JP3880128B2 - Acrylic acid recovery method - Google Patents

Acrylic acid recovery method Download PDF

Info

Publication number
JP3880128B2
JP3880128B2 JP11734797A JP11734797A JP3880128B2 JP 3880128 B2 JP3880128 B2 JP 3880128B2 JP 11734797 A JP11734797 A JP 11734797A JP 11734797 A JP11734797 A JP 11734797A JP 3880128 B2 JP3880128 B2 JP 3880128B2
Authority
JP
Japan
Prior art keywords
acrylic acid
azeotropic
tower
solvent
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11734797A
Other languages
Japanese (ja)
Other versions
JPH10306052A (en
Inventor
一彦 坂元
整 中原
隆裕 武田
正敏 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP11734797A priority Critical patent/JP3880128B2/en
Priority to US09/031,068 priority patent/US6084127A/en
Priority to DE69806074T priority patent/DE69806074T2/en
Priority to IDP980295A priority patent/ID19974A/en
Priority to EP98301479A priority patent/EP0861820B1/en
Priority to KR10-1998-0006604A priority patent/KR100375780B1/en
Publication of JPH10306052A publication Critical patent/JPH10306052A/en
Application granted granted Critical
Publication of JP3880128B2 publication Critical patent/JP3880128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はアクリル酸の回収方法に関する。詳しくは、本発明はプロピレンおよび/またはアクロレインを分子状酸素含有ガスを用いて接触気相酸化して得られるアクリル酸含有ガスを水と接触させて捕集し、得られるアクリル酸水溶液を特定の共沸溶剤の存在下に蒸留してアクリル酸を効率よく回収する方法に関する。
【0002】
【従来の技術】
プロピレンおよび/またはアクロレインを接触気相酸化してアクリル酸を製造することは工業的に広く行われている。この方法は、通常、プロピレンおよび/またはアクロレインを分子状酸素含有ガスを用いて接触気相酸化する酸化工程、この接触気相酸化により得られるアクリル酸含有ガスを水と接触させて捕集する捕集工程、捕集工程で得られるアクリル酸水溶液からアクリル酸を分離、回収する回収工程、および回収工程からのアクリル酸中に含まれる不純物としての酢酸を分離、除去する酢酸分離工程などからなる。
【0003】
上記アクリル酸水溶液からのアクリル酸の分離、回収には、現在では、アクリル酸水溶液を共沸分離塔に導き、ここで共沸溶剤の存在下に蒸留を行う、いわゆる共沸蒸留法が一般的に用いられている。
【0004】
しかし、上記アクリル酸水溶液中には、水、酢酸のほかにギ酸、アセトアルデヒド、ホルムアルデヒドなどの副生物が含まれていることから、その共沸蒸留に際しては、純粋なアクリル酸を蒸留する場合に比べてアクリル酸の重合性が高くなり、ポリマーの生成、塔内の圧力損失の増加などの問題が生じる。そこで、一般に、ハイドロキノン、フェノチアジン、金属塩化合物などの重合防止剤の使用が必須となっている。
【0005】
上記回収工程で用いる共沸溶剤としては、特公平6−15496号公報には、酢酸n−ブチル、酢酸イソブチル、酢酸sec−ブチル、メチルイソブチルケトンなどが記載されている。
【0006】
また、特公昭63−10691号公報には、トルエンなどの炭化水素の使用が記載されている。
【0007】
また、特公昭46−34691号公報および特公昭46−18967号公報には、酢酸エチル、酢酸ブチル、ジブチルエーテル、酢酸エチル、ヘキサン、ヘプタン、メタクリル酸エチル、アクリル酸プロピルなどが記載されている。
【0008】
さらに、特開昭5−246941号公報には、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチル−t−ブチルケトンおよび酢酸n−プロピルから選ばれる少なくとも一つとトルエン、ヘプタンおよびメチルシクロヘキサンから選ばれる少なくとも一つとを組み合せ使用することが記載されている。
【0009】
【発明が解決しようとする課題】
しかし、上記従来の共沸溶剤は、共沸分離塔における溶剤分離性およびアクリル酸の重合性の点において問題があった。すなわち、共沸蒸留の際の溶剤の分離性が悪く、回収したアクリル酸中に溶剤が混入したり、また前記重合防止剤を使用してもなおアクリル酸の重合が起こりやすいという問題が生じる。
【0010】
例えば、特公平6−15496号公報に記載の酢酸ブチル、メチルイソブチルケトンなどの共沸溶剤を使用する場合、共沸分離塔における溶剤の分離が十分でなく回収アクリル酸中に溶剤が混入するなどの問題が生じる。
【0011】
また、特公昭63−10691号公報に記載のトルエンなどの炭化水素の場合、共沸分離塔内で不均一相が形成されるためアクリル酸の重合が起こり易い。
【0012】
このように、従来公知の共沸溶剤は未だ十分に満足できるものではなく、溶剤分離性に優れ、しかも共沸分離塔内でのアクリル酸の重合を効果的に防止し、ポリマーの生成、塔内での圧力損失の増大などの問題を解決するに好適な共沸溶剤が強く望まれている。
【0013】
かくして、本発明は、溶剤分離性に優れ、しかも共沸分離塔内での望ましくないポリマーの生成を効果的に防止しながら蒸留を行うのに好適な新規な共沸溶剤を提供することを目的とするものである。
【0014】
【課題を解決するための手段】
本発明者らの研究によれば、共沸溶剤としてメタクリル酸メチル、アクリル酸ビニル、酢酸アリル、酢酸イソプロペニル、プロピオン酸ビニルおよびクロトン酸メチルから選ばれる少なくとも一種を用いると、これら共沸溶剤は分離性に優れ、しかも望ましくないポリマーの生成を効果的に防止し得ることを知り、この知見に基づいて本発明を完成するに至った。
【0015】
すなわち、本発明は、プロピレンおよび/またはアクロレインを接触気相酸化して得られるアクリル酸含有ガスを水と接触させてアクリル酸水溶液として捕集し、このアクリル酸水溶液を共沸分離塔に導入し、共沸溶剤の存在下に蒸留してアクリル酸を分離、回収する際に、上記共沸溶剤としてメタクリル酸メチル、アクリル酸ビニル、酢酸アリル、酢酸イソプロペニル、プロピオン酸ビニルおよびクロトン酸メチルから選ばれる少なくとも一種を用いることを特徴とするアクリル酸の回収方法である。
【0016】
【発明の実施の形態】
本発明の方法において共沸溶剤として用いる、メタクリル酸メチル、アクリル酸ビニル、酢酸アリル、酢酸イソプロペニル、プロピオン酸ビニルおよびクロトン酸メチルはいずれも工業的に入手可能なものをそのまま使用することができる。
【0017】
本発明の方法は、共沸溶剤としてメタクリル酸メチル、アクリル酸ビニル、酢酸アリル、酢酸イソプロペニル、プロピオン酸ビニルおよびクロトン酸メチルから選ばれる少なくとも一種を用いる点を除けば、常法にしたがって行うことができる。
【0018】
特に、本発明の方法は、プロピレンおよび/またはアクロレインを分子状酸素含有ガスを用いて接触気相酸化する工程、この接触気相酸化により得られるアクリル酸含有ガスを水と接触させて捕集する捕集工程、捕集工程で得られるアクリル酸水溶液からアクリル酸を分離、回収する回収工程、および回収工程からのアクリル酸中に含まれる不純物としての酢酸を分離、除去する酢酸分離工程をへて高純度アクリル酸を製造するプロセスに好適に用いられる。
【0019】
そこで、このプロセスの工程図を示す図1に基づいて本発明を詳しく説明する。
【0020】
プロピレンおよび/またはアクロレインを分子状酸素含有ガスを用いて接触気相酸化して得たアクリル酸含有ガスをライン1からアクリル酸捕集塔101に導入し、ライン2から導入した水と接触させてライン4からアクリル酸および酢酸などの副生物を含むアクリル酸水溶液を得る。ライン2からアクリル酸捕集塔101に供給する水としては、ライン13から水を供給して用いてもよいが、後述するように溶剤回収塔103の塔底から排出される廃水を用いるのが好適である。
【0021】
アクリル酸はそのまま共沸分離塔102に導入するが、必要に応じて、アクロレイン放散塔(図示していない)に導入してアクリル酸水溶液中に溶解しているアクロレインを放散させた後に共沸分離塔102に導入してもよい。この場合、放散したアクロレインを回収して反応系に循環するのがよい。
【0022】
共沸分離塔102では、アクリル酸水溶液をライン4から、共沸溶剤をライン5からそれぞれ供給して蒸留を行い、塔頂から水および共沸溶剤からなる共沸混合物を留出させ、塔底からは酢酸を含むアクリル酸を得る。
【0023】
共沸分離塔102に供給するアクリル酸水溶液の組成は、ライン2からアクリル酸捕集塔101に供給する水の量や他の運転条件で変化するが、通常行われているアクリル酸の製造条件下では、アクリル酸50〜80重量%、酢酸2〜5重量%および水20〜40重量%(合計100重量%)の範囲のものが一般的である。
【0024】
共沸分離塔102の塔頂から留出した水および共沸溶剤からなる共沸混合物は貯槽20に導入し、ここで主として共沸溶剤からなる有機相と、主として水からなる水相とに分離する。有機相はライン5をへて共沸分離塔102に循環する。一方、水相はライン8をへて溶剤回収塔103に導入して、蒸留し、この溶剤回収塔103の塔頂から共沸溶剤を留出させ、ライン9をへて貯槽20に戻し、塔底からはライン14をへて廃水を抜きだして系外に排出する。なお、この廃水はライン10からアクリル酸捕集塔101に循環させて、ライン1からのアクリル酸含有ガスと接触させる捕集水として用いることによって有効に活用することができる。
【0025】
共沸分離塔102の塔底から抜きだしたアクリル酸は、残存する酢酸を除去するために、ライン7をへて酢酸分離塔104に導入し、ここで塔頂から酢酸を分離、除去し、一方塔底からは実質的に酢酸を含まないアクリル酸を得る。この精製アクリル酸は高純度なものであるので、そのままアクリル酸エステルの製造原料として用いることができる。もちろん、この高純度のアクリル酸をさらに高沸点物分離塔(図示してない)に導入して、高沸点物を分離、除去して、更に高純度のアクリル酸とすることもできる。
【0026】
上記各工程における操作は一般に用いられている条件下に行うことができるが、共沸分離塔102における運転条件(定常運転時)の一例を挙げると次のとおりである。なお、本発明はこれに限定されるものではない。
【0027】
操作圧力:100〜200mmHg、
塔頂部温度:40〜50℃、
アクリル酸水溶液供給部(供給段)温度:45〜70℃、
塔底部温度:95〜105℃、
還流比(単位時間当りの還流液の前モル数/単位時間当りに留出液の前モル数):1.0〜1.3
上記のような条件下で蒸留することにより、共沸溶剤の含量が検出限界(1ppm)以下で、酢酸の含量が1〜9重量%程度のアクリル酸が得られる。
【0028】
共沸分離塔102におけるポリマーの生成を防止するために、通常、重合防止剤を添加するが、本発明においても、これら一般に用いられている重合防止剤を添加するのがよい。
【0029】
上記の酢酸を含むアクリル酸は酢酸分離塔に導入して酢酸を分離することにより高純度のアクリル酸とすることができる。この酢酸分離塔の操作条件には特に制限はなく、この種の蒸留塔で一般に用いられている条件下に行うことができる。そして、このようにして得られた高純度のアクリル酸はエステル化工程に導いて所望のアクリル酸エステルの製造に使用することができる。
【0030】
【実施例】
以下、実施例を挙げて本発明を更に具体的に説明する。
【0031】
実施例1
図1に示す工程にしたがってアクリル酸の回収を行った。
【0032】
プロピレンを分子状酸素含有ガス(空気)により接触気相酸化して得られたアクリル酸含有ガスをアクリル酸捕集塔101に導いて水と接触させて捕集した。この捕集したアクリル酸水溶液をアクロレイン放散塔(図示していない)に導いてアクロレインを放散させ、水30重量%、酢酸3.0重量%を含むアクリル酸水溶液を得た。このアクリル酸水溶液を段数50段、段間隔147mmのシーブトレーを備え、塔頂部に留出管、中央部に原料供給管、塔底部に塔底液抜き出し管を備えた共沸分離塔102に導入し、共沸溶剤としてメタクリル酸メチルを用いて、このアクリル酸水溶液の共沸蒸留を行った。
【0033】
使用した重合防止剤の量は、アクリル酸蒸発蒸気量に対して、ジブチルジチオカルバミン酸銅が15ppm、ハイドロキノンが150ppmであり、いずれも塔頂より還流液に溶解した形で塔内に供給した。また、アクリル酸蒸発蒸気量に対して0.3容量%の分子状酸素を塔底部に供給した。なお、ここにいう蒸発蒸気量とは、蒸留塔のリボイラーから加えられた熱量に相当し、塔底から蒸発するモノマーの蒸気の総量を意味する。
【0034】
定常運転時における運転状態は、共沸分離塔102の塔頂温度45℃、塔底温度99℃、塔頂圧力160mmHg、還流比(単位時間当りに還流液の全モル数/単位時間当りの留出液の全モル数)1.24、ライン4からのアクリル酸水溶液供給量10.2リットル/時であった。この共沸分離塔102の塔頂より得られる水相は酢酸0.2重量%、アクリル酸0.6重量%を含み、一方、塔底から抜き出される液はアクリル酸94.5重量%、酢酸2.8重量%、その他2.7重量%を含み、溶剤は検出限界(1ppm)以下であった。
【0035】
上記の条件で共沸分離塔102を約14日間連続運転したところ、常に安定した状態が得られ、運転停止後、分離塔内の点検を行った結果においてもポリマーの発生は認められなかった。
【0036】
比較例1
実施例1において、共沸溶剤としてトルエンを用い、共沸分離塔102における還流比を1.20にした以外は実施例1と同様にしてアクリル酸水溶液の共沸蒸留運転を行った。
【0037】
定常運転時における共沸分離塔102の塔頂より得られる水相は酢酸4.2重量%、アクリル酸0.4重量%を含み、塔底より抜き出される液はアクリル酸94.1重量%、酢酸1.8重量%、その他4.1重量%を含んでいた。
【0038】
上記の条件で共沸分離塔102を連続運転したところ、運転開始から4日後に塔内の圧損失が認められ運転を継続することが困難であった。運転を停止し、解体点検を実施したところ、塔内に粘性ポリマーの生成が認められた。
【0039】
比較例2
実施例1において、共沸溶剤として酢酸n−ブチルを用い、共沸分離塔102における還流比を0.39にした以外は実施例1と同様にしてアクリル酸水溶液の共沸蒸留運転を行った。
【0040】
定常運転時における共沸分離塔の塔頂より得られる水相は酢酸1.6重量%、アクリル酸1.0重量%を含み、塔底より抜き出される液はアクリル酸94.4重量%、酢酸2.7重量%、溶剤0.013重量%、その他2.9重量%を含み、残存溶剤は実施例1の100倍以上であった。
【0041】
比較例3
実施例1において、共沸溶剤としてメタクリル酸エチルを用い、共沸分離塔102における還流比を0.58にした以外は実施例1と同様にしてアクリル酸水溶液の共沸蒸留運転を行った。
【0042】
定常運転時における共沸分離塔102の塔頂より得られる水相は酢酸1.2重量%、アクリル酸1.8重量%を含み、塔底より抜き出される液はアクリル酸94.7重量%、酢酸2.5重量%、溶剤2ppm、その他2.8重量%を含んでいた。このように、共沸分離塔102で溶剤を分離しようとすると、塔頂への酢酸およびアクリル酸の留出が無視できなくなった。
【0043】
【発明の効果】
本発明によれば、特定の共沸溶剤を使用することにより、共沸分離塔における望ましくないポリマーの生成を効果的に防止することができる。このため、管閉塞、圧力損失の増加などの問題が解決され、共沸分離塔、ひいてはアクリル酸製造プラントの長期連続運転が可能となる。
【0044】
また、本発明の共沸溶剤は分離性に優れ、共沸分離塔から得られるアクリル酸中への共沸溶剤の混入は極めて少ないことから高純度のアクリル酸を製造することができる。
【図面の簡単な説明】
【図1】本発明の方法が適用されるプロセスの一つの工程図である。
【符号の説明】
1〜14 ライン
101 アクリル酸捕集塔
102 共沸分離塔
103 溶剤回収塔
104 酢酸分離塔
20 貯槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering acrylic acid. Specifically, the present invention collects an acrylic acid-containing gas obtained by contacting propylene and / or acrolein by contact gas phase oxidation with a molecular oxygen-containing gas in contact with water, and the resulting acrylic acid aqueous solution is specified. The present invention relates to a method for efficiently recovering acrylic acid by distillation in the presence of an azeotropic solvent.
[0002]
[Prior art]
The production of acrylic acid by catalytic gas phase oxidation of propylene and / or acrolein is widely carried out industrially. This method usually involves an oxidation step in which propylene and / or acrolein is subjected to catalytic vapor phase oxidation using a molecular oxygen-containing gas, and an acrylic acid-containing gas obtained by this catalytic vapor phase oxidation is collected by contacting with water. The collecting step includes a collecting step for separating and collecting acrylic acid from the acrylic acid aqueous solution obtained in the collecting step, and an acetic acid separating step for separating and removing acetic acid as an impurity contained in the acrylic acid from the collecting step.
[0003]
For the separation and recovery of acrylic acid from the above acrylic acid aqueous solution, at present, the so-called azeotropic distillation method in which the acrylic acid aqueous solution is led to an azeotropic separation tower and distillation is carried out in the presence of an azeotropic solvent is generally used. It is used for.
[0004]
However, the acrylic acid aqueous solution contains by-products such as formic acid, acetaldehyde, and formaldehyde in addition to water and acetic acid. Therefore, azeotropic distillation is more difficult than pure acrylic acid. As a result, the polymerizability of acrylic acid increases, and problems such as polymer formation and increased pressure loss in the column occur. In general, therefore, it is essential to use a polymerization inhibitor such as hydroquinone, phenothiazine, or a metal salt compound.
[0005]
Japanese Patent Publication No. 6-15496 discloses n-butyl acetate, isobutyl acetate, sec-butyl acetate, methyl isobutyl ketone, and the like as azeotropic solvents used in the recovery step.
[0006]
Japanese Patent Publication No. 63-10691 describes the use of hydrocarbons such as toluene.
[0007]
JP-B-46-34691 and JP-B-46-18967 describe ethyl acetate, butyl acetate, dibutyl ether, ethyl acetate, hexane, heptane, ethyl methacrylate, propyl acrylate, and the like.
[0008]
Further, JP-A-5-246941 discloses at least one selected from diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl-t-butyl ketone and n-propyl acetate and at least selected from toluene, heptane and methylcyclohexane. It is described that one is used in combination.
[0009]
[Problems to be solved by the invention]
However, the above conventional azeotropic solvents have problems in terms of solvent separation in an azeotropic separation tower and polymerizability of acrylic acid. That is, there is a problem that the solvent is not easily separated during azeotropic distillation, the solvent is mixed in the recovered acrylic acid, and even when the polymerization inhibitor is used, the polymerization of acrylic acid is likely to occur.
[0010]
For example, when using an azeotropic solvent such as butyl acetate and methyl isobutyl ketone described in JP-B-6-15496, the solvent is not sufficiently separated in the azeotropic separation tower, and the solvent is mixed into the recovered acrylic acid. Problem arises.
[0011]
In the case of hydrocarbons such as toluene described in JP-B 63-10691, polymerization of acrylic acid is likely to occur because a heterogeneous phase is formed in the azeotropic separation tower.
[0012]
As described above, the conventionally known azeotropic solvents are not yet fully satisfactory, have excellent solvent separation properties, and effectively prevent the polymerization of acrylic acid in the azeotropic separation tower, An azeotropic solvent suitable for solving problems such as an increase in pressure loss is strongly desired.
[0013]
Thus, an object of the present invention is to provide a novel azeotropic solvent that is excellent in solvent separation and that is suitable for distillation while effectively preventing the formation of undesirable polymers in the azeotropic separation column. It is what.
[0014]
[Means for Solving the Problems]
According to the studies by the present inventors, when at least one selected from methyl methacrylate, vinyl acrylate, allyl acetate, isopropenyl acetate, vinyl propionate and methyl crotonate is used as the azeotropic solvent, these azeotropic solvents are Based on this finding, the present invention has been completed based on the knowledge that it is excellent in separability and can effectively prevent the formation of an undesirable polymer.
[0015]
That is, in the present invention, an acrylic acid-containing gas obtained by contact gas phase oxidation of propylene and / or acrolein is contacted with water and collected as an aqueous acrylic acid solution, and this aqueous acrylic acid solution is introduced into an azeotropic separation tower. When separating and recovering acrylic acid by distillation in the presence of an azeotropic solvent, the azeotropic solvent is selected from methyl methacrylate, vinyl acrylate, allyl acetate, isopropenyl acetate, vinyl propionate and methyl crotonate. A method for recovering acrylic acid, characterized in that at least one of the above is used.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, methyl methacrylate, vinyl acrylate, allyl acetate, isopropenyl acetate, vinyl propionate and methyl crotonate used as azeotropic solvents can be used as they are commercially available. .
[0017]
The method of the present invention is carried out in accordance with a conventional method except that at least one selected from methyl methacrylate, vinyl acrylate, allyl acetate, isopropenyl acetate, vinyl propionate and methyl crotonic acid is used as the azeotropic solvent. Can do.
[0018]
In particular, the method of the present invention includes a step of catalytic vapor phase oxidation of propylene and / or acrolein using a molecular oxygen-containing gas, and an acrylic acid-containing gas obtained by the catalytic vapor phase oxidation is collected by contacting with water. Through the collection process, a recovery process for separating and recovering acrylic acid from the acrylic acid aqueous solution obtained in the collection process, and an acetic acid separation process for separating and removing acetic acid as an impurity contained in the acrylic acid from the recovery process It is suitably used in a process for producing high-purity acrylic acid.
[0019]
Therefore, the present invention will be described in detail with reference to FIG.
[0020]
Acrylic acid-containing gas obtained by catalytic vapor phase oxidation of propylene and / or acrolein using molecular oxygen-containing gas is introduced from line 1 into acrylic acid collection tower 101 and brought into contact with water introduced from line 2. An acrylic acid aqueous solution containing by-products such as acrylic acid and acetic acid is obtained from line 4. The water supplied from the line 2 to the acrylic acid collection tower 101 may be used by supplying water from the line 13, but as will be described later, waste water discharged from the bottom of the solvent recovery tower 103 is used. Is preferred.
[0021]
Acrylic acid is directly introduced into the azeotropic separation tower 102. However, if necessary, it is introduced into an acrolein stripping tower (not shown) and the acrolein dissolved in the acrylic acid aqueous solution is stripped, and then azeotropic separation is performed. It may be introduced into the tower 102. In this case, it is preferable to collect the diffused acrolein and circulate it in the reaction system.
[0022]
In the azeotropic separation tower 102, the aqueous acrylic acid solution is supplied from the line 4 and the azeotropic solvent is supplied from the line 5 to perform distillation, and an azeotropic mixture comprising water and the azeotropic solvent is distilled from the top of the tower. To obtain acrylic acid containing acetic acid.
[0023]
The composition of the acrylic acid aqueous solution supplied to the azeotropic separation tower 102 varies depending on the amount of water supplied from the line 2 to the acrylic acid collection tower 101 and other operating conditions. Below, those in the range of 50 to 80% by weight acrylic acid, 2 to 5% by weight acetic acid and 20 to 40% by weight water (total 100% by weight) are common.
[0024]
The azeotropic mixture comprising water and an azeotropic solvent distilled from the top of the azeotropic separation tower 102 is introduced into the storage tank 20 where it is separated into an organic phase mainly composed of an azeotropic solvent and an aqueous phase mainly composed of water. To do. The organic phase is circulated through line 5 to the azeotropic separation column 102. On the other hand, the aqueous phase is introduced into the solvent recovery tower 103 through the line 8 and distilled, and the azeotropic solvent is distilled off from the top of the solvent recovery tower 103 and returned to the storage tank 20 through the line 9. From the bottom, the waste water is extracted through the line 14 and discharged out of the system. This waste water can be effectively utilized by circulating it from the line 10 to the acrylic acid collection tower 101 and using it as the collected water to be brought into contact with the acrylic acid-containing gas from the line 1.
[0025]
Acrylic acid extracted from the bottom of the azeotropic separation column 102 is introduced into the acetic acid separation column 104 through the line 7 in order to remove the remaining acetic acid, where the acetic acid is separated and removed from the top of the column. On the other hand, acrylic acid substantially free of acetic acid is obtained from the bottom of the column. Since this purified acrylic acid is highly pure, it can be used as it is as a raw material for producing an acrylic ester. Of course, this high-purity acrylic acid can be further introduced into a high-boiling substance separation tower (not shown) to separate and remove the high-boiling substances to obtain higher-purity acrylic acid.
[0026]
The operations in the above steps can be performed under conditions that are generally used. An example of operating conditions (at the time of steady operation) in the azeotropic separation tower 102 is as follows. Note that the present invention is not limited to this.
[0027]
Operating pressure: 100-200 mmHg,
Tower top temperature: 40-50 ° C.
Acrylic acid aqueous solution supply section (supply stage) temperature: 45 to 70 ° C.,
Tower bottom temperature: 95-105 ° C
Reflux ratio (number of moles of reflux liquid per unit time / number of moles of distillate per unit time): 1.0 to 1.3
By distillation under the above conditions, acrylic acid having an azeotropic solvent content of not more than the detection limit (1 ppm) and an acetic acid content of about 1 to 9% by weight can be obtained.
[0028]
In order to prevent the formation of the polymer in the azeotropic separation tower 102, a polymerization inhibitor is usually added. However, in the present invention, these generally used polymerization inhibitors are preferably added.
[0029]
Acrylic acid containing acetic acid can be made into high-purity acrylic acid by introducing it into an acetic acid separation column and separating the acetic acid. The operating conditions of the acetic acid separation column are not particularly limited, and the acetic acid separation column can be operated under the conditions generally used in this type of distillation column. The high-purity acrylic acid thus obtained can be used in the production of a desired acrylic ester by being led to an esterification step.
[0030]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0031]
Example 1
Acrylic acid was recovered according to the process shown in FIG.
[0032]
Acrylic acid-containing gas obtained by catalytic vapor phase oxidation of propylene with molecular oxygen-containing gas (air) was guided to acrylic acid collection tower 101 and collected by contacting with water. The collected acrylic acid aqueous solution was guided to an acrolein diffusion tower (not shown) to diffuse acrolein, and an acrylic acid aqueous solution containing 30% by weight of water and 3.0% by weight of acetic acid was obtained. This acrylic acid aqueous solution was introduced into an azeotropic separation column 102 equipped with a sieve tray having 50 plates and a 147 mm interval, a distillation tube at the top of the column, a raw material supply tube at the center, and a column bottom liquid extraction tube at the bottom. Then, this aqueous acrylic acid solution was azeotropically distilled using methyl methacrylate as an azeotropic solvent.
[0033]
The amount of the polymerization inhibitor used was 15 ppm for copper dibutyldithiocarbamate and 150 ppm for hydroquinone with respect to the amount of vaporized acrylic acid, and both were fed into the tower in the form of being dissolved in the reflux liquid from the top of the tower. Further, 0.3% by volume of molecular oxygen with respect to the amount of vaporized acrylic acid was supplied to the bottom of the column. The amount of vaporized vapor here corresponds to the amount of heat applied from the reboiler of the distillation column, and means the total amount of monomer vapor evaporated from the bottom of the column.
[0034]
The operation state in the steady operation is as follows: the top temperature of the azeotropic separation tower 102 is 45 ° C., the bottom temperature is 99 ° C., the top pressure is 160 mmHg, the reflux ratio (total number of moles of reflux liquid per unit time / retention per unit time The total number of moles of liquid discharged) was 1.24, and the amount of acrylic acid aqueous solution supplied from the line 4 was 10.2 liters / hour. The aqueous phase obtained from the top of the azeotropic separation column 102 contains 0.2% by weight of acetic acid and 0.6% by weight of acrylic acid, while the liquid withdrawn from the bottom of the column is 94.5% by weight of acrylic acid, The solvent contained 2.8% by weight of acetic acid and 2.7% by weight of other components, and the solvent was below the detection limit (1 ppm).
[0035]
When the azeotropic separation tower 102 was continuously operated for about 14 days under the above conditions, a stable state was always obtained, and no polymer was observed even in the result of inspection in the separation tower after the operation was stopped.
[0036]
Comparative Example 1
In Example 1, an azeotropic distillation operation of an acrylic acid aqueous solution was performed in the same manner as in Example 1 except that toluene was used as the azeotropic solvent and the reflux ratio in the azeotropic separation column 102 was 1.20.
[0037]
The aqueous phase obtained from the top of the azeotropic separation column 102 during steady operation contains 4.2% by weight of acetic acid and 0.4% by weight of acrylic acid, and the liquid drawn from the bottom of the column is 94.1% by weight of acrylic acid. And 1.8% by weight of acetic acid and 4.1% by weight of others.
[0038]
When the azeotropic separation tower 102 was continuously operated under the above conditions, it was difficult to continue the operation because a pressure loss in the tower was observed 4 days after the start of the operation. When the operation was stopped and dismantling was inspected, the formation of viscous polymer was observed in the tower.
[0039]
Comparative Example 2
In Example 1, an azeotropic distillation operation of an aqueous acrylic acid solution was performed in the same manner as in Example 1 except that n-butyl acetate was used as the azeotropic solvent and the reflux ratio in the azeotropic separation column 102 was 0.39. .
[0040]
The aqueous phase obtained from the top of the azeotropic separation tower during steady operation contains 1.6% by weight of acetic acid and 1.0% by weight of acrylic acid, and the liquid extracted from the bottom of the tower is 94.4% by weight of acrylic acid, It contained 2.7% by weight of acetic acid, 0.013% by weight of solvent, and 2.9% by weight of other solvents, and the residual solvent was 100 times or more that of Example 1.
[0041]
Comparative Example 3
In Example 1, an azeotropic distillation operation of an aqueous acrylic acid solution was performed in the same manner as in Example 1 except that ethyl methacrylate was used as the azeotropic solvent and the reflux ratio in the azeotropic separation column 102 was 0.58.
[0042]
The aqueous phase obtained from the top of the azeotropic separation tower 102 in steady operation contains 1.2% by weight of acetic acid and 1.8% by weight of acrylic acid, and the liquid drawn from the bottom of the tower is 94.7% by weight of acrylic acid. And 2.5% by weight of acetic acid, 2 ppm of solvent, and 2.8% by weight of others. Thus, when the solvent was separated in the azeotropic separation tower 102, the distillation of acetic acid and acrylic acid at the top of the tower could not be ignored.
[0043]
【The invention's effect】
According to the present invention, by using a specific azeotropic solvent, it is possible to effectively prevent the formation of an undesirable polymer in the azeotropic separation column. For this reason, problems such as tube clogging and an increase in pressure loss are solved, and long-term continuous operation of the azeotropic separation tower and consequently the acrylic acid production plant becomes possible.
[0044]
Moreover, since the azeotropic solvent of the present invention is excellent in separability and the azeotropic solvent is very little mixed into the acrylic acid obtained from the azeotropic separation tower, high-purity acrylic acid can be produced.
[Brief description of the drawings]
FIG. 1 is a process diagram of a process to which a method of the present invention is applied.
[Explanation of symbols]
1 to 14 Line 101 Acrylic acid collection tower 102 Azeotropic separation tower 103 Solvent recovery tower 104 Acetic acid separation tower 20 Storage tank

Claims (5)

プロピレンおよび/またはアクロレインを接触気相酸化して得られるアクリル酸含有ガスを水と接触させてアクリル酸水溶液として捕集し、このアクリル酸水溶液を共沸分離塔に導入し、共沸溶剤の存在下に蒸留してアクリル酸を分離、回収する際に、上記共沸溶剤としてメタクリル酸メチル、アクリル酸ビニル、酢酸アリル、酢酸イソプロペニル、プロピオン酸ビニルおよびクロトン酸メチルから選ばれる少なくとも一種を用いることを特徴とするアクリル酸の回収方法。  Acrylic acid-containing gas obtained by contact gas phase oxidation of propylene and / or acrolein is brought into contact with water and collected as an aqueous acrylic acid solution. This aqueous acrylic acid solution is introduced into an azeotropic separation tower, and an azeotropic solvent is present. When separating and recovering acrylic acid by distilling downward, at least one selected from methyl methacrylate, vinyl acrylate, allyl acetate, isopropenyl acetate, vinyl propionate and methyl crotonate is used as the azeotropic solvent. A method for recovering acrylic acid characterized by 共沸分離塔の塔底から抜き出されるアクリル酸液中の共沸溶剤の含量が検出限界(1ppm以下)で、酢酸含量が1〜9重量%である請求項1記載の方法。The method according to claim 1, wherein the content of the azeotropic solvent in the acrylic acid liquid extracted from the bottom of the azeotropic separation column is the detection limit (1 ppm or less), and the acetic acid content is 1 to 9% by weight. 共沸蒸留を操作圧力100〜200mmHg、塔頂部温度40〜50℃、塔底部温度95〜105℃、還流比1.0〜1.3の条件下に行う請求項1または2記載の方法。The method according to claim 1 or 2, wherein the azeotropic distillation is carried out under conditions of an operating pressure of 100 to 200 mmHg, a tower top temperature of 40 to 50 ° C, a tower bottom temperature of 95 to 105 ° C, and a reflux ratio of 1.0 to 1.3. 共沸分離塔からのアクリル酸をさらに酢酸分離塔にて精製する請求項1ないし3のいずれかに記載の方法。The method according to any one of claims 1 to 3, wherein acrylic acid from the azeotropic separation tower is further purified by an acetic acid separation tower. 共沸溶剤がメタクリル酸メチルである請求項1ないし4のいずれかに記載の方法。The method according to any one of claims 1 to 4, wherein the azeotropic solvent is methyl methacrylate.
JP11734797A 1997-02-28 1997-05-08 Acrylic acid recovery method Expired - Fee Related JP3880128B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11734797A JP3880128B2 (en) 1997-05-08 1997-05-08 Acrylic acid recovery method
US09/031,068 US6084127A (en) 1997-02-28 1998-02-26 Method for recovering acrylic acid
DE69806074T DE69806074T2 (en) 1997-02-28 1998-02-27 Process for the recovery of acrylic acid
IDP980295A ID19974A (en) 1997-02-28 1998-02-27 METHOD TO GET ACRYLIC ACID BACK
EP98301479A EP0861820B1 (en) 1997-02-28 1998-02-27 Method for recovering acrylic acid
KR10-1998-0006604A KR100375780B1 (en) 1997-02-28 1998-02-28 Method for recovering acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11734797A JP3880128B2 (en) 1997-05-08 1997-05-08 Acrylic acid recovery method

Publications (2)

Publication Number Publication Date
JPH10306052A JPH10306052A (en) 1998-11-17
JP3880128B2 true JP3880128B2 (en) 2007-02-14

Family

ID=14709455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11734797A Expired - Fee Related JP3880128B2 (en) 1997-02-28 1997-05-08 Acrylic acid recovery method

Country Status (1)

Country Link
JP (1) JP3880128B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238894B2 (en) * 1998-02-09 2001-12-17 三菱レイヨン株式会社 Method for producing methyl methacrylate
US6680405B1 (en) 1998-02-09 2004-01-20 Mitsubishi Rayon Co., Ltd. Process for the preparation of methyl methacrylate
JP4581395B2 (en) 2003-12-24 2010-11-17 三菱化学株式会社 Method for purifying (meth) acrylic acid and method for producing (meth) acrylic acid ester
WO2014189829A1 (en) * 2013-05-20 2014-11-27 Saudi Basic Industries Corporation Method for the purification of acetic acid and acrylic acid

Also Published As

Publication number Publication date
JPH10306052A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
EP0551111B1 (en) Process for purifying acrylic acid to high purity in the production of acrylic acid
JP5073129B2 (en) (Meth) acrylic acid purification method
JPH0840974A (en) Method for purifying acrylic acid
EP0289178B1 (en) Process for producing methacrylic ester
KR100375780B1 (en) Method for recovering acrylic acid
JPH05246941A (en) Method for purifying acrylic acid in high yield in production of acrylic acid
EP0102642B1 (en) Process for purifying methacrylic acid
JP4759153B2 (en) Distillation method of (meth) acrylic acid solution
JPH0662503B2 (en) Continuous production method of lower acrylic ester
JP3880128B2 (en) Acrylic acid recovery method
JP3999926B2 (en) Method for purifying methacrylate ester
FR2656305A1 (en) Process for the purification of glycidyl (meth)acrylate
JP3937495B2 (en) Acrylic acid recovery method
JPS58183641A (en) Purification of methyl (meth)acrylate
JPH0764787B2 (en) Method for producing high-purity methacrylic acid ester
JP2980366B2 (en) Acrylic acid purification method
JP3832868B2 (en) Acrylic acid purification method
JPS6059889B2 (en) Hydroquinone recovery method
JPH1135523A (en) Purification of methyl methacrylate
JPS6310691B2 (en)
JPS58140039A (en) Purification method of acrylic acid
JP3246216B2 (en) Method for separating methacrylic acid
JPS6353175B2 (en)
JPH0813779B2 (en) Method for recovering methacrylic acid as methyl methacrylate
JPH0761981B2 (en) Method for processing residual liquid of methacrylic acid distillation still

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees