分な品質のアクリル酸を得ることができなかっ
た。 比較例6 実施例1において、共沸溶剤としてアクリル酸プロピル
とヘプタンとの混合溶剤(混合重量比50:50)を用
い、還流比を1.08にした以外は実施例1と同様にし
てアクリル酸水溶液の共沸蒸留運転を行なった。
When a mixed solvent of ethyl methacrylate having 6 carbon atoms and toluene was used, acrylic acid of sufficient quality could not be obtained by a single distillation operation. Comparative Example 6 An acrylic resin was prepared in the same manner as in Example 1 except that a mixed solvent of propyl acrylate and heptane (50:50 by weight) was used as the azeotropic solvent, and the reflux ratio was 1.08. An azeotropic distillation operation of the aqueous acid solution was performed.

【0075】定常状態におけるライン8の水相は酢酸
6.7重量%、アクリル酸1.5重量%を含み、アクリ
ル酸は実施例1の2倍であった。一方、共沸分離塔10
2の塔底からライン15を経て抜き出される液はアクリ
ル酸96.3重量%、酢酸0.15重量%、溶剤0.0
1重量%、その他3.54重量%を含んでおり、酢酸は
実施例1より一桁多く、溶剤は実施例1の100倍以上
であった。
In the steady state, the aqueous phase of line 8 contained 6.7% by weight of acetic acid and 1.5% by weight of acrylic acid, and the amount of acrylic acid was twice that of Example 1. On the other hand, the azeotropic separation column 10
The liquid withdrawn from the bottom of column 2 via line 15 was 96.3% by weight of acrylic acid, 0.15% by weight of acetic acid,
It contained 1% by weight and 3.54% by weight. The amount of acetic acid was one digit higher than that of Example 1, and the amount of solvent was 100 times or more that of Example 1.

【0076】このように炭素数6のアクリル酸プロピル
とヘプタンとの混合溶剤を使用した場合、一回の蒸留操
作では十分な品質のアクリル酸を得ることができなかっ
た。
When a mixed solvent of propyl acrylate having 6 carbon atoms and heptane was used, acrylic acid of sufficient quality could not be obtained by a single distillation operation.

【0077】[0077]

【発明の効果】本発明によれば、特定の共沸溶剤を使用
することにより、共沸分離塔におけるアクリル酸の重合
を効果的に防止することができる。このため、共沸分離
塔の長期連続運転が可能となった。
According to the present invention, the polymerization of acrylic acid in the azeotropic separation column can be effectively prevented by using a specific azeotropic solvent. For this reason, long-term continuous operation of the azeotropic separation column became possible.

【0078】また、本発明の共沸溶剤を用いることによ
り、共沸分離塔で酢酸などの副生物を含むアクリル酸水
溶液を蒸留して、塔頂から酢酸、水および共沸溶剤から
なる共沸混合物を留出させ、塔底から実質的に酢酸を含
まない高純度のアクリル酸を分離、回収するという、1
回の蒸留操作により、実質的に酢酸を含まない高純度の
アクリル酸を得ることができる。
Further, by using the azeotropic solvent of the present invention, an acrylic acid aqueous solution containing by-products such as acetic acid is distilled in an azeotropic separation column, and an azeotropic solvent comprising acetic acid, water and an azeotropic solvent is distilled from the top of the column. Distilling the mixture and separating and recovering high-purity acrylic acid substantially free of acetic acid from the bottom of the column.
By a single distillation operation, high-purity acrylic acid containing substantially no acetic acid can be obtained.

【0079】また、共沸分離塔で酢酸などの副生物を含
むアクリル酸水溶液を蒸留して、塔頂から水および共沸
溶剤、または水、共沸溶剤および酢酸の一部からなる共
沸混合物を留出させ、塔底から残りの酢酸を含む粗アク
リル酸を分離し、この粗アクリル酸を酢酸分離塔に導
き、ここで酢酸を分離して、実質的に酢酸を含まない高
純度のアクリル酸を回収するという、2回の蒸留操作に
より、実質的に酢酸を含まない高純度のアクリル酸を得
ることができる。
Further, an acrylic acid aqueous solution containing by-products such as acetic acid is distilled in an azeotropic separation column, and water and an azeotropic solvent or an azeotropic mixture composed of water, an azeotropic solvent and a part of acetic acid are distilled from the top of the column. Is separated from the bottom, crude acrylic acid containing residual acetic acid is separated from the bottom of the column, and this crude acrylic acid is led to an acetic acid separation tower, where acetic acid is separated, and high-purity acrylic acid substantially containing no acetic acid is separated. High-purity acrylic acid substantially free of acetic acid can be obtained by two distillation operations of recovering the acid.

【0080】そして、上記1回および2回の蒸留操作に
よるアクリル酸の回収方法のいずれにおいても、共沸分
離塔におけるアクリル酸の重合を効果的に防止すること
ができる。
In any of the above-described methods for recovering acrylic acid by one and two distillation operations, polymerization of acrylic acid in the azeotropic separation column can be effectively prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法の一つの工程図である。FIG. 1 is a flowchart of one method of the present invention.

【符号の説明】[Explanation of symbols]

1〜15 ライン 101 アクリル酸捕集塔 102 共沸分離塔 103 溶剤回収塔 104 高沸点物分離塔 20 貯槽 1 to 15 line 101 Acrylic acid collecting tower 102 Azeotropic separation tower 103 Solvent recovery tower 104 High boiling point separation tower 20 Storage tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 隆裕 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 上岡 正敏 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takahiro Takeda 992, Nishioki, Okihama-shi, Aboshi-ku, Himeji-shi, Hyogo Nippon Shokuhin Co., Ltd. Nippon Shokubai

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 プロピレンおよび/またはアクロレイン
を接触気相酸化して得られるアクリル酸含有ガスを水と
接触させてアクリル酸水溶液として捕集し、このアクリ
ル酸水溶液を共沸分離塔に導入し、共沸溶剤の存在下に
蒸留してアクリル酸を分離、回収する際に、上記共沸溶
剤として下記の溶剤Aおよび溶剤Bを含む混合溶剤を用
いることを特徴とするアクリル酸の回収方法。 溶剤A:アクリル酸エチル、メタクリル酸メチル、アク
リル酸ビニル、酢酸アリル、酢酸イソプロペニル、プロ
ピオン酸ビニルおよびクロトン酸メチルから選ばれる少
なくとも一種。 溶剤B:トルエン、ヘプタン、1−ヘプテン、メチルシ
クロヘキサン、シクロヘプテン、シクロヘプタジエン、
シクロヘプタトリエン、2,4−ジメチル−1,3−ペ
ンタジエン、メチルシクロヘキセンおよびメチレンシク
ロヘキサンから選ばれる少なくとも一種。
An acrylic acid-containing gas obtained by subjecting propylene and / or acrolein to catalytic gas phase oxidation is brought into contact with water to collect an aqueous acrylic acid solution, and the aqueous acrylic acid solution is introduced into an azeotropic separation column, A method for recovering acrylic acid, comprising using a mixed solvent containing the following solvent A and solvent B as the azeotropic solvent when separating and recovering acrylic acid by distillation in the presence of an azeotropic solvent. Solvent A: at least one selected from ethyl acrylate, methyl methacrylate, vinyl acrylate, allyl acetate, isopropenyl acetate, vinyl propionate and methyl crotonate. Solvent B: toluene, heptane, 1-heptene, methylcyclohexane, cycloheptene, cycloheptadiene,
At least one selected from cycloheptatriene, 2,4-dimethyl-1,3-pentadiene, methylcyclohexene and methylenecyclohexane.
【請求項2】 溶剤Aがアクリル酸エチルおよびメタク
リル酸メチルから選ばれる少なくとも一種であり、溶剤
Bがトルエンおよびヘプタンから選ばれる少なくとも一
種である請求項1記載の方法。
2. The method according to claim 1, wherein the solvent A is at least one selected from ethyl acrylate and methyl methacrylate, and the solvent B is at least one selected from toluene and heptane.
【請求項3】 溶剤Aと溶剤Bとの混合比率が重量比で
10:90〜75:25である請求項1または2記載の
方法。
3. The method according to claim 1, wherein the mixing ratio of the solvent A and the solvent B is 10:90 to 75:25 by weight.
【請求項4】 共沸蒸留塔の塔頂から酢酸を留出させ、
塔底から実質的に酢酸を含まないアクリル酸を得る請求
項1、2または3記載の方法。
4. Distilling acetic acid from the top of the azeotropic distillation column,
4. The method according to claim 1, wherein acrylic acid containing substantially no acetic acid is obtained from the bottom of the column.
JP04614797A 1997-02-28 1997-02-28 Acrylic acid recovery method Expired - Fee Related JP3937495B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP04614797A JP3937495B2 (en) 1997-02-28 1997-02-28 Acrylic acid recovery method
US09/031,068 US6084127A (en) 1997-02-28 1998-02-26 Method for recovering acrylic acid
DE69806074T DE69806074T2 (en) 1997-02-28 1998-02-27 Process for the recovery of acrylic acid
EP98301479A EP0861820B1 (en) 1997-02-28 1998-02-27 Method for recovering acrylic acid
IDP980295A ID19974A (en) 1997-02-28 1998-02-27 METHOD TO GET ACRYLIC ACID BACK
KR10-1998-0006604A KR100375780B1 (en) 1997-02-28 1998-02-28 Method for recovering acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04614797A JP3937495B2 (en) 1997-02-28 1997-02-28 Acrylic acid recovery method

Publications (2)

Publication Number Publication Date
JPH10237012A true JPH10237012A (en) 1998-09-08
JP3937495B2 JP3937495B2 (en) 2007-06-27

Family

ID=12738869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04614797A Expired - Fee Related JP3937495B2 (en) 1997-02-28 1997-02-28 Acrylic acid recovery method

Country Status (1)

Country Link
JP (1) JP3937495B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148373B2 (en) 2003-12-24 2006-12-12 Mitsubishi Chemical Corporation Process for purifying (meth)acrylic acid and process for producing (meth)acrylic esters
JP2018115155A (en) * 2017-01-18 2018-07-26 三菱ケミカル株式会社 Method of producing acrylic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105263895B (en) 2013-05-20 2018-04-10 沙特基础工业公司 For purification of acetic acid and acrylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148373B2 (en) 2003-12-24 2006-12-12 Mitsubishi Chemical Corporation Process for purifying (meth)acrylic acid and process for producing (meth)acrylic esters
JP2018115155A (en) * 2017-01-18 2018-07-26 三菱ケミカル株式会社 Method of producing acrylic acid

Also Published As

Publication number Publication date
JP3937495B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP3028925B2 (en) Method for producing acrylic acid
JP2000290221A (en) Purification of (meth)acrylic acid
KR100375780B1 (en) Method for recovering acrylic acid
EP0102642B1 (en) Process for purifying methacrylic acid
JP4759153B2 (en) Distillation method of (meth) acrylic acid solution
JPH05246941A (en) Method for purifying acrylic acid in high yield in production of acrylic acid
JP4146040B2 (en) Method for preventing polymerization of vinyl compounds
US5959142A (en) Process for refining methacrylic acid
JP2003160532A (en) Method for producing (meth)acrylic acid
JP4104232B2 (en) Acetic acid recovery from acetic acid containing wastewater
JPS61218556A (en) Purification of acrylic acid
JPH10237012A (en) Recovery of acrylic acid
JP2980366B2 (en) Acrylic acid purification method
JPS58183641A (en) Purification of methyl (meth)acrylate
JP3880128B2 (en) Acrylic acid recovery method
JP3832868B2 (en) Acrylic acid purification method
JPH01139547A (en) Production of methacrylic acid ester
JPH1135523A (en) Purification of methyl methacrylate
JPS6059889B2 (en) Hydroquinone recovery method
JPH0813779B2 (en) Method for recovering methacrylic acid as methyl methacrylate
JPS60152438A (en) Purification of methacrylic acid
EP0132450A1 (en) Method of purifying methacrylic acid
JPH0761981B2 (en) Method for processing residual liquid of methacrylic acid distillation still
US4227010A (en) Recovery of dimethyl terephthalate and intermediates from the tarry fraction of cooxidation process residue
JPS60252446A (en) Purification of methacrylic acid

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017

A521 Written amendment

Effective date: 20061116

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Effective date: 20061215

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070117

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Effective date: 20070319

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100406

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees