JPH11138156A - Ultraviolet oxidation device - Google Patents

Ultraviolet oxidation device

Info

Publication number
JPH11138156A
JPH11138156A JP9327146A JP32714697A JPH11138156A JP H11138156 A JPH11138156 A JP H11138156A JP 9327146 A JP9327146 A JP 9327146A JP 32714697 A JP32714697 A JP 32714697A JP H11138156 A JPH11138156 A JP H11138156A
Authority
JP
Japan
Prior art keywords
ultraviolet
hollow
water
titanium oxide
ultraviolet irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9327146A
Other languages
Japanese (ja)
Other versions
JP3573933B2 (en
Inventor
Hiroshi Nakabachi
博 中鉢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T & C Technical Kk
Original Assignee
T & C Technical Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T & C Technical Kk filed Critical T & C Technical Kk
Priority to JP32714697A priority Critical patent/JP3573933B2/en
Publication of JPH11138156A publication Critical patent/JPH11138156A/en
Application granted granted Critical
Publication of JP3573933B2 publication Critical patent/JP3573933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the UV oxidation device utilizing a photocatalyst by which the efficiency in oxidizing the org. matter in water with UV is improved. SOLUTION: The UV oxidation device 10 consists of a spiral slender quartz tube 14 provided around a cylindrical UV irradiation lamp 12. Many titanium oxide-coated hollow glass beads for promoting the UV oxidation of the org. matter in liq. are packed in the hollow part of the quartz tube from the inlet end to the outlet end. A wire-mesh screen is furnished at least to the outlet end of the quartz tube to prevent the beads from being entrained by the liq. current and driven out of the tube. Otherwise, a hollow vessel contg. suspended titanium oxide-coated hollow glass beads, with at least a part made of a transparent material and provided with the inlet end and outlet end to pass water through the vessel is arranged close to and below the UV irradiation lamp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、代表的には水の汚
染度を表す水中の全有機炭素(TOC)を測定するため
の全有機炭素計測システム(「TOC計」と呼ばれるこ
とがある)又は水中の有機微粒子やコロイド状有機分子
を完全に除去するためのイオン交換方式TOC除去シス
テム等に用いられ、紫外線を水中の有機物に照射してこ
れを酸化させる紫外線酸化装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a total organic carbon measurement system (sometimes referred to as a "TOC meter") for measuring total organic carbon (TOC) in water, which typically represents the degree of water pollution. Also, the present invention relates to an improvement in an ultraviolet oxidation apparatus used in an ion exchange TOC removal system or the like for completely removing organic fine particles and colloidal organic molecules in water, and irradiating ultraviolet light to organic matter in water to oxidize the same.

【0002】[0002]

【従来の技術】半導体の洗浄用、医療用薬品や注射液な
どの製造用、化学分析用等に用いられる水は、不純物、
例えば微粒子、各種イオン、細菌等の微生物、有機化合
物等の溶解物質を実質的に含んでいないことが必要不可
欠である。かかる純水を製造するシステムは通常、逆浸
透法、蒸留法、イオン交換法、吸着法、真空脱気法、紫
外線酸化法、限外濾過法を含む種々の濾過手段を組み合
わせて用いている。特に、例えば半導体製造分野では、
LSIの集積度の増大につれ回路の間隔が狭くなってい
るので、回路短絡を防止するために半導体洗浄水を一層
高純度にする必要があり、イオンのみならず、微粒子、
細菌や有機物質も可能な限り除去しなければならない。
2. Description of the Related Art Water used for cleaning semiconductors, for producing medical chemicals and injection solutions, for chemical analysis, etc. contains impurities,
For example, it is indispensable to contain substantially no dissolved substances such as fine particles, various ions, microorganisms such as bacteria, and organic compounds. A system for producing such pure water generally uses a combination of various filtration means including a reverse osmosis method, a distillation method, an ion exchange method, an adsorption method, a vacuum degassing method, an ultraviolet oxidation method, and an ultrafiltration method. In particular, for example, in the semiconductor manufacturing field,
Since the intervals between circuits have become narrower as the degree of integration of LSIs has increased, it has been necessary to further purify semiconductor cleaning water in order to prevent short circuits.
Bacteria and organic matter must be removed as much as possible.

【0003】純水の清浄度を表す方式の一つとして、水
中の有機物中の炭素量で汚染度を表す全有機炭素(TO
C)値(μg/l 又はppbで表される)がある。参考
までに、半導体洗浄用途では、0.20μg/l 以下の
TOC値が要求される場合がある。
[0003] As one of the methods for expressing the cleanliness of pure water, total organic carbon (TO), which indicates the degree of contamination by the amount of carbon in organic matter in water, is referred to as TOC.
C) values (expressed in μg / l or ppb). For reference, a TOC value of 0.20 μg / l or less may be required for semiconductor cleaning applications.

【0004】純水のTOC値を測定する手段として、紫
外線(UV)酸化方式のTOC計が広く利用されてい
る。かかるTOC計では、測定ライン中を流れる試料水
の導電率を第1の導電率センサで測定した後、かかる試
料水を、かかる試料水を紫外線照射部へ導入し、ここで
試料水に紫外線を照射して試料水中の有機炭素を有機酸
に変化させる。しかる後、試料水の導電率を第2の導電
率センサで測定し、第1及び第2の導電率センサ得た導
電率の変化を表す差に基づいて既知のデータから試料水
のTOC値を求める。
As a means for measuring the TOC value of pure water, a TOC meter of an ultraviolet (UV) oxidation method is widely used. In such a TOC meter, after the conductivity of the sample water flowing in the measurement line is measured by the first conductivity sensor, the sample water is introduced into an ultraviolet irradiation unit, and the sample water is irradiated with ultraviolet light. Irradiation converts organic carbon in the sample water into organic acids. Thereafter, the conductivity of the sample water is measured by the second conductivity sensor, and the TOC value of the sample water is calculated from the known data based on the difference representing the change in the conductivity obtained by the first and second conductivity sensors. Ask.

【0005】また、半導体洗浄用純水製造システムに供
給される原水又は半導体洗浄プロセス部からの回収使用
済み純水は、相当高いTOC値を含む場合があり、特
に、半導体洗浄プロセス部からの回収純水には、半導体
洗浄プロセス部で用いられた有機溶剤が混入することが
あり、この場合には使用済み純水のTOC量は約500
ppb以上にもなる。所定レベルを越えるTOC量を含
有する原水又は使用済み純水中の高TOC値を低減させ
るため、通常、かかる水を紫外線照射部に導入してこれ
に紫外線を照射して水中の有機物が有機酸の形態になる
ようにし、しかる後、イオン交換装置でこれを水から除
去し、それにより低TOC値の純水が得られるようにす
る。
[0005] Raw water supplied to the semiconductor cleaning pure water production system or recovered and used pure water from the semiconductor cleaning process section may have a considerably high TOC value, and particularly, recovered from the semiconductor cleaning process section. The organic solvent used in the semiconductor cleaning process section may be mixed into the pure water. In this case, the TOC amount of the used pure water is about 500.
ppb or more. In order to reduce the high TOC value in raw water or used pure water containing a TOC amount exceeding a predetermined level, usually, such water is introduced into an ultraviolet irradiation section and irradiated with ultraviolet light to convert organic substances in the water into organic acids. And then removed from the water with an ion exchange device so that pure water with a low TOC value is obtained.

【0006】[0006]

【発明が解決しようとする課題】TOC計、イオン交換
方式TOC除去システム等に用いられる従来型紫外線酸
化装置の一形式は、紫外線による有機物酸化効率を高め
るために筒状紫外線照射ランプの周りに巻き付けられる
ように設けられていて、照射ランプからの紫外線を透過
させることができる透明な材料、代表的には石英から成
る螺旋状管を有する。しかしながら、従来の紫外線酸化
装置では、試料水中の有機物を紫外線によって完全に酸
化させるには例えば約10分というような相当に長い照
射時間が必要であり、かくして、TOC計については計
測時間が長くなり、TOC除去システムでは除去効率が
制限されていた。
One type of a conventional ultraviolet oxidation apparatus used for a TOC meter, an ion exchange TOC removal system, etc., is wrapped around a cylindrical ultraviolet irradiation lamp in order to increase the efficiency of organic matter oxidation by ultraviolet light. And a helical tube made of a transparent material, typically quartz, capable of transmitting ultraviolet light from the irradiation lamp. However, in the conventional ultraviolet oxidation apparatus, a considerably long irradiation time, for example, about 10 minutes is required to completely oxidize the organic matter in the sample water with the ultraviolet light, and thus the measurement time for the TOC meter becomes long. In TOC removal systems, removal efficiency has been limited.

【0007】ところで、酸化チタンが光触媒として水中
に溶存している有機物の酸化分解を促進する作用を有す
ることは知られている。これは、受光した光との相互作
用により、酸化チタンがOHラジカルを生じ、このOH
ラジカルが有機物を効果的且つ迅速に酸化させるという
原理に基づいている。酸化チタンは、光触媒材料の中で
も、化学的に安定であって環境に対して実質的に無害で
あり、潜在的毒性もないことは実証されている。
[0007] It is known that titanium oxide has a function as a photocatalyst to promote oxidative decomposition of organic substances dissolved in water. This is because titanium oxide generates OH radicals by interaction with the received light, and this OH radical
It is based on the principle that radicals oxidize organics effectively and quickly. Titanium oxide has been demonstrated to be chemically stable, substantially harmless to the environment, and has no potential toxicity among photocatalytic materials.

【0008】TOC測定分野においても、試料水中の有
機物の酸化状態をモニターするために紫外線照射室内に
一対の酸化チタン被覆電極を配置利用する従来技術が存
在している。
In the field of TOC measurement, there is a conventional technique in which a pair of titanium oxide-coated electrodes is arranged and used in an ultraviolet irradiation chamber in order to monitor the oxidation state of organic substances in sample water.

【0009】しかしながら、かかる従来技術の構成で
は、試料水と酸化チタン被覆電極との接触面積が制限さ
れているので、水中の有機物の酸化が十分に促進される
とはいえない。
[0009] However, in the configuration of the related art, since the contact area between the sample water and the titanium oxide-coated electrode is limited, it cannot be said that the oxidation of organic substances in water is sufficiently promoted.

【0010】そこで、本発明の目的は、従来技術の課題
に鑑みて、TOC計やTOC除去システム等に用いら
れ、酸化チタンにより液体中の有機物の酸化を促進する
光触媒利用方式の改良型紫外線酸化装置を提供すること
にある。
In view of the problems in the prior art, an object of the present invention is to provide an improved ultraviolet oxidation using a photocatalyst, which is used in a TOC meter, a TOC removal system, and the like, and promotes the oxidation of organic substances in a liquid by titanium oxide. It is to provide a device.

【0011】[0011]

【課題を完結するための手段】本発明の要旨は、入口
端、出口端及びこれらと連通する中空部を画定し、少な
くとも一部が実質的に透明な材料で作られている液体通
路手段と、液体通路手段と連携して設けられていて、紫
外線を液体通路手段の実質的に透明な部分を通して、入
口端から出口端に向かって中空部内を流れている液体に
照射し、それにより液体中の有機物を酸化させて有機酸
の形態にするための紫外線照射ランプとから成り、前記
液体通路手段の中空部は、液体中の有機物の紫外線酸化
を促進させる多数の酸化チタン被覆中空ガラスビーズを
収容していることを特徴とする紫外線酸化装置にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid passage means which defines an inlet end, an outlet end and a hollow portion communicating therewith, at least a portion of which is made of a substantially transparent material. Irradiating the liquid flowing through the hollow portion from the inlet end to the outlet end through the substantially transparent portion of the liquid passage means, in cooperation with the liquid passage means, thereby irradiating the liquid with ultraviolet light. An ultraviolet irradiation lamp for oxidizing the organic matter to form an organic acid, wherein the hollow portion of the liquid passage means accommodates a large number of titanium oxide-coated hollow glass beads for promoting ultraviolet oxidation of the organic matter in the liquid. An ultraviolet oxidation apparatus characterized in that:

【0012】本発明の一実施形態では、液体通路手段
は、筒状の紫外線照射ランプの周りにぐるりと設けられ
た螺旋状の細長い石英製管から成り、石英製管の螺旋状
中空部には、その入口端から出口端まで実質的に酸化チ
タン被覆中空ガラスビーズが充填されている。好ましく
は、石英製管の少なくとも出口端には、酸化チタン被覆
中空ガラスビーズが液体の流れに同伴されて石英製管か
ら抜け出ることのないようにするためのスクリーン手段
が設けられる。
[0012] In one embodiment of the present invention, the liquid passage means comprises a helical elongated quartz tube provided around a cylindrical ultraviolet irradiation lamp, and a spiral hollow portion of the quartz tube is provided in the helical hollow portion of the quartz tube. , From its inlet end to its outlet end, it is substantially filled with titanium oxide-coated hollow glass beads. Preferably, at least at the outlet end of the quartz tube is provided a screen means for preventing the titanium oxide-coated hollow glass beads from being entrained by the liquid flow and coming out of the quartz tube.

【0013】本発明の別の実施形態では、液体通路手段
は、紫外線照射ランプに近接してその下方に配置されて
いて、酸化チタン被覆中空ガラスビーズを浮遊状態で収
容する中空部を備えると共に少なくとも一部が透明な材
料で作られた中空容器から成る。この容器は、液体を紫
外線照射のために中空部に導入する入口及び紫外線照射
後の水を中空部から送りだすための出口を有し、容器の
透明部分は、石英製管を透過して漏れる紫外線照射ラン
プからの紫外線を中空部内へ透過させるよう紫外線照射
ランプに向けて配置されている。
[0013] In another embodiment of the present invention, the liquid passage means includes a hollow portion that is disposed adjacent to and below the ultraviolet irradiation lamp and that receives the titanium oxide-coated hollow glass beads in a floating state, and at least includes the hollow portion. It consists of a hollow container partially made of a transparent material. This container has an inlet for introducing a liquid into the hollow part for ultraviolet irradiation and an outlet for sending out water after the ultraviolet irradiation from the hollow part, and the transparent part of the container is an ultraviolet ray leaking through a quartz tube. It is arranged toward the ultraviolet irradiation lamp so as to transmit ultraviolet light from the irradiation lamp into the hollow portion.

【0014】本発明の特徴は、既存の紫外線酸化装置に
レトロフィットでき、かくして、本発明の紫外線酸化装
置は、筒状の紫外線照射ランプの周りにぐるりと設けら
れた螺旋状石英製管と、紫外線照射ランプの真下に配置
されていて、酸化チタン被覆中空ガラスビーズを浮遊状
態で収容する中空部を備えると共に少なくとも一部が透
明な材料で作られた中空容器とから成る。容器は、液体
を紫外線照射のために中空部に導入する入口及び紫外線
照射後の水を中空部から送りだすための出口を有し、容
器の透明部分は、石英製管を透過して漏れる紫外線照射
ランプからの紫外線を中空部内へ透過させるよう紫外線
照射ランプに向けて配置されている。
A feature of the present invention is that it can be retrofitted to existing UV oxidizers, thus the UV oxidizer of the present invention comprises a spiral quartz tube provided around a cylindrical UV irradiation lamp; A hollow container disposed immediately below the ultraviolet irradiation lamp, the hollow container including a hollow portion for holding the titanium oxide-coated hollow glass beads in a floating state, and at least partially formed of a transparent material. The container has an inlet for introducing a liquid into the hollow portion for ultraviolet irradiation and an outlet for sending water after the ultraviolet irradiation from the hollow portion, and the transparent portion of the container is irradiated with ultraviolet light leaking through a quartz tube. It is arranged toward the ultraviolet irradiation lamp so as to transmit ultraviolet light from the lamp into the hollow portion.

【0015】[0015]

【発明の実施の形態】図面のうち特に図1を参照する
と、本発明の第1の実施形態として全体を符号10で示
された紫外線酸化装置が示されている。かかる紫外線酸
化装置10は、筒状の紫外線照射ランプ12の周りにぐ
るりと設けられた液体通路手段としての細長い透明な螺
旋状石英管14から成る。図2は、図1の石英製螺旋管
14の出口端の一ターンを拡大して示す部分切欠き図で
あり、後述するように本発明の特徴を最も良く示す図で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring particularly to FIG. 1 of the drawings, there is shown, as a first embodiment of the present invention, an ultraviolet oxidizing apparatus generally designated by the reference numeral 10. The ultraviolet oxidizing apparatus 10 comprises an elongated transparent spiral quartz tube 14 as a liquid passage means provided around a cylindrical ultraviolet irradiation lamp 12. FIG. 2 is a partially cutaway view showing one turn of the exit end of the spiral tube 14 made of quartz in FIG. 1 in an enlarged manner, and is a view best showing the features of the present invention as described later.

【0016】紫外線酸化装置10は、図示の第1の実施
形態では、例えば半導体用純水製造システムに組み込ま
れた試料水測定ラインと関連して設けられ、原水又は純
水のTOC値を測定する紫外線(UV)酸化方式TOC
計(図示せず)の一部を構成する全体としては公知形式
のものであり、石英管14は、入口端16、出口端18
及び入口端と出口端との間に延びていて、試料水を通す
螺旋状通路又は中空部20を有している。紫外線照射ラ
ンプ12は、入口端16から出口端18に向かって螺旋
管14中を流れている試料水に透明な石英壁を透過して
紫外線を照射し、それにより水中の有機物を完全酸化さ
せて有機酸の形態にするよう機能する。公知のTOC計
では、石英管の入口端16は、試料水測定ライン中に採
取した紫外線照射前の試料水の導電率を測定する第1の
センサ(図示せず)に連結され、出口端18は、紫外線
を受けて有機物が完全に酸化された状態の試料水の導電
率を測定する第2のセンサ(これ又、図示せず)に連結
されている。TOC計は、第1及び第2のセンサに接続
されていて、第1及び第2のセンサで得た導電率測定値
の差を検出し、この差に基づいて試料水のTOC値を決
定する手段を更に有している。
In the first embodiment shown in the figure, the ultraviolet oxidation apparatus 10 is provided, for example, in connection with a sample water measurement line incorporated in a pure water production system for semiconductors, and measures the TOC value of raw water or pure water. Ultraviolet (UV) oxidation method TOC
The quartz tube 14 has an inlet end 16 and an outlet end 18 as a whole, which constitutes a part of a total (not shown).
And a helical passage or hollow 20 extending between the inlet end and the outlet end for passing the sample water. The ultraviolet irradiation lamp 12 irradiates sample water flowing in the spiral tube 14 from the inlet end 16 to the outlet end 18 with ultraviolet light through a transparent quartz wall, thereby completely oxidizing organic substances in the water. Functions to form organic acids. In the known TOC meter, the inlet end 16 of the quartz tube is connected to a first sensor (not shown) for measuring the conductivity of the sample water before irradiation with ultraviolet light collected in the sample water measurement line, and the outlet end 18 thereof. Is connected to a second sensor (also not shown) that measures the conductivity of the sample water in a state where the organic matter has been completely oxidized by receiving ultraviolet light. The TOC meter is connected to the first and second sensors, detects a difference between the measured conductivity values obtained by the first and second sensors, and determines the TOC value of the sample water based on the difference. Means are further provided.

【0017】図2に明確に示されているように、石英管
14の螺旋状通路20は、好ましくはその入口端16か
ら出口端18に至るまで、好ましくは表面全体に酸化チ
タンを被覆した多数の中空ガラスビーズ22を収容して
いる。かかる中空ガラスビーズに施された酸化チタン被
膜は、光触媒の一タイプとして一般に知られているよう
に、照射された紫外線との相互作用により、水中に水中
の有機物の酸化を促進させるOHラジカルを生じさせる
のに役立つ。酸化チタンをビーズの形態で石英管中に浮
動状態で充填させることにより、例えば二本の電極に被
覆された形態の酸化チタンよりも有効表面積が大きくな
ってOHラジカルが一層多量に生じるようになり、かく
して一層良好な光触媒作用が得られることになることは
理解されよう。
As can be clearly seen in FIG. 2, the helical passage 20 of the quartz tube 14 has a multiplicity of titanium oxide coatings, preferably all over its surface, from its inlet end 16 to its outlet end 18. Of the hollow glass beads 22 are accommodated. As generally known as a type of photocatalyst, the titanium oxide coating applied to such hollow glass beads generates OH radicals in water that promote the oxidation of organic matter in water by interaction with irradiated ultraviolet light. Help to make. By filling titanium oxide in the form of beads in a quartz tube in a floating state, the effective surface area becomes larger than that of titanium oxide coated in two electrodes, for example, so that a larger amount of OH radicals is generated. It will be appreciated that better photocatalysis will thus be obtained.

【0018】図3は、図2に示した螺旋管ターンの任意
の部分のI−I線矢視断面図であり、分図(A)、
(B)、(C)は、紫外線酸化装置の動作中、酸化チタ
ン被覆中空ガラスビーズ22が石英管壁で構成される通
路又は中空部20内にどのように位置するかを例示的に
示す図である。ビーズ22は、通路断面を塞ぐように位
置するのではなく、図示のように、石英管壁との間に水
を十分に通すと共に紫外線照射ランプからの紫外線がそ
れほど妨害されずに、通過中の水全体に対して十分に照
射されるような寸法形状のものであることが必要であ
る。一例として、石英製管14の通路内径が約3〜4mm
の場合、酸化チタン被覆中空ガラスビーズの粒径は、約
1.5〜2mmである。実験結果によれば、石英管の任意
の通路断面に約2〜3個のビーズがランダムな配置状態
で納まることが望ましい。
FIG. 3 is a sectional view taken along line II of an arbitrary portion of the spiral tube turn shown in FIG.
(B), (C) is a diagram exemplarily showing how the titanium oxide-coated hollow glass beads 22 are located in the passage or the hollow portion 20 constituted by the quartz tube wall during the operation of the ultraviolet oxidation apparatus. It is. The beads 22 are not located so as to block the passage cross section, but allow sufficient water to pass between the quartz tube wall and the ultraviolet light from the ultraviolet irradiation lamp without being obstructed so much as shown in the drawing. It must be of a size and shape that allows sufficient irradiation of the entire water. As an example, the passage inner diameter of the quartz tube 14 is about 3 to 4 mm.
In this case, the particle size of the titanium oxide-coated hollow glass beads is about 1.5 to 2 mm. According to the experimental results, it is desirable that about 2 to 3 beads are randomly placed in an arbitrary passage section of the quartz tube.

【0019】図2を再び参照すると、石英製管の出口端
18には、酸化チタン被覆中空ガラスビーズが液体の流
れに同伴されて石英製管から抜け出ることのないように
するための抜出し防止手段24が設けられている。図示
の実施形態では、抜出し防止手段は、例えば細いステン
レスワイヤを丸めて石英管内部通路内に押し込んでスク
リーン又はフィルタの役目を果たすようにしたものであ
る。このワイヤメッシュスクリーン24は、挿入後、そ
のスプリングバック作用により石英管壁に対して押圧保
持される。当業者であれば、かかるワイヤメッシュスク
リーンに代わる種々の手段を想到できよう。要するに、
水を通過させるが、ビーズがこれに同伴された状態で螺
旋管14が抜け出ないようにする任意のフィルタ又はス
クリーン手段が用いられる。任意の従来型固定手段を用
いてこのスクリーン手段を石英管壁に固定できる。好ま
しくは、かかる抜出し防止手段24は、螺旋管の入口端
16にも配置される(図示せず)。
Referring again to FIG. 2, at the outlet end 18 of the quartz tube, there is provided a means for preventing the titanium oxide-coated hollow glass beads from coming out of the quartz tube with the flow of liquid. 24 are provided. In the illustrated embodiment, the pull-out preventing means is, for example, a thin stainless wire that is rolled and pushed into the inside passage of the quartz tube to serve as a screen or a filter. After insertion, the wire mesh screen 24 is pressed and held against the quartz tube wall by its springback action. Those skilled in the art will recognize various alternatives to such wire mesh screens. in short,
Any filter or screen means is used to allow water to pass, but not to escape the helical tube 14 with the beads entrained. The screen means can be fixed to the quartz tube wall using any conventional fixing means. Preferably, such withdrawal prevention means 24 is also located at the inlet end 16 of the helical tube (not shown).

【0020】図4は、本発明の別の実施形態としての紫
外線酸化装置30を示す斜視図、図5は、本発明の新規
な特徴を示すための図4の紫外線酸化装置30の5−5
線矢視断面図である。この実施形態の紫外線酸化装置
は、代表的には、例えば半導体用純水製造装システム中
に設けられたTOC除去系統に直列に組み込まれて、入
口端を通って流入した原水又は被処理液に紫外線を照射
して液中の有機炭素が有機酸の状態になるようにし、し
かる後、出口端から次の処理のために送り出すようにな
っている。紫外線照射後の有機酸含有水は、次にイオン
交換樹脂装置に運ばれ、イオン交換樹脂装置は、水中の
有機酸をイオン交換作用により除去して水中の全有機炭
素量を減少させ、一層純度の高い水を生じさせるように
なっている。
FIG. 4 is a perspective view showing an ultraviolet oxidizing apparatus 30 as another embodiment of the present invention, and FIG. 5 is a view 5-5 of the ultraviolet oxidizing apparatus 30 of FIG.
FIG. The ultraviolet oxidation apparatus of this embodiment is typically incorporated in series with a TOC removal system provided in a pure water production system for semiconductors, for example, to feed raw water or a liquid to be treated flowing through an inlet end. The organic carbon in the liquid is turned into an organic acid state by irradiating ultraviolet rays, and thereafter, the organic carbon is sent out from the outlet end for the next processing. The organic acid-containing water after the ultraviolet irradiation is then transferred to an ion-exchange resin device, which removes organic acids in the water by ion-exchange action to reduce the total amount of organic carbon in the water and further purify the water. High water.

【0021】紫外線酸化装置30は、紫外線照射ランプ
12に近接してその下方に長手方向に配置されたチャン
ネル形中空容器の形態の液体通路手段32を有してい
る。容器32は、紫外線照射ランプ12に向かって上部
が開いた横断面溝形の矩形本体34、この頂縁に任意の
固定手段、例えばクランプ枠36で固定的に取り付けら
れる透明な材料、好ましくは石英ガラス製の板状クロー
ジャ38、及び本体34とクロージャ38によって構成
される容器中空部又は内部室40を有している。容器本
体34の互いに反対側に位置した端部には、水を室40
内に受け入れる入口管状部材42及び室40から紫外線
照射により完全酸化状態になった水を室40から送りだ
す出口管状部材44が設けられている。
The ultraviolet oxidizing apparatus 30 has a liquid passage means 32 in the form of a channel-shaped hollow container disposed longitudinally below and near the ultraviolet irradiation lamp 12. The container 32 is a rectangular body 34 having a cross-sectional groove shape open toward the ultraviolet irradiation lamp 12 and a transparent material, preferably quartz, fixedly attached to the top edge thereof by any fixing means, for example, a clamp frame 36. It has a plate-shaped closure 38 made of glass, and a container hollow portion or inner chamber 40 constituted by the main body 34 and the closure 38. The opposite ends of the container body 34 are filled with water 40
There is provided an inlet tubular member 42 for receiving therein and an outlet tubular member 44 for sending out water which has been completely oxidized by irradiation with ultraviolet rays from the chamber 40 from the chamber 40.

【0022】図5で分かるように、流動通過中の水で満
たされた容器32の中空部又は内部通路40は、多数の
酸化チタン被覆中空ガラスビーズ22を浮遊状態で収容
している。出口管状部材が取り付けられている容器本体
34の端部の内側部分には、フィルタから成るビーズ抜
出し防止手段を設けてもよいが、容器本体に対する出口
管状部材の取付け部を容器端部の比較的下方又は容器底
部に配置すると、ビーズは浮遊性なので、かかる抜出し
防止手段を設けなくても容器32から抜け出ることはな
い。入口管状部材の取付け場所もこれと同様にすれば良
い。
As can be seen in FIG. 5, the hollow or internal passage 40 of the container 32 filled with water during flow passage contains a number of titanium oxide-coated hollow glass beads 22 in a floating state. A bead withdrawal preventing means made of a filter may be provided on the inner part of the end of the container body 34 to which the outlet tubular member is attached. If placed below or at the bottom of the container, the beads will be floating and will not fall out of the container 32 without such a draw-out prevention means. The mounting location of the inlet tubular member may be the same.

【0023】第2の実施形態の液体通路手段としての容
器32も、第1の実施形態の液体通路手段14の場合と
同様、紫外線照射ランプからの紫外線が石英ガラス板3
8を透過し、さらに中空部40内の浮遊状態の酸化チタ
ン被覆中空ガラスビーズ22を通ってその下に存在する
水に対し十分に照射されるような寸法形状のものである
ことが必要である。したがって、室40の深さ寸法を大
きくして一層多くのビーズを収容しても、室底部の水部
分まで紫外線が到達しにくくなり、その中に含まれてい
る有機物の酸化は促進されない。一例として、石英ガラ
ス板38が載置されている容器の横方向上部開口寸法を
Lとし、紫外線照射ランプ12の外径をdとすれば、L
=2〜3dの関係が成り立つことが望ましいことが実験
的に判明した。また、粒径が約1.5〜2mmの酸化チタ
ン被覆中空ガラスビーズを用いる場合、容器の中空部深
さは約3〜4mmである。実験結果によれば、この場合も
又、容器中空部内の水中には、鉛直方向に約2〜3個の
ビーズがランダムな重なり状態で浮遊することが望まし
い。また、好ましくは、石英ガラス板38の上面と紫外
線照射ランプ12の外周部との間の離隔距離は、約1〜
3mmである。なお、紫外線照射ランプからの紫外線がか
かる隙間中に存在する酸素と反応してオゾンが生じ、こ
れにより紫外線照射量が減少することのないようにする
ために、少なくとも紫外線照射ランプと容器32との間
の空間を、例えば覆いによって密閉し、この密閉空間内
に窒素ガスを充填するのが良い。
As in the case of the liquid passage means 14 of the first embodiment, the container 32 as the liquid passage means of the second embodiment also emits ultraviolet rays from an ultraviolet irradiation lamp to the quartz glass plate 3.
8 must be sized and shaped so as to be sufficiently radiated through the titanium oxide-coated hollow glass beads 22 in a floating state in the hollow portion 40 and to the water present thereunder. . Therefore, even if the depth dimension of the chamber 40 is increased to accommodate more beads, the ultraviolet rays hardly reach the water portion at the bottom of the chamber, and the oxidation of organic substances contained therein is not promoted. As an example, if the lateral upper opening dimension of the container on which the quartz glass plate 38 is placed is L and the outer diameter of the ultraviolet irradiation lamp 12 is d, L
It has been experimentally found that it is desirable to satisfy the relationship of = 2 to 3d. When titanium oxide-coated hollow glass beads having a particle size of about 1.5 to 2 mm are used, the depth of the hollow portion of the container is about 3 to 4 mm. According to the experimental results, in this case as well, it is desirable that about 2 to 3 beads are vertically suspended in water in the hollow portion of the container in a vertically overlapping manner. Preferably, the separation distance between the upper surface of the quartz glass plate 38 and the outer peripheral portion of the ultraviolet irradiation lamp 12 is approximately 1 to 1.
3 mm. In order to prevent the ultraviolet rays from the ultraviolet irradiation lamp from reacting with oxygen existing in the gap to generate ozone and thereby reduce the ultraviolet irradiation amount, at least the ultraviolet irradiation lamp and the container 32 are connected to each other. The space between them is preferably sealed by, for example, a cover, and the sealed space is filled with nitrogen gas.

【0024】図6は、紫外線照射ランプ12の周りにぐ
るりと設けられた螺旋状の細長い石英製管14から成る
従来型紫外線酸化装置に、本発明の第2の実施形態の液
体通路手段である酸化チタンビーズ収容容器32をレト
ロフィットした構成例を示している。容器32は、螺旋
管14を備えた紫外線照射ランプ12の真下に長手方向
に近接し、その石英ガラス板38を上方に差し向けて配
置されている。図示のように、容器32の入口42を、
原水又は純水源に連結し、出口44を、螺旋状石英管1
4の入口端16に連結するのが良い。紫外線酸化装置の
動作中、容器32内を通過している水は、石英管14を
透過してリークした紫外線照射ランプからの紫外線の照
射を石英ガラス板38を透過して受け、酸化チタン被覆
中空ガラスビーズ22の光触媒作用により含有有機物の
酸化が促進されるようになる。
FIG. 6 shows a liquid passage means according to a second embodiment of the present invention in a conventional ultraviolet oxidation apparatus comprising a helical elongated quartz tube 14 provided around an ultraviolet irradiation lamp 12. This shows a configuration example in which the titanium oxide bead container 32 is retrofitted. The container 32 is disposed immediately below the ultraviolet irradiation lamp 12 having the spiral tube 14 in the longitudinal direction, and the quartz glass plate 38 is directed upward. As shown, the inlet 42 of the container 32 is
The outlet 44 is connected to the raw water or pure water source and the spiral quartz tube 1
4 may be connected to the inlet end 16. During the operation of the ultraviolet oxidizing apparatus, water passing through the container 32 receives ultraviolet irradiation from an ultraviolet irradiation lamp that has leaked through the quartz tube 14 through the quartz glass plate 38, and the titanium oxide coated hollow. The photocatalysis of the glass beads 22 promotes the oxidation of the contained organic matter.

【0025】図7は、紫外線によっては比較的酸化しに
くいベンゾキシンを含有した水に対し、図1に示す本発
明の光触媒利用方式紫外線酸化装置を用いて紫外線照射
時間に対する水の導電率の変化を測定し、その結果を実
線で示している。他方、同一条件において、従来型紫外
線酸化装置を用いて得た結果を破線で示している。
FIG. 7 shows the change in the conductivity of water with respect to the time of ultraviolet irradiation using the photocatalyst-based ultraviolet oxidation apparatus of the present invention shown in FIG. The measurement was performed, and the result is shown by a solid line. On the other hand, the results obtained using the conventional ultraviolet oxidation apparatus under the same conditions are indicated by broken lines.

【0026】ベンゾキシン含有水に対して紫外線を照射
すると、ベンゾキシンが有機酸に変化するにつれて導電
率曲線は上昇してピークを迎え、次に下降してついには
実質的に一定値となる。当業者には周知のように、かか
る導電率が一定値を取る時点を完全酸化点(以下、「F
点」という)と考えることができる。かかるグラフを参
照すると理解されるように、実線で示す本発明の装置に
関する導電率曲線のF点における紫外線照射時間は、約
3分であり、これは水中のベンゾキシンを完全に酸化す
るのに要する時間と考えることができる。これに対し
て、点線で示す従来機の場合、F点の紫外線照射時間
は、約6分である。したがって、本発明の構想に従って
酸化チタン被覆中空ガラスビーズを使用することによ
り、比較的酸化しにくい有機物であっても、従来方式と
比べて約半分の酸化時間で完全に酸化させることができ
る。かくして、本発明を具体化したTOC計では、TO
C値計測時間を約1/2に短縮させることができ、ま
た、本発明のTOC除去システムでは、TOC除去効率
が倍増することになる。
When the benzoxin-containing water is irradiated with ultraviolet light, the conductivity curve rises and peaks as the benzoxin changes into an organic acid, and then falls to a substantially constant value. As is well known to those skilled in the art, the point at which the conductivity takes a constant value is defined as the point of complete oxidation (hereinafter referred to as "F
Point). As can be seen with reference to such a graph, the UV irradiation time at point F of the conductivity curve for the device of the present invention, indicated by the solid line, is about 3 minutes, which is required to completely oxidize benzoxin in water. You can think of it as time. On the other hand, in the case of the conventional machine shown by the dotted line, the ultraviolet irradiation time at the point F is about 6 minutes. Therefore, by using the titanium oxide-coated hollow glass beads according to the concept of the present invention, even organic substances which are relatively hard to oxidize can be completely oxidized in about half the oxidation time as compared with the conventional method. Thus, in the TOC meter embodying the present invention, the TOC
The C value measurement time can be reduced to about 1/2, and the TOC removal system of the present invention doubles the TOC removal efficiency.

【0027】[0027]

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来構成と同様に、筒状の紫外線照射ランプの
周りにぐるりと設けられた螺旋状の細長い石英製管から
成る紫外線酸化装置の斜視図である。
FIG. 1 is a perspective view of an ultraviolet oxidizing apparatus comprising a helical elongated quartz tube provided around a cylindrical ultraviolet irradiation lamp similarly to the conventional configuration.

【図2】図1の石英製螺旋管の出口端のところの一ター
ンを拡大して示す部分切欠き図であり、本発明の特徴を
最も良く示す図である。
FIG. 2 is an enlarged partial cutaway view showing one turn at the outlet end of the quartz spiral tube of FIG. 1, and is a view best showing the features of the present invention.

【図3】図2に示した螺旋管ターンの任意の部分のI−
I線矢視断面図であり、分図(A)、(B)、(C)
は、紫外線酸化装置の動作中、酸化チタン被覆中空ガラ
スビーズ22が石英管壁で構成される通路又は中空部内
にどのように位置するかを例示的に示す図である。
FIG. 3 shows I- of any part of the spiral tube turn shown in FIG.
FIG. 2 is a sectional view taken along the line I, and is a sectional view (A), (B), (C).
FIG. 5 is a view exemplarily showing how the titanium oxide-coated hollow glass beads 22 are positioned in a passage or a hollow portion formed by a quartz tube wall during operation of the ultraviolet oxidation apparatus.

【図4】本発明の別の実施形態としての紫外線酸化装置
を示す斜視図であり、酸化チタン被覆中空ガラスビーズ
を収容すると共に通路手段として水を通過させる容器が
紫外線照射ランプの下に配置されている状態を示す図で
ある。
FIG. 4 is a perspective view showing an ultraviolet oxidizing apparatus as another embodiment of the present invention, in which a container for accommodating hollow glass beads coated with titanium oxide and allowing water to pass therethrough is disposed below the ultraviolet irradiation lamp. FIG.

【図5】図4の紫外線酸化装置の5−5線矢視断面図で
ある。
FIG. 5 is a sectional view of the ultraviolet oxidizing apparatus of FIG. 4 taken along line 5-5.

【図6】従来型紫外線酸化装置に本発明の特徴をレトロ
フィットした例を示す斜視図である。
FIG. 6 is a perspective view showing an example in which features of the present invention are retrofitted to a conventional ultraviolet oxidation apparatus.

【図7】水中の有機物に紫外線を照射して有機酸の状態
にし、縦軸に導電率、横軸に紫外線(UV)照射時間を
とってプロットした本発明と従来構成の比較実験結果を
示すグラフ図である。
FIG. 7 shows a comparative experiment result of the present invention and a conventional configuration in which organic substances in water are irradiated with ultraviolet rays to be in an organic acid state, and the vertical axis plots the conductivity and the horizontal axis plots ultraviolet (UV) irradiation time. FIG.

【符号の説明】[Explanation of symbols]

10,30 紫外線酸化装置 12 紫外線照射ランプ 14 螺旋状石英管 16,42 入口端 18,44出口端 20,40 中空部 22 酸化チタン被覆中空ガラスビーズ 24 ワイヤメッシュスクリーン 32 酸化チタン被覆中空ガラスビーズ収容容器 38 石英ガラス板 10, 30 UV oxidation device 12 UV irradiation lamp 14 Spiral quartz tube 16, 42 Inlet end 18, 44 Outlet end 20, 40 Hollow part 22 Titanium oxide coated hollow glass beads 24 Wire mesh screen 32 Titanium oxide coated hollow glass beads container 38 Quartz glass plate

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 入口端、出口端及びこれらと連通する中
空部を画定し、少なくとも一部が実質的に透明な材料で
作られている液体通路手段と、液体通路手段と連携して
設けられていて、紫外線を液体通路手段の実質的に透明
な部分を通して、入口端から出口端に向かって中空部内
を流れている液体に照射し、それにより液体中の有機物
を酸化させて有機酸の形態にするための紫外線照射ラン
プとから成り、前記液体通路手段の中空部は、液体中の
有機物の紫外線酸化を促進させる多数の酸化チタン被覆
中空ガラスビーズを収容していることを特徴とする紫外
線酸化装置。
1. A liquid passage means defining an inlet end, an outlet end and a hollow communicating therewith, at least a portion of which is made of a substantially transparent material, and provided in cooperation with the liquid passage means. And irradiates the liquid flowing in the hollow portion from the inlet end to the outlet end with ultraviolet light through the substantially transparent portion of the liquid passage means, thereby oxidizing organic matter in the liquid to form an organic acid. The hollow portion of the liquid passage means contains a number of titanium oxide-coated hollow glass beads for promoting ultraviolet oxidation of organic substances in the liquid. apparatus.
【請求項2】 前記液体通路手段は、筒状の紫外線照射
ランプの周りにぐるりと設けられた螺旋状の細長い石英
製管から成り、石英製管の螺旋状中空部には、その入口
端から出口端まで実質的に酸化チタン被覆中空ガラスビ
ーズが充填されていることを特徴とする請求項1記載の
紫外線酸化装置。
2. The liquid passage means comprises a helical elongated quartz tube provided around a cylindrical ultraviolet irradiation lamp, and a helical hollow portion of the quartz tube is provided at an inlet end thereof. 2. The ultraviolet oxidation apparatus according to claim 1, wherein the outlet end is substantially filled with titanium oxide-coated hollow glass beads.
【請求項3】 石英製管の少なくとも出口端には、酸化
チタン被覆中空ガラスビーズが液体の流れに同伴されて
石英製管から抜け出ることのないようにするためのスク
リーン手段が設けられていることを特徴とする請求項2
記載の紫外線酸化装置。
3. A screen means is provided at least at an outlet end of the quartz tube so as to prevent the titanium oxide-coated hollow glass beads from falling out of the quartz tube due to the flow of the liquid. 3. The method according to claim 2, wherein
The ultraviolet oxidation apparatus according to the above.
【請求項4】 石英製管の中空部内径は、約3〜4mm、
酸化チタン被覆中空ガラスビーズの粒径は、約1.5〜
2mmであることを特徴とする請求項2又は3記載の紫外
線酸化装置。
4. The inner diameter of the hollow portion of the quartz tube is about 3 to 4 mm,
The particle size of the titanium oxide-coated hollow glass beads is about 1.5 to
The ultraviolet oxidizer according to claim 2 or 3, wherein the diameter is 2 mm.
【請求項5】 前記液体通路手段は、紫外線照射ランプ
に近接してその下方に配置されていて、酸化チタン被覆
中空ガラスビーズを浮遊状態で収容する中空部を備える
と共に少なくとも一部が透明な材料で作られた中空容器
であり、容器は、液体を紫外線照射のために中空部に導
入する入口及び紫外線照射後の水を中空部から送りだす
ための出口を有し、容器の透明部分は、石英製管を透過
して漏れる紫外線照射ランプからの紫外線を中空部内へ
透過させるよう紫外線照射ランプに向けて配置されてい
ることを特徴とする請求項1記載の紫外線酸化装置。
5. The liquid passage means includes a hollow portion which is disposed in proximity to and below the ultraviolet irradiation lamp and accommodates the titanium oxide-coated hollow glass beads in a floating state, and at least a part of which is made of a transparent material. The container has an inlet for introducing a liquid into the hollow portion for ultraviolet irradiation and an outlet for sending water after the ultraviolet irradiation from the hollow portion, and the transparent portion of the container is made of quartz. 2. The ultraviolet oxidizing apparatus according to claim 1, wherein the ultraviolet oxidizing device is disposed toward the ultraviolet irradiating lamp so as to transmit the ultraviolet light from the ultraviolet irradiating lamp that leaks through the tube.
【請求項6】 中空容器の少なくとも出口には、酸化チ
タン被覆中空ガラスビーズが液体の流れに同伴されて中
空容器から抜け出ることのないようにするためのスクリ
ーン手段が設けられていることを特徴とする請求項5記
載の紫外線酸化装置。
6. A screen means is provided at least at an outlet of the hollow container so as to prevent the titanium oxide-coated hollow glass beads from coming out of the hollow container accompanying the flow of the liquid. The ultraviolet oxidation apparatus according to claim 5, wherein
【請求項7】 前記中空容器は、その透明部分が紫外線
照射ランプから間隔を置いた状態で配置され、透明部分
と紫外線照射ランプとの間には、窒素ガスが充填された
密閉空間が画定されていることを特徴とする請求項5又
は6記載の紫外線酸化装置。
7. The hollow container has a transparent portion disposed at a distance from an ultraviolet irradiation lamp, and a closed space filled with nitrogen gas is defined between the transparent portion and the ultraviolet irradiation lamp. The ultraviolet oxidizing apparatus according to claim 5, wherein
【請求項8】 前記紫外線酸化装置は、前記入口端に流
入する試料水の導電率と、前記出口端から流出した試料
水の導電率を測定し、これら導電率測定値の差に基づい
て試料水の全有機炭素量を決定するTOC計の一部を構
成していることを特徴とする請求項1の紫外線酸化装
置。
8. The ultraviolet oxidation apparatus measures the conductivity of the sample water flowing into the inlet end and the conductivity of the sample water flowing out of the outlet end, and determines the sample based on a difference between the measured conductivity values. 2. The ultraviolet oxidation apparatus according to claim 1, wherein the ultraviolet oxidation apparatus forms a part of a TOC meter for determining the total amount of organic carbon in water.
【請求項9】 前記紫外線酸化装置は、前記出口から流
出した水をイオン交換樹脂装置に導入し、ここで水中の
有機酸を除去して水中の全有機炭素量を減少させるよう
になったTOC除去系統の一部を構成していることを特
徴とする請求項1の紫外線酸化装置。
9. The TOC according to claim 1, wherein said ultraviolet oxidizing device introduces water flowing out of said outlet into an ion exchange resin device, wherein the organic acid in the water is removed to reduce the total amount of organic carbon in the water. 2. The ultraviolet oxidation apparatus according to claim 1, wherein the ultraviolet oxidation apparatus forms a part of a removal system.
【請求項10】 筒状の紫外線照射ランプの周りにぐる
りと設けられた螺旋状石英製管と、紫外線照射ランプの
真下に配置されていて、酸化チタン被覆中空ガラスビー
ズを浮遊状態で収容する中空部を備えると共に少なくと
も一部が透明な材料で作られた中空容器とから成り、容
器は、液体を紫外線照射のために中空部に導入する入口
及び紫外線照射後の水を中空部から送りだすための出口
を有し、容器の透明部分は、石英製管を透過して漏れる
紫外線照射ランプからの紫外線を中空部内へ透過させる
よう紫外線照射ランプに向けて配置されていることを特
徴とする紫外線酸化装置。
10. A spiral quartz tube which is provided around a cylindrical ultraviolet irradiation lamp, and a hollow tube which is disposed immediately below the ultraviolet irradiation lamp and accommodates titanium oxide-coated hollow glass beads in a floating state. And a hollow container at least partially made of a transparent material, the container being provided with an inlet for introducing a liquid into the hollow portion for ultraviolet irradiation, and an outlet for discharging water after the ultraviolet irradiation from the hollow portion. An ultraviolet oxidizing apparatus having an outlet, wherein the transparent portion of the container is arranged toward the ultraviolet irradiation lamp so as to transmit the ultraviolet light from the ultraviolet irradiation lamp leaking through the quartz tube into the hollow portion. .
JP32714697A 1997-11-12 1997-11-12 UV oxidation equipment Expired - Lifetime JP3573933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32714697A JP3573933B2 (en) 1997-11-12 1997-11-12 UV oxidation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32714697A JP3573933B2 (en) 1997-11-12 1997-11-12 UV oxidation equipment

Publications (2)

Publication Number Publication Date
JPH11138156A true JPH11138156A (en) 1999-05-25
JP3573933B2 JP3573933B2 (en) 2004-10-06

Family

ID=18195833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32714697A Expired - Lifetime JP3573933B2 (en) 1997-11-12 1997-11-12 UV oxidation equipment

Country Status (1)

Country Link
JP (1) JP3573933B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1112752A2 (en) * 1999-12-28 2001-07-04 Toshiba Lighting & Technology Corporation An odor removing apparatus and a refrigerating apparatus using the same
EP1142630A2 (en) * 2000-04-07 2001-10-10 Yamaha Corporation A effluent treating method, an effluent treating apparatus, and a cleaning apparatus using the same
JP2003053178A (en) * 2001-08-13 2003-02-25 Dkk Toa Corp Photo-oxidizer
JP2007139568A (en) * 2005-11-17 2007-06-07 Techno Morioka Kk Uv chamber and toc monitor device
CN103523855A (en) * 2013-10-15 2014-01-22 上海纳米技术及应用国家工程研究中心有限公司 Supported photocatalytic degradation method and supported photocatalytic real-time on-line degradation device
CN104030393A (en) * 2014-06-08 2014-09-10 厦门通秴科技有限公司 Efficient water purifying device without need of replacing or cleaning filter element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101868524B1 (en) * 2017-11-27 2018-07-19 장명옥 Apparatus for water treatment
KR101876178B1 (en) * 2017-11-27 2018-07-09 장명옥 Apparatus for advanced oxidation process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1112752A2 (en) * 1999-12-28 2001-07-04 Toshiba Lighting & Technology Corporation An odor removing apparatus and a refrigerating apparatus using the same
EP1112752A3 (en) * 1999-12-28 2001-09-19 Toshiba Lighting & Technology Corporation An odor removing apparatus and a refrigerating apparatus using the same
EP1142630A2 (en) * 2000-04-07 2001-10-10 Yamaha Corporation A effluent treating method, an effluent treating apparatus, and a cleaning apparatus using the same
EP1142630B1 (en) * 2000-04-07 2006-09-20 Yamaha Corporation A effluent treating method, an effluent treating apparatus, and a cleaning apparatus using the same
JP2003053178A (en) * 2001-08-13 2003-02-25 Dkk Toa Corp Photo-oxidizer
JP2007139568A (en) * 2005-11-17 2007-06-07 Techno Morioka Kk Uv chamber and toc monitor device
CN103523855A (en) * 2013-10-15 2014-01-22 上海纳米技术及应用国家工程研究中心有限公司 Supported photocatalytic degradation method and supported photocatalytic real-time on-line degradation device
CN104030393A (en) * 2014-06-08 2014-09-10 厦门通秴科技有限公司 Efficient water purifying device without need of replacing or cleaning filter element

Also Published As

Publication number Publication date
JP3573933B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
US5395522A (en) Apparatus for removal of organic material from water
US10287193B2 (en) Systems and methods for the treatment of ballast water
US20040040831A1 (en) Method and apparatus for eliminating stench and volatile organic compounds from polluted air
KR960702419A (en) Method and system for photocatalytic decontamination
JP6266954B2 (en) Water treatment equipment using liquid level plasma discharge
EP0537451B1 (en) Process for the decomposition of organochlorine solvent contained in water
JP3573933B2 (en) UV oxidation equipment
KR102613173B1 (en) Systems and methods for treating fluids by sonoelectrochemistry
KR101868524B1 (en) Apparatus for water treatment
EP0777629B1 (en) Method and apparatus for the purification of gases and liquids
JP4806821B2 (en) Ultrasonic sterilizer
JP2010046611A (en) Ultraviolet oxidation apparatus
JP2003285060A (en) Water treatment device
JPH0526187U (en) Ultraviolet irradiation device for photochemical reaction treatment
JP2006087988A (en) Photoreaction device containing photoreaction tube and water quality monitoring device using the same
KR101438703B1 (en) Advanced oxidation processing methods and apparatus used therein
JP3354273B2 (en) Photocatalyst cartridge
KR20200080938A (en) Ultraviolet purifying device using ozone gas
JP2702378B2 (en) Water purification equipment
KR100196745B1 (en) A water purification apparatus module using fluid-type titanium oxide coated packing material
KR102284856B1 (en) Water treating apparatus using bubble and oxidation
CN210528675U (en) Municipal sewage treatment system
KR100473651B1 (en) Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material
JPS58220000A (en) System for preparing extremely pure water
JPH0338297A (en) Method for treating water contaminated by trichloroethylene and tetrachloroethylene

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term