JP3573933B2 - UV oxidation equipment - Google Patents

UV oxidation equipment Download PDF

Info

Publication number
JP3573933B2
JP3573933B2 JP32714697A JP32714697A JP3573933B2 JP 3573933 B2 JP3573933 B2 JP 3573933B2 JP 32714697 A JP32714697 A JP 32714697A JP 32714697 A JP32714697 A JP 32714697A JP 3573933 B2 JP3573933 B2 JP 3573933B2
Authority
JP
Japan
Prior art keywords
ultraviolet
water
ultraviolet irradiation
container
irradiation lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32714697A
Other languages
Japanese (ja)
Other versions
JPH11138156A (en
Inventor
博 中鉢
Original Assignee
株式会社ティ・アンド・シー・テクニカル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ティ・アンド・シー・テクニカル filed Critical 株式会社ティ・アンド・シー・テクニカル
Priority to JP32714697A priority Critical patent/JP3573933B2/en
Publication of JPH11138156A publication Critical patent/JPH11138156A/en
Application granted granted Critical
Publication of JP3573933B2 publication Critical patent/JP3573933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、代表的には水の汚染度を表す水中の全有機炭素(TOC)を測定するための全有機炭素計測システム(「TOC計」と呼ばれることがある)又は水中の有機微粒子やコロイド状有機分子を完全に除去するためのイオン交換方式TOC除去システム等に用いられ、紫外線を水中の有機物に照射してこれを酸化させる紫外線酸化装置の改良に関する。
【0002】
【従来の技術】
半導体の洗浄用、医療用薬品や注射液などの製造用、化学分析用等に用いられる水は、不純物、例えば微粒子、各種イオン、細菌等の微生物、有機化合物等の溶解物質を実質的に含んでいないことが必要不可欠である。かかる純水を製造するシステムは通常、逆浸透法、蒸留法、イオン交換法、吸着法、真空脱気法、紫外線酸化法、限外濾過法を含む種々の濾過手段を組み合わせて用いている。特に、例えば半導体製造分野では、LSIの集積度の増大につれ回路の間隔が狭くなっているので、回路短絡を防止するために半導体洗浄水を一層高純度にする必要があり、イオンのみならず、微粒子、細菌や有機物質も可能な限り除去しなければならない。
【0003】
純水の清浄度を表す方式の一つとして、水中の有機物中の炭素量で汚染度を表す全有機炭素(TOC)値(μg/l 又はppbで表される)がある。参考までに、半導体洗浄用途では、0.20μg/l 以下のTOC値が要求される場合がある。
【0004】
純水のTOC値を測定する手段として、紫外線(UV)酸化方式のTOC計が広く利用されている。かかるTOC計では、測定ライン中を流れる試料水の導電率を第1の導電率センサで測定した後、かかる試料水を、かかる試料水を紫外線照射部へ導入し、ここで試料水に紫外線を照射して試料水中の有機炭素を有機酸に変化させる。しかる後、試料水の導電率を第2の導電率センサで測定し、第1及び第2の導電率センサ得た導電率の変化を表す差に基づいて既知のデータから試料水のTOC値を求める。
【0005】
また、半導体洗浄用純水製造システムに供給される原水又は半導体洗浄プロセス部からの回収使用済み純水は、相当高いTOC値を含む場合があり、特に、半導体洗浄プロセス部からの回収純水には、半導体洗浄プロセス部で用いられた有機溶剤が混入することがあり、この場合には使用済み純水のTOC量は約500ppb以上にもなる。所定レベルを越えるTOC量を含有する原水又は使用済み純水中の高TOC値を低減させるため、通常、かかる水を紫外線照射部に導入してこれに紫外線を照射して水中の有機物が有機酸の形態になるようにし、しかる後、イオン交換装置でこれを水から除去し、それにより低TOC値の純水が得られるようにする。
【0006】
【発明が解決しようとする課題】
TOC計、イオン交換方式TOC除去システム等に用いられる従来型紫外線酸化装置の一形式は、紫外線による有機物酸化効率を高めるために筒状紫外線照射ランプの周りに巻き付けられるように設けられていて、照射ランプからの紫外線を透過させることができる透明な材料、代表的には石英から成る螺旋状管を有する。しかしながら、従来の紫外線酸化装置では、試料水中の有機物を紫外線によって完全に酸化させるには例えば約10分というような相当に長い照射時間が必要であり、かくして、TOC計については計測時間が長くなり、TOC除去システムでは除去効率が制限されていた。
【0007】
ところで、酸化チタンが光触媒として水中に溶存している有機物の酸化分解を促進する作用を有することは知られている。これは、受光した光との相互作用により、酸化チタンがOHラジカルを生じ、このOHラジカルが有機物を効果的且つ迅速に酸化させるという原理に基づいている。酸化チタンは、光触媒材料の中でも、化学的に安定であって環境に対して実質的に無害であり、潜在的毒性もないことは実証されている。
【0008】
TOC測定分野においても、試料水中の有機物の酸化状態をモニターするために紫外線照射室内に一対の酸化チタン被覆電極を配置利用する従来技術が存在している。
【0009】
しかしながら、かかる従来技術の構成では、試料水と酸化チタン被覆電極との接触面積が制限されているので、水中の有機物の酸化が十分に促進されるとはいえない。
【0010】
そこで、本発明の目的は、従来技術の課題に鑑みて、TOC計やTOC除去システム等に用いられ、酸化チタンにより液体中の有機物の酸化を促進する光触媒利用方式の改良型紫外線酸化装置を提供することにある。
【0011】
【課題を完結するための手段】
本発明の要旨は、筒状の紫外線照射ランプの周りにぐるりと設けられた螺旋状石英製管と、紫外線照射ランプの真下に配置されていて、酸化チタン被覆中空ガラスビーズを浮遊状態で収容する中空部を備えると共に少なくとも一部が透明な材料で作られた中空容器とから成り、容器は、液体を紫外線照射のために中空部に導入する入口及び紫外線照射後の水を中空部から送りだすための出口を有し、容器の透明部分は、石英製管を透過して漏れる紫外線照射ランプからの紫外線を中空部内へ透過させるよう紫外線照射ランプに向けて配置されていることを特徴とする紫外線酸化装置にある。
【0014】
本発明の特徴は、既存の紫外線酸化装置にレトロフィットでき、かくして、本発明の紫外線酸化装置は、筒状の紫外線照射ランプの周りにぐるりと設けられた螺旋状石英製管と、紫外線照射ランプの真下に配置されていて、酸化チタン被覆中空ガラスビーズを浮遊状態で収容する中空部を備えると共に少なくとも一部が透明な材料で作られた中空容器とから成る。容器は、液体を紫外線照射のために中空部に導入する入口及び紫外線照射後の水を中空部から送りだすための出口を有し、容器の透明部分は、石英製管を透過して漏れる紫外線照射ランプからの紫外線を中空部内へ透過させるよう紫外線照射ランプに向けて配置されている。
【0015】
【発明の実施の形態】
図面のうち特に図1を参照すると、本発明の第1の実施形態として全体を符号10で示された紫外線酸化装置が示されている。かかる紫外線酸化装置10は、筒状の紫外線照射ランプ12の周りにぐるりと設けられた液体通路手段としての細長い透明な螺旋状石英管14から成る。図2は、図1の石英製螺旋管14の出口端の一ターンを拡大して示す部分切欠き図であり、後述するように本発明の特徴を最も良く示す図である。
【0016】
紫外線酸化装置10は、図示の第1の実施形態では、例えば半導体用純水製造システムに組み込まれた試料水測定ラインと関連して設けられ、原水又は純水のTOC値を測定する紫外線(UV)酸化方式TOC計(図示せず)の一部を構成する全体としては公知形式のものであり、石英管14は、入口端16、出口端18及び入口端と出口端との間に延びていて、試料水を通す螺旋状通路又は中空部20を有している。紫外線照射ランプ12は、入口端16から出口端18に向かって螺旋管14中を流れている試料水に透明な石英壁を透過して紫外線を照射し、それにより水中の有機物を完全酸化させて有機酸の形態にするよう機能する。
公知のTOC計では、石英管の入口端16は、試料水測定ライン中に採取した紫外線照射前の試料水の導電率を測定する第1のセンサ(図示せず)に連結され、出口端18は、紫外線を受けて有機物が完全に酸化された状態の試料水の導電率を測定する第2のセンサ(これ又、図示せず)に連結されている。TOC計は、第1及び第2のセンサに接続されていて、第1及び第2のセンサで得た導電率測定値の差を検出し、この差に基づいて試料水のTOC値を決定する手段を更に有している。
【0017】
図2に明確に示されているように、石英管14の螺旋状通路20は、好ましくはその入口端16から出口端18に至るまで、好ましくは表面全体に酸化チタンを被覆した多数の中空ガラスビーズ22を収容している。かかる中空ガラスビーズに施された酸化チタン被膜は、光触媒の一タイプとして一般に知られているように、照射された紫外線との相互作用により、水中に水中の有機物の酸化を促進させるOHラジカルを生じさせるのに役立つ。酸化チタンをビーズの形態で石英管中に浮動状態で充填させることにより、例えば二本の電極に被覆された形態の酸化チタンよりも有効表面積が大きくなってOHラジカルが一層多量に生じるようになり、かくして一層良好な光触媒作用が得られることになることは理解されよう。
【0018】
図3は、図2に示した螺旋管ターンの任意の部分のI−I線矢視断面図であり、分図(A)、(B)、(C)は、紫外線酸化装置の動作中、酸化チタン被覆中空ガラスビーズ22が石英管壁で構成される通路又は中空部20内にどのように位置するかを例示的に示す図である。ビーズ22は、通路断面を塞ぐように位置するのではなく、図示のように、石英管壁との間に水を十分に通すと共に紫外線照射ランプからの紫外線がそれほど妨害されずに、通過中の水全体に対して十分に照射されるような寸法形状のものであることが必要である。一例として、石英製管14の通路内径が約3〜4mmの場合、酸化チタン被覆中空ガラスビーズの粒径は、約1.5〜2mmである。実験結果によれば、石英管の任意の通路断面に約2〜3個のビーズがランダムな配置状態で納まることが望ましい。
【0019】
図2を再び参照すると、石英製管の出口端18には、酸化チタン被覆中空ガラスビーズが液体の流れに同伴されて石英製管から抜け出ることのないようにするための抜出し防止手段24が設けられている。図示の実施形態では、抜出し防止手段は、例えば細いステンレスワイヤを丸めて石英管内部通路内に押し込んでスクリーン又はフィルタの役目を果たすようにしたものである。このワイヤメッシュスクリーン24は、挿入後、そのスプリングバック作用により石英管壁に対して押圧保持される。当業者であれば、かかるワイヤメッシュスクリーンに代わる種々の手段を想到できよう。要するに、水を通過させるが、ビーズがこれに同伴された状態で螺旋管14が抜け出ないようにする任意のフィルタ又はスクリーン手段が用いられる。任意の従来型固定手段を用いてこのスクリーン手段を石英管壁に固定できる。好ましくは、かかる抜出し防止手段24は、螺旋管の入口端16にも配置される(図示せず)。
【0020】
図4は、本発明の別の実施形態としての紫外線酸化装置30を示す斜視図、図5は、本発明の新規な特徴を示すための図4の紫外線酸化装置30の5−5線矢視断面図である。この実施形態の紫外線酸化装置は、代表的には、例えば半導体用純水製造装システム中に設けられたTOC除去系統に直列に組み込まれて、入口端を通って流入した原水又は被処理液に紫外線を照射して液中の有機炭素が有機酸の状態になるようにし、しかる後、出口端から次の処理のために送り出すようになっている。紫外線照射後の有機酸含有水は、次にイオン交換樹脂装置に運ばれ、イオン交換樹脂装置は、水中の有機酸をイオン交換作用により除去して水中の全有機炭素量を減少させ、一層純度の高い水を生じさせるようになっている。
【0021】
紫外線酸化装置30は、紫外線照射ランプ12に近接してその下方に長手方向に配置されたチャンネル形中空容器の形態の液体通路手段32を有している。容器32は、紫外線照射ランプ12に向かって上部が開いた横断面溝形の矩形本体34、この頂縁に任意の固定手段、例えばクランプ枠36で固定的に取り付けられる透明な材料、好ましくは石英ガラス製の板状クロージャ38、及び本体34とクロージャ38によって構成される容器中空部又は内部室40を有している。容器本体34の互いに反対側に位置した端部には、水を室40内に受け入れる入口管状部材42及び室40から紫外線照射により完全酸化状態になった水を室40から送りだす出口管状部材44が設けられている。
【0022】
図5で分かるように、流動通過中の水で満たされた容器32の中空部又は内部通路40は、多数の酸化チタン被覆中空ガラスビーズ22を浮遊状態で収容している。出口管状部材が取り付けられている容器本体34の端部の内側部分には、フィルタから成るビーズ抜出し防止手段を設けてもよいが、容器本体に対する出口管状部材の取付け部を容器端部の比較的下方又は容器底部に配置すると、ビーズは浮遊性なので、かかる抜出し防止手段を設けなくても容器32から抜け出ることはない。入口管状部材の取付け場所もこれと同様にすれば良い。
【0023】
第2の実施形態の液体通路手段としての容器32も、第1の実施形態の液体通路手段14の場合と同様、紫外線照射ランプからの紫外線が石英ガラス板38を透過し、さらに中空部40内の浮遊状態の酸化チタン被覆中空ガラスビーズ22を通ってその下に存在する水に対し十分に照射されるような寸法形状のものであることが必要である。したがって、室40の深さ寸法を大きくして一層多くのビーズを収容しても、室底部の水部分まで紫外線が到達しにくくなり、その中に含まれている有機物の酸化は促進されない。一例として、石英ガラス板38が載置されている容器の横方向上部開口寸法をLとし、紫外線照射ランプ12の外径をdとすれば、L=2〜3dの関係が成り立つことが望ましいことが実験的に判明した。また、粒径が約1.5〜2mmの酸化チタン被覆中空ガラスビーズを用いる場合、容器の中空部深さは約3〜4mmである。実験結果によれば、この場合も又、容器中空部内の水中には、鉛直方向に約2〜3個のビーズがランダムな重なり状態で浮遊することが望ましい。また、好ましくは、石英ガラス板38の上面と紫外線照射ランプ12の外周部との間の離隔距離は、約1〜3mmである。なお、紫外線照射ランプからの紫外線がかかる隙間中に存在する酸素と反応してオゾンが生じ、これにより紫外線照射量が減少することのないようにするために、少なくとも紫外線照射ランプと容器32との間の空間を、例えば覆いによって密閉し、この密閉空間内に窒素ガスを充填するのが良い。
【0024】
図6は、紫外線照射ランプ12の周りにぐるりと設けられた螺旋状の細長い石英製管14から成る従来型紫外線酸化装置に、本発明の第2の実施形態の液体通路手段である酸化チタンビーズ収容容器32をレトロフィットした構成例を示している。容器32は、螺旋管14を備えた紫外線照射ランプ12の真下に長手方向に近接し、その石英ガラス板38を上方に差し向けて配置されている。図示のように、容器32の入口42を、原水又は純水源に連結し、出口44を、螺旋状石英管14の入口端16に連結するのが良い。紫外線酸化装置の動作中、容器32内を通過している水は、石英管14を透過してリークした紫外線照射ランプからの紫外線の照射を石英ガラス板38を透過して受け、酸化チタン被覆中空ガラスビーズ22の光触媒作用により含有有機物の酸化が促進されるようになる。
【0025】
図7は、紫外線によっては比較的酸化しにくいベンゾキシンを含有した水に対し、図1に示す本発明の光触媒利用方式紫外線酸化装置を用いて紫外線照射時間に対する水の導電率の変化を測定し、その結果を実線で示している。他方、同一条件において、従来型紫外線酸化装置を用いて得た結果を破線で示している。
【0026】
ベンゾキシン含有水に対して紫外線を照射すると、ベンゾキシンが有機酸に変化するにつれて導電率曲線は上昇してピークを迎え、次に下降してついには実質的に一定値となる。当業者には周知のように、かかる導電率が一定値を取る時点を完全酸化点(以下、「F点」という)と考えることができる。かかるグラフを参照すると理解されるように、実線で示す本発明の装置に関する導電率曲線のF点における紫外線照射時間は、約3分であり、これは水中のベンゾキシンを完全に酸化するのに要する時間と考えることができる。これに対して、点線で示す従来機の場合、F点の紫外線照射時間は、約6分である。したがって、本発明の構想に従って酸化チタン被覆中空ガラスビーズを使用することにより、比較的酸化しにくい有機物であっても、従来方式と比べて約半分の酸化時間で完全に酸化させることができる。かくして、本発明を具体化したTOC計では、TOC値計測時間を約1/2に短縮させることができ、また、本発明のTOC除去システムでは、TOC除去効率が倍増することになる。
【0027】
【図面の簡単な説明】
【図1】従来構成と同様に、筒状の紫外線照射ランプの周りにぐるりと設けられた螺旋状の細長い石英製管から成る紫外線酸化装置の斜視図である。
【図2】図1の石英製螺旋管の出口端のところの一ターンを拡大して示す部分切欠き図であり、本発明の特徴を最も良く示す図である。
【図3】図2に示した螺旋管ターンの任意の部分のI−I線矢視断面図であり、分図(A)、(B)、(C)は、紫外線酸化装置の動作中、酸化チタン被覆中空ガラスビーズ22が石英管壁で構成される通路又は中空部内にどのように位置するかを例示的に示す図である。
【図4】本発明の別の実施形態としての紫外線酸化装置を示す斜視図であり、酸化チタン被覆中空ガラスビーズを収容すると共に通路手段として水を通過させる容器が紫外線照射ランプの下に配置されている状態を示す図である。
【図5】図4の紫外線酸化装置の5−5線矢視断面図である。
【図6】従来型紫外線酸化装置に本発明の特徴をレトロフィットした例を示す斜視図である。
【図7】水中の有機物に紫外線を照射して有機酸の状態にし、縦軸に導電率、横軸に紫外線(UV)照射時間をとってプロットした本発明と従来構成の比較実験結果を示すグラフ図である。
【符号の説明】
10,30 紫外線酸化装置
12 紫外線照射ランプ
14 螺旋状石英管
16,42 入口端
18,44出口端
20,40 中空部
22 酸化チタン被覆中空ガラスビーズ
24 ワイヤメッシュスクリーン
32 酸化チタン被覆中空ガラスビーズ収容容器
38 石英ガラス板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a total organic carbon measurement system (sometimes referred to as a “TOC meter”) for measuring total organic carbon (TOC) in water, typically representing the degree of water pollution, or organic particulates or colloids in water. The present invention relates to an improvement in an ultraviolet oxidizing apparatus used in an ion exchange TOC removal system or the like for completely removing organic molecules in a state and irradiating an organic substance in water with ultraviolet rays to oxidize the organic substance.
[0002]
[Prior art]
Water used for cleaning semiconductors, manufacturing medical chemicals and injection solutions, chemical analysis, etc., substantially contains impurities, for example, fine particles, various ions, microorganisms such as bacteria, and dissolved substances such as organic compounds. Is not essential. A system for producing such pure water generally uses a combination of various filtration means including a reverse osmosis method, a distillation method, an ion exchange method, an adsorption method, a vacuum degassing method, an ultraviolet oxidation method, and an ultrafiltration method. In particular, for example, in the semiconductor manufacturing field, the circuit interval is becoming narrower as the degree of integration of the LSI is increased, so that it is necessary to further purify the semiconductor cleaning water in order to prevent a circuit short circuit. Particulates, bacteria and organic matter must be removed as much as possible.
[0003]
As one of the methods for expressing the cleanliness of pure water, there is a total organic carbon (TOC) value (expressed in μg / l or ppb), which indicates the degree of contamination by the amount of carbon in organic matter in water. For reference, a semiconductor cleaning application may require a TOC value of 0.20 μg / l or less.
[0004]
As a means for measuring the TOC value of pure water, a TOC meter of an ultraviolet (UV) oxidation method is widely used. In such a TOC meter, after measuring the conductivity of the sample water flowing in the measurement line with a first conductivity sensor, the sample water is introduced into an ultraviolet irradiation unit, and the sample water is irradiated with ultraviolet rays. Irradiation converts organic carbon in the sample water into organic acids. Thereafter, the conductivity of the sample water is measured by the second conductivity sensor, and the TOC value of the sample water is calculated from the known data based on the difference representing the change in the conductivity obtained by the first and second conductivity sensors. Ask.
[0005]
Also, the raw water supplied to the semiconductor cleaning pure water production system or the recovered and used pure water from the semiconductor cleaning process unit may include a considerably high TOC value, and particularly, the recovered pure water from the semiconductor cleaning process unit. In some cases, the organic solvent used in the semiconductor cleaning process section may be mixed, and in this case, the TOC amount of the used pure water becomes about 500 ppb or more. In order to reduce the high TOC value in raw water or used pure water containing a TOC amount exceeding a predetermined level, usually, such water is introduced into an ultraviolet irradiation section and irradiated with ultraviolet light to convert organic substances in the water into organic acids. And then removed from the water with an ion exchange device, so that pure water with a low TOC value is obtained.
[0006]
[Problems to be solved by the invention]
One type of a conventional UV oxidation apparatus used in a TOC meter, an ion exchange TOC removal system, and the like is provided so as to be wound around a cylindrical ultraviolet irradiation lamp in order to increase the efficiency of organic matter oxidation by ultraviolet light. It has a helical tube made of a transparent material, typically quartz, capable of transmitting ultraviolet light from the lamp. However, in the conventional ultraviolet oxidation apparatus, a considerably long irradiation time, for example, about 10 minutes is required to completely oxidize the organic matter in the sample water by the ultraviolet light, and thus the measurement time for the TOC meter becomes long. In TOC removal systems, removal efficiency has been limited.
[0007]
By the way, it is known that titanium oxide has a function of promoting the oxidative decomposition of organic substances dissolved in water as a photocatalyst. This is based on the principle that titanium oxide generates OH radicals by interaction with received light, and the OH radicals effectively and quickly oxidize organic substances. Titanium oxide has been demonstrated to be chemically stable, substantially harmless to the environment, and has no potential toxicity among photocatalytic materials.
[0008]
Also in the field of TOC measurement, there is a conventional technique in which a pair of titanium oxide-coated electrodes is arranged and used in an ultraviolet irradiation chamber in order to monitor the oxidation state of organic substances in sample water.
[0009]
However, in the configuration of the related art, since the contact area between the sample water and the titanium oxide-coated electrode is limited, it cannot be said that the oxidation of the organic matter in the water is sufficiently promoted.
[0010]
Accordingly, an object of the present invention is to provide an improved ultraviolet oxidation apparatus utilizing a photocatalyst, which is used in a TOC meter, a TOC removal system, and the like and promotes the oxidation of organic substances in a liquid by titanium oxide in view of the problems of the prior art. Is to do.
[0011]
[Means for completing the task]
The gist of the present invention is to provide a spiral quartz tube provided around a cylindrical ultraviolet irradiation lamp, and a titanium oxide-coated hollow glass bead which is disposed immediately below the ultraviolet irradiation lamp and is suspended. A hollow container provided with a hollow portion and made at least in part of a transparent material, wherein the container has an inlet for introducing a liquid into the hollow portion for ultraviolet irradiation and water from the hollow portion for discharging water after the ultraviolet irradiation. Characterized in that the transparent part of the container is arranged toward the ultraviolet irradiation lamp so as to transmit the ultraviolet light from the ultraviolet irradiation lamp leaking through the quartz tube into the hollow part. In the device .
[0014]
A feature of the present invention is that it can be retrofitted to existing UV oxidizers, and thus the UV oxidizer of the present invention comprises a spiral quartz tube provided around a cylindrical UV irradiation lamp, and a UV irradiation lamp. And a hollow container provided with a hollow portion for receiving titanium oxide-coated hollow glass beads in a floating state and at least partially made of a transparent material. The container has an inlet for introducing a liquid into the hollow portion for ultraviolet irradiation and an outlet for sending water after the ultraviolet irradiation from the hollow portion, and the transparent portion of the container is irradiated with ultraviolet light leaking through a quartz tube. It is arranged toward the ultraviolet irradiation lamp so as to transmit ultraviolet light from the lamp into the hollow portion.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Referring particularly to FIG. 1 of the drawings, there is shown a UV oxidizer generally designated by the numeral 10 as a first embodiment of the present invention. The ultraviolet oxidizing apparatus 10 includes an elongated transparent spiral quartz tube 14 as a liquid passage means provided around a cylindrical ultraviolet irradiation lamp 12. FIG. 2 is a partially cutaway view showing one turn of the exit end of the spiral tube 14 made of quartz of FIG. 1 in an enlarged manner, and is a view best showing the features of the present invention as described later.
[0016]
In the illustrated first embodiment, the ultraviolet oxidizing apparatus 10 is provided, for example, in connection with a sample water measurement line incorporated in a pure water production system for semiconductors, and measures ultraviolet rays (UV) for measuring the TOC value of raw water or pure water. 1) The quartz tube 14 is of a known type as a whole and constitutes a part of an oxidation type TOC meter (not shown). The quartz tube 14 extends between an inlet end 16, an outlet end 18 and an inlet end and an outlet end. And a helical passage or hollow portion 20 through which the sample water passes. The ultraviolet irradiation lamp 12 irradiates sample water flowing through the spiral tube 14 from the inlet end 16 to the outlet end 18 with ultraviolet light through the transparent quartz wall, thereby completely oxidizing organic substances in the water. Functions to form organic acids.
In the known TOC meter, the inlet end 16 of the quartz tube is connected to a first sensor (not shown) for measuring the conductivity of the sample water before irradiation with ultraviolet light collected in the sample water measurement line, and the outlet end 18 thereof. Is connected to a second sensor (also not shown) that measures the conductivity of the sample water in a state where the organic matter has been completely oxidized by receiving the ultraviolet light. The TOC meter is connected to the first and second sensors, detects a difference between the measured conductivity values obtained by the first and second sensors, and determines the TOC value of the sample water based on the difference. Means are further provided.
[0017]
As clearly shown in FIG. 2, the helical passage 20 of the quartz tube 14 is preferably a multiplicity of hollow glass coated with titanium oxide over its entire surface, preferably from its inlet end 16 to its outlet end 18. The beads 22 are accommodated. As generally known as a type of photocatalyst, the titanium oxide film applied to such hollow glass beads generates OH radicals in water that promote the oxidation of organic matter in water by interaction with irradiated ultraviolet light. Help to make. By filling titanium oxide in the form of beads in a quartz tube in a floating state, the effective surface area is larger than that of titanium oxide coated in two electrodes, for example, and a larger amount of OH radicals is generated. It will be appreciated that better photocatalysis will thus be obtained.
[0018]
FIG. 3 is a cross-sectional view taken along line II of an arbitrary part of the spiral tube turn shown in FIG. 2, and FIGS. 3A, 3B, and 3C are diagrams during operation of the ultraviolet oxidation apparatus. FIG. 2 is a view exemplarily showing how a titanium oxide-coated hollow glass bead 22 is located in a passage or a hollow portion 20 constituted by a quartz tube wall. The beads 22 are not positioned so as to block the passage cross section, but allow sufficient water to pass between the quartz tube wall and the ultraviolet light from the ultraviolet irradiation lamp without being obstructed so much as shown in the drawing. It must be of a size and shape that allows sufficient irradiation of the entire water. As an example, when the inner diameter of the passage of the quartz tube 14 is about 3 to 4 mm, the particle diameter of the titanium oxide-coated hollow glass beads is about 1.5 to 2 mm. According to the experimental results, it is desirable that about 2 to 3 beads are randomly placed in an arbitrary passage section of the quartz tube.
[0019]
Referring again to FIG. 2, at the outlet end 18 of the quartz tube, there is provided a withdrawal preventing means 24 for preventing the titanium oxide-coated hollow glass beads from coming out of the quartz tube with the flow of the liquid. Have been. In the illustrated embodiment, the withdrawal preventing means is, for example, a thin stainless wire that is rolled and pushed into the internal passage of the quartz tube to serve as a screen or a filter. After insertion, the wire mesh screen 24 is pressed and held against the quartz tube wall by its springback action. Those skilled in the art will recognize various alternatives to such wire mesh screens. In essence, any filter or screen means is used that allows water to pass but does not allow the helical tube 14 to escape with the beads entrained. The screen means can be fixed to the quartz tube wall using any conventional fixing means. Preferably, such withdrawal prevention means 24 is also located at the inlet end 16 of the helical tube (not shown).
[0020]
FIG. 4 is a perspective view showing an ultraviolet oxidizing apparatus 30 as another embodiment of the present invention, and FIG. 5 is a view taken along line 5-5 of the ultraviolet oxidizing apparatus 30 of FIG. It is sectional drawing. The ultraviolet oxidizing apparatus of this embodiment is typically incorporated in series with a TOC removal system provided in a pure water production system for semiconductors, for example, to feed raw water or a liquid to be treated flowing through an inlet end. The organic carbon in the liquid is changed to an organic acid state by irradiating ultraviolet rays, and thereafter, is sent out from the outlet end for the next processing. The organic acid-containing water after the ultraviolet irradiation is then transferred to an ion-exchange resin device, which removes organic acids in the water by ion-exchange action to reduce the total amount of organic carbon in the water and further purify the water. High water.
[0021]
The ultraviolet oxidizing device 30 has a liquid passage means 32 in the form of a channel-shaped hollow container disposed longitudinally below and near the ultraviolet irradiation lamp 12. The container 32 is made of a rectangular body 34 having a groove in cross section open toward the ultraviolet irradiation lamp 12, and a transparent material, preferably quartz, fixedly attached to the top edge thereof by any fixing means such as a clamp frame 36. It has a plate-like closure 38 made of glass, and a container hollow portion or inner chamber 40 constituted by the main body 34 and the closure 38. Opposite ends of the container body 34 are provided with an inlet tubular member 42 for receiving water into the chamber 40 and an outlet tubular member 44 for sending water that has been completely oxidized from the chamber 40 by ultraviolet irradiation from the chamber 40. Is provided.
[0022]
As can be seen in FIG. 5, the hollow or internal passage 40 of the container 32 filled with the flowing water contains a large number of titanium oxide-coated hollow glass beads 22 in a floating state. The inner part of the end of the container body 34 to which the outlet tubular member is attached may be provided with a bead removal preventing means made of a filter. If placed below or at the bottom of the container, the beads will be floating and will not fall out of the container 32 without such a draw-out preventing means. The mounting location of the inlet tubular member may be the same.
[0023]
As in the case of the liquid passage means 14 of the first embodiment, the container 32 as the liquid passage means of the second embodiment also transmits ultraviolet light from an ultraviolet irradiation lamp through the quartz glass plate 38 and Should be dimensioned so that they can be sufficiently irradiated through the suspended titanium oxide-coated hollow glass beads 22 to the water present thereunder. Therefore, even if the depth of the chamber 40 is increased to accommodate more beads, the ultraviolet rays hardly reach the water portion at the bottom of the chamber, and the oxidation of organic substances contained therein is not promoted. As an example, it is desirable that the relationship of L = 2 to 3d be satisfied, where L is the lateral upper opening dimension of the container in which the quartz glass plate 38 is placed, and d is the outer diameter of the ultraviolet irradiation lamp 12. Was found experimentally. When using titanium oxide-coated hollow glass beads having a particle size of about 1.5 to 2 mm, the depth of the hollow portion of the container is about 3 to 4 mm. According to the experimental results, in this case as well, it is desirable that about 2 to 3 beads float in a vertically overlapping manner in water in the hollow portion of the container. Preferably, the distance between the upper surface of the quartz glass plate 38 and the outer peripheral portion of the ultraviolet irradiation lamp 12 is about 1 to 3 mm. In order to prevent the ultraviolet rays from the ultraviolet irradiation lamp from reacting with oxygen existing in the gap to generate ozone and thereby reduce the ultraviolet irradiation amount, at least the ultraviolet irradiation lamp and the container 32 are connected to each other. The space between them is preferably sealed by, for example, a cover, and the sealed space is filled with nitrogen gas.
[0024]
FIG. 6 shows a conventional ultraviolet oxidation apparatus comprising a helical elongated quartz tube 14 provided around an ultraviolet irradiation lamp 12 and a titanium oxide bead as a liquid passage means according to a second embodiment of the present invention. The configuration example in which the storage container 32 is retrofitted is shown. The container 32 is disposed in the longitudinal direction immediately below the ultraviolet irradiation lamp 12 provided with the spiral tube 14, and is disposed with its quartz glass plate 38 facing upward. As shown, the inlet 42 of the container 32 may be connected to a source of raw or pure water, and the outlet 44 may be connected to the inlet end 16 of the spiral quartz tube 14. During the operation of the ultraviolet oxidizing apparatus, the water passing through the container 32 receives the ultraviolet irradiation from the ultraviolet irradiation lamp leaked through the quartz tube 14 through the quartz glass plate 38 and receives the titanium oxide coated hollow. The photocatalysis of the glass beads 22 promotes the oxidation of the contained organic matter.
[0025]
FIG. 7 shows a measurement of the change in conductivity of water with respect to ultraviolet irradiation time using water containing benzoxine, which is relatively difficult to oxidize by ultraviolet light, using the photocatalyst-based ultraviolet oxidation apparatus of the present invention shown in FIG. The result is shown by a solid line. On the other hand, the results obtained using the conventional ultraviolet oxidation apparatus under the same conditions are indicated by broken lines.
[0026]
When the benzoxin-containing water is irradiated with ultraviolet light, the conductivity curve rises and peaks as the benzoxin changes to an organic acid, and then falls to a substantially constant value. As is well known to those skilled in the art, the point at which the conductivity takes a constant value can be considered as a complete oxidation point (hereinafter, referred to as "point F"). As can be seen with reference to such a graph, the UV irradiation time at point F of the conductivity curve for the device of the present invention, shown by the solid line, is about 3 minutes, which is required to completely oxidize benzoxin in water. You can think of it as time. On the other hand, in the case of the conventional machine shown by the dotted line, the ultraviolet irradiation time at the point F is about 6 minutes. Therefore, by using the titanium oxide-coated hollow glass beads according to the concept of the present invention, even organic substances which are relatively hard to oxidize can be completely oxidized in about half the oxidation time as compared with the conventional method. Thus, in the TOC meter embodying the present invention, the TOC measurement time can be reduced to about 1/2, and in the TOC removal system of the present invention, the TOC removal efficiency is doubled.
[0027]
[Brief description of the drawings]
FIG. 1 is a perspective view of an ultraviolet oxidizing apparatus comprising a helical elongated quartz tube provided around a cylindrical ultraviolet irradiation lamp similarly to the conventional configuration.
FIG. 2 is an enlarged partial cutaway view showing one turn at the outlet end of the quartz spiral tube of FIG. 1, and is a view best showing the features of the present invention.
FIG. 3 is a cross-sectional view taken along line II of an arbitrary portion of the spiral tube turn shown in FIG. 2, and FIGS. 3A, 3B, and 3C are diagrams during operation of the ultraviolet oxidation apparatus. FIG. 4 is a view exemplarily showing how the titanium oxide-coated hollow glass beads 22 are located in a passage or a hollow portion formed of a quartz tube wall.
FIG. 4 is a perspective view showing an ultraviolet oxidizing apparatus as another embodiment of the present invention, in which a container for accommodating hollow glass beads coated with titanium oxide and allowing water to pass therethrough is disposed under an ultraviolet irradiation lamp. FIG.
5 is a cross-sectional view of the ultraviolet oxidizing apparatus of FIG. 4 taken along line 5-5.
FIG. 6 is a perspective view showing an example in which features of the present invention are retrofitted to a conventional ultraviolet oxidation apparatus.
FIG. 7 shows a comparative experiment result of the present invention and a conventional configuration in which organic substances in water are irradiated with ultraviolet rays to be in an organic acid state, the vertical axis is plotted with the electric conductivity, and the horizontal axis is plotted with ultraviolet (UV) irradiation time. FIG.
[Explanation of symbols]
10, 30 UV oxidation device 12 UV irradiation lamp 14 Helical quartz tube 16, 42 Inlet end 18, 44 Outlet end 20, 40 Hollow portion 22 Titanium oxide-coated hollow glass beads 24 Wire mesh screen 32 Titanium oxide-coated hollow glass beads container 38 Quartz glass plate

Claims (1)

筒状の紫外線照射ランプの周りにぐるりと設けられた螺旋状石英製管と、紫外線照射ランプの真下に配置されていて、酸化チタン被覆中空ガラスビーズを浮遊状態で収容する中空部を備えると共に少なくとも一部が透明な材料で作られた中空容器とから成り、容器は、液体を紫外線照射のために中空部に導入する入口及び紫外線照射後の水を中空部から送りだすための出口を有し、容器の透明部分は、石英製管を透過して漏れる紫外線照射ランプからの紫外線を中空部内へ透過させるよう紫外線照射ランプに向けて配置されていることを特徴とする紫外線酸化装置。A spiral quartz tube provided around the cylindrical ultraviolet irradiation lamp, and a hollow portion which is disposed immediately below the ultraviolet irradiation lamp and accommodates the titanium oxide-coated hollow glass beads in a floating state, and A hollow container partially made of a transparent material, the container has an inlet for introducing a liquid into the hollow portion for ultraviolet irradiation, and an outlet for sending water after the ultraviolet irradiation from the hollow portion, An ultraviolet oxidation apparatus, wherein the transparent portion of the container is arranged toward the ultraviolet irradiation lamp so as to transmit the ultraviolet light from the ultraviolet irradiation lamp leaking through the quartz tube into the hollow portion.
JP32714697A 1997-11-12 1997-11-12 UV oxidation equipment Expired - Lifetime JP3573933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32714697A JP3573933B2 (en) 1997-11-12 1997-11-12 UV oxidation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32714697A JP3573933B2 (en) 1997-11-12 1997-11-12 UV oxidation equipment

Publications (2)

Publication Number Publication Date
JPH11138156A JPH11138156A (en) 1999-05-25
JP3573933B2 true JP3573933B2 (en) 2004-10-06

Family

ID=18195833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32714697A Expired - Lifetime JP3573933B2 (en) 1997-11-12 1997-11-12 UV oxidation equipment

Country Status (1)

Country Link
JP (1) JP3573933B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876178B1 (en) * 2017-11-27 2018-07-09 장명옥 Apparatus for advanced oxidation process
KR101868524B1 (en) * 2017-11-27 2018-07-19 장명옥 Apparatus for water treatment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187124A (en) * 1999-12-28 2001-07-10 Toshiba Lighting & Technology Corp Deodorizer and refrigerator
JP2001347258A (en) * 2000-04-07 2001-12-18 Yamaha Corp Method for treating waste liquid, apparatus therefor and cleaning apparatus using it
JP2003053178A (en) * 2001-08-13 2003-02-25 Dkk Toa Corp Photo-oxidizer
JP4773805B2 (en) * 2005-11-17 2011-09-14 テクノ・モリオカ株式会社 UV chamber and TOC monitoring device
CN103523855A (en) * 2013-10-15 2014-01-22 上海纳米技术及应用国家工程研究中心有限公司 Supported photocatalytic degradation method and supported photocatalytic real-time on-line degradation device
CN104030393A (en) * 2014-06-08 2014-09-10 厦门通秴科技有限公司 Efficient water purifying device without need of replacing or cleaning filter element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876178B1 (en) * 2017-11-27 2018-07-09 장명옥 Apparatus for advanced oxidation process
KR101868524B1 (en) * 2017-11-27 2018-07-19 장명옥 Apparatus for water treatment

Also Published As

Publication number Publication date
JPH11138156A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
AU6244194A (en) Apparatus for removal of organic material from water
US20040040831A1 (en) Method and apparatus for eliminating stench and volatile organic compounds from polluted air
KR960702419A (en) Method and system for photocatalytic decontamination
US5582741A (en) Method for treating polluted water
JP6266954B2 (en) Water treatment equipment using liquid level plasma discharge
JP3573933B2 (en) UV oxidation equipment
JP2000093967A (en) Method and apparatus for liquid treatment
EP0537451B1 (en) Process for the decomposition of organochlorine solvent contained in water
KR101868524B1 (en) Apparatus for water treatment
JP2567273Y2 (en) UV irradiation device for photochemical reaction treatment
JPH05154473A (en) Photochemical reaction treatment for fluid
JP4538604B2 (en) Photoreaction tube built-in photoreaction apparatus and water quality monitoring apparatus using the same
JP4806821B2 (en) Ultrasonic sterilizer
JP3744454B2 (en) Water treatment equipment
JP3354273B2 (en) Photocatalyst cartridge
KR101438703B1 (en) Advanced oxidation processing methods and apparatus used therein
JP2001179252A (en) Method and apparatus for making pure water reduced in content of oxidizing substance
US10280098B2 (en) Submerged arc removal of contaminants from liquids
KR100473651B1 (en) Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material
JPS58220000A (en) System for preparing extremely pure water
JPH0338297A (en) Method for treating water contaminated by trichloroethylene and tetrachloroethylene
JP3322178B2 (en) Wastewater treatment equipment
CN218810907U (en) Domestic water quality of water clean system
JPH0975746A (en) Magnetic photocatalyst material, water treatment the same and water treating device using
JPH10192696A (en) Photocatalytic reaction apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term