JPH11138125A - 廃プラスチック油化発電システム - Google Patents

廃プラスチック油化発電システム

Info

Publication number
JPH11138125A
JPH11138125A JP9305267A JP30526797A JPH11138125A JP H11138125 A JPH11138125 A JP H11138125A JP 9305267 A JP9305267 A JP 9305267A JP 30526797 A JP30526797 A JP 30526797A JP H11138125 A JPH11138125 A JP H11138125A
Authority
JP
Japan
Prior art keywords
oil
gas
waste plastic
tank
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9305267A
Other languages
English (en)
Inventor
Ryokichi Yamada
良吉 山田
Tomoko Kaneko
朋子 金子
Norio Arashi
紀夫 嵐
Hisao Yamashita
寿生 山下
Tomoyuki Saito
知行 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9305267A priority Critical patent/JPH11138125A/ja
Publication of JPH11138125A publication Critical patent/JPH11138125A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】 【課題】本発明の目的は、触媒を用いることなくガス生
成率を低減して効率よく重質油分を還流軽質化し油の回
収率の向上を図る。 【解決手段】本発明は上記目的を達成するために、熱分
解槽により廃プラスチックを加熱下で熱分解ガス化し、
得られた熱分解ガスを冷却器により所定の温度に冷却し
重質成分を凝縮液化する。該冷却器からの凝縮重質成分
と軽質成分とを還流槽により分離し、かつ、凝縮重質成
分を前記熱分解槽に還流し繰り返し熱分解を促進して軽
質化する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、廃プラスチックか
らディーゼル発電燃料として有用な油を回収して発電を
行うシステムに関する。
【0002】
【従来の技術】経済の発展に伴い生活様式の変化等に伴
う家具,家電品等粗大廃棄物が年々増加している。ま
た、プラスチック生産量の増加に伴いその廃棄物は年々
増加しており社会問題となっている。現在、廃棄プラス
チックの大半が埋立てと焼却によって処分されている。
しかし、埋立て用地の不足の問題や、また焼却処分の場
合には焼却炉の短命化や排ガスなどによる環境汚染の問
題がある。これらの問題を解決するために、廃棄プラス
チックの再資源化やエネルギ回収の方法が研究されてい
る。
【0003】可燃物、特にプラスチック類のリサイクル
法の一つとして、廃プラスチックを熱分解して油化する
方法がある。熱可塑性プラスチックを対象として溶融・
熱分解によって油化・回収し、燃料化利用する方法が特
開昭49−17477 号公報,特開昭59−174689号公報などに
開示されている。しかし、廃プラスチックを単に熱分解
しただけでは、生成油中に高分子量の留分やワックス状
物等の重質成分が多量に含有し、かつ、ガソリン等の軽
質分から重質分の広範囲の沸点油成分が存在するため、
市販の燃料油に比べディーゼル発電等の燃料油として流
動性や着火性に難点がある燃料油が回収される。熱分解
生成油中の高分子量の留分やワックス状物等の重質成分
を触媒を用いて接触分解により生成油の軽質化を行う方
法が特開平2−29492号公報,特開平3−200892号公報,
特開平3−287694号公報等に開示されている。
【0004】一方、廃プラスチックを熱分解油化してそ
の油を用いてディーゼル発電する方法が特開平3−18137
9号公報,特開平7−56号公報等に開示されている。
【0005】
【発明が解決しようとする課題】接触分解による廃プラ
スチック熱分解ガスの軽質化においては、軽質油を回収
する手段としては有用であるが、ガス化分解が促進され
易くガスの生成量が多くなり、油の回収率が低下する課
題がある。この場合は、生成ガスを廃プラスチック熱分
解時の加熱源に有効利用すればエネルギー面において得
策になろう。燃料としての貯蔵性は、液体のほうが貯蔵
し易く運搬する際も容易である。したがって、ガスの生
成率を出来るだけ低く抑制し、燃料油などに適した油の
回収率を向上することが望ましい。
【0006】また、接触触媒では、経時変化に伴い触媒
上にカーボン等が析出し、軽質化特性が低下することや
触媒の再生及び交換等を行う必要があり、メンテナンス
が容易でないという課題がある。さらに、接触分解によ
り軽質化した回収油は芳香族系及びオレフィン系の炭化
水素が多量に含有しており、ディーゼル発電燃料として
の着火性が低くなり、排煙中の炭化水素濃度が高くなる
という課題がある。
【0007】本発明の目的は、触媒を用いることなくガ
ス生成率を低減して効率よく重質油分を還流軽質化し油
の回収率の向上を図る。また、ディーゼル発電の燃料に
適合した油を製造・回収する廃プラスチック油化発電シ
ステムを提供することにある。
【0008】
【課題を解決するための手段】本発明は上記目的を達成
するために、熱分解槽により廃プラスチックを加熱下で
熱分解ガス化し、得られた熱分解ガスを冷却器により所
定の温度に冷却し重質成分を凝縮液化する。該冷却器か
らの凝縮重質成分と軽質成分とを還流槽により分離し、
かつ、凝縮重質成分を前記熱分解槽に還流し繰り返し熱
分解を促進して軽質化する。また、処理する廃プラスチ
ック原料の混合割合、さらには前記還流槽及び凝縮器の
温度を変えることにより、燃料油の着火性を表わすセタ
ン価を調製しディーゼル発電の燃料に適合した廃プラス
チック油を回収する。
【0009】即ち、上記手段によれば、熱分解ガスを所
定の温度に冷却することにより重質成分を凝縮液化し、
かつ、液化重質成分と未凝縮軽質ガス成分とを還流槽に
より分離して該還流槽からの液化重質成分を前記熱分解
槽に繰り返し還流するため、触媒を用いることなく重質
成分の軽質化促進を図ることができ、さらに、ガス生成
率を抑制できるため油の回収率を向上することができ
る。また、還流温度を調製しその温度を高くすると、パ
ラフィン類の組成の多い重質成分の油が回収できるた
め、セタン価の高い燃料油を回収できる。
【0010】一方、還流温度を低くすると、熱分解槽に
還流される液が多くなるため軽質化が促進され、パラフ
ィン類の含有組成が少ない軽質成分油が回収できるた
め、セタン価の低い燃料油が回収できる。さらに、還流
温度一定の場合は凝縮温度を調製すれば、重質及び軽質
成分をより細分離凝縮して回収できるため、より幅広い
セタン価を有する燃料油を回収できる。
【0011】また、原料廃プラスチックの原料に含有す
るポリスチレン(PS)の含有量を変化してもセタン価
のことなる燃料油を回収できる。これは、PSの含有量
を多くすると飽和炭化水素含有の多い油が回収できるた
め、セタン価の低い燃料油が回収できる。また、PSの
含有量を少なくすると飽和炭化水素含有の少ない油を回
収できるため、セタン価の高い燃料油が回収できる。
【0012】
【発明の実施の形態】以下、本発明の一実施例を図1を
用いて説明する。
【0013】図1には本発明の廃プラスチック油化及び
油化発電システムの基本構成模式図を示す。
【0014】図1による実施例について述べる。熱分解
槽1,第1冷却器2,還流槽3,塩素固定化槽4,一段
凝縮器5,第一気液分離器6,第二段凝縮器7,第二気
液分離器8,油貯留槽9,ディーゼル発電機11,重質
液滞留槽12,触媒燃焼器13,制御機14,セタン価
測定装置15,切替弁20などから構成される。
【0015】まず、動作について説明する。図1におい
て、廃プラスチック300は熱分解槽1に供給される。
廃プラスチックは300触媒燃焼器13からの高温ガス
により熱分解槽1が加熱され、ガス化分解される。該分
解ガスは配管30を経て第1冷却器2に導入され、所定
の温度に冷却されて重質成分が液化される。液化重質成
分と軽質ガスは還流槽3に導入されて、液化重質成分と
軽質ガスとが分離される。還流槽3で分離された液化重
質成分は配管31を経て重質液滞留槽12に滞留され、
この後配管32を経て分解槽1に還流され、繰り返し熱
分解されて軽質化される。
【0016】一方、還流槽3からの軽質ガスは塩素固定
化槽4に導入される。該塩素固定化槽4には塩素固定化
剤として水酸化カルシウム(Ca(OH)2)が充填され
ており、還流槽3と同等の温度、あるいは前記塩素固定
化剤のミスト油分付着による利用率低下を防止するた
め、5ないし10℃高い温度に加熱されている。
【0017】還流槽3からの軽質ガス成分中に含有され
る塩素成分は塩素固定化槽4において固定化除去された
のち、第一段凝縮器5に導入・冷却され、軽質ガスの一
部が凝縮・液化される。凝縮・液化された成分は第一気
液分離器6に貯留される。第一段凝縮器5で冷却・凝縮
されない軽質ガス成分は第一気液分離器6から第二段凝
縮器7に導入・冷却され、さらに軽質ガスの一部が凝縮
・液化される。凝縮・液化された成分は第二気液分離器
8に貯留される。
【0018】凝縮・液化されない軽質ガスは第二気液分
離器8から排出され燃焼手段等により処理される。第一
気液分離器6に貯留された油は切替弁20を開け第二油
回収槽8に貯留された油と一緒に油貯留槽9に貯留され
る。さらに、油の着火性を表わすセタン価は第一気液分
離器6と第二気液分離器8に貯留された油の一部がサン
プリングされセタン価測定装置15により測定される。
セタン価測定装置15は蒸留装置及び密度測定装置から
構成されている。蒸留装置により50%留出温度を測定
し、油の密度の測定値から、セタン指数算出ノモグラフ
を用いて求められる。
【0019】一方、ディーゼル発電機11はエンジンと
発電機から構成されており、上記動作により回収された
燃料油が油貯留槽9から供給され、発電されて電力50
が得られる。この電力50は所内のモータ,各ポンプな
どの動力源として使用される。また、ディーゼル発電機
11からの排ガスは触媒等の手段(図示していない)等
により処理・排気される。
【0020】次に制御系統について動作を述べる。還流
槽3の温度は第1冷却器2の出口熱分解ガスの温度が還
流槽3内に設けた温度検知器(図示していない)により
検知され、この情報は制御機14に入力されて第1冷却
器2を冷却する冷却水量を調製することにより制御され
る。また、第一気液分離器6及び第二気液分離器8の温
度は、第一及び第二気液分離器6,8内に設けた温度検
知器(図示していない)により検知され、この情報は制御
機14に入力されて第一段及び第二段凝縮器5,7を冷
却する冷却水量を調製することにより制御される。さら
に、第一及び第二気液分離器6,8の油のセタン価が所
定の値にならない場合はセタン価測定装置15からの出
力信号200が制御機14に入力され、還流槽3,第一
段及び第二段凝縮器5,7の温度が所定の温度になるよ
うにそれぞれ冷却水量が制御・調製される。
【0021】実験例1 図1に示したプロセスフローによる実験例を述べる。廃
プラスチックの原料として、ポリプロピレン35kg,ポ
リエチレン35kg,ポリスチレン10kg,エポキシ樹脂
10kg,フェノール樹脂10kgを混合したものを用い
た。これらの原料は10mm程度に破砕したのち、熱分解
槽1に投入し上記作動により連続操作で100kgを処理
した。熱分解槽1の廃プラスチックの加熱温度は400
ないし410℃で実施した。
【0022】表1に操作条件及び結果を示す。
【0023】
【表1】
【0024】本実験では還流槽3,第一段及び第二段凝
縮器5,7の温度は約±5℃に制御しその平均温度を示
した。
【0025】実験ケース1ないし3では第一段及び第二
段凝縮器5,7の温度を一定とし還流槽3の温度を変化
させた場合で、油回収槽9に回収した油のセタン価の測
定結果を示した。この結果、還流槽3の温度が高くなる
ほど回収油のセタン価の値が大きくなることがわかる。
これは、還流温度が高くなるほど重質成分が後段側に流
出されるため、パラフィン類の含有組成が多くなり、セ
タン価の値が大きくなるためである。
【0026】また、実験ケース4ないし5には還流槽3
及び第二段凝縮器7の温度を一定にし第一段凝縮器5の
温度を変化させた場合のセタン価の値を示す。本実験で
は第一及び第二気液9分離器6,8に回収した油につい
て測定した結果を示した。この結果、第一段凝縮温度が
高くなる程セタン価が大きくなることがわかる。これ
も、上記と同様に凝縮温度を高くするほどパラフィン類
の含有組成の多い油が凝縮回収されるためである。
【0027】さらに、実験ケース6ないし7には還流槽
3及び第一段凝縮器5の温度を一定にし第二段凝縮器7
の温度を変化させた場合のセタン価の値を示す。本実験
では第一及び第二気液分離器6,8に回収した油につい
て測定した結果を示した。この結果、第二段凝縮温度が
高くなる程セタン価が大きくなることがわかる。これ
も、上記と同様に凝縮温度を高くするほどパラフィン類
の含有組成の多い油が凝縮回収されるためである。
【0028】以上の結果から、還流及び凝縮温度を変化
させることによりセタン価の異なる油を回収できること
がわかる。
【0029】一方、ディーゼル発電に必要な油の粘性を
示す動粘度の測定結果を表2に示す。動粘度の測定はJI
S K2283により測定した。
【0030】
【表2】
【0031】表2の結果からわかるようにセタン価を調
製して回収した油の動粘度は1cst(20℃)以上である
ことがわかる。これは、還流槽3の温度を200から2
20℃の範囲内で重質成分の軽質化を図ればディーゼル
発電に適合する油が回収出来ることを示している。
【0032】実験例2 図1に示したプロセスフローによる実験例を述べる。廃
プラスチックの原料として、ポリプロピレン,ポリエチ
レン,ポリスチレン,エポキシ樹脂,フェノール樹脂を
混合したものを用いた。これらの原料は10mm程度に破
砕したのち、熱分解槽1に投入し上記作動により連続操
作で100kgを処理した。本実験では、PSの廃プラス
チックの混合量を変えることにより回収した油のセタン
価を測定した。熱分解槽1の廃プラスチックの加熱温度
は400ないし410℃で実施した。また、前記表1に
示した実験ケース1の条件で第一段及び第二段凝縮器
5,7、還流槽3の温度を維持して実験を行った。
【0033】実験結果を図2に示す。図2にはPSの混
合割合変化量とセタン価の関係を示した。これより、P
Sの混合率が多くなるほどセタン価は小さくなることが
わかる。これは、PSの含有量を多くすると飽和炭化水
素含有の多い油が回収できるため、セタン価の低い燃料
油が回収できる。
【0034】この結果、PSの混合割合を変化させるこ
とによりセタン価の異なる油を回収できることがわか
る。
【0035】実験例3 次に、実験例1で回収した油によるディーゼル発電を実
施した。ディーゼル発電機11のうちディーゼルエンジ
ンは出力70kWの容量のものを用いた。
【0036】この結果、前記動作により油貯留槽9から
ディーゼル発電機11への油の供給は円滑にでき、油を
連続燃焼でき、電力50を得ることができた。この場
合、エンジンの燃焼による排ガスのうち、一酸化炭素,
トータル炭化水素,スモーク濃度など、排気色等はセタ
ン価の異なる回収した油の全てが排ガス規制を満足し、
クリーンな発電ができた。窒素酸化物(NOx)につい
ては、セタン価の値が小さくなるに従って排ガス濃度が
高くなることがわかった。
【0037】
【発明の効果】本発明によれば、還流槽により液化重質
成分と未凝縮軽質ガス成分とを分離して該還流槽からの
液化重質成分を前記熱分解槽に繰り返し還流するため、
触媒を用いることなく重質成分の軽質化促進を図ること
ができる。また、ガス生成率を抑制できるため油の回収
率を向上することができる。一方、還流及び凝縮温度を
調製することにより任意のセタン価の燃料油を回収でき
る。また、原料廃プラスチックの原料に含有するポリス
チレン(PS)の含有量を変化してもセタン価の異なる
燃料油を回収できる。さらに、セタン価を調製した回収
油を用いることによりクリーンな発電ができる効果があ
る。
【図面の簡単な説明】
【図1】本発明の実施例である廃プラスチックの油化プ
ロセス及び油化発電システムの構成図。
【図2】ポリスチレン(PS)の混合割合とセタン価と
の関係を示す特性図。
【符号の説明】
1…熱分解槽、2…第1冷却器、3…還流槽、4…塩素
固定化槽、5…一段凝縮器、6…第一気液分離器、7…
第二段凝縮器、8…第二気液分離器、9…油貯留槽、1
1…ディーゼル発電機、12…重質液滞留槽、13…触
媒燃焼器、14…制御機、15…セタン価測定装置、2
0…切替弁。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 寿生 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 斉藤 知行 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】廃プラスチックを加熱下で熱分解ガス化す
    る熱分解槽と、得られた熱分解ガスを冷却し重質成分を
    凝縮する冷却器と、重質成分と軽質成分とに分離し重質
    成分を前記熱分解槽に還流する還流槽と、分離された軽
    質成分中の塩素成分を除去する塩素固定化槽と、塩素除
    去後の前記軽質成分を段階的に冷却・凝縮液化して沸点
    の異なる油を得る凝縮器と、該凝縮器において液化しな
    い未凝縮ガスを分離する気液分離器と、該気液分離器か
    らの軽質油を貯留する油貯留槽と、前記油貯留槽からの
    液化油を燃料とした内燃機関と、該内燃機関に付随した
    発電装置とを具備した廃プラスチック油化発電システム
    において、前記内燃機関の燃料として、着火性を表わす
    指標であるセタン価が20以上の廃プラスチック油を回
    収し、これを用いてディーゼル発電を行うことを特徴と
    する廃プラスチック油化発電システム。
  2. 【請求項2】動粘度1以上の粘性を持つ前記廃プラスチ
    ック油を得ることを特徴とする請求項1記載の廃プラス
    チック油化発電システム。
  3. 【請求項3】前記気液分離器で回収した廃プラスチック
    油のセタン価をオンライン計測して運転・制御すること
    を特徴とする請求項1記載の廃プラスチック油化発電シ
    ステム。
JP9305267A 1997-11-07 1997-11-07 廃プラスチック油化発電システム Pending JPH11138125A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9305267A JPH11138125A (ja) 1997-11-07 1997-11-07 廃プラスチック油化発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9305267A JPH11138125A (ja) 1997-11-07 1997-11-07 廃プラスチック油化発電システム

Publications (1)

Publication Number Publication Date
JPH11138125A true JPH11138125A (ja) 1999-05-25

Family

ID=17943053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9305267A Pending JPH11138125A (ja) 1997-11-07 1997-11-07 廃プラスチック油化発電システム

Country Status (1)

Country Link
JP (1) JPH11138125A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028456A (ja) * 2004-07-21 2006-02-02 T Rad Co Ltd 燃料油の製造方法および燃料油
WO2013015819A1 (en) 2011-07-28 2013-01-31 Jbi Inc. System and process for converting plastics to petroleum products
WO2018127817A1 (en) * 2017-01-05 2018-07-12 Sabic Global Technologies, B.V. Conversion of waste plastic to propylene and cumene

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028456A (ja) * 2004-07-21 2006-02-02 T Rad Co Ltd 燃料油の製造方法および燃料油
WO2013015819A1 (en) 2011-07-28 2013-01-31 Jbi Inc. System and process for converting plastics to petroleum products
WO2018127817A1 (en) * 2017-01-05 2018-07-12 Sabic Global Technologies, B.V. Conversion of waste plastic to propylene and cumene
CN110139845A (zh) * 2017-01-05 2019-08-16 沙特基础全球技术有限公司 废塑料向丙烯和枯烯的转化
US10858593B2 (en) 2017-01-05 2020-12-08 Sabic Global Technologies B.V. Conversion of waste plastic to propylene and cumene

Similar Documents

Publication Publication Date Title
Mishra et al. Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review
Khan et al. Pyrolytic waste plastic oil and its diesel blend: fuel characterization
Antoniou et al. Quality protocol and procedure development to define end-of-waste criteria for tire pyrolysis oil in the framework of circular economy strategy
Shareefdeen et al. Review of current technologies used in municipal solid waste-to-energy facilities in Canada
CN102159527A (zh) 用于将固体转化为燃料的系统以及方法
US3846096A (en) Gasification of carbonaceous solids
US5527449A (en) Conversion of waste oils, animal fats and vegetable oils
Thapa et al. Tar reduction in biomass syngas using heat exchanger and vegetable oil bubbler
JPH1088148A (ja) 廃プラスチック油化システム及び油化発電システム
Ciuła et al. Energy efficiency economics of conversion of biogas from the fermentation of sewage sludge to biomethane as a fuel for automotive vehicles
Kabeyi et al. Review and design overview of plastic waste-to-pyrolysis oil conversion with implications on the energy transition
Afriansyah et al. Pyrolysis of Lubricant Waste into Liquid Fuel using Zeolite Catalyst
JPH11138125A (ja) 廃プラスチック油化発電システム
Sarker et al. New alternative vehicle hydrocarbon liquid fuels from municipal solid waste plastics
JPH0931473A (ja) 廃プラスチック油化ならびに発電システム
Ziglio et al. Study of treatments to remove water from petroleum sludge and evaluation of kinetic parameters by thermal analysis using isoconversional methods
US20190177621A1 (en) Hydrocarbon recycling of carbonizer hot gases
Khan et al. Feasibility study of municipal plastic waste for power generation in Lahore city
JP3489407B2 (ja) 廃プラスチックの油化方法
Premkumar et al. Effect of waste plastic oil diesel blend on variant injection pressure of a diesel engine
US20220259502A1 (en) Multi-step process for conversion of waste plastics to hydrocarbon liquids
Sarker Generation of transportation fuel from solid municipal waste plastics
Farhoud et al. Study design and implementation of a pyrolysis device for the production of fuel and gas from plastic waste
Emembolu et al. Synthetic Oil Production from Waste Plastics
Prajapati International Journal of Trend in Scientific Research and Development (IJTSRD)