JP2007139568A - Uv chamber and toc monitor device - Google Patents

Uv chamber and toc monitor device Download PDF

Info

Publication number
JP2007139568A
JP2007139568A JP2005333332A JP2005333332A JP2007139568A JP 2007139568 A JP2007139568 A JP 2007139568A JP 2005333332 A JP2005333332 A JP 2005333332A JP 2005333332 A JP2005333332 A JP 2005333332A JP 2007139568 A JP2007139568 A JP 2007139568A
Authority
JP
Japan
Prior art keywords
chamber
sample
toc
conductivity
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005333332A
Other languages
Japanese (ja)
Other versions
JP4773805B2 (en
Inventor
Yuichi Morioka
雄一 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO MORIOKA KK
Original Assignee
TECHNO MORIOKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO MORIOKA KK filed Critical TECHNO MORIOKA KK
Priority to JP2005333332A priority Critical patent/JP4773805B2/en
Publication of JP2007139568A publication Critical patent/JP2007139568A/en
Application granted granted Critical
Publication of JP4773805B2 publication Critical patent/JP4773805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a TOC monitor device capable of controlling the flow of a sample (water) being a measuring target according to a first-in first-out system to continuously measure and monitor a stable and accurate TOC value inexpensively and capable of achieving the safety of water. <P>SOLUTION: In a UV chamber having a reaction pipe device constituted so as to irradiate with ultraviolet rays the sample in a flow channel through which the sample flows in a longitudinal direction, the reaction pipe device is equipped with an ultraviolet irradiation member for irradiating the sample with ultraviolet rays so as to have the irradiation angle crossing the longitudinal direction at a right angle and the cylindrical cover block member arranged to the outside of the ultraviolet irradiation member so as to cover the flow channel and constituted as a solid structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水質分析装置、特に、試料中で反応させ全有機体炭素量を定量分析する反応管装置を内蔵するUVチャンバ及びTOC(Total Organic Carbon:全有機体炭素量)監視装置に関する。   The present invention relates to a water quality analyzer, and more particularly, to a UV chamber and a TOC (Total Organic Carbon) monitoring device that incorporates a reaction tube device that reacts in a sample to quantitatively analyze the total organic carbon content.

この種のUVチャンバ及びTOC監視装置に関して「水質分析装置及び水質分析方法」が、本発明の出願人(テクノ・モリオカ株式会社)によって、特開2004−177164号(特許文献1)として平成14年11月25日に出願され、試料に含まれる全有機体炭素量(Total Organic Carbon:以下、TOCと称す)を定量分析するものが開示されている。   Regarding this type of UV chamber and TOC monitoring device, “water quality analysis device and water quality analysis method” was disclosed in Japanese Patent Application Laid-Open No. 2004-177164 (Patent Document 1) by the applicant of the present invention (Techno Morioka Co., Ltd.) in 2002. An application is filed on November 25 and discloses a method for quantitative analysis of the total organic carbon (hereinafter referred to as TOC) contained in a sample.

特許文献1の「水質分析装置及び水質分析方法」によれば、UVチャンバ中の反応管装置内で、試料、例えば、試料水に含まれる有機物に紫外線の光を照射することにより有機物を酸化させ、紫外線の光を照射する前後の水の導電率の差に基づいて水に含まれる炭素量を定量分析することができる湿式紫外線酸化法を用いている。そして、水の清浄度を表す指標の一つとして、水中の有機物中の炭素量である全有機炭素(TOC)値(μg/l 又はppb(parts/per/billion)で表される)がある。特に、不純物を殆ど含まない水を用いることが重要である半導体洗浄では、0.20μg/l以下のTOC値が要求される場合があるため、水のTOC値を測定する水質分析装置として、湿式紫外線酸化法を用いたTOC監視装置が広く使用されている。湿式紫外線酸化法を用いたTOC監視装置は、測定対象となる試料水の導電率を導電率センサで測定した後、かかる試料水に紫外線の光を照射することにより試料水に含まれる有機物を酸化させ、再度導電率を測定する。TOC監視装置は、紫外線が照射される前後の試料水の導電率の差に基づいて、かかる試料水のTOC値を算出する。   According to “Water quality analysis device and water quality analysis method” of Patent Document 1, in a reaction tube device in a UV chamber, an organic matter is oxidized by irradiating a sample, for example, an organic matter contained in the sample water with ultraviolet light. The wet ultraviolet oxidation method that can quantitatively analyze the amount of carbon contained in water based on the difference in the electrical conductivity of water before and after irradiation with ultraviolet light is used. And as one of the indexes representing the cleanliness of water, there is the total organic carbon (TOC) value (expressed in μg / l or ppb (parts / per / billion)) which is the amount of carbon in organic matter in water. . In particular, in semiconductor cleaning in which it is important to use water containing almost no impurities, a TOC value of 0.20 μg / l or less may be required. A TOC monitoring device using an ultraviolet oxidation method is widely used. The TOC monitoring device using the wet UV oxidation method measures the conductivity of the sample water to be measured with a conductivity sensor, and then irradiates the sample water with ultraviolet light to oxidize organic substances contained in the sample water. And measure the conductivity again. The TOC monitoring device calculates the TOC value of the sample water based on the difference in the conductivity of the sample water before and after being irradiated with ultraviolet rays.

上述のTOC監視装置は、半導体の洗浄を行う洗浄工程に設置され、洗浄に用いられる水の清浄度をリアルタイムで監視する。半導体の清浄工程では、有機溶媒の如き有機物を含む水の清浄度をリアルタイムでモニターするインラインリアルタイム計測を行うことにより水質を管理し、清浄度が良好な水を常時使用することが重要となる。また、上述の半導体洗浄工程に限らず、TOC監視装置は、清浄度が良好な水を必要とする製造工程、又は各種有機物を取り扱う製薬プロセス工程において使用される水の清浄度を測定するためにも用いられている。   The above-described TOC monitoring device is installed in a cleaning process for cleaning semiconductors, and monitors the cleanliness of water used for cleaning in real time. In a semiconductor cleaning process, it is important to manage water quality by performing in-line real-time measurement for monitoring the cleanliness of water containing organic substances such as organic solvents in real time, and always use water with good cleanliness. In addition to the semiconductor cleaning process described above, the TOC monitoring device is used to measure the cleanliness of water used in manufacturing processes that require water with good cleanliness or pharmaceutical processes that handle various organic substances. Are also used.

図3及び図4を参照して、関連発明のTOC監視装置内のUVチャンバ中の反応管装置の構造では、石英ヘリカル形状中空ガラス管を有している。   Referring to FIGS. 3 and 4, the structure of the reaction tube device in the UV chamber in the TOC monitoring device of the related invention has a quartz helical hollow glass tube.

この場合、合成石英管を螺旋(ヘリカル)形状に成形して、そのヘリカル状に延びる試料流路に対して内側配置される紫外線照射部材(UVランプ)から紫外線を照射する構成である。   In this case, the synthetic quartz tube is formed into a helical shape and irradiated with ultraviolet rays from an ultraviolet irradiation member (UV lamp) disposed inside the helically extending sample channel.

特開2004−177164号公報JP 2004-177164 A

しかしながら、上述した従来例や関連発明では、試料の流路内での流通が悪く、先入先出が不完全であり、測定環境の変化による流量の変動で発生する測定誤差がある。   However, in the above-described conventional examples and related inventions, the flow of the sample in the flow path is poor, the first-in first-out is incomplete, and there is a measurement error that occurs due to flow rate fluctuations due to changes in the measurement environment.

また、試料INから試料OUTへ流れる試料水は、入射角が放射線状になり、紫外線反射効率が良くないし、合成石英管の肉厚を略一定に成形する製造技術が難しい。   In addition, the sample water flowing from the sample IN to the sample OUT has a radial incident angle, and the ultraviolet reflection efficiency is not good, and a manufacturing technique for forming the thickness of the synthetic quartz tube substantially constant is difficult.

そこで、本発明の技術的課題は、測定対象である試料の流通を良くする先入先出機能を持ち、安定した正確なTOC値を測定し監視でき、製造コストが安いUVチャンバ及びTOC監視装置を提供することである。   Therefore, the technical problem of the present invention is to provide a UV chamber and a TOC monitoring device that have a first-in first-out function that improves the distribution of the sample to be measured, can measure and monitor a stable and accurate TOC value, and are inexpensive to manufacture. Is to provide.

上述した目的を達成する本発明は、試料が長手方向に流れる流路中の前記試料に対して紫外線を照射して処理を行う反応管装置を有するUVチャンバであって、前記反応管装置は、前記紫外線を前記長手方向に直交する照射角度を持つように照射する紫外線照射部材と、前記流路を被覆形成するように前記紫外線照射部材の外側に配置され、中実に構成された筒状被覆ブロック部材と、を備えることを特徴とする。   The present invention that achieves the above-described object is a UV chamber having a reaction tube device that performs processing by irradiating the sample in a flow path in which the sample flows in the longitudinal direction with ultraviolet rays, and the reaction tube device includes: An ultraviolet irradiation member that irradiates the ultraviolet rays so as to have an irradiation angle orthogonal to the longitudinal direction, and a cylindrical coating block that is disposed outside the ultraviolet irradiation member so as to cover and form the flow path and is solid And a member.

このような本発明にかかるUVチャンバの紫外線照射部材は、試料を直接直交する照射角度で照射する。その結果、筒状被覆ブロック部材で被覆された試料は、直接効率良く紫外線照射処理ができる。従って、このような本発明のUVチャンバを有するTOV監視装置が得られる。   The ultraviolet irradiation member of the UV chamber according to the present invention irradiates the sample at an irradiation angle that is directly orthogonal. As a result, the sample covered with the cylindrical covering block member can be directly and efficiently irradiated with ultraviolet rays. Therefore, a TOV monitoring apparatus having such a UV chamber of the present invention can be obtained.

本発明によれば、測定対象である試料試料(水)が傾斜対流され、先入先出の流通を制御できる。その結果、安価で安定した正確なTOC値を連続して測定し監視でき、水の安全性を確保することが可能なUVチャンバ及びTOC監視装置を提供するという効果を奏する。   According to the present invention, the sample sample (water) to be measured is inclined convection, and the first-in first-out flow can be controlled. As a result, it is possible to provide a UV chamber and a TOC monitoring device capable of continuously measuring and monitoring an inexpensive, stable and accurate TOC value and ensuring the safety of water.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。測定対象となる試料水に含まれる炭素量を検出するTOC監視装置1の構成について説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The configuration of the TOC monitoring device 1 that detects the amount of carbon contained in the sample water to be measured will be described.

図1、図2、図5、及び図6を参照して、水(試料)10に含まれる炭素量を検出するTOC監視装置1に備わっているUVチャンバ12は、反応管装置12Aと、これを覆うカバと、を備える。反応管装置12Aは、測定対象となる試料水10に紫外線(ultraviolet rays:UV)を長手方向に直交する方向すなわち照射角度90度を持つ照射紫外線の光11−1aを照射する紫外線照射部材(UVランプ)11−1と、照射紫外線の光11−1aを受け、透過させ透過紫外線として水10に供給する紫外線透過部材(石英ガラス管)11−2と、水10を受け入れ傾斜対流させ先入先出処理を促進する先入先出促進間隙11−3Aが、形成された筒状被覆ブロック部材(樹脂)11−3と、を備える。筒状被覆ブロック部材(樹脂)11−3は、中実の筒状樹脂からNC工作機で切削加工処理により、紫外線照射部材(UVランプ)11−1を収納する紫外線透過部材(合成石英ガラス管)11−2の外周を締まり嵌め、Oリング14−1、14−2を嵌め込めるように刳り貫かれたもので、不溶性の樹脂、例えば、純PTE(poly-tetra-fluoro-ethylene)材料やPFA (Perfluoroalkoxy copolymer)(商品名S-PFA)材料から成る。   1, 2, 5, and 6, the UV chamber 12 included in the TOC monitoring device 1 that detects the amount of carbon contained in the water (sample) 10 includes a reaction tube device 12 </ b> A, And a hippo covering. The reaction tube device 12A is configured to irradiate ultraviolet rays (ultraviolet rays: UV) onto the sample water 10 to be measured, in the direction perpendicular to the longitudinal direction, that is, the irradiation light 11-1a having an irradiation angle of 90 degrees (UV). Lamp) 11-1, an ultraviolet ray transmitting member (quartz glass tube) 11-2 that receives, transmits, and transmits the irradiated ultraviolet light 11-1a to the water 10 as a transmitted ultraviolet ray, and receives the water 10 in a tilted convection manner to make first-in first-out. A first-in first-out promotion gap 11-3A for promoting processing includes a formed cylindrical covering block member (resin) 11-3. The cylindrical covering block member (resin) 11-3 is an ultraviolet transmissive member (synthetic quartz glass tube) that accommodates the ultraviolet irradiation member (UV lamp) 11-1 by cutting from a solid cylindrical resin with an NC machine tool. ) The outer periphery of 11-2 is tightly fitted, and the O-rings 14-1 and 14-2 are inserted so as to fit in, and an insoluble resin such as a pure PTE (poly-tetra-fluoro-ethylene) material, Made of PFA (Perfluoroalkoxy copolymer) (trade name S-PFA) material.

図6に示すように、先入先出促進間隙11−3A−1は、試料水10を傾斜対流させながら流通する螺旋面から成るヘリカル間隙で締まり嵌め部(螺旋状密着部)11-3aを有する。そのため、反応管装置12A-1は、紫外線照射処理済み水(試料)10が接続部14aの入口から接続部14bの出口へ先入先出処理が反応管装置12Aより促進される効果がある。その結果、試料水(試料)10の全有機体炭素量が、正確に計測され監視される。   As shown in FIG. 6, the first-in first-out acceleration gap 11-3A-1 has an interference fitting portion (helical contact portion) 11-3a with a helical gap formed of a helical surface through which the sample water 10 is circulated while inclining convection. . Therefore, the reaction tube device 12A-1 has an effect that the first-in first-out process of the ultraviolet irradiation-treated water (sample) 10 from the inlet of the connecting portion 14a to the outlet of the connecting portion 14b is promoted by the reaction tube device 12A. As a result, the total organic carbon content of the sample water (sample) 10 is accurately measured and monitored.

繰り返して述べると、UVチャンバ12中の反応管装置12Aの先入先出促進間隙11−3Aは、試料水10の流路を形成すると共に、紫外線透過部材11−2(石英ガラス)と、締まり嵌め部(螺旋状密着部)11−3aとで密閉されシール構造を備える。なお、紫外線ランプ11−1の両端部のみがチャンバ12の両端から突出している。   To reiterate, the first-in first-out acceleration gap 11-3A of the reaction tube device 12A in the UV chamber 12 forms a flow path for the sample water 10, and is an interference fit with the ultraviolet transmitting member 11-2 (quartz glass). Part (helical contact part) 11-3a and sealed. Note that only both ends of the ultraviolet lamp 11-1 protrude from both ends of the chamber 12.

紫外線ランプ11は湿式紫外線酸化法に用いられ、試料水に含まれる有機物を酸化させるために十分な波長を有する紫外線を発生させるものであれば良く、紫外線に限定されない。   The ultraviolet lamp 11 is used in a wet ultraviolet oxidation method, and may be any lamp that generates ultraviolet light having a wavelength sufficient to oxidize an organic substance contained in sample water, and is not limited to ultraviolet light.

さらに、紫外線透過部材11−2は、紫外線ランプ11−1からの紫外線が透過する合成石英ガラス材料で形成される。試料水10に含まれる有機物は反応管装置12Aを流れる間に紫外線照射により酸化され、導電率センサ30に送られる。   Furthermore, the ultraviolet transmissive member 11-2 is formed of a synthetic quartz glass material that transmits ultraviolet rays from the ultraviolet lamp 11-1. The organic matter contained in the sample water 10 is oxidized by irradiation with ultraviolet rays while flowing through the reaction tube device 12A, and is sent to the conductivity sensor 30.

図7は、図1の他の変形例における反応管装置12A−1aの図である。反応管装置12−1aは、紫外線照射部材(UVランプ)11の周囲に所定の離間距離を保つように筒状被覆透過部材(石英ガラス)13を有し、有底溝13Aが、長手方向の排出方向に対して所定の鋭角度θと共に螺旋状に連なる傾斜間隔として形成されている。その結果、筒状被覆透過部材(石英ガラス管)13の有底溝13Aは、UVランプ11から前記所定の離間間隔より大きく離間している先入先出促進間隙として作用する。その結果、水10が傾斜対流を起こし、先入先出される。   FIG. 7 is a diagram of a reaction tube device 12A-1a in another modification of FIG. The reaction tube device 12-1a has a cylindrical covering transmission member (quartz glass) 13 so as to keep a predetermined separation distance around the ultraviolet irradiation member (UV lamp) 11, and the bottomed groove 13A has a longitudinal direction. It is formed as an inclined interval that spirals with a predetermined acute angle θ with respect to the discharge direction. As a result, the bottomed groove 13A of the cylindrical covering transmission member (quartz glass tube) 13 acts as a first-in first-out promotion gap that is spaced apart from the UV lamp 11 by a larger distance than the predetermined spacing interval. As a result, the water 10 causes inclined convection and is first-in first-out.

UVチャンバ12は、使用環境、装置全体の軽量化を図るために、アルミニウム製のカバは不要としても良い。UVチャンバ12は、反応管装置12Aと同じになる。   The UV chamber 12 may not require an aluminum cover in order to reduce the use environment and the weight of the entire apparatus. The UV chamber 12 is the same as the reaction tube device 12A.

(第1実施の形態)
図5及び図9に係る第1実施の形態では、TOC監視装置1は、試料水を取り入れるための取水部45、気泡を含む試料水を排出するための排出部46、及び炭素量が測定された試料水を排出するための排水部48を備える。
(First embodiment)
In the first embodiment according to FIGS. 5 and 9, the TOC monitoring apparatus 1 measures the intake part 45 for taking sample water, the discharge part 46 for discharging sample water containing bubbles, and the amount of carbon. A drainage part 48 for discharging the sample water is provided.

排出部46には、試料水の圧力を略一定に保つための圧力制限手段としての複数のオリフィスから成る定流量マニホールド50が、取り付けられており、オリフィスは、気泡を含む試料水10を排出することにより流路を流れる試料水10の圧力が急激に低下することを制限する。   A constant flow manifold 50 comprising a plurality of orifices as pressure limiting means for keeping the pressure of the sample water substantially constant is attached to the discharge portion 46, and the orifice discharges the sample water 10 containing bubbles. This restricts the pressure of the sample water 10 flowing through the flow path from rapidly decreasing.

図5のTOC監視装置1は、49−1の定流量弁1、49−2の定流量弁2を採用しており、いずれか一方でも、低流量制御が可能である。高純度試料水の場合は、排水側の49−2に配置する。圧力変動の多い場合、再水側の49−1に配置する。そして、試料水に含まれる炭素量を検出する炭素量検出手段としての導電率センサ30−1,30−2を備える必要がある。また、TOC監視装置1は、試料水の流量・流速等を制御するための流量・流速等の制御手段(図示せず)を備える。   The TOC monitoring device 1 in FIG. 5 employs the constant flow valve 1 of 49-1, and the constant flow valve 2 of 49-2, and either one can perform low flow control. In the case of high-purity sample water, it is arranged at 49-2 on the drain side. When there are many pressure fluctuations, it arranges in 49-1 of the rewater side. And it is necessary to provide the conductivity sensors 30-1 and 30-2 as carbon amount detection means for detecting the amount of carbon contained in the sample water. Moreover, the TOC monitoring apparatus 1 includes control means (not shown) for controlling the flow rate / flow velocity of sample water.

取水部45は、試料水をTOC監視装置1に供給する外部配管と接続される。取水された試料水10の圧力は、UVチャンバ12の下流側に配置された多段式ロータリチューブポンプ70を用いて、変動させる。   The water intake unit 45 is connected to an external pipe that supplies sample water to the TOC monitoring device 1. The pressure of the sample water 10 taken is varied using a multistage rotary tube pump 70 disposed on the downstream side of the UV chamber 12.

図5、図9、及び図12を参照して、例えば、流量10ml/分の試料水10をサンプリングし、ゼロ点測定、イソピルアルコールの有機物注入、UV照射オンオフすることにより、試料水10の導電率の変化から炭素量を連続して測定する。このとき、関連発明の従来機種に比べて、本発明によって、先入先出が促進された一定の流量の試料水10を連続して流せるため、試料水の清浄度を常時管理することができる。   Referring to FIGS. 5, 9, and 12, for example, sample water 10 is sampled at a flow rate of 10 ml / min, and zero point measurement, isopropyl alcohol organic substance injection, and UV irradiation on / off are performed to turn sample water 10 on. The amount of carbon is continuously measured from the change in conductivity. At this time, compared with the conventional model of the related invention, according to the present invention, since the sample water 10 having a constant flow rate in which the first-in first-out is promoted can be continuously flowed, the cleanliness of the sample water can be constantly managed.

(第2実施の形態)
図8及び図10の第2実施の形態において、TOC監視装置1では、導電率センサ30が単一で、制御部101等を有する信号処理手段40と、信号処理結果を表示する表示部100と、を備える。
(Second Embodiment)
8 and 10, in the TOC monitoring apparatus 1, the conductivity sensor 30 is a single signal processing means 40 having the control unit 101 and the like, and the display unit 100 for displaying the signal processing result. .

信号処理手段40は、信号処理結果を記憶する記憶部102、試料水の流量を測定する流量測定手段としてのフローメータとしてのセンサ部103、センサ部103から試料水の流速を測定するための流速測定部104、導電率センサ30から導電率を測定する導電率測定部105を備える。   The signal processing unit 40 includes a storage unit 102 that stores the signal processing result, a sensor unit 103 as a flow meter that measures the flow rate of the sample water, and a flow rate that measures the flow rate of the sample water from the sensor unit 103. The measurement unit 104 includes a conductivity measurement unit 105 that measures conductivity from the conductivity sensor 30.

流速測定部104は、TOC監視装置1内に流れる試料水10の流速をフローメータのセンサ部103で測定し、流速に関するデータを用いて、試料水10の先入先出を促進するように制御することも可能である。   The flow velocity measuring unit 104 measures the flow velocity of the sample water 10 flowing in the TOC monitoring device 1 with the sensor unit 103 of the flow meter, and controls the sample water 10 to be promoted in first-in first-out using the data relating to the flow velocity. It is also possible.

図10を参照して、本発明のTOC監視装置1のTOC値の測定監視を行う際に、測定対象とされる試料水10の導電率に基づいてTOC値を算出する。まず、電源60がオンされた後、測定前のパージ動作では、チューブポンプ70をオンさせ流速を高めるように、UV照射駆動手段80で紫外線照射を行う。制御部102は、振動モータ107、チューブポンプ70、UV照射駆動手段80に対して所定の手順で動作させ、種々の測定値のデータのゼロキャリブレーション動作を一定の時間間隔(定期)で繰り返し行うように制御する結果、導電率センサ30はUVチャンバ12の下流側に一つだけ配置すれば良い。そして、反応管装置12A内部に発生する気泡などの測定阻害要因を排除するために振動モータ107を駆動させる。尚、定期キャリブレーションを少なくしたい場合には、導電率センサを2個設ける必要となる。   Referring to FIG. 10, when measuring and monitoring the TOC value of the TOC monitoring device 1 of the present invention, the TOC value is calculated based on the conductivity of the sample water 10 to be measured. First, in the purge operation before the measurement after the power supply 60 is turned on, the UV irradiation driving means 80 performs ultraviolet irradiation so as to turn on the tube pump 70 and increase the flow velocity. The control unit 102 causes the vibration motor 107, the tube pump 70, and the UV irradiation driving unit 80 to operate in a predetermined procedure, and repeatedly performs a zero calibration operation of data of various measurement values at regular time intervals (periodic). As a result of such control, only one conductivity sensor 30 needs to be arranged on the downstream side of the UV chamber 12. Then, the vibration motor 107 is driven in order to eliminate measurement obstruction factors such as bubbles generated in the reaction tube device 12A. In order to reduce the periodic calibration, it is necessary to provide two conductivity sensors.

制御部101は、記憶部102、センサ部103及び流速測定部104から得られたデータを処理すると共に、所定の動作タイミングにて記憶部102、センサ部103及び流速測定部104からデータを取得する。さらに、所要の動作タイミングにて測定対象とされる試料水10の導電率に関するデータを記憶部102に記憶させる。また、制御部101は、記憶部102、センサ部103、及び流速測定部104から得られたデータに基づいて測定対象とされる試料水のTOC値を算出する。   The control unit 101 processes data obtained from the storage unit 102, the sensor unit 103, and the flow velocity measurement unit 104, and acquires data from the storage unit 102, the sensor unit 103, and the flow velocity measurement unit 104 at a predetermined operation timing. . Further, the storage unit 102 stores data related to the conductivity of the sample water 10 to be measured at a required operation timing. In addition, the control unit 101 calculates the TOC value of the sample water to be measured based on data obtained from the storage unit 102, the sensor unit 103, and the flow velocity measurement unit 104.

記憶部102は、測定対象とされる試料水10の導電率に関するデータを記憶する。例えば、一旦記憶部102に記憶され、再度制御部101によって読み出された導電率に関するデータと、制御部102によって新たにセンサ部103から取得された導電率に関するデータとに基づいて、制御部101でTOC値を算出することができる。   The storage unit 102 stores data related to the conductivity of the sample water 10 to be measured. For example, based on the data relating to the conductivity that is once stored in the storage unit 102 and read out again by the control unit 101 and the data relating to the conductivity newly acquired from the sensor unit 103 by the control unit 102, the control unit 101. The TOC value can be calculated.

ところで、図8のUVチャンバ12中の反応管装置12Aにおいては、図1の紫外線照射処理部材12A-1の周囲には、長手方向で所望の位置に振動モータ107が、取り付けられている。振動モータ107は、図1の反応管装置12A-1の周囲に沿って配された圧電素子等から成る振動部材(揺動部材)で、気泡発生を防止する。   By the way, in the reaction tube device 12A in the UV chamber 12 of FIG. 8, a vibration motor 107 is attached to a desired position in the longitudinal direction around the ultraviolet irradiation processing member 12A-1 of FIG. The vibration motor 107 is a vibration member (swing member) made of a piezoelectric element or the like disposed along the periphery of the reaction tube device 12A-1 in FIG.

(第3実施の形態)
図8及び図11を参照して、UVチャンバ12のセンサ部103は、流速測定部104で流速制御が不要の場合、フローメータの代わりに、紫外線で高温になった水10の冷却用のペルチェ素子を備えても良い。医療用やクリーンルーム等の使用環境では、冷却され気泡のない試料水10を用いる必要がある。温度制御され安定して導電率センサ30から導電率信号として測定され導電率に関するデータは、制御部101に送られる。
(Third embodiment)
Referring to FIGS. 8 and 11, the sensor unit 103 of the UV chamber 12 is a Peltier for cooling the water 10 that has been heated to high temperature by ultraviolet rays instead of a flow meter when the flow rate measurement unit 104 does not require flow rate control. An element may be provided. In a use environment such as medical use or clean room, it is necessary to use sample water 10 which is cooled and free of bubbles. Temperature-controlled and stably measured as a conductivity signal from the conductivity sensor 30, data related to conductivity is sent to the control unit 101.

以上、第1乃至第3実施の形態において、TOC監視装置によれば、先入先出され気泡を殆ど含まない試料水(試料)10に保つことができる。そのため、精度良くTOC値を測定監視できる。さらに、流動状態で測定対象とされる試料水10のTOC値をリアルタイムで精度良く測定監視可能である。すなわち、流動状態で使用される水10の清浄度を管理するためには好適なTOC値の測定値は、表示部100に表示されユーザが監視する。   As described above, in the first to third embodiments, according to the TOC monitoring apparatus, it is possible to keep the sample water (sample) 10 that is first-in-first-out and contains almost no bubbles. Therefore, the TOC value can be measured and monitored with high accuracy. Furthermore, it is possible to accurately measure and monitor the TOC value of the sample water 10 to be measured in a flowing state in real time. That is, in order to manage the cleanliness of the water 10 used in the flowing state, a measurement value of the TOC value suitable for the display is displayed on the display unit 100 and monitored by the user.

以上説明したように、本発明のUVチャンバ及びTOC監視装置によれば、反応管装置中を流れる試料水の先入先出しを保つことができ、気泡のない試料水を連続して流しながら試料水に含まれる有機物の如き不純物の濃度を正確に連続してリアルタイムで測定監視可能で、するために半導体製造装置、医薬品製造装置等に適用可能である。   As described above, according to the UV chamber and the TOC monitoring device of the present invention, the first-in first-out of the sample water flowing in the reaction tube device can be maintained, and the sample water without bubbles is continuously flowed into the sample water. The concentration of impurities such as contained organic substances can be measured and monitored accurately and continuously in real time. Therefore, the present invention can be applied to semiconductor manufacturing apparatuses, pharmaceutical manufacturing apparatuses, and the like.

本発明のTOC監視装置中のUVチャンバ中の反応管装置の正面図である。It is a front view of the reaction tube apparatus in the UV chamber in the TOC monitoring apparatus of this invention. 図1の反応管装置の側面図である。It is a side view of the reaction tube apparatus of FIG. 関連発明にかかる反応管装置の正面図である。It is a front view of the reaction tube apparatus concerning related invention. 図3の側面図である。FIG. 4 is a side view of FIG. 3. 本発明の第1実施の形態におけるTOC監視装置の内部構成を示す図である。It is a figure which shows the internal structure of the TOC monitoring apparatus in 1st Embodiment of this invention. 本発明のTOC監視装置中のUVチャンバのカバのない状態で、反応管装置の要部の断面図である。It is sectional drawing of the principal part of a reaction tube apparatus in the state without the cover of the UV chamber in the TOC monitoring apparatus of this invention. 図1の反応管装置の変形例の断面図である。It is sectional drawing of the modification of the reaction tube apparatus of FIG. 本発明の第2実施の形態におけるTOC監視装置のデータの処理構成を示すブロック図である。It is a block diagram which shows the data processing structure of the TOC monitoring apparatus in 2nd Embodiment of this invention. 本発明の第1実施の形態におけるデータ処理結果を説明するためのタイミングチャートである。It is a timing chart for demonstrating the data processing result in 1st Embodiment of this invention. 本発明の第2実施の形態におけるデータ処理結果を説明するためのタイミングチャートである。It is a timing chart for demonstrating the data processing result in 2nd Embodiment of this invention. 本発明の第3実施の形態におけるデータ処理結果を説明するためのタイミングチャートである。It is a timing chart for demonstrating the data processing result in 3rd Embodiment of this invention. 本発明の第1実施の形態におけるTOC監視装置の導電率測定部による試料水の導電率の変化に係る評価試験結果を関連発明の評価試験結果との比較を示す図である。It is a figure which shows the comparison with the evaluation test result of related invention by the evaluation test result which concerns on the change of the electrical conductivity of the sample water by the electrical conductivity measurement part of the TOC monitoring apparatus in 1st Embodiment of this invention. 図5及び図8におけるTOC監視装置のチューブポンプを駆動させた場合の電圧流量を示す図である。It is a figure which shows the voltage flow volume at the time of driving the tube pump of the TOC monitoring apparatus in FIG.5 and FIG.8. 図8のTOC監視装置のペルチェ素子(センサ部)の冷却効果を表す図である。It is a figure showing the cooling effect of the Peltier device (sensor part) of the TOC monitoring apparatus of FIG. 図8の振動モータを駆動させた場合の電圧回転数を表す評価試験結果を示す図である。It is a figure which shows the evaluation test result showing the voltage rotation speed at the time of driving the vibration motor of FIG.

符号の説明Explanation of symbols

10 試料(試料水)
11 紫外線照射部材(紫外線(UV)ランプ)
11−1 紫外線照射部材(紫外線ランプ)
11−1a 紫外線光
11−2 紫外線透過部材(石英ガラス管)
11−3 筒状被覆ブロック部材(樹脂)
11−3a 螺旋状密着部(襞)
11−3A 先入先出促進間隙
11−3A−1 先入先出促進間隙
12 UVチャンバ
12−1 紫外線照射手段
12A 反応管装置
12A−1 反応管装置
12A-1a 反応管装置
13 筒状被覆透過部材(石英ガラス管)
13A 先入先出促進間隙(有底溝、傾斜間隙)
14a 入口手段
14b 出口手段部
30 導電率センサ
30−1、30−2 導電率センサ
40 信号処理手段
45 取水部
46 エアー混合水排出部
48 排水部
49−1、49−2 定流量弁
50 定流量マ二ホールド
60 電源
70 チューブポンプ
80 UV照射駆動手段
100 表示部
101 制御部
102 記憶部
103 センサ部
104 流速測定部
105 導電率測定部
106 炭素量測定部
107 振動モータ
10 Sample (sample water)
11 Ultraviolet irradiation member (ultraviolet (UV) lamp)
11-1 Ultraviolet irradiation member (ultraviolet lamp)
11-1a UV light 11-2 UV transmitting member (quartz glass tube)
11-3 Tubular covering block member (resin)
11-3a Spiral contact part (襞)
11-3A First-in-first-out acceleration gap 11-3A-1 First-in first-out acceleration gap 12 UV chamber 12-1 Ultraviolet irradiation means 12A Reaction tube device 12A-1 Reaction tube device 12A-1a Reaction tube device 13 Quartz glass tube)
13A First-in first-out acceleration gap (bottom groove, inclined gap)
14a Inlet means 14b Outlet means section 30 Conductivity sensors 30-1, 30-2 Conductivity sensor 40 Signal processing means 45 Water intake section 46 Air mixed water discharge section 48 Drain section 49-1, 49-2 Constant flow valve 50 Constant flow rate Manifold 60 Power supply 70 Tube pump 80 UV irradiation drive means 100 Display unit 101 Control unit 102 Storage unit 103 Sensor unit 104 Flow rate measurement unit 105 Conductivity measurement unit 106 Carbon content measurement unit 107 Vibration motor

Claims (9)

試料が長手方向に流れる流路中の前記試料に対して紫外線を照射して処理を行う反応管装置を有するUVチャンバであって、
前記反応管装置は、
前記紫外線を前記長手方向に直交する照射角度を持つように照射する紫外線照射部材と、
前記流路を被覆形成するように前記紫外線照射部材の外側に配置され、中実に構成された筒状被覆ブロック部材と、
を備えることを特徴とするUVチャンバ。
A UV chamber having a reaction tube device that performs processing by irradiating the sample with ultraviolet rays in a flow path in which the sample flows in a longitudinal direction;
The reaction tube device comprises:
An ultraviolet irradiation member that irradiates the ultraviolet rays so as to have an irradiation angle orthogonal to the longitudinal direction;
A cylindrical covering block member which is disposed outside the ultraviolet irradiation member so as to cover the flow path and is solidly configured;
A UV chamber characterized by comprising:
請求項1に記載のUVチャンバにおいて、
前記紫外線照射部材は、
前記チャンバブロックの略中央に配置された略円柱形状のUVランプと、
前記UVランプの周囲に配置された石英ガラス管と、
を備え、
前記筒状被覆ブロック部材では、
前記流路は、前記石英ガラス管の外周に螺旋状に巻回される螺旋状流路であり、断面が略半円形状を呈することを特徴とするUVチャンバ。
The UV chamber of claim 1,
The ultraviolet irradiation member is
A substantially cylindrical UV lamp disposed in the approximate center of the chamber block;
A quartz glass tube disposed around the UV lamp;
With
In the cylindrical covering block member,
The UV chamber, wherein the channel is a spiral channel spirally wound around an outer periphery of the quartz glass tube and has a substantially semicircular cross section.
請求項2に記載のUVチャンバにおいて、
前記螺旋状流路には、前記石英ガラス管の外周に直接密着する螺旋状密着部が、締まり嵌めとして所定の間隔で形成されることを特徴とするUVチャンバ。
The UV chamber of claim 2,
The UV chamber, wherein the spiral flow path is formed with a helical contact portion that is in close contact with the outer periphery of the quartz glass tube at a predetermined interval as an interference fit.
請求項2に記載のUVチャンバであって、
前記筒状被覆ブロック部材には、
前記試料を受け入れる配管継手としての入口を最下部に、取り出して排水管としての出口を最上部に形成すると共に、前記入口及び前記出口の夫々の近傍にOリングを配置することを特徴とするUVチャンバ。
The UV chamber according to claim 2,
In the cylindrical covering block member,
An inlet as a pipe joint for receiving the sample is formed at the bottom, an outlet as a drain pipe is formed at the top, and an O-ring is disposed in the vicinity of each of the inlet and the outlet. Chamber.
請求項2に記載のUVチャンバにおいて、
前記筒状被覆ブロック部材は、
前記試料に溶けない不溶性樹脂材料
で形成されていることを特徴とするUVチャンバ。
The UV chamber of claim 2,
The cylindrical covering block member is
A UV chamber formed of an insoluble resin material that does not dissolve in the sample.
請求項4に記載のUVチャンバにおいて、
前記反応管装置は、
前記螺旋状流路の試料を揺動し測定阻害要因の気泡滞留を防止する揺動部材
を更に備えていることを特徴とするUVチャンバ。
The UV chamber according to claim 4,
The reaction tube device comprises:
A UV chamber, further comprising an oscillating member that oscillates the sample in the spiral flow path to prevent bubble retention as a measurement inhibiting factor.
請求項6に記載のUVチャンバを有するTOC監視装置において、
前記UVチャンバの下流側に連結・配置され、前記試料の流速を高流速の排水時から略一定で低流速の所定状態に変化させるためのチューブポンプ
を更に備えることを特徴とするTOC監視装置。
In the TOC monitoring apparatus having the UV chamber according to claim 6,
A TOC monitoring apparatus, further comprising a tube pump connected and arranged on the downstream side of the UV chamber for changing the flow rate of the sample from a high flow rate drainage state to a predetermined state with a substantially constant low flow rate.
請求項7に記載のTOC監視装置において、
前記試料の温度を所定温度に調整するペルチェ素子が、センサ部として配置され、
前記試料の導電率を感知する導電率センサと、
前記導電率センサから導電率測定値を生成する導電率測定部と、
前記所定温度で前記所定状態において前記試料の流速測定値を生成する流速測定部と、
前記導電率測定値及び前記流速測定値のデータを処理するための信号処理手段と、
を更に備えることを特徴とするTOC監視装置。
In the TOC monitoring device according to claim 7,
A Peltier element for adjusting the temperature of the sample to a predetermined temperature is arranged as a sensor unit,
A conductivity sensor for sensing the conductivity of the sample;
A conductivity measurement unit for generating a conductivity measurement value from the conductivity sensor;
A flow rate measurement unit that generates a flow rate measurement value of the sample in the predetermined state at the predetermined temperature;
Signal processing means for processing data of the conductivity measurement value and the flow velocity measurement value;
A TOC monitoring device further comprising:
請求項8に記載の監視装置において、
前記チューブポンプや前記揺動部材の動作タイミングに応答するように前記紫外線照射部材を駆動するための紫外線照射駆動手段と、
前記データのゼロキャリブレーション動作を一定の時間間隔で繰り返し行うための制御部と、
を備えることを特徴とするTOC監視装置。
The monitoring device according to claim 8, wherein
Ultraviolet irradiation drive means for driving the ultraviolet irradiation member to respond to the operation timing of the tube pump and the swinging member;
A controller for repeatedly performing a zero calibration operation of the data at regular time intervals;
A TOC monitoring device characterized by comprising:
JP2005333332A 2005-11-17 2005-11-17 UV chamber and TOC monitoring device Active JP4773805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005333332A JP4773805B2 (en) 2005-11-17 2005-11-17 UV chamber and TOC monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005333332A JP4773805B2 (en) 2005-11-17 2005-11-17 UV chamber and TOC monitoring device

Publications (2)

Publication Number Publication Date
JP2007139568A true JP2007139568A (en) 2007-06-07
JP4773805B2 JP4773805B2 (en) 2011-09-14

Family

ID=38202627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333332A Active JP4773805B2 (en) 2005-11-17 2005-11-17 UV chamber and TOC monitoring device

Country Status (1)

Country Link
JP (1) JP4773805B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103902A (en) * 1996-06-12 1998-01-06 Toshihiko Yamashita Bubble removing device for storage battery
JPH11138156A (en) * 1997-11-12 1999-05-25 T & C Technical:Kk Ultraviolet oxidation device
JP2002166270A (en) * 2000-12-01 2002-06-11 Watanabe Shoko:Kk Photochemical reactor
JP2004066045A (en) * 2002-08-02 2004-03-04 Chiyoda Kohan Co Ltd Ultraviolet irradiator
JP2005240646A (en) * 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd Compressor and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103902A (en) * 1996-06-12 1998-01-06 Toshihiko Yamashita Bubble removing device for storage battery
JPH11138156A (en) * 1997-11-12 1999-05-25 T & C Technical:Kk Ultraviolet oxidation device
JP2002166270A (en) * 2000-12-01 2002-06-11 Watanabe Shoko:Kk Photochemical reactor
JP2004066045A (en) * 2002-08-02 2004-03-04 Chiyoda Kohan Co Ltd Ultraviolet irradiator
JP2005240646A (en) * 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd Compressor and air conditioner

Also Published As

Publication number Publication date
JP4773805B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
US6791092B2 (en) Transmission meter, a method of measuring transmittance and a disinfection apparatus
KR101626619B1 (en) Material gas concentration control system
US7323343B2 (en) Nitrogen monoxide, nitrogen dioxide and ozone determination in air
US7628926B2 (en) System and method for monitoring water transmission of UV light in disinfection systems
KR20030021998A (en) Method for measuring fluid component concentrations and apparatus therefor
TW201636611A (en) Method of measuring carbonation levels in open-container beverages
AU2008363810A1 (en) Gas analyzer
JP4926650B2 (en) Continuous total organic carbon concentration measuring method and apparatus
GB2312278A (en) Organic and/or biological pollution monitor
JP4773805B2 (en) UV chamber and TOC monitoring device
JP5239053B2 (en) Method and apparatus for measuring ozone concentration
JP3320050B2 (en) Method and apparatus for measuring organic carbon content
WO2003006953A2 (en) Liquid sample take-up device
JP2007086035A (en) Liquid property determining device and method
US8709261B2 (en) System and method for monitoring water transmission of UV light in disinfection systems
JP2000218148A (en) Mixing apparatus
US4299593A (en) Method and apparatus for detecting and measuring a gas
US6652721B2 (en) Sensor for determination of O2 concentration in liquids
US20200400619A1 (en) Standard-moisture generator, system using the standard-moisture generator, method for detecting abnormality in standard-moisture and computer program product for detecting the abnormality
US10557788B2 (en) Sensor
JP2008180662A (en) Oxidation reaction device for measuring total organic carbon value, organic carbon value measurement unit, and ultraviolet oxidation method of organic compound
JP4158188B2 (en) Analysis equipment
JP2023514006A (en) Carbon determination of aqueous samples using oxidation at high temperature and pressure generated by resistive heating
JP2008064651A (en) Method and apparatus for measuring total organic carbon concentration in liquid
Delgado Ozone concentration measurements. State of the art

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170701

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4773805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250