JPH08311058A - Purification of epsilon-caprolactone - Google Patents

Purification of epsilon-caprolactone

Info

Publication number
JPH08311058A
JPH08311058A JP13986695A JP13986695A JPH08311058A JP H08311058 A JPH08311058 A JP H08311058A JP 13986695 A JP13986695 A JP 13986695A JP 13986695 A JP13986695 A JP 13986695A JP H08311058 A JPH08311058 A JP H08311058A
Authority
JP
Japan
Prior art keywords
caprolactone
evaporator
purifying
boiling
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13986695A
Other languages
Japanese (ja)
Inventor
Noboru Kamei
登 亀井
Kenji Oka
憲治 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP13986695A priority Critical patent/JPH08311058A/en
Publication of JPH08311058A publication Critical patent/JPH08311058A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for purifying ε-caprolactone by which a high yield of the ε-caprolactone is obtained from a reactional mixture prepared by oxidizing cyclohexanone by distillation. CONSTITUTION: Low-boiling substances contained in a reactional mixture prepared by oxidizing cyclohexanone are distilled away by the first distillation step and high-boiling fraction impurities are then taken out in a low concentrated state as a bottom product in the second distillation step for distilling away the product ε-caprolactone from the first bottom product and separating the ε-caprolactone from high-boiling substances so as to provide at least >=20wt.% lactone concentration in the second bottom product. The ε- caprolactone contained in the second bottom product is subsequently evaporated with an evaporator and recovered in a method for purifying the ε-caprolactone by distilling the reactional mixture and separating the ε-caprolactone from the impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はε−カプロラクトンの
精製方法に関し、精製工程のうち製品ε−カプロラクト
ンを留出させて高沸点不純物を分離除去する脱高沸蒸留
工程(第二蒸留工程)において、ε−カプロラクトンの
重合に伴うε−カプロラクトンの収率低下を防止した改
良されたε−カプロラクトンの精製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying ε-caprolactone, which is used in a high boiling point distillation step (second distillation step) in which a product ε-caprolactone is distilled to separate and remove high-boiling impurities. , An improved method for purifying ε-caprolactone which prevents a decrease in the yield of ε-caprolactone due to the polymerization of ε-caprolactone.

【0002】[0002]

【従来の技術】ε−カプロラクトンは、ポリウレタン合
成用のポリエステルポリオールやその他の成形材料の重
合体原料等の用途をもち、製造方法としてはシクロヘキ
サノンを酸化して得る方法が代表的なものとして知られ
ている。このシクロヘキサノンの酸化にはアセトアルデ
ヒドとの共酸化法と、有機過酸、例えば過酢酸などを酸
化剤として用いる酸化法とがある。また、シクロヘキサ
ノンの酸化によって得た反応混合物から目的物を分離す
るために、蒸留法が用いられている。
2. Description of the Related Art Epsilon-caprolactone has applications such as polyester polyol for polyurethane synthesis and a raw material for polymers of other molding materials, and as a production method, a method obtained by oxidizing cyclohexanone is known as a typical one. ing. The oxidation of cyclohexanone includes a co-oxidation method with acetaldehyde and an oxidation method using an organic peracid such as peracetic acid as an oxidizing agent. Further, a distillation method is used to separate the target product from the reaction mixture obtained by the oxidation of cyclohexanone.

【0003】[0003]

【発明が解決しようとする課題】しかし慣用的な蒸留法
では、蒸留工程におけるε−カプロラクトンの重合損失
が多く、収率が低下し、さらに装置の閉塞などの問題が
ある。そこで係る問題を解決すべく、ε−カプロラクト
ンの損失原因は反応混合物中に含まれる高沸ハルツ成分
に起因するとし、未反応シクロヘキサノンの蒸留に先立
ち高沸ハルツを除去することを特徴とするε−カプロラ
クトンの精製法が特公昭60−16436号公報に開示
されている。この方法によると、シクロヘキサノンとア
セトアルデヒドとの共酸化法で得た反応混合物からのε
−カプロラクトンの精製において、シクロヘキサノン分
離塔での約15%に相当するε−カプロラクトンの損失
が大幅に減少している。しかし、用いた共酸化法の性質
上、ε−カプロラクトンに対して3〜10倍重量のシク
ロヘキサノンが反応液に残存する。
However, in the conventional distillation method, there are problems such as a large amount of polymerization loss of ε-caprolactone in the distillation step, the yield is lowered, and the device is clogged. Therefore, in order to solve such a problem, the cause of the loss of ε-caprolactone is attributed to the high boiling Hartz component contained in the reaction mixture, and the high boiling Hartz is removed prior to the distillation of unreacted cyclohexanone. A method for purifying caprolactone is disclosed in Japanese Examined Patent Publication No. 60-16436. According to this method, ε from the reaction mixture obtained by the co-oxidation method of cyclohexanone and acetaldehyde
-In the purification of caprolactone, the loss of ε-caprolactone corresponding to about 15% in the cyclohexanone separation column is significantly reduced. However, due to the nature of the co-oxidation method used, 3 to 10 times the weight of cyclohexanone relative to ε-caprolactone remains in the reaction solution.

【0004】これに対し、有機過酸による酸化法により
ε−カプロラクトンを合成すると、反応液中のシクロヘ
キサノンの含有量はε−カプロラクトンの0.1重量倍
以下で済むことが特開昭57−42684号公報に開示
されている。そして当該方法では、ε−カプロラクトン
を留出させ高沸点不純物を分離除去する蒸留工程におい
て、単通薄膜式蒸発器を備えた装置で蒸留し、ε−カプ
ロラクトンの重合ロスを防止することが提案されてい
る。これに対し、本発明者らが該公報実施例に記載され
た塔項の圧力および温度条件で20段の目皿塔を用いて
蒸留を行ったところ、ε−カプロラクトンの重合による
損失率は2〜3%程度であるが、この工程の缶出液に含
まれるε−カプロラクトンの濃度は40%以上と高く、
ε−カプロラクトン収率は92%と低いことが分かっ
た。そこで、缶出液に含まれるε−カプロラクトンの濃
度を低下させる目的で蒸発器の加熱条件を強化すると、
ε−カプロラクトンの重合が著しく促進され、この結果
ε−カプロラクトンの収率は向上しなかった。ε−カプ
ロラクトンの工業的製造プロセスにおいて、蒸留工程で
の上記のような実際上の収率の低さは大問題である。従
って、ε−カプロラクトン製造において脱高沸工程で重
合ロスを抑制しつつ缶出液の高濃縮化を達成し、ε−カ
プロラクトン収率を向上させ得る方法の開発が熱望され
ている。
On the other hand, when ε-caprolactone is synthesized by an oxidation method with an organic peracid, the content of cyclohexanone in the reaction solution is 0.1 weight times or less that of ε-caprolactone. It is disclosed in the publication. Then, in the method, in the distillation step of distilling out ε-caprolactone and separating and removing the high-boiling-point impurities, it is proposed to distill with an apparatus equipped with a single-pass thin film evaporator to prevent polymerization loss of ε-caprolactone. ing. On the other hand, when the present inventors conducted distillation using a 20-plate tray under the pressure and temperature conditions described in the Examples of the publication, the loss rate due to the polymerization of ε-caprolactone was 2 It is about 3%, but the concentration of ε-caprolactone contained in the bottom liquid in this step is as high as 40% or more,
It was found that the ε-caprolactone yield was as low as 92%. Therefore, if the heating conditions of the evaporator are strengthened in order to reduce the concentration of ε-caprolactone contained in the bottom liquid,
The polymerization of ε-caprolactone was significantly promoted, and as a result, the yield of ε-caprolactone was not improved. In the industrial production process of ε-caprolactone, the above-mentioned practically low yield in the distillation step is a serious problem. Therefore, in the production of ε-caprolactone, it is eagerly desired to develop a method capable of achieving a high concentration of bottoms while suppressing the polymerization loss in the deboiling step and improving the yield of ε-caprolactone.

【0005】[0005]

【課題を解決するための手段】本発明者らは、脱高沸工
程における缶出液のラクトン濃度を少なくとも20%以
上の低濃縮条件とし、次いでその缶出液より蒸発器、好
ましくは精留部を付備しない蒸発器を用いて再濃縮し、
缶出液中のε−カプロラクトンを回収することにより高
いε−カプロラクトン収率が得られることを見出し、本
発明を完成させた。
[Means for Solving the Problems] The inventors of the present invention set the lactone concentration of the bottom liquid in the deboiling step to a low concentration condition of at least 20% or more, and then from the bottom liquid to an evaporator, preferably rectification. Reconcentrate using an evaporator without parts,
It was found that a high yield of ε-caprolactone can be obtained by recovering ε-caprolactone in the bottom liquid, and the present invention has been completed.

【0006】すなわち、シクロヘキサノンを酸化して得
た反応混合物を蒸留して不純物と分離するε−カプロラ
クトンの精製方法において、反応混合物に含まれる低沸
物を第一蒸留工程によって留去した後、第一缶出液から
製品ε−カプロラクトンを留出させて高沸点不純物と分
離する第二蒸留工程において、第二缶出液中のラクトン
濃度が少なくとも20重量%以上となるように高沸点留
分不純物を低濃縮状態で缶出させ、次いで蒸発器を用い
て第二缶出液中に含有するε−カプロラクトンを蒸発さ
せて回収することを特徴とするε−カプロラクトンの精
製方法を提供するものである。また、蒸発器より蒸発さ
せて回収したε−カプロラクトンを第一もしくは第二蒸
留工程または酸化反応工程へリサイクルすることを特徴
とする前記ε−カプロラクトンの精製方法を提供するも
のである。さらに、精留部を付備しない蒸発器を用いる
ことを特徴とする前記ε−カプロラクトンの精製方法を
提供するものである。以下、本発明を詳細に説明する。
That is, in a method for purifying ε-caprolactone in which a reaction mixture obtained by oxidizing cyclohexanone is distilled to separate from impurities, a low boiling substance contained in the reaction mixture is distilled off in the first distillation step, In the second distillation step in which the product ε-caprolactone is distilled from one bottom liquor to separate it from high-boiling impurities, the high-boiling fraction impurities such that the lactone concentration in the second bottom liquor is at least 20% by weight or more. The present invention provides a method for purifying ε-caprolactone, which comprises recovering ε-caprolactone in a low-concentration state, and then evaporating and collecting ε-caprolactone contained in the second bottom effluent using an evaporator. . Further, the present invention provides the above-mentioned method for purifying ε-caprolactone, which comprises recycling the ε-caprolactone recovered by evaporation from the evaporator to the first or second distillation step or the oxidation reaction step. Further, the present invention provides a method for purifying ε-caprolactone, which comprises using an evaporator without a rectification section. Hereinafter, the present invention will be described in detail.

【0007】本発明者は、このような脱高沸蒸留工程
(第二蒸留工程)における脱高沸塔の蒸留器内での重合
のメカニズムを詳細に検討した結果、脱高沸塔の蒸留器
内に存在するアジピン酸等の高沸酸、あるいはアジピン
酸等によってラクトンが開環して生成した化合物が重合
開始剤となって蒸留塔本体あるいはそのリボイラー内で
重合が進むことを突き止めた。このうち特開昭57−4
2684号公報のように単通式薄膜蒸発器を用いた場合
は、リボイラー内の滞留時間が減少したため、リボイラ
ー内での重合ロスが防止出来たものと推測される。一
方、脱高沸塔からの缶出液(第二缶出液)の濃縮度の上
昇に伴う重合ロスの増加については、リボイラー内の第
二缶出液の濃縮度の上昇に伴い、脱高沸塔の精留部へア
ジピン酸等の高沸酸が留出され、ここで先に述べた重合
のメカニズムが生じると考えられる。このため、第二缶
出液を高濃縮してもε−カプロラクトン収率の改善がな
されなかったと推測される。一方、第二缶出液の濃縮を
蒸留工程で行うと重合ロスが多いのに対し、蒸発器、特
に精留塔を付備しない蒸発器のみを用いた場合には殆ど
重合ロスがみられないことが分かった。そこで本発明で
は脱高沸塔の濃縮度を低くして精留部での重合ロスを低
減し、その缶出液を蒸発器、好ましくは精留塔を付備し
ない蒸発器を用いて再濃縮した。こうして重合ロスを従
来法に比べて大幅に低減させながら缶出液を高濃縮化さ
せることができたのである。なお、本発明を実施する上
で、ε−カプロラクトンを留出させる第二蒸留工程のリ
ボイラーは勿論のこと、本蒸発器も特開昭57−426
84号公報に記載された単通薄膜式蒸発器を用いること
が望ましい。
The present inventor has studied in detail the mechanism of polymerization in the distillation column of the deboiling column in the deboiling column (second distillation step), and as a result, the distillation column of the deboiling column It was found that a high boiling acid such as adipic acid present therein or a compound formed by ring opening of a lactone by adipic acid or the like serves as a polymerization initiator and the polymerization proceeds in the distillation column main body or its reboiler. Of these, JP-A-57-4
When a single-pass type thin film evaporator is used as in Japanese Patent No. 2684, it is presumed that the polymerization loss in the reboiler could be prevented because the residence time in the reboiler was reduced. On the other hand, regarding the increase in polymerization loss due to the increase in the concentration of bottom liquid (second bottom liquid) from the de-high boiling column, the increase in the concentration of the second bottom liquid in the reboiler It is considered that high boiling acids such as adipic acid are distilled out to the rectification section of the boiling column, and the above-mentioned mechanism of polymerization occurs here. Therefore, it is presumed that the yield of ε-caprolactone was not improved even if the second bottom liquid was highly concentrated. On the other hand, when the concentration of the second bottom liquor is carried out in the distillation step, there is a large amount of polymerization loss, whereas in the case of using only an evaporator, particularly an evaporator not equipped with a rectification column, almost no polymerization loss is observed. I found out. Therefore, in the present invention, the degree of condensation in the deboiling column is reduced to reduce the polymerization loss in the rectification section, and the bottoms thereof are re-concentrated using an evaporator, preferably an evaporator not equipped with a rectification column. did. Thus, it was possible to highly concentrate the bottom liquid while significantly reducing the polymerization loss as compared with the conventional method. In carrying out the present invention, not only the reboiler in the second distillation step for distilling ε-caprolactone but also the present evaporator is disclosed in JP-A-57-426.
It is desirable to use the single-pass thin film evaporator described in Japanese Patent Publication No. 84.

【0008】本発明のε−カプロラクトンの精製方法を
図1を用いて説明する。なお、図中の番号は装置および
内容物の双方を表すことがある。まず、有機過酸酸化法
で得られる反応液もしくは共酸化法で得られる反応液、
またはその反応液から脱溶媒を行った粗液を脱低沸(第
一蒸留)塔1へライン2より供給する。なお粗液を用い
る場合には、特公昭60−16436号公報に記載され
た方法と同様に、脱低沸処理を行った後に蒸発工程によ
り高沸ハルツを除去したものを用いたものであってもよ
い。この蒸発工程ではアジピン酸などの高沸点物もε−
カプロラクトンと共に留出されるが、本発明において
は、脱高沸工程でε−カプロラクトンとこれら高沸点物
を分離させるので支障無いからである。
The method for purifying ε-caprolactone of the present invention will be described with reference to FIG. The numbers in the figure may represent both the device and the contents. First, the reaction solution obtained by the organic peroxyacid oxidation method or the reaction solution obtained by the co-oxidation method,
Alternatively, a crude liquid obtained by removing the solvent from the reaction liquid is supplied to the low boiling point (first distillation) column 1 through a line 2. When the crude liquid is used, it is the same as the method described in JP-B-60-16436, in which the high boiling point Harz is removed by the evaporation step after the deboiling treatment. Good. In this evaporation process, high-boiling substances such as adipic acid also have ε-
This is because it is distilled out together with caprolactone, but in the present invention, there is no problem because ε-caprolactone is separated from these high-boiling substances in the deboiling step.

【0009】脱低沸塔1により低沸点留分3が除かれ、
ε−カプロラクトンと高沸酸等の高沸点物からなる第一
缶出液4は脱高沸塔5の蒸留器へ供給される。脱高沸塔
5における第二缶出液7の組成は、ε−カプロラクトン
の濃度が20%以上、好ましくは40%以上になる様、
脱高沸塔5の加熱条件を設定することが好ましい。な
お、脱高沸塔5の蒸留器は、カプロラクトンオリゴマー
やポリマー、オキシカプロン酸、アジピン酸、そして構
造不明の高沸点不純物成分を分離するために、10段以
上であることが好ましい。しかし、あまり多くの段数を
設置するとその圧力損失のため塔底温度が上昇し、重合
ロスを加速する場合もあるため、15〜30段の範囲で
あることがより好ましい。
The deboiling tower 1 removes the low boiling fraction 3 and
The first bottoms liquid 4 composed of ε-caprolactone and a high-boiling point substance such as high-boiling acid is supplied to the distillation unit of the deboiling column 5. The composition of the second bottoms liquid 7 in the deboiling tower 5 is such that the concentration of ε-caprolactone is 20% or more, preferably 40% or more.
It is preferable to set the heating conditions of the deboiling tower 5. In addition, it is preferable that the distiller of the deboiling column 5 has 10 or more stages in order to separate caprolactone oligomers and polymers, oxycaproic acid, adipic acid, and high-boiling-point impurity components of unknown structure. However, if too many stages are installed, the column bottom temperature may rise due to the pressure loss and the polymerization loss may be accelerated. Therefore, the range of 15 to 30 stages is more preferable.

【0010】第二缶出液7は蒸発器8へ供給される。蒸
発器8からのε−カプロラクトンを含む蒸気凝縮液10
はライン4またはライン2を介して図1のように脱高沸
塔5の供給液として再利用することが可能である。さら
に、この蒸気凝縮液10はそれ以前の工程、例えば酸化
反応工程へ再循環させることもできる。ここで、蒸発器
8は、仕込み液に対する留出量比が極めて少ないため、
蒸気凝縮液に含まれるアジピン酸等の高沸酸の量は僅か
であり、蒸気凝縮液10の再利用による系内の高沸酸の
蓄積は殆どみられない。このように蒸発器8によって不
純物の分離を効率よく行えるため、例えば脱高沸塔5へ
循環供給されるε−カプロラクトン中の高沸酸の濃度は
通常の仕込みライン4における濃度よりも低濃度にする
ことができる。このため、脱高沸塔5を低濃縮条件にし
ていることも相俟って、ライン6から得られる製品ε−
カプロラクトン中への高沸不純物の混入を更に低下さ
せ、品質改良にも寄与することになる。
The second bottom liquid 7 is supplied to the evaporator 8. Vapor condensate 10 containing ε-caprolactone from evaporator 8
Can be reused as the feed liquid for the deboiling column 5 via the line 4 or the line 2 as shown in FIG. Further, this vapor condensate 10 can be recycled to a previous step, for example, an oxidation reaction step. Here, since the evaporator 8 has an extremely small ratio of the amount of distillate to the charged liquid,
The amount of high-boiling acid such as adipic acid contained in the vapor condensate is small, and accumulation of high-boiling acid in the system due to reuse of the vapor condensate 10 is hardly seen. In this way, since the impurities can be efficiently separated by the evaporator 8, for example, the concentration of the high boiling acid in ε-caprolactone circulated and supplied to the deboiling column 5 becomes lower than that in the normal charging line 4. can do. Therefore, the product ε- obtained from the line 6 is combined with the fact that the de-high boiling column 5 is under a low concentration condition.
This will further reduce the inclusion of high boiling impurities in caprolactone and contribute to quality improvement.

【0011】本発明が適用されるε−カプロラクトンを
製造する方法で用いられる有機過酸とは、過酢酸、過プ
ロピオン酸、過イソ酪酸など−CO−OOH基をもつ有
機酸であり、通常はアセトン、酢酸エチル、酢酸などの
溶液の形で用いられる。これら有機過酸はシクロヘキサ
ノンを酸化してε−カプロラクトンに変え、自らはε−
カプロラクトンより沸点の低い酢酸、プロピオン酸、イ
ソ酪酸などの有機酸に変わる。また共酸化法を使用する
場合には、シクロヘキサノンとアセトアルデヒドを原料
とし、空気酸化によってε−カプロラクトンと酢酸を得
るものである。
The organic peracid used in the method for producing ε-caprolactone to which the present invention is applied is an organic acid having a --CO--OOH group such as peracetic acid, perpropionic acid, and perisobutyric acid, and is usually It is used in the form of a solution of acetone, ethyl acetate, acetic acid, etc. These organic peracids oxidize cyclohexanone into ε-caprolactone, which itself
Converts to organic acids such as acetic acid, propionic acid, and isobutyric acid, which have lower boiling points than caprolactone. When the co-oxidation method is used, cyclohexanone and acetaldehyde are used as raw materials to obtain ε-caprolactone and acetic acid by air oxidation.

【0012】有機過酸酸化法により得られたε−カプロ
ラクトンを含有する反応混合物は、ε−カプロラクト
ン、未反応シクロヘキサノン、未反応過酸、過酸の溶
媒、例えば酢酸エチル、酢酸などの有機酸、カプロラク
トンオリゴマー、カプロラクトンポリマー、オキシカプ
ロン酸、アジピン酸、その他構造不明の副生物などの不
純物成分を含んでいる。このように多成分で、かつ熱経
時的に不安定な反応混合物を蒸留精製する場合、重合ロ
スを少なくするために減圧下で行われる。例えば脱低沸
塔1では100mmHg以下、脱高沸塔5では50mm
Hg以下で行うのが望ましい。また蒸発器8も脱高沸塔
5と同様に、可能な限り減圧下で行うことが望ましい。
また、蒸発器8は精留部を持たないことが製品の高収率
を得るために好ましい。但し、精留部を取り付けて、再
利用する留出液の品質を改善することも可能である。も
ちろん、品質的に劣ることを問題にしなければリサイク
ルを行わずに、直接ε−カプロラクトンとして回収する
ことも出来る。
The reaction mixture containing ε-caprolactone obtained by the organic peracid oxidation method includes ε-caprolactone, unreacted cyclohexanone, unreacted peracid, solvents for peracids such as organic acids such as ethyl acetate and acetic acid, It contains impurities such as caprolactone oligomer, caprolactone polymer, oxycaproic acid, adipic acid and other by-products of unknown structure. In the case of distilling and purifying a reaction mixture which is multi-component and unstable with heat, it is carried out under reduced pressure in order to reduce polymerization loss. For example, 100 mmHg or less in the deboiling tower 1 and 50 mm in the deboiling tower 5.
It is desirable to carry out at Hg or less. In addition, it is desirable that the evaporator 8 is also operated under reduced pressure as much as possible, as in the deboiling tower 5.
Further, it is preferable that the evaporator 8 does not have a rectification section in order to obtain a high product yield. However, it is also possible to attach a rectification section to improve the quality of the distillate to be reused. Of course, if it is not a problem that the quality is inferior, it can be directly recovered as ε-caprolactone without recycling.

【0013】[0013]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。な
お、実施例中の「%」はすべて「重量%」を表す。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto. In addition, all "%" in an Example represent "weight%."

【0014】(操作条件)本実施例における脱低沸塔1
の蒸留器、脱高沸塔5の蒸留器、蒸発器8の操作条件を
表−1に示す。
(Operating conditions) Deboiling column 1 in the present embodiment
Table 1 shows the operating conditions of the distillation apparatus of No. 3, the distillation apparatus of the deboiling column 5, and the evaporator 8.

【0015】[0015]

【表1】 [Table 1]

【0016】(参考例1)反応内容積1.8リットルの
流通式反応器にシクロヘキサノン60g/時と30%過
酢酸酢酸エチル溶液170.5g/時(純過酢酸として
は51.4g/時、シクロヘキサノンに対して1.1モ
ル倍)を仕込み、反応温度50℃で連続反応した。得ら
れた反応混合液を分析したところ、ε−カプロラクトン
(CL−M)28.78%;未反応シクロヘキサノン
0.52%;未反応過酢酸1.31%;副生アジピン酸
0.59%;カプロラクトン重合物(PCL)0.30
%;酢酸21.16%;溶媒酢酸エチル47.34%の
割合であった。
Reference Example 1 In a flow reactor having an internal reaction volume of 1.8 liters, 60 g / hr of cyclohexanone and 170.5 g / hr of a 30% ethyl peracetate solution (51.4 g / hr as pure peracetic acid, (1.1 mol times relative to cyclohexanone) was charged, and the reaction was continued at a reaction temperature of 50 ° C. When the obtained reaction mixture was analyzed, ε-caprolactone (CL-M) 28.78%; unreacted cyclohexanone 0.52%; unreacted peracetic acid 1.31%; byproduct adipic acid 0.59%; Caprolactone polymer (PCL) 0.30
%; Acetic acid 21.16%; solvent ethyl acetate 47.34%.

【0017】(実施例1)上記参考例で得られた反応混
合液を図1に示す精製装置を用いて精製した。先ずライ
ン2により反応混合液を230.5g/時の割合で供給
し、脱低沸塔1で低沸物を除去し、次いで第一缶出液を
ライン4により脱高沸塔5へ供給して、ライン6から製
品ε−カプロラクトンを留出させる。さらに第二缶出液
をライン7により蒸発器8へ導き、含有するε−カプロ
ラクトンを蒸去させ、蒸気凝縮液はライン10によって
脱高沸塔5へ再循環させた。脱低沸塔1の蒸留器、脱高
沸塔5の蒸留器および蒸発器8の操作条件は表−1の条
件に従った。この際、ライン7中のラクトン濃度は66
%であり、ライン9で排出された高沸点液中のラクトン
濃度は10%であった。ε−カプロラクトンの損失率を
表−2に、ε−カプロラクトンおよびその重合体の各装
置における割合を表−3に示す。ε−カプロラクトンの
収率は97.1%であった。なお、得られた製品ε−カ
プロラクトンの酸価は0.15(KOHmg/g)であ
った。
(Example 1) The reaction mixture obtained in the above reference example was purified using the purification apparatus shown in FIG. First, the reaction mixture was supplied at a rate of 230.5 g / hour through line 2, low-boiling substances were removed in the deboiling tower 1, and then the first bottoms liquid was fed to the deboiling tower 5 through line 4. The product ε-caprolactone is distilled out from the line 6. Further, the second bottoms liquid was led to the evaporator 8 through the line 7, the contained ε-caprolactone was distilled off, and the vapor condensate was recycled through the line 10 to the high boiling point column 5. The operating conditions of the distillation apparatus for the low boiling point column 1 for distillation, the distillation apparatus for the high boiling point column for desorption 5 and the evaporator 8 were in accordance with the conditions shown in Table 1. At this time, the lactone concentration in line 7 is 66.
%, And the lactone concentration in the high boiling point liquid discharged through the line 9 was 10%. The loss rate of ε-caprolactone is shown in Table 2, and the proportion of ε-caprolactone and its polymer in each device are shown in Table 3. The yield of ε-caprolactone was 97.1%. The acid value of the obtained product ε-caprolactone was 0.15 (KOHmg / g).

【0018】(比較例1)ライン7から蒸発器への送液
を中止し、ここから直接高沸点液を排出する以外は実施
例1と同様に行った。但し、高沸点液排出に伴うラクト
ンの含有ロスを低下させるため、その濃度を10%にな
る様にリボイラー加熱量を調節した。この時脱高沸塔5
の塔底温度は160℃であった。ε−カプロラクトンの
損失率を表−2に、ε−カプロラクトンおよびその重合
体の各装置における割合を表−3に示す。製品ε−カプ
ロラクトン収率は92.3%であった。また得られた製
品ε−カプロラクトンの酸価は0.30(KOHmg/
g)であった。
(Comparative Example 1) The same procedure as in Example 1 was carried out except that the liquid feeding from the line 7 to the evaporator was stopped and the high boiling point liquid was directly discharged from here. However, the heating amount of the reboiler was adjusted so that the concentration of lactone was reduced to 10% in order to reduce the loss of lactone content accompanying the discharge of the high boiling point liquid. At this time, the high boiling column 5
The bottom temperature of the column was 160 ° C. The loss rate of ε-caprolactone is shown in Table 2, and the proportion of ε-caprolactone and its polymer in each device are shown in Table 3. The product ε-caprolactone yield was 92.3%. The acid value of the obtained product ε-caprolactone is 0.30 (KOHmg /
g).

【0019】(比較例2)脱高沸塔5での重合ロスを抑
制するため、缶出液中のラクトン濃度を20%になるよ
うにリボイラー加熱量を調節すること以外は、比較例1
と同様に行った。この時、脱高沸塔5の塔底温度は15
3℃であった。ε−カプロラクトンの損失率を表−2
に、ε−カプロラクトンおよびその重合体の各装置にお
ける割合を表−3に示す。製品ε−カプロラクトン収率
は92.0%であった。また得られた製品ε−カプロラ
クトンの酸価は0.30(KOHmg/g)であった。
(Comparative Example 2) Comparative Example 1 except that the heating amount of the reboiler is adjusted so that the lactone concentration in the bottom liquid is 20% in order to suppress the polymerization loss in the deboiling tower 5.
I went the same way. At this time, the bottom temperature of the deboiling tower 5 is 15
It was 3 ° C. Table 2 shows the loss rate of ε-caprolactone.
Table 3 shows the proportions of ε-caprolactone and its polymer in each device. The product ε-caprolactone yield was 92.0%. The acid value of the obtained product ε-caprolactone was 0.30 (KOHmg / g).

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】本発明の方法によって、シクロヘキサノ
ンを酸化して得た反応混合物を蒸留により不純物と分離
してラクトンを得るε−カプロラクトンの製造法におい
て、精製工程による重合ロスを実質的に防止し、高い製
品ε−カプロラクトン得率を達成することが可能となっ
た。
INDUSTRIAL APPLICABILITY According to the method of the present invention, in the method for producing ε-caprolactone in which the reaction mixture obtained by oxidizing cyclohexanone is separated from impurities by distillation to obtain a lactone, polymerization loss due to the purification step is substantially prevented. It has become possible to achieve a high product ε-caprolactone yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】ε−カプロラクトンの精製方法を示す工程図。FIG. 1 is a process diagram showing a method for purifying ε-caprolactone.

【符号の説明】[Explanation of symbols]

1 脱低沸塔 3 低沸点留分 4 第一缶出液 5 脱高沸塔 6 製品ε−カプロラクトン 7 第二缶出液 8 蒸発器 10 蒸気凝縮液 1 De-deboiling tower 3 Low boiling fraction 4 First bottom liquid 5 De-high boiling column 6 Product ε-caprolactone 7 Second bottom liquid 8 Evaporator 10 Vapor condensate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シクロヘキサノンを酸化して得た反応混
合物を蒸留して不純物と分離するε−カプロラクトンの
精製方法において、反応混合物に含まれる低沸物を第一
蒸留工程によって留去した後、第一缶出液から製品ε−
カプロラクトンを留出させて高沸点不純物と分離する第
二蒸留工程において、第二缶出液中のラクトン濃度が少
なくとも20重量%以上となるように高沸点留分不純物
を低濃縮状態で缶出させ、次いで蒸発器を用いて第二缶
出液中に含有するε−カプロラクトンを蒸発させて回収
することを特徴とするε−カプロラクトンの精製方法。
1. A method for purifying ε-caprolactone in which a reaction mixture obtained by oxidizing cyclohexanone is distilled to separate impurities from the reaction mixture. Product from one can
In the second distillation step of distilling caprolactone to separate it from high-boiling-point impurities, the high-boiling-point distillate impurities are taken out in a low-concentration state so that the lactone concentration in the second bottoms liquid is at least 20% by weight or more. A method for purifying ε-caprolactone, which comprises evaporating and collecting ε-caprolactone contained in the second bottom liquid using an evaporator.
【請求項2】 蒸発器より蒸発させて回収したε−カプ
ロラクトンを第一もしくは第二蒸留工程または酸化反応
工程へリサイクルすることを特徴とする請求項1記載の
ε−カプロラクトンの精製方法。
2. The method for purifying ε-caprolactone according to claim 1, wherein the ε-caprolactone recovered by evaporating from the evaporator is recycled to the first or second distillation step or the oxidation reaction step.
【請求項3】 精留部を付備しない蒸発器を用いること
を特徴とする請求項1または2記載のε−カプロラクト
ンの精製方法。
3. The method for purifying ε-caprolactone according to claim 1, wherein an evaporator without a rectification section is used.
JP13986695A 1995-05-15 1995-05-15 Purification of epsilon-caprolactone Pending JPH08311058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13986695A JPH08311058A (en) 1995-05-15 1995-05-15 Purification of epsilon-caprolactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13986695A JPH08311058A (en) 1995-05-15 1995-05-15 Purification of epsilon-caprolactone

Publications (1)

Publication Number Publication Date
JPH08311058A true JPH08311058A (en) 1996-11-26

Family

ID=15255382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13986695A Pending JPH08311058A (en) 1995-05-15 1995-05-15 Purification of epsilon-caprolactone

Country Status (1)

Country Link
JP (1) JPH08311058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094224A1 (en) * 2011-12-21 2013-06-27 株式会社クレハ Distillation tower system and method for distilling vinylidene chloride monomers using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094224A1 (en) * 2011-12-21 2013-06-27 株式会社クレハ Distillation tower system and method for distilling vinylidene chloride monomers using same

Similar Documents

Publication Publication Date Title
JP3938646B2 (en) Acrylic acid production method
EP0551111B1 (en) Process for purifying acrylic acid to high purity in the production of acrylic acid
KR100690034B1 (en) Method for production of acrylic acid
US4140588A (en) Purification of propylene oxide by extractive distillation
US6888026B2 (en) Method for producing (meth)acrylic acid
JPH0665139A (en) Method for recovering acetic acid
JP3160983B2 (en) Purification method of ethyl acetate
US20120149939A1 (en) Recovery of Acetic Acid from Heavy Ends in Vinyl Acetate Synthesis Process
KR100375780B1 (en) Method for recovering acrylic acid
JPH05246941A (en) Method for purifying acrylic acid in high yield in production of acrylic acid
KR100551461B1 (en) Process for working up crude, liquid vinyl acetate
JPH08311058A (en) Purification of epsilon-caprolactone
EP1413342B1 (en) Process for producing epsilon-caprolactone
JPH0987273A (en) Purification of epsilon-caprolactone
KR100584677B1 (en) A high-efficient method for preparing acrylic acid
JPH08311059A (en) Purification of epsilon-caprolactone
US2504195A (en) Heatcd
JPH06336455A (en) Purification of ethyl acetate
JP4173572B2 (en) Method for purifying ε-caprolactone
JP4698823B2 (en) Process for producing ε-caprolactone
EP0822193B1 (en) Process for producing Epsilon-caprolactone
JPH10120618A (en) Separation of acetic acid from acrylic acid
JPH0742252B2 (en) Purification of glyoxylic acid alkyl ester by azeotropic distillation in continuous column
JPH0834757A (en) Purification of acrylic acid
JPH0565279A (en) Separation of epsilon-caprolactone and aromatic carboxylic acid

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Effective date: 20050411

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003