JPH08311059A - Purification of epsilon-caprolactone - Google Patents

Purification of epsilon-caprolactone

Info

Publication number
JPH08311059A
JPH08311059A JP14405895A JP14405895A JPH08311059A JP H08311059 A JPH08311059 A JP H08311059A JP 14405895 A JP14405895 A JP 14405895A JP 14405895 A JP14405895 A JP 14405895A JP H08311059 A JPH08311059 A JP H08311059A
Authority
JP
Japan
Prior art keywords
caprolactone
reboiler
boiling
deboiling
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14405895A
Other languages
Japanese (ja)
Inventor
Noboru Kamei
登 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP14405895A priority Critical patent/JPH08311059A/en
Publication of JPH08311059A publication Critical patent/JPH08311059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrane Compounds (AREA)

Abstract

PURPOSE: To obtain ε-caprolactone in high yield by successively concentrating a bottom product with reboilers in >=2 stages in a step for removing high-boiling substances in a method for purifying the ε-caprolactone by distilling a reactional mixture prepared by oxidizing cyclohexanone and separating the ε-caprolactone from impurities. CONSTITUTION: (A) Low-boiling substances in a reactional mixture prepared by oxidizing cyclohexanone are distilled away in the first distillation step and (B) the second distillation step for distilling away the product ε-caprolactone from the first bottom product and separating the ε-caprolactone from high- boiling impurities is carried out by installing reboilers in >=2 stages (preferably 2 stages) to successively concentrate the bottom product in distilling the reactional mixture, separating the ε-caprolactone from the impurities, purifying the ε-caprolactone and providing the ε-caprolactone. Furthermore, the lactone concentration in the bottom product of the first reboiler in the second distillation step is preferably at least >=20wt.%, more preferably >=40wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はε−カプロラクトンの
精製法に関し、精製工程のうち製品ε−カプロラクトン
を留出させて高沸点不純物を分離除去する脱高沸蒸留工
程(第二蒸留工程)において、ε−カプロラクトンの重
合に伴うε−カプロラクトンの収率低下を防止した改良
されたε−カプロラクトンの精製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying ε-caprolactone, which is used in a high boiling distillation step (second distillation step) in which a product ε-caprolactone is distilled out to separate and remove high-boiling impurities. , An improved method for purifying ε-caprolactone which prevents a decrease in the yield of ε-caprolactone due to the polymerization of ε-caprolactone.

【0002】[0002]

【従来の技術】ε−カプロラクトンは、ポリウレタン合
成用のポリエステルポリオールやその他の成形材料の重
合体原料等の用途をもち、製造方法としてはシクロヘキ
サノンを酸化して得る方法が代表的なものとして知られ
ている。このシクロヘキサノンの酸化にはアセトアルデ
ヒドとの共酸化法と、有機過酸、例えば過酢酸などを酸
化剤として用いる酸化法とがある。また、シクロヘキサ
ノンの酸化によって得た反応混合物から目的物を分離す
るために、蒸留法が用いられている。
2. Description of the Related Art Epsilon-caprolactone has applications such as polyester polyol for polyurethane synthesis and a raw material for polymers of other molding materials, and as a production method, a method obtained by oxidizing cyclohexanone is known as a typical one. ing. The oxidation of cyclohexanone includes a co-oxidation method with acetaldehyde and an oxidation method using an organic peracid such as peracetic acid as an oxidizing agent. Further, a distillation method is used to separate the target product from the reaction mixture obtained by the oxidation of cyclohexanone.

【0003】[0003]

【発明が解決しようとする課題】しかし慣用的な蒸留法
では、蒸留工程におけるε−カプロラクトンの重合損失
が多く、収率が低下し、さらに装置の閉塞などの問題が
ある。そこで係る問題を解決すべく、ε−カプロラクト
ンの損失原因は反応混合物中に含まれる高沸ハルツ成分
に起因するとし、未反応シクロヘキサノンの蒸留に先立
ち高沸ハルツを除去することを特徴とするε−カプロラ
クトンの精製法が特公昭60−16436号公報に開示
されている。この方法によると、シクロヘキサノンとア
セトアルデヒドとの共酸化法で得た反応混合物からのε
−カプロラクトンの精製において、シクロヘキサノン分
離塔での約15%に相当するε−カプロラクトンの損失
が大幅に減少している。しかし、用いた共酸化法の性質
上、ε−カプロラクトンに対して3〜10倍重量のシク
ロヘキサノンが反応液に残存する。
However, in the conventional distillation method, there are problems such as a large amount of polymerization loss of ε-caprolactone in the distillation step, the yield is lowered, and the device is clogged. Therefore, in order to solve such a problem, the cause of the loss of ε-caprolactone is attributed to the high boiling Hartz component contained in the reaction mixture, and the high boiling Hartz is removed prior to the distillation of unreacted cyclohexanone. A method for purifying caprolactone is disclosed in Japanese Examined Patent Publication No. 60-16436. According to this method, ε from the reaction mixture obtained by the co-oxidation method of cyclohexanone and acetaldehyde
-In the purification of caprolactone, the loss of ε-caprolactone corresponding to about 15% in the cyclohexanone separation column is significantly reduced. However, due to the nature of the co-oxidation method used, 3 to 10 times the weight of cyclohexanone relative to ε-caprolactone remains in the reaction solution.

【0004】これに対し、有機過酸による酸化法により
ε−カプロラクトンを合成すると、反応液中のシクロヘ
キサノンの含有量はε−カプロラクトンの0.1重量倍
以下で済むことが特開昭57−42684号公報に開示
されている。そして当該方法では、ε−カプロラクトン
を留出させ高沸点不純物を分離除去する蒸留工程におい
て、単通薄膜式蒸発器を備えた装置で蒸留し、ε−カプ
ロラクトンの重合ロスを防止することが提案されてい
る。これに対し、本発明者らが該公報実施例に記載され
た塔項の圧力および温度条件で20段の目皿塔を用いて
蒸留を行ったところ、ε−カプロラクトンの重合による
損失率は2〜3%程度であるが、この工程の缶出液に含
まれるε−カプロラクトンの濃度は40%以上と高く、
ε−カプロラクトン収率は92%と低いことが分かっ
た。そこで、缶出液に含まれるε−カプロラクトンの濃
度を低下させる目的で蒸発器の加熱条件を強化すると、
ε−カプロラクトンの重合が著しく促進され、この結果
ε−カプロラクトンの収率は向上しなかった。ε−カプ
ロラクトンの工業的製造プロセスにおいて、蒸留工程で
の上記のような実際上の収率の低さは大問題である。従
って、ε−カプロラクトン製造において脱高沸工程で重
合ロスを抑制しつつ缶出液の高濃縮化を達成し、ε−カ
プロラクトン収率を向上させ得る方法の開発が熱望され
ている。
On the other hand, when ε-caprolactone is synthesized by an oxidation method with an organic peracid, the content of cyclohexanone in the reaction solution is 0.1 weight times or less that of ε-caprolactone. It is disclosed in the publication. Then, in the method, in the distillation step of distilling out ε-caprolactone and separating and removing the high-boiling-point impurities, it is proposed to distill with an apparatus equipped with a single-pass thin film evaporator to prevent polymerization loss of ε-caprolactone. ing. On the other hand, when the present inventors conducted distillation using a 20-plate tray under the pressure and temperature conditions described in the Examples of the publication, the loss rate due to the polymerization of ε-caprolactone was 2 It is about 3%, but the concentration of ε-caprolactone contained in the bottom liquid in this step is as high as 40% or more,
It was found that the ε-caprolactone yield was as low as 92%. Therefore, if the heating conditions of the evaporator are strengthened in order to reduce the concentration of ε-caprolactone contained in the bottom liquid,
The polymerization of ε-caprolactone was significantly promoted, and as a result, the yield of ε-caprolactone was not improved. In the industrial production process of ε-caprolactone, the above-mentioned practically low yield in the distillation step is a serious problem. Therefore, in the production of ε-caprolactone, it is eagerly desired to develop a method capable of achieving a high concentration of bottoms while suppressing the polymerization loss in the deboiling step and improving the yield of ε-caprolactone.

【0005】[0005]

【課題を解決するための手段】本発明者らは、脱高沸工
程に2段以上のリボイラーを使用して順次缶出液を濃縮
することにより、高いε−カプロラクトン収率が得られ
ることを見出し、本発明を完成させた。
The inventors of the present invention have found that a high ε-caprolactone yield can be obtained by sequentially concentrating bottom liquor using two or more stages of reboiler in the deboiling step. Heading, completed the present invention.

【0006】すなわち本発明は、シクロヘキサノンを酸
化して得た反応混合物を蒸留して不純物と分離するε−
カプロラクトンの精製法において、反応混合物に含まれ
る低沸物を第一蒸留工程(以下、「脱低沸蒸留工程」と
称す。)によって留去した後、第一缶出液(脱低沸缶出
液)から製品ε−カプロラクトンを留出させて高沸点不
純物と分離する第二蒸留工程(以下、「脱高沸蒸留工
程」と称す。)において、脱高沸蒸留工程にリボイラー
を2段、あるいはそれ以上設置して順次缶出液を濃縮す
ることを特徴とするε−カプロラクトンの精製法を提供
するものである。また、脱高沸蒸留工程の第一リボイラ
ーの缶出液中のラクトン濃度が少なくとも20重量%以
上となるように低濃縮状態で缶出させ、第二リボイラー
以降で更に濃縮することを特徴とする前記ε−カプロラ
クトンの精製法を提供するものである。以下、本発明を
詳細に説明する。
That is, according to the present invention, the reaction mixture obtained by oxidizing cyclohexanone is distilled to separate ε-
In the method for purifying caprolactone, the low-boiling substances contained in the reaction mixture are distilled off by the first distillation step (hereinafter referred to as “de-low boiling distillation step”), and then the first bottom liquid (de-low boiling distillation In the second distillation step of distilling the product ε-caprolactone from the liquid) to separate it from high-boiling impurities (hereinafter referred to as “dehigh-boiling distillation step”), two stages of reboiler are used in the deboiling distillation step, The present invention provides a method for purifying ε-caprolactone, which is characterized in that it is installed further and the bottoms are concentrated successively. Further, it is characterized in that the lactone concentration in the bottom liquor of the first reboiler in the high boiling distillation step is at a low concentration so that the lactone concentration is at least 20% by weight or more, and further concentration is carried out after the second reboiler. The present invention provides a method for purifying the ε-caprolactone. Hereinafter, the present invention will be described in detail.

【0007】本発明者は、脱高沸蒸留工程における脱高
沸塔の蒸留器内での重合のメカニズムを詳細に検討した
結果、脱高沸塔の蒸留器内に存在するアジピン酸等の高
沸酸、あるいはアジピン酸等によってラクトンが開環し
て生成した化合物が重合開始剤となり、蒸留塔本体また
はリボイラー内でε−カプロラクトンの重合が進むこと
を突き止めた。前記した特開昭57−42684号公報
のように単通式薄膜蒸発器を用いた場合は、リボイラー
内の滞留時間が減少したため、リボイラー内でのε−カ
プロラクトンの重合ロスが防止出来たものと推測され
る。また、脱高沸塔の蒸留塔本体での重合に関しては、
リボイラー内での脱高沸物の濃縮に伴い、ε−カプロラ
クトンと共に脱高沸物であるアジピン酸等が蒸留塔本体
に留出され、先に述べた重合のメカニズムが生じると考
えられる。このため、リボイラーで高沸物を高濃縮して
もε−カプロラクトン収率の改善がなされなかったと推
測される。なお、慣用的には蒸留塔のリボイラーは一段
で使用されているが、これは使用機器数を減らすことに
より設備費や運転費用の制御を目的としているからであ
る。例外的に2段以上のリボイラーを並列して設置する
場合があるが、蒸発ガスの吹出し口は共通となるため、
機能的にはリボイラーを1段のみ使用して濃縮したもの
と同等と考えられる。
The present inventor has studied in detail the mechanism of polymerization in the distillation column of the deboiling column in the deboiling distillation step, and as a result, has found that the amount of adipic acid and the like present in the distillation column of the deboiling column is high. It was found that a compound formed by ring opening of a lactone with hydrofluoric acid, adipic acid, or the like serves as a polymerization initiator, and the polymerization of ε-caprolactone proceeds in the main body of the distillation column or the reboiler. In the case of using the single-pass type thin film evaporator as in the above-mentioned JP-A-57-42684, the residence time in the reboiler was reduced, so that the polymerization loss of ε-caprolactone in the reboiler could be prevented. Guessed. Further, regarding the polymerization in the distillation column body of the deboiling column,
It is considered that, along with the concentration of the deboiling substance in the reboiler, adipic acid and the like that are deboiling substances along with ε-caprolactone are distilled out to the distillation column main body, and the above-described polymerization mechanism is caused. Therefore, it is presumed that even if the high boiling substance was highly concentrated by the reboiler, the yield of ε-caprolactone was not improved. Incidentally, the reboiler of the distillation column is conventionally used in a single stage because the purpose is to control equipment costs and operating costs by reducing the number of equipment used. Exceptionally, two or more stages of reboilers may be installed in parallel, but since the evaporative gas outlet is common,
It is considered to be functionally equivalent to the one concentrated using only one reboiler.

【0008】本発明においては、脱高沸塔にリボイラー
を2段あるいはそれ以上設置し、順々に缶出液を濃縮し
てリボイラーから蒸留塔へ留出する高沸酸を減少させ、
塔内での重合ロスを防止したものである。ここに本発明
の2段あるいはそれ以上とは、液仕込口、蒸発ガス吹出
し口、缶出液出口を有するリボイラーが複数個、直列に
配置されたものをいう。蒸留塔に設置されたリボイラー
から留出する製品の量および還流液量が多い場合には、
分離すべき高沸酸もε−カプロラクトンの蒸留に伴って
留出される。しかし、リボイラーが2段以上設置されて
いる場合には、まず第一段目のリボイラー(以下、「第
一リボイラー」と称す。)の缶出液中のε−カプロラク
トン濃度を高濃度に維持することにより、高沸酸の留出
を抑制することができる。次に第二段目のリボイラー
(以下、「第二リボイラー」と称す。)により第一リボ
イラーの缶出液の再濃縮を行えば、ここに仕込まれる缶
出液からのε−カプロラクトンの留出量は少ないため、
高沸酸の同伴量も少なくて済む。従って一段のみのリボ
イラーで高沸酸の濃縮を行う場合に比べて、リボイラー
から蒸留塔へ留出する高沸酸の量を大幅に減少させるこ
とができる。この結果として蒸留塔内での重合ロスを大
幅に防止することが可能になる。本発明を実施する上
で、ε−カプロラクトンを留出させる脱高沸工程の各リ
ボイラーは特開昭57−42684号公報に記載された
単通薄膜式蒸発器を用いることが望ましい。
In the present invention, the reboiler is installed in two stages or more in the deboiling tower, and the bottoms are sequentially concentrated to reduce the high boiling acid distilled from the reboiler to the distillation tower.
It prevents polymerization loss in the tower. The term “two or more stages” in the present invention means that a plurality of reboilers having a liquid charging port, an evaporative gas outlet, and a bottom outlet are arranged in series. If the amount of product distilled from the reboiler installed in the distillation column and the amount of reflux liquid are large,
The high-boiling acid to be separated is also distilled along with the distillation of ε-caprolactone. However, when two or more reboilers are installed, first, the concentration of ε-caprolactone in the bottom liquid of the first-stage reboiler (hereinafter referred to as “first reboiler”) is maintained at a high concentration. As a result, the distillation of high boiling acid can be suppressed. Next, the second reboiler (hereinafter referred to as the "second reboiler") is used to re-concentrate the bottom product of the first reboiler, and the ε-caprolactone is distilled from the bottom product charged in the reboiler. Because the amount is small,
The amount of entrained high-boiling acid is small. Therefore, the amount of high-boiling acid distilled from the reboiler to the distillation column can be greatly reduced, as compared with the case of concentrating the high-boiling acid with a single-stage reboiler. As a result, it becomes possible to significantly prevent the polymerization loss in the distillation column. In carrying out the present invention, it is desirable to use the single-pass thin film evaporator described in JP-A-57-42684 for each reboiler in the deboiling step for distilling ε-caprolactone.

【0009】本発明のε−カプロラクトンの精製法を図
1を用いて説明する。なお、図1ではリボイラーが2段
である場合を示す。また、図中の番号は装置および内容
物の双方を表すことがある。まず、有機過酸酸化法で得
られる反応液もしくは共酸化法で得られる反応液、また
はその反応液から脱溶媒を行った粗液を脱低沸(第一蒸
留)塔1へライン2より供給する。なお粗液を用いる場
合には、特公昭60−16436号公報に記載された方
法と同様に、脱低沸処理を行った後に蒸発工程により高
沸ハルツを除去したものを用いたものであってもよい。
この蒸発工程ではアジピン酸などの高沸点物もε−カプ
ロラクトンと共に留出されるが、本発明においては、脱
高沸工程でε−カプロラクトンとこれら高沸点物を分離
させるので支障無いからである。
The method for purifying ε-caprolactone of the present invention will be described with reference to FIG. Note that FIG. 1 shows a case where the reboiler has two stages. Also, the numbers in the figure may represent both the device and the contents. First, a reaction liquid obtained by an organic peroxyacid oxidation method or a reaction liquid obtained by a co-oxidation method, or a crude liquid obtained by desolvating the reaction liquid is supplied to a deboiling (first distillation) column 1 through a line 2. To do. When the crude liquid is used, it is the same as the method described in JP-B-60-16436, in which the high boiling point Harz is removed by the evaporation step after the deboiling treatment. Good.
In this evaporation step, high-boiling substances such as adipic acid are also distilled out together with ε-caprolactone, but in the present invention, ε-caprolactone and these high-boiling substances are separated in the deboiling step, so there is no problem.

【0010】脱低沸塔1により低沸点留分3が除かれ、
高濃度の高沸酸等の高沸点物と、ε−カプロラクトンと
を含む低沸塔缶出液4が脱高沸塔5へ供給される。ここ
に、脱高沸塔5へ供給された缶出液4は、脱高沸塔5の
第一リボイラー7、第二リボイラー9で順次ε−カプロ
ラクトンと高沸物とに分離され、高沸物を低濃度に含む
ε−カプロラクトンがライン10を経て脱高沸塔5の蒸
留器へ供給されることとなる。かかる場合、第一リボイ
ラー7の缶出液8のε−カプロラクトンの濃度は20%
以上であることが好ましく、特には40%以上になるよ
うに第一リボイラー7の加熱条件を設定することが好ま
しい。ε−カプロラクトンの濃度が20%以上であれ
ば、第一リボイラーからε−カプロラクトンと共に留出
する高沸物の量を少なくできるからである。この結果、
脱高沸塔5における重合ロスの原因となるアジピン酸等
の高沸物を低濃度にでき、脱高沸塔5でのε−カプロラ
クトンの重合ロスを有効に防止できる。さらに、このよ
うに脱高沸塔5へ供給される低沸塔缶出液4の高沸酸が
上記リボイラーにより効率よく除去され、ライン12か
ら得られる製品ε−カプロラクトン中の高沸不純物の混
入を更に低下させることが出来るため、品質改良にも寄
与することになる。
The low boiling point fraction 3 is removed by the deboiling tower 1,
A low boiling column bottoms liquid 4 containing a high boiling point substance such as a high concentration of high boiling acid and ε-caprolactone is supplied to a deboiling column 5. Here, the bottoms liquid 4 supplied to the deboiling tower 5 is sequentially separated into ε-caprolactone and a high boiling material by the first reboiler 7 and the second reboiler 9 of the deboiling tower 5, and the high boiling material is removed. Ε-caprolactone containing a low concentration of is supplied to the distiller of the deboiling column 5 via the line 10. In such a case, the concentration of ε-caprolactone in the bottom liquid 8 of the first reboiler 7 is 20%.
It is preferable that the heating conditions for the first reboiler 7 are set to 40% or more. This is because if the concentration of ε-caprolactone is 20% or more, the amount of high-boiling substances distilled from the first reboiler together with ε-caprolactone can be reduced. As a result,
High boiling substances such as adipic acid, which causes polymerization loss in the deboiling tower 5, can be made to have a low concentration, and polymerization loss of ε-caprolactone in the deboiling tower 5 can be effectively prevented. Further, the high boiling acid of the low boiling column bottom liquid 4 thus supplied to the deboiling column 5 is efficiently removed by the reboiler, and the high boiling impurities are mixed in the product ε-caprolactone obtained from the line 12. Can be further reduced, which also contributes to quality improvement.

【0011】脱高沸塔5の蒸留器は、カプロラクトンオ
リゴマーやポリマー、オキシカプロン酸、アジピン酸、
そして構造不明の高沸点不純物成分を分離するために、
10段以上であることが好ましい。しかし、あまり多く
の段数を設置するとその圧力損失のため塔底温度が上昇
し、重合ロスを加速する場合もあるため、15〜30段
の範囲であることがより好ましい。
The distiller of the deboiling tower 5 includes caprolactone oligomers and polymers, oxycaproic acid, adipic acid,
And in order to separate high-boiling point impurities of unknown structure,
It is preferably 10 stages or more. However, if too many stages are installed, the column bottom temperature may rise due to the pressure loss and the polymerization loss may be accelerated. Therefore, the range of 15 to 30 stages is more preferable.

【0012】本発明が適用されるε−カプロラクトンを
製造する方法で用いられる有機過酸とは、過酢酸、過プ
ロピオン酸、過イソ酪酸など−CO−OOH基をもつ有
機酸であり、通常はアセトン、酢酸エチル、酢酸などの
溶液の形で用いられる。これら有機過酸はシクロヘキサ
ノンを酸化してε−カプロラクトンに変え、自らはε−
カプロラクトンより沸点の低い酢酸、プロピオン酸、イ
ソ酪酸などの有機酸に変わる。また共酸化法を使用する
場合には、シクロヘキサノンとアセトアルデヒドを原料
とし、空気酸化によってε−カプロラクトンと酢酸を得
るものである。
The organic peracid used in the method for producing ε-caprolactone to which the present invention is applied is an organic acid having a --CO--OOH group such as peracetic acid, perpropionic acid, and perisobutyric acid, and is usually It is used in the form of a solution of acetone, ethyl acetate, acetic acid, etc. These organic peracids oxidize cyclohexanone into ε-caprolactone, which itself
Converts to organic acids such as acetic acid, propionic acid, and isobutyric acid, which have lower boiling points than caprolactone. When the co-oxidation method is used, cyclohexanone and acetaldehyde are used as raw materials to obtain ε-caprolactone and acetic acid by air oxidation.

【0013】有機過酸酸化法により得られたε−カプロ
ラクトンを含有する反応混合物は、ε−カプロラクト
ン、未反応シクロヘキサノン、未反応過酸、過酸の溶
媒、例えば酢酸エチル、酢酸などの有機酸、カプロラク
トンオリゴマー、カプロラクトンポリマー、オキシカプ
ロン酸、アジピン酸、その他構造不明の副生物などの不
純物成分を含んでいる。このように多成分で、かつ熱経
時的に不安定な反応混合物を蒸留精製する場合、重合ロ
スを少なくするために減圧下で行われる。例えば脱低沸
塔1では100mmHg以下、脱高沸塔5では50mm
Hg以下で行うのが望ましい。
The reaction mixture containing ε-caprolactone obtained by the organic peracid oxidation method includes ε-caprolactone, unreacted cyclohexanone, unreacted peracid, a solvent of peracid, for example, organic acid such as ethyl acetate or acetic acid, It contains impurities such as caprolactone oligomer, caprolactone polymer, oxycaproic acid, adipic acid and other by-products of unknown structure. In the case of distilling and purifying a reaction mixture which is multi-component and unstable with heat, it is carried out under reduced pressure in order to reduce polymerization loss. For example, 100 mmHg or less in the deboiling tower 1 and 50 mm in the deboiling tower 5.
It is desirable to carry out at Hg or less.

【0014】[0014]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。な
お、実施例中の「%」はすべて「重量%」を表す。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto. In addition, all "%" in an Example represent "weight%."

【0015】(参考例1)反応内容積1.8リットルの
流通式反応器にシクロヘキサノン60g/時と30%過
酢酸酢酸エチル溶液170.5g/時(純過酢酸として
は51.4g/時、シクロヘキサノンに対して1.1モ
ル倍)を仕込み、反応温度50℃で連続反応させた。得
られた反応混合液を分析したところ、ε−カプロラクト
ン(CL−M)28.78%;未反応シクロヘキサノン
0.52%;未反応過酢酸1.31%;副生アジピン酸
0.59%;カプロラクトン重合物(PCL)0.30
%;酢酸21.16%;溶媒酢酸エチル47.34%の
割合であった。
Reference Example 1 Cyclohexanone 60 g / hr and 30% ethyl peracetate solution 170.5 g / hr (51.4 g / hr for pure peracetic acid) in a flow reactor having an internal reaction volume of 1.8 liters. (1.1 mol times with respect to cyclohexanone) was charged and the reaction was continuously performed at a reaction temperature of 50 ° C. When the obtained reaction mixture was analyzed, ε-caprolactone (CL-M) 28.78%; unreacted cyclohexanone 0.52%; unreacted peracetic acid 1.31%; byproduct adipic acid 0.59%; Caprolactone polymer (PCL) 0.30
%; Acetic acid 21.16%; solvent ethyl acetate 47.34%.

【0016】(実施例)上記参考例で得られた反応混合
液を図1に示す精製装置を用いて精製した。先ずライン
2により反応混合液を230.5g/時の割合で供給
し、脱低沸塔1で低沸物を除去し、次いで第一缶出液を
ライン4により脱高沸塔5へ供給して、ライン6から製
品ε−カプロラクトンを留出させる。さらにこの塔から
の缶出液6を第一リボイラー7へ導きその缶出液を第2
リボイラー9へ導いた。脱低沸塔1の蒸留器、脱高沸塔
5の操作条件は表−1の条件に従った。この際、第1リ
ボイラー缶出液に含有されたラクトン濃度は72%であ
り、第二リボイラーの缶出液には10%のラクトンが含
まれていた。ε−カプロラクトンの損失率を表−2に示
す。ε−カプロラクトンの収率は97.1%であった。
なお、得られた製品のε−カプロラクトンの酸価は0.
15(KOHmg/g)であった。
(Example) The reaction mixture obtained in the above reference example was purified using the purifying apparatus shown in FIG. First, the reaction mixture was supplied at a rate of 230.5 g / hour through line 2, low-boiling substances were removed in the deboiling tower 1, and then the first bottoms liquid was fed to the deboiling tower 5 through line 4. The product ε-caprolactone is distilled out from the line 6. Further, the bottom liquid 6 from this tower is guided to the first reboiler 7, and the bottom liquid is fed to the second reboiler 7.
Led to reboiler 9. The operating conditions of the distillation column of the deboiling column 1 and the deboiling column 5 were as shown in Table-1. At this time, the lactone concentration contained in the first reboiler bottom liquor was 72%, and the second reboiler bottom liquor contained 10% lactone. Table 2 shows the loss rates of ε-caprolactone. The yield of ε-caprolactone was 97.1%.
The acid value of ε-caprolactone of the obtained product is 0.
It was 15 (KOHmg / g).

【0017】(操作条件)本実施例における脱低沸塔1
の蒸留器、脱高沸塔5の蒸留器操作条件を表−1に示
す。
(Operating conditions) Deboiling column 1 in this embodiment
Table 1 shows the operating conditions of the still and the high boiling column removing tower 5.

【0018】[0018]

【表1】 [Table 1]

【0019】(比較例)脱高沸塔5のリボイラーを一段
とすること(図中リボイラー7のみ使用)以外は実施例
と同様に行った。但し、高沸点液排出に伴うラクトンの
含有ロスを低下させるため、その濃度を10%になる様
にリボイラー加熱量を調節した。ε−カプロラクトンの
損失率を表−2に示す。製品ε−カプロラクトン収率は
93.2%であった。また得られた製品のε−カプロラ
クトンの酸価は0.30であった。
(Comparative Example) The same procedure as in Example was carried out except that the reboiler of the deboiling tower 5 was provided in one stage (only the reboiler 7 was used in the figure). However, the heating amount of the reboiler was adjusted so that the concentration of lactone was reduced to 10% in order to reduce the loss of lactone content accompanying the discharge of the high boiling point liquid. Table 2 shows the loss rates of ε-caprolactone. The product ε-caprolactone yield was 93.2%. The acid value of ε-caprolactone of the obtained product was 0.30.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明の方法によって、シクロヘキサノ
ンを酸化して得た反応混合物を蒸留により不純物と分離
するε−カプロラクトンの精製法において、脱高沸塔の
リボイラーを2段以上設置することにより精製工程によ
る重合ロスを実質的に防止し、高い製品ε−カプロラク
トン得率を達成することが可能となった。複数個のリボ
イラーを設置することによる設備コストの増加は全く問
題とならない程の有益な効果が得られた。
INDUSTRIAL APPLICABILITY In the method for purifying ε-caprolactone in which the reaction mixture obtained by oxidizing cyclohexanone is separated from impurities by distillation according to the method of the present invention, the purification is carried out by installing two or more reboilers in the deboiling column. It became possible to substantially prevent the polymerization loss due to the process and achieve a high product ε-caprolactone yield. The increase in equipment cost due to the installation of multiple reboilers was such a beneficial effect that it did not pose any problem.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のε−カプロラクトンの精製法を示す工
程図。
FIG. 1 is a process diagram showing a method for purifying ε-caprolactone of the present invention.

【符号の説明】[Explanation of symbols]

1 脱低沸塔 3 低沸点留分 4 第一缶出液(低沸塔缶出液) 5 脱高沸塔 6 脱高沸塔缶出液 7 リボイラー(第一リボイラー) 8 リボイラー7の缶出液 9 リボイラー(第二リボイラー) 11 リボイラー9の缶出液 12 製品ε−カプロラクトン 1 De-low boiling tower 3 Low boiling fraction 4 First bottom liquid (low boiling tower bottom liquid) 5 De-high boiling tower 6 De-high boiling tower bottom liquid 7 Reboiler (first reboiler) 8 Reboiler 7 bottom Liquid 9 Reboiler (second reboiler) 11 Canned liquid of reboiler 12 Product ε-caprolactone

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シクロヘキサノンを酸化して得た反応混
合物を蒸留して不純物と分離するε−カプロラクトンの
精製法において、反応混合物に含まれる低沸物を第一蒸
留工程によって留去した後、第一缶出液から製品ε−カ
プロラクトンを留出させて高沸点不純物と分離する第二
蒸留工程において、第二蒸留工程にリボイラーを2段以
上設置して順次缶出液を濃縮することを特徴とするε−
カプロラクトンの精製法。
1. A method for purifying ε-caprolactone in which a reaction mixture obtained by oxidizing cyclohexanone is distilled to separate impurities from the reaction mixture. In the second distillation step of distilling the product ε-caprolactone from one bottom liquor to separate it from high-boiling-point impurities, it is characterized in that two or more stages of reboilers are installed in the second distillation step to successively concentrate bottom liquor. Ε-
Purification method of caprolactone.
【請求項2】 第二蒸留工程の第一リボイラーの缶出液
中のラクトン濃度が少なくとも20重量%以上となるよ
うに低濃縮状態で缶出させ、第二リボイラー以降で更に
濃縮することを特徴とする請求項1記載のε−カプロラ
クトンの精製法。
2. The second reboiler is further concentrated after the second reboiler so that the lactone concentration in the bottom liquid of the first reboiler in the second distillation step is at least 20% by weight or more, and the lactone is further concentrated after the second reboiler. The method for purifying ε-caprolactone according to claim 1.
【請求項3】 リボイラーが2段であることを特徴とす
る請求項1記載のε−カプロラクトンの精製法。
3. The method for purifying ε-caprolactone according to claim 1, wherein the reboiler has two stages.
JP14405895A 1995-05-17 1995-05-17 Purification of epsilon-caprolactone Pending JPH08311059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14405895A JPH08311059A (en) 1995-05-17 1995-05-17 Purification of epsilon-caprolactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14405895A JPH08311059A (en) 1995-05-17 1995-05-17 Purification of epsilon-caprolactone

Publications (1)

Publication Number Publication Date
JPH08311059A true JPH08311059A (en) 1996-11-26

Family

ID=15353340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14405895A Pending JPH08311059A (en) 1995-05-17 1995-05-17 Purification of epsilon-caprolactone

Country Status (1)

Country Link
JP (1) JPH08311059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094224A1 (en) * 2011-12-21 2013-06-27 株式会社クレハ Distillation tower system and method for distilling vinylidene chloride monomers using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094224A1 (en) * 2011-12-21 2013-06-27 株式会社クレハ Distillation tower system and method for distilling vinylidene chloride monomers using same

Similar Documents

Publication Publication Date Title
JP3938646B2 (en) Acrylic acid production method
US4140588A (en) Purification of propylene oxide by extractive distillation
US5315037A (en) Process for purification of acrylic acid
US2565087A (en) Process for oxidation of cycloaliphatic compounds
JPH05246941A (en) Method for purifying acrylic acid in high yield in production of acrylic acid
US20120149939A1 (en) Recovery of Acetic Acid from Heavy Ends in Vinyl Acetate Synthesis Process
KR100375780B1 (en) Method for recovering acrylic acid
JPS582219B2 (en) Recovery method of methacrylic acid
US4934519A (en) Process for working up crude liquid vinyl acetate
KR100551461B1 (en) Process for working up crude, liquid vinyl acetate
JPH08311059A (en) Purification of epsilon-caprolactone
EP0501374B1 (en) Process for purifying dimethyl carbonate
JPH0987273A (en) Purification of epsilon-caprolactone
KR101536035B1 (en) Method for collecting acrylic acid
EP0992483A1 (en) Process for purifying a process stream
EP1413342B1 (en) Process for producing epsilon-caprolactone
US3449219A (en) Process for fractionating propylene from propylene oxide in the presence of hydrocarbon flux
JP4173572B2 (en) Method for purifying ε-caprolactone
JPH08311058A (en) Purification of epsilon-caprolactone
CN1176058C (en) Method for producing phthallic anhydride according to specifications
JPS6016436B2 (en) Purification method of ε-caprolactone
US6063938A (en) Process for producing ε-caprolactone
JPH0565279A (en) Separation of epsilon-caprolactone and aromatic carboxylic acid
JP4698823B2 (en) Process for producing ε-caprolactone
JPH093057A (en) Purification of epsilon-caprolactone

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A02 Decision of refusal

Effective date: 20050705

Free format text: JAPANESE INTERMEDIATE CODE: A02