JPH11136207A - Reception signal correction system and orthogonal frequency division multiplex signal transmitter - Google Patents

Reception signal correction system and orthogonal frequency division multiplex signal transmitter

Info

Publication number
JPH11136207A
JPH11136207A JP9299173A JP29917397A JPH11136207A JP H11136207 A JPH11136207 A JP H11136207A JP 9299173 A JP9299173 A JP 9299173A JP 29917397 A JP29917397 A JP 29917397A JP H11136207 A JPH11136207 A JP H11136207A
Authority
JP
Japan
Prior art keywords
signal
value
decoded
circuit
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9299173A
Other languages
Japanese (ja)
Other versions
JP3541653B2 (en
Inventor
Keiichi Kaneko
敬一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP29917397A priority Critical patent/JP3541653B2/en
Publication of JPH11136207A publication Critical patent/JPH11136207A/en
Application granted granted Critical
Publication of JP3541653B2 publication Critical patent/JP3541653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid the problem that accurate decoding is disabled because the phase fluctuation of a received signal between symbols at a high-speed movement becomes greater than that at a low-speed movement or at a standstill and reaches ±45 degrees or over. SOLUTION: A detection circuit 313 receives received complex data, and a discrimination result outputted from a differential decoding circuit 312, detects and latches phase fluctuations at a symbol and obtains a rate of change that is a difference of the phase fluctuation between the symbol and a preceding symbol. The detection circuit 313 gives an instruction to a decoding value correction circuit 314 that the circuit 314 uses the discrimination result as it is, without changes when the rate of change is within ±45 degrees, and the detection circuit 313 selects a phase fluctuation of an adjacent signal point as the discrimination result, when the rate of change is more than ±45 degrees, and gives an instruction to the decoding value correction circuit 314 that the discrimination result is to be revised to the phase fluctuation at the adjacent signal point when a rate of change in the phase fluctuations between them is within ±45 degrees. The decoding value correction circuit 314 corrects the decoded value in accordance with the instruction of the detection circuit 313.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は受信信号補正方式及
び直交周波数分割多重信号伝送装置に係り、特に差動多
値PSK変調波を受信して伝送路のフェージングの影響
による位相や振幅の変動を補正する受信信号補正方式、
及び差動多値PSK変調されたディジタル情報を複数の
搬送波を用いて伝送する直交周波数分割多重信号の伝送
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reception signal correction system and an orthogonal frequency division multiplex signal transmission apparatus, and more particularly to a method for receiving a differential multilevel PSK modulated wave and suppressing phase and amplitude fluctuations due to the effects of fading on a transmission line. Received signal correction method to correct,
The present invention also relates to an orthogonal frequency division multiplexed signal transmission apparatus for transmitting digital information modulated by differential multi-level PSK using a plurality of carriers.

【0002】[0002]

【従来の技術】近年、音声信号及び映像信号の伝送にお
いては、ディジタル変調方式の開発が盛んである。差動
多値PSK(Phase Shift Keying)変調方式は、シンボ
ル間の位相差に情報を対応させて伝送する方式であり、
受信側では遅延検波方式により情報を復調することがで
きる。従って、復調器の構成が同期検波方式に比べて簡
単になるという利点がある。
2. Description of the Related Art In recent years, in the transmission of audio signals and video signals, digital modulation systems have been actively developed. The differential multi-level PSK (Phase Shift Keying) modulation method is a method of transmitting information by associating information with a phase difference between symbols.
On the receiving side, information can be demodulated by the delay detection method. Therefore, there is an advantage that the configuration of the demodulator is simplified as compared with the synchronous detection method.

【0003】ところで、移動体通信システムの受信装置
においては、伝送路で発生するフェージングの影響によ
り伝送変調波に振幅及び位相の変動が生じる。差動多値
PSK変調波の受信装置では、シンボル間の位相差によ
り情報を復調するので、フェージングによる受信信号の
変動の影響を少なくできる。
[0003] In a receiving apparatus of a mobile communication system, the amplitude and phase of a transmission modulated wave fluctuate due to the effects of fading occurring on a transmission path. In a differential multi-level PSK modulated wave receiving apparatus, information is demodulated based on a phase difference between symbols, so that the influence of fluctuation of a received signal due to fading can be reduced.

【0004】例として、1キャリア当たり1シンボルで
2ビット(4値)の情報を伝送する差動4値PSK変調
方式について説明すると、送信信号は振幅が一定であ
り、伝送する情報に対応し90度間隔で4つの位相を表
す。すなわち、図7に示すように、横軸がI軸、縦軸が
Q軸のXY座標平面で信号点を表すと、差動4値PSK
変調方式の信号点は各象限に1つずつの90度間隔で4
つの信号点で表される。このため、シンボル間で受信信
号の位相変動が±45度以内であれば、正確な復号が可
能である。
[0004] As an example, a differential quaternary PSK modulation method for transmitting 2-bit (quaternary) information with one symbol per carrier will be described. A transmission signal has a constant amplitude and corresponds to the information to be transmitted. The four phases are represented in degrees. That is, as shown in FIG. 7, when the horizontal axis represents the signal point on the XY coordinate plane of the I axis and the vertical axis represents the Q axis, the differential four-valued PSK
The signal points of the modulation method are four at 90 ° intervals, one in each quadrant.
It is represented by two signal points. Therefore, accurate decoding is possible if the phase variation of the received signal between symbols is within ± 45 degrees.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、移動体
通信システムの受信装置においては、高速移動時にはシ
ンボル間での受信信号の位相変動が、低速移動時や停止
時のそれに比べて大きくなるため、シンボル間で受信信
号の位相変動が±45度以上となり、正確な復号ができ
なくなる。また、4値以上に多値化した場合には、位相
変動の許容値が小さくなり、更に移動速度の制約が厳し
くなる。
However, in a receiving apparatus of a mobile communication system, the phase fluctuation of a received signal between symbols during high-speed movement becomes larger than that during low-speed movement or stoppage. In this case, the phase fluctuation of the received signal becomes ± 45 degrees or more, and accurate decoding cannot be performed. In addition, when the number of values is increased to four or more, the permissible value of the phase variation becomes small, and the restriction on the moving speed becomes more severe.

【0006】本発明は以上の点に鑑みてなされたもの
で、高速移動時においても正確な復号を可能とし得る受
信信号補正方式を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to provide a received signal correction method capable of performing accurate decoding even during high-speed movement.

【0007】また、本発明の他の目的は、高速移動体通
信システムで使用する場合に好適な差動多値PSK変調
されたディジタル情報を複数の搬送波で伝送する直交周
波数分割多重信号伝送装置を提供することにある。
Another object of the present invention is to provide an orthogonal frequency division multiplexing signal transmission apparatus for transmitting digital information subjected to differential multi-level PSK modulation on a plurality of carriers, which is suitable for use in a high-speed mobile communication system. To provide.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の受信信号補正方式及び直交周波数分割多重
信号の受信側は、受信した差動多値PSK変調波に対し
て離散的フーリエ変換して複素データを復調する演算部
と、演算部の複素データを差動復号する差動復号回路
と、差動復号回路で復号された復号値と信号点のどれか
一つの判定結果とを受け、それらから受信信号の位相変
動量を検出し、その位相変動量の複数シンボル間の変化
率を演算して求め、その変化率が所定値より小さいとき
はその復号値をそのまま用い、所定値以上のときは、判
定結果に隣接するより変化率の少ない信号点を判定結果
として選んで復号値の修正指示信号を出力すると共に、
検出位相変動量を隣接の信号点を選んだときの位相変動
量に修正して保持する検出回路と、差動復号回路の出力
復号値を受け、検出回路から修正指示信号が入力された
ときは復号値を修正して出力し、修正指示信号が入力さ
れないときはそのまま入力復号値を出力する復号値修正
回路とを有する構成としたものである。
In order to achieve the above object, a receiving signal correction method and an orthogonal frequency division multiplexing signal receiving side according to the present invention employ a discrete Fourier modulation method for a received differential multilevel PSK modulated wave. An arithmetic unit that converts and demodulates complex data, a differential decoding circuit that differentially decodes the complex data of the arithmetic unit, and a decoded value decoded by the differential decoding circuit and one of the signal point determination results. Received from them, detects the amount of phase variation of the received signal, calculates and calculates the rate of change of the phase variation between a plurality of symbols, and when the rate of change is smaller than a predetermined value, uses the decoded value as it is to obtain the predetermined value. In the above case, a signal point having a smaller change rate than that adjacent to the determination result is selected as a determination result, and a decoded value correction instruction signal is output.
When a detection circuit that corrects and holds the detected phase fluctuation amount to the phase fluctuation amount when an adjacent signal point is selected, receives the output decoded value of the differential decoding circuit, and receives a correction instruction signal from the detection circuit, The decoded value is corrected and output, and when no correction instruction signal is input, a decoded value correction circuit that outputs the input decoded value as it is is provided.

【0009】この発明では、位相変動量の連続性に着目
し、前シンボルとの位相変動量の変化率が所定値より大
きな値であるか否か判定し、所定値より大きな変化率の
時には判定結果を隣接する判定結果に変更することでよ
り正確な復号ができる。
In the present invention, attention is paid to the continuity of the amount of phase fluctuation, and it is determined whether or not the rate of change of the amount of phase fluctuation from the previous symbol is a value larger than a predetermined value. By changing the result to an adjacent determination result, more accurate decoding can be performed.

【0010】また、本発明は、上記の検出回路を差動復
号回路で復号された復号値と信号点のどれか一つの第1
の判定結果とを受け、それらから第1の位相変動量を検
出保持すると共に、その位相変動量の絶対値が所定値以
上のときは更に第1の判定結果に隣接する第2の判定結
果と復号値を基に第2の位相変動量を演算して保持する
ことを、少なくとも3シンボル期間について行い、その
期間における第1の位相変動量の変化率と第2の位相変
動量の変化率とのそれぞれを絶対値積算して、より小さ
な絶対値積算値を示した復号値をもって受信情報とする
ように復号値修正回路に指示信号を出力する構成として
もよい。
Further, according to the present invention, the above detection circuit is provided with a first value of one of a decoded value and a signal point decoded by a differential decoding circuit.
And the first phase variation is detected and held therefrom, and when the absolute value of the phase variation is equal to or greater than a predetermined value, a second determination result adjacent to the first determination result is further obtained. Calculating and holding the second phase variation based on the decoded value is performed for at least three symbol periods, and the rate of change of the first phase variation and the rate of change of the second phase variation during that period are calculated. May be integrated into an absolute value, and an instruction signal may be output to the decoded value correction circuit so that the decoded value indicating the smaller absolute value integrated value is used as the received information.

【0011】この発明でも、位相変動量の連続性に着目
し、位相変動量の変化率を絶対値積算して、より小さな
絶対値積算値を示した復号値をもって受信情報としてい
るので、より正確な復号ができる。
Also in the present invention, focusing on the continuity of the amount of phase fluctuation, the rate of change of the amount of phase fluctuation is integrated as an absolute value, and the decoded value indicating the smaller absolute value integrated value is used as the received information. Decoding.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面と共に説明する。図1は本発明になる受信信号補
正方式の一実施の形態のブロック図を示す。この実施の
形態は、後述する直交周波数分割多重信号受信装置内の
DFT,差動QPSK復号回路31も構成している。こ
こでは、257本の搬送波を用いて伝送情報を送受信す
る直交周波数分割多重信号(OFDM信号)を例にとっ
て説明する。このOFDM信号は、512ポイントのI
DFT(逆離散的フーリエ変換)演算を行って生成され
た信号であり、また差動Q(4値)PSK変調により一
本の搬送波に2ビットの情報を印加する。また、1シン
ボル内に、248搬送波の伝送情報の他に、9本の搬送
波を使用し、参照信号(基準データ)、パイロット信号
等を挿入する。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a received signal correction system according to the present invention. This embodiment also constitutes a DFT and differential QPSK decoding circuit 31 in an orthogonal frequency division multiplexed signal receiving device described later. Here, an orthogonal frequency division multiplexing signal (OFDM signal) for transmitting and receiving transmission information using 257 carriers will be described as an example. This OFDM signal has 512 points of I
It is a signal generated by performing a DFT (Inverse Discrete Fourier Transform) operation, and applies 2-bit information to one carrier wave by differential Q (quaternary) PSK modulation. In addition, a reference signal (reference data), a pilot signal, and the like are inserted into one symbol using nine carriers in addition to the transmission information of 248 carriers.

【0013】図1において、差動QPSK復号回路31
は、DFT演算部311、差動復号回路312、検出回
路313及び復号値修正回路314より構成されてい
る。受信されたOFDM信号は、復調されディジタル化
され、ガードインターバル期間が除去されて同相(I)
信号と直交(Q)信号とされた後、それぞれDFT演算
部311に供給されて受信複素データに変換される。従
来はこの受信複素データは、4つの信号点±1±jのど
れか一つに判定された後、送信側の逆である差動復号化
により、伝送情報に変換される。
In FIG. 1, a differential QPSK decoding circuit 31
Is composed of a DFT operation unit 311, a differential decoding circuit 312, a detection circuit 313, and a decoded value correction circuit 314. The received OFDM signal is demodulated and digitized, the guard interval period is removed, and the in-phase (I)
After being converted into a signal and a quadrature (Q) signal, they are supplied to the DFT operation unit 311 and converted into reception complex data. Conventionally, the received complex data is determined to be any one of four signal points ± 1 ± j, and then converted into transmission information by differential decoding which is the reverse of the transmission side.

【0014】一方、この実施の形態では、受信複素デー
タは差動復号回路312に供給され、ここで±1±jの
どれか一つに判定された後、復号値修正回路314に供
給されると共に、受信複素データ(復号値)と信号点±
1±jのどれか一つに判定した結果が検出回路313に
供給される。検出回路313は、差動復号回路312か
ら出力された受信複素データと判定結果とを受け、その
シンボル(n)での位相変動量を検出して保持する。位
相変動の例としては、図2に示すa(n)に値する量で
ある。図2に示す横軸が実数軸、縦軸が虚数軸である2
次元座標平面において、位相変動量a(n)は受信複素
データのベクトルAと判定結果(ここでは+1+j)の
ベクトルBとの間の角度である。
On the other hand, in this embodiment, the received complex data is supplied to a differential decoding circuit 312, where it is determined to be any one of ± 1 ± j, and then supplied to a decoded value correction circuit 314. With the received complex data (decoded value) and the signal point ±
The result determined as any one of 1 ± j is supplied to the detection circuit 313. The detection circuit 313 receives the received complex data output from the differential decoding circuit 312 and the determination result, detects and holds the amount of phase variation in the symbol (n). An example of the phase fluctuation is an amount corresponding to a (n) shown in FIG. The horizontal axis shown in FIG. 2 is the real axis and the vertical axis is the imaginary axis 2
In the dimensional coordinate plane, the phase variation a (n) is an angle between the vector A of the received complex data and the vector B of the determination result (here, + 1 + j).

【0015】次に、検出回路313は、前シンボルでの
位相変動量a(n−1)との差である変化率A(n)=
a(n)−a(n−1)を求める。変化率A(n)が±
45度以内であれば、判定結果はそのままにしておく。
これに対し、変化率A(n)が±45度より大きな値で
あれば、検出回路313は隣接の信号点を判定結果とし
て選び、変更後の判定結果の位相変動量との変化率A'
(n)が±45度以内であれば、判定結果をその隣接の
信号点に変更するように復号値修正回路314に指示す
る。検出回路313はその際の位相変動量を保持する。
Next, the detection circuit 313 calculates a change rate A (n) = the difference from the phase fluctuation amount a (n−1) in the previous symbol.
a (n) -a (n-1) is obtained. The change rate A (n) is ±
If it is within 45 degrees, the determination result is left as it is.
On the other hand, if the change rate A (n) is a value larger than ± 45 degrees, the detection circuit 313 selects an adjacent signal point as a determination result, and the change rate A ′ with the phase fluctuation amount of the changed determination result.
If (n) is within ± 45 degrees, it instructs the decoded value correction circuit 314 to change the determination result to the adjacent signal point. The detection circuit 313 holds the phase fluctuation amount at that time.

【0016】簡単な例として、位相軸が反時計回りに変
化している状態、すなわち、シンボル毎に位相変動が1
0度、30度、50度と変化している状態で、これらの
動作を簡単に説明する。送信側は、+1+jを3回送る
ものとし、反時計回り方向を正方向とする。いま、ある
シンボルで図3(A)に示すように判定結果は+1+j
で、受信複素データIとの位相変動量a(n−2)が+
10度であるものとすると、次のシンボルでは図3
(B)に示すように、判定結果が+1+jで、受信複素
データIIとの位相変動量a(n−1)が+30度であ
り、よって変化率A(n−1)は20度(=a(n−
1)−a(n−2)=30度−10度)である。この変
化率A(n−1)は±45度以内であるので、判定結果
はそのままにしておく。
As a simple example, a state in which the phase axis changes counterclockwise, that is, the phase fluctuation is 1 for each symbol
These operations will be briefly described in a state where the angles are changed to 0 degree, 30 degrees, and 50 degrees. The transmitting side sends + 1 + j three times, and sets the counterclockwise direction as the positive direction. Now, as shown in FIG. 3A for a certain symbol, the determination result is + 1 + j
And the phase variation a (n−2) with the received complex data I is +
Assuming that it is 10 degrees, the next symbol
As shown in (B), the determination result is + 1 + j, the phase variation a (n-1) with the received complex data II is +30 degrees, and the change rate A (n-1) is 20 degrees (= a). (N-
1) -a (n-2) = 30 degrees-10 degrees). Since the change rate A (n-1) is within ± 45 degrees, the determination result is left as it is.

【0017】次のシンボルでは図3(C)に示すよう
に、判定結果が−1+jで、受信複素データIII との位
相変動量a(n)が−40度であるものとすると、変化
率A(n)は−70度(=a(n)−a(n−1)=−
40度−30度)となる。この変化率A(n)は±45
度より大きな値であるので、判定結果を図3(D)に示
すように隣接の信号点+1+jに変更すると、受信複素
データIII との位相変動量a' (n)が50度(=90
度−40度)となり、変化率A' (n)は20(=a'
(n)−a(n−1)=50度−30度)である。よっ
て、この修正した判定結果の方が確からしいので、検出
回路313は、位相変動量をa' (n)=50度として
保持し、判定結果の修正を復号値修正回路314に指示
する。
In the next symbol, as shown in FIG. 3C, assuming that the determination result is -1 + j and the phase variation a (n) with the received complex data III is -40 degrees, the change rate A (N) is -70 degrees (= a (n) -a (n-1) =-
40 degrees-30 degrees). The rate of change A (n) is ± 45
If the determination result is changed to the adjacent signal point + 1 + j as shown in FIG. 3D, the phase variation a ′ (n) with the received complex data III becomes 50 degrees (= 90 degrees).
Degrees−40 degrees), and the change rate A ′ (n) is 20 (= a ′).
(N) -a (n-1) = 50 degrees-30 degrees). Therefore, since the corrected determination result is more likely, the detection circuit 313 holds the phase variation amount as a ′ (n) = 50 degrees and instructs the decoded value correction circuit 314 to correct the determination result.

【0018】図1の復号値修正回路314は、差動復号
回路312から判定結果を受けると共に、検出回路31
3の指示に従い復号値を修正する。また、復号値修正回
路314は、送信側の逆である差動復号化により、伝送
情報に変換して出力する。
The decoded value correction circuit 314 shown in FIG. 1 receives the judgment result from the differential decoding circuit 312,
Correct the decrypted value according to the instruction of 3. Further, the decoded value correction circuit 314 converts the information into transmission information by differential decoding which is the reverse of the transmission side, and outputs the transmission information.

【0019】このように、この実施の形態によれば、位
相変動の連続性に着目して前シンボルとの位相変動量の
変化率が±45度より大きな値であるか否か判定し、±
45度より大きな変化率の時には判定結果を隣接する信
号点に変更することでより正確な復号ができ、よって高
速移動する受信装置に適用して好適である。
As described above, according to this embodiment, it is determined whether or not the rate of change of the amount of phase fluctuation with respect to the previous symbol is greater than ± 45 degrees by focusing on the continuity of the phase fluctuation.
When the rate of change is greater than 45 degrees, more accurate decoding can be performed by changing the determination result to an adjacent signal point, and thus it is suitable for application to a receiving device that moves at high speed.

【0020】次に、本発明の他の実施の形態について説
明する。この実施の形態では、位相変動の方向により、
検出回路313での判定結果を幾つかの枝に分岐させる
ものである。例えば、図6に黒丸で示す受信複素データ
が得られた場合、+1+jの判定結果が最も確からしい
が、図6のように+1+jの判定結果に対する位相変動
量が正方向に大きい場合は−1+jである可能性もあ
る。そこで、この実施の形態は、位相変動量の絶対値が
所定値より大きい場合は、次に可能性のある隣接する信
号点である判定結果との位相変動量を枝として求め、3
シンボル期間以上についてそれらの変化率をそれぞれの
枝について演算すると共にそれぞれ絶対値積算し、より
小さい絶対値積算値を示した枝の復号値をもって受信情
報とするものである。
Next, another embodiment of the present invention will be described. In this embodiment, depending on the direction of the phase fluctuation,
The determination result in the detection circuit 313 is branched into several branches. For example, when the received complex data indicated by a black circle in FIG. 6 is obtained, the judgment result of + 1 + j is most likely. However, as shown in FIG. 6, when the phase fluctuation amount with respect to the judgment result of + 1 + j is large in the positive direction, −1 + j is obtained. There could be. Therefore, in this embodiment, when the absolute value of the phase variation is larger than a predetermined value, the phase variation with the determination result of the next possible adjacent signal point is obtained as a branch.
The rate of change is calculated for each branch and the absolute value is integrated for each branch over the symbol period or longer, and the decoded value of the branch indicating the smaller absolute value integrated value is used as reception information.

【0021】すなわち、位相変動量が例えば+30度よ
りも大きい場合は、その判定結果(信号点)での位相変
動量と共に、次に可能性のある隣接する信号点の判定結
果での位相変動量を枝として分岐して計算する。すなわ
ち、判定結果が+1+jのときは判定結果を−1+jと
したときの位相変動量を枝として分岐し、同様に、判定
結果が+1−jのときは判定結果を+1+jとしたとき
の位相変動量を、判定結果が−1−jのときは判定結果
を+1−jとしたときの位相変動量を、判定結果が−1
+jのときは判定結果を−1−jとしたときの位相変動
量をそれぞれ枝として分岐する。
That is, when the phase variation is larger than +30 degrees, for example, the phase variation in the determination result (signal point) and the phase variation in the determination result of the next possible adjacent signal point are determined. Is calculated as a branch. That is, when the determination result is + 1 + j, the phase variation amount when the determination result is -1 + j is branched, and similarly, when the determination result is + 1-j, the phase variation amount when the determination result is + 1 + j When the judgment result is −1−j, the phase variation amount when the judgment result is + 1−j is −1.
In the case of + j, the phase variation amount when the judgment result is −1−j is branched as a branch.

【0022】位相変動量が+30度以下で−30度以上
の場合、すなわち位相変動量の絶対値が30度以下の場
合は、位相変動量が小さいのでその判定結果をそのまま
使用する。位相変動量が−30度より小さい場合(負方
向に大きい場合)は、その判定結果と共に、次に可能性
のある判定結果での位相変動量を計算する。すなわち、
判定結果が+1+jのときは、判定結果を+1−jとし
たときの位相変動量を枝として分岐し、同様に、判定結
果が−1+jのときは判定結果を+1+jとしたときの
位相変動量を、判定結果が−1−jのときは判定結果を
−1+jとしたときの位相変動量を、判定結果が+1−
jのときは判定結果を−1−jとしたときの位相変動量
をそれぞれ枝として分岐する。
When the phase variation is +30 degrees or less and -30 degrees or more, that is, when the absolute value of the phase variation is 30 degrees or less, the phase variation is small and the determination result is used as it is. If the phase variation is smaller than −30 degrees (large in the negative direction), the phase variation in the next possible determination result is calculated together with the determination result. That is,
When the judgment result is + 1 + j, the phase fluctuation amount when the judgment result is + 1-j is branched, and similarly, when the judgment result is -1 + j, the phase fluctuation amount when the judgment result is + 1 + j is When the judgment result is −1−j, the phase fluctuation amount when the judgment result is −1 + j, and the judgment result is −1−j
In the case of j, the phase variation amount when the determination result is −1−j is branched as a branch.

【0023】受信側は、3シンボル期間以上の所定値ま
でについて、これらの分岐した枝についての位相変動量
を保持しておき、それぞれの枝についての変化率の絶対
値の積算演算をし、より小さい絶対値積算値を示した枝
の判定結果をもって受信情報とみなす。この機能は、検
出回路313で行う。
The receiving side holds the phase variation amounts of these branched branches up to a predetermined value of three symbol periods or more, and performs an integration operation of the absolute value of the change rate of each branch. The determination result of the branch showing the small absolute value integrated value is regarded as the reception information. This function is performed by the detection circuit 313.

【0024】次に、本発明の更に他の実施の形態につい
て説明する。マルチキャリア伝送方式であるOFDM信
号伝送方式は、隣接する搬送波がその伝送路特性であ
る、位相変動に類似した特性を有している。そのため、
位相変動量を数搬送波について平均化してノイズの除去
を図ることができ、信頼性の高い位相変動量を得ること
ができる。時間軸方向についても同様である。
Next, still another embodiment of the present invention will be described. In the OFDM signal transmission method, which is a multicarrier transmission method, adjacent carriers have characteristics similar to phase fluctuations, which are transmission path characteristics. for that reason,
The amount of phase fluctuation can be averaged for several carriers to remove noise, and a highly reliable phase fluctuation can be obtained. The same applies to the time axis direction.

【0025】次に、本発明の直交周波数分割多重信号伝
送装置の実施の形態について説明する。図4は本発明に
なる直交周波数分割多重信号伝送装置の送信装置の一実
施の形態のブロック図を示す。同図において、入力端子
1には伝送すべきディジタルデータが入力される。この
ディジタルデータは、例えばカラー動画像符号化表示方
式であるMPEG方式などの符号化方式で圧縮されたデ
ィジタル映像信号や音声信号などである。
Next, an embodiment of the orthogonal frequency division multiplex signal transmission apparatus of the present invention will be described. FIG. 4 shows a block diagram of an embodiment of the transmission apparatus of the orthogonal frequency division multiplex signal transmission apparatus according to the present invention. In FIG. 1, digital data to be transmitted is input to an input terminal 1. The digital data is, for example, a digital video signal or an audio signal compressed by an encoding method such as an MPEG method which is a color moving image encoding and displaying method.

【0026】この入力ディジタルデータは、差動符号化
回路を含む入力回路2に供給されて必要に応じて誤り訂
正符号の付与がクロック分周器3よりのクロックに基づ
いて行われた後、差動符号化回路により伝送すべき情報
が2ビットずつ各搬送波に割り振られ、±1±jの複素
データに変換される。クロック分周器3は中間周波数発
振器10よりの10.7MHzの中間周波数を分周し
て、この中間周波数に同期したクロックを発生する。
The input digital data is supplied to an input circuit 2 including a differential encoding circuit, and if necessary, an error correction code is applied based on a clock from a clock frequency divider 3. The information to be transmitted is allocated to each carrier by 2 bits at a time by the dynamic encoding circuit, and is converted into complex data of ± 1 ± j. The clock divider 3 divides an intermediate frequency of 10.7 MHz from the intermediate frequency oscillator 10 and generates a clock synchronized with the intermediate frequency.

【0027】入力回路2よりの複素データは演算部4に
供給されて、逆離散フーリエ変換(IDFT)演算によ
り時間軸上の同相信号(I信号)及び直交信号(Q信
号)に生成され、それぞれ所定の入力端子に供給されて
IDFT演算される。また、シンボル番号計数回路5は
シンボル毎に、0,1,2,3,...,254,25
5,0,1,2...というように順次巡回的に増加し
ていくシンボル番号を発生し、このシンボル番号を参照
信号挿入回路6に供給すると共に、演算部4に供給して
特定キャリア(例えば第1キャリア)にシンボル番号を
挿入する。
The complex data from the input circuit 2 is supplied to a calculation unit 4 and is generated as an in-phase signal (I signal) and a quadrature signal (Q signal) on a time axis by an inverse discrete Fourier transform (IDFT) calculation. Each is supplied to a predetermined input terminal and subjected to IDFT operation. The symbol number counting circuit 5 outputs 0, 1, 2, 3,. . . , 254, 25
5,0,1,2,. . . A symbol number which is sequentially and cyclically increased is supplied to the reference signal insertion circuit 6, and is also supplied to the arithmetic unit 4 so that the symbol number is assigned to a specific carrier (for example, the first carrier). insert.

【0028】また、参照信号挿入回路6は、ある搬送波
周波数+Wnで伝送されるデータに既知の基準データと
して参照信号を挿入すると共に、直交性の誤差によりイ
メージ成分あるいはクロストークとして漏洩する可能性
のある、中心搬送波周波数F0に対して対称な負の搬送
波周波数−Wnで伝送されるデータにも既知の基準デー
タを挿入する。この参照信号を挿入して伝送する搬送波
周波数は、予めシンボル番号に対応付けて決められてお
り、かつ、一定時間毎に切り替えられる。各周波数でそ
れぞれ伝送特性が異なる場合が多いからである。
Further, the reference signal inserting circuit 6, may leak with inserting a reference signal as a known reference data to data transmitted at a certain carrier frequency + W n, the error of the orthogonal as an image component or crosstalk Also, known reference data is inserted into data having a negative carrier frequency −W n symmetrical with respect to the center carrier frequency F0. The carrier frequency at which the reference signal is inserted and transmitted is determined in advance in association with the symbol number, and is switched at regular intervals. This is because transmission characteristics are often different for each frequency.

【0029】例えば、参照信号(基準データ)は偶数シ
ンボルでは(1組目として)正の搬送波周波数+Wn
伝送される複素数の実数部のみ所定値pSを設定し、そ
の他をゼロとし、奇数シンボルでは(2組目として)対
称な負の搬送波周波数−Wn伝送される複素数の実数部
のみ所定値rSを設定し、その他をゼロとする。
For example, as for the reference signal (reference data), a predetermined value p S is set only for the real part of the complex number transmitted at the positive carrier frequency + W n (as the first set) for even symbols, and the others are set to zero, and the odd numbers are set. In the symbol, a predetermined value r S is set only for the real part of the complex number transmitted as a symmetric negative carrier frequency −W n (as the second set), and the others are set to zero.

【0030】演算部4は一例としてデータ系列Nが25
6本の搬送波で送信されるとき、2倍オーバーサンプリ
ングのIDFT演算をして信号を発生させる。このとき
の演算部4への入力割り当ては、入力周波数整列型で順
番に番号をふると、次のようになる。
As an example, the arithmetic unit 4 has a data sequence N of 25.
When transmitted on six carriers, a signal is generated by performing IDFT operation of double oversampling. At this time, the input assignment to the arithmetic unit 4 is as follows when the numbers are sequentially assigned in the input frequency alignment type.

【0031】[0031]

【外1】 すなわち、演算部4の入力端子数は実数部(R)信号用
と虚数部(I)信号用とに、それぞれ0番目から511
番目までの512ずつあり、そのうち1番目(n=1)
から127番目(n=127)までの計127個ずつ
と、385番目(n=385)から511番目(n=5
11)の計127個ずつの入力端子に情報信号が入力さ
れ、また、0番目(n=0)の入力端子には直流電圧
(一定)が入力され、128番目(n=M/4)と38
4番目(n=3M/4)の入力端子には例えばパイロッ
ト信号のための固定電圧が入力される。
[Outside 1] That is, the number of input terminals of the arithmetic unit 4 is 511 for the real part (R) signal and 511 for the imaginary part (I) signal, respectively.
There are 512 to the first, of which the first (n = 1)
To the 127th (n = 127) from the 385th (n = 385) to the 511th (n = 5)
11) Information signals are input to a total of 127 input terminals, a DC voltage (constant) is input to a 0th (n = 0) input terminal, and a 128th (n = M / 4) is input. 38
For example, a fixed voltage for a pilot signal is input to the fourth (n = 3M / 4) input terminal.

【0032】演算部4は、このように1番目から127
番目の入力端子と385番目から511番目の入力端子
に4ビットのR信号及び4ビットのI信号とがそれぞれ
入力されると共に、0番目、128番目及び384番目
の入力端子に一定電圧が入力され、それ以外の129番
目から383番目の入力端子には0が入力されて、2倍
オーバーサンプリングIDFT演算を行い、その結果同
相信号(I信号)及び直交信号(Q信号)を得た後、I
信号とQ信号にそれぞれマルチパス歪みを軽減させるた
めのガードインターバルを挿入してから、出力バッファ
7へ出力する。
The operation unit 4 thus obtains 127 from the first
A 4-bit R signal and a 4-bit I signal are input to the input terminal and the 385th to 511th input terminals, respectively, and a constant voltage is input to the 0th, 128th and 384th input terminals. After that, 0 is input to the 129th to 383rd input terminals, and a double oversampling IDFT operation is performed. As a result, an in-phase signal (I signal) and a quadrature signal (Q signal) are obtained. I
After inserting a guard interval for reducing multipath distortion into the signal and the Q signal, the signal and the Q signal are output to the output buffer 7.

【0033】ここで、1番目から128番目までの計1
28個の入力端子の入力情報は、0番目の入力端子の入
力情報を伝送する中心搬送波周波数F0に対し、上側
(高域側)の情報伝送用搬送波(これを本明細書では正
のキャリア又は搬送波というものとする)で伝送され、
384番目から511番目までの計128個の入力端子
の入力情報は、中心搬送波周波数F0に対し下側(低域
側)の情報伝送用搬送波(これを本明細書では負のキャ
リア又は搬送波というものとする)で伝送され、特に1
28番目と384番目の入力端子の入力パイロット信号
はIDFT演算の結果、ナイキスト周波数の1/2倍の
周波数と等価である両端の周波数の搬送波で伝送され、
残りの129番目から383番目の入力端子には0が入
力され(グランド電位とされ)、その部分の搬送波が発
生しないようにされる(データ伝送には用いない)。
Here, a total of 1 from the 1st to the 128th
The input information of the 28 input terminals is a carrier for information transmission on the upper side (higher frequency side) with respect to the center carrier frequency F0 transmitting the input information of the 0th input terminal (this is referred to as a positive carrier or a positive carrier in this specification). Carrier).
The input information of a total of 128 input terminals from the 384th to the 511th is a carrier for information transmission lower (lower side) with respect to the center carrier frequency F0 (this carrier is referred to as a negative carrier or carrier in this specification). ), Especially 1
As a result of the IDFT operation, the input pilot signals of the 28th and 384th input terminals are transmitted on carrier waves at both ends of the frequency, which is equivalent to half the Nyquist frequency,
0 is input to the remaining 129th to 383th input terminals (the ground potential), so that a carrier wave of that portion is not generated (not used for data transmission).

【0034】出力バッファ7は、演算部4の出力演算結
果が1回のIDFT演算において256個の入力情報が
512点の時間軸信号(I信号及びQ信号)として、バ
ースト的に発生されるのに対し、出力バッファ7以降の
回路としては、出力バッファ7の内容の読み取り速度一
定で連続的に動作するため、両者の時間的違いを調整す
るために設けられている。
In the output buffer 7, the output operation result of the operation unit 4 is generated in a single IDFT operation, and 256 pieces of input information are generated in bursts as 512 time-axis signals (I signal and Q signal). On the other hand, since the circuits subsequent to the output buffer 7 operate continuously at a constant reading speed of the content of the output buffer 7, they are provided to adjust the time difference between the two.

【0035】図1のクロック分周器3からのクロックに
基づいて、出力バッファ7より連続的に読み出されたI
DFT演算結果であるI信号とQ信号は、D/A変換器
・低域フィルタ(LPF)8に供給され、ここでクロッ
ク分周器3からのクロックをサンプリングクロックとし
てアナログ信号に変換された後、LPFにより必要なベ
ースバンド周波数帯域成分のI信号とQ信号とが通過さ
れて直交変調器9へそれぞれ供給される。
Based on the clock from the clock divider 3 in FIG. 1, I
The I and Q signals resulting from the DFT operation are supplied to a D / A converter / low-pass filter (LPF) 8, where they are converted into analog signals using the clock from the clock divider 3 as a sampling clock. , LPF pass the necessary I-band and Q-band components of the baseband frequency band components and supply them to the quadrature modulator 9.

【0036】直交変調器9は中間周波数発振器10より
の10.7MHzの中間周波数と、この中間周波数の位
相を90°シフタ11により90°シフトした10.7
MHz中間周波数をそれぞれ搬送波として、それぞれD
/A変換器・LPF8より入力されたベースバンド周波
数帯域成分のI信号とQ信号で直交変調して、中間周波
数帯域(IF信号帯域)で、かつ、差動4値PSK変調
(QPSK)された257波(正負128組の搬送波と
中心搬送波一つ)の情報搬送波からなるOFDM信号を
生成する。直交変調器9より出力されたOFDM信号
は、周波数変換器12により所定の送信周波数帯のRF
信号に周波数変換された後、送信部13で電力増幅等の
送信処理を受けて図示しないアンテナより放射される。
The quadrature modulator 9 has an intermediate frequency of 10.7 MHz from the intermediate frequency oscillator 10 and a 10.7 MHz phase shifted by 90 ° by the 90 ° shifter 11.
MHz intermediate frequency as each carrier, and D
The quadrature modulation is performed on the baseband frequency band component I signal and Q signal input from the / A converter / LPF 8 to perform an intermediate frequency band (IF signal band) and differential quaternary PSK modulation (QPSK). An OFDM signal composed of 257 information carriers (128 pairs of positive and negative carriers and one central carrier) is generated. The OFDM signal output from the quadrature modulator 9 is converted by the frequency converter 12 into RF in a predetermined transmission frequency band.
After being frequency-converted into a signal, the signal is subjected to transmission processing such as power amplification in the transmission unit 13 and radiated from an antenna (not shown).

【0037】図5は本発明になる直交周波数分割多重信
号伝送装置の受信側の受信装置の一実施の形態のブロッ
ク図を示す。図5において、空間伝送路を介して入力さ
れたそれぞれ1シンボルあたり2ビットの情報を伝送す
るよう差動QPSK変調されている248波の情報搬送
波と、その他の9つの情報搬送波からなる、上記のOF
DM信号は、受信部21により受信アンテナを介して受
信された後高周波増幅され、更に周波数変換器22によ
り中間周波数に周波数変換され、中間周波増幅器23に
より増幅された後、後述の構成のキャリア抽出及び直交
復調器24に供給される。
FIG. 5 is a block diagram showing an embodiment of a receiving apparatus on the receiving side of the orthogonal frequency division multiplexing signal transmission apparatus according to the present invention. In FIG. 5, the above-mentioned 248 information carrier waves, which are differentially QPSK-modulated so as to transmit 2 bits of information per symbol input through a spatial transmission path, and nine other information carrier waves, OF
The DM signal is received by a receiving unit 21 via a receiving antenna, is then subjected to high-frequency amplification, is further frequency-converted to an intermediate frequency by a frequency converter 22, is amplified by an intermediate-frequency amplifier 23, and is then subjected to carrier extraction having a configuration to be described later. And a quadrature demodulator 24.

【0038】キャリア抽出及び直交復調器24のキャリ
ア抽出回路部分は、入力OFDM信号の中心搬送波(キ
ャリア)を位相誤差少なくできるだけ正確に抽出する回
路である。ここでは、情報を伝送する各搬送波は、シン
ボル周波数である387Hz毎に隣接配置されてOFD
M信号を構成しているため、中心搬送波に隣接する情報
伝送用搬送波も中心周波数に対して387Hz離れてお
り、中心搬送波を抽出するためには、387Hzしか離
れていない隣接する情報伝送用搬送波の影響を受けない
ように、選択度の高い回路が用いられる。
The carrier extraction circuit portion of the carrier extraction and quadrature demodulator 24 is a circuit for extracting the center carrier (carrier) of the input OFDM signal as accurately as possible with a small phase error. Here, each carrier for transmitting information is placed adjacent to every 387 Hz that is a symbol frequency and OFD
Since the M signal is formed, the carrier for information transmission adjacent to the center carrier is also separated by 387 Hz from the center frequency, and in order to extract the center carrier, the carrier for information transmission adjacent to the carrier only 387 Hz is separated. A highly selective circuit is used so as not to be affected.

【0039】キャリア抽出及び直交復調器24により抽
出された中心搬送波F0は、中間周波数発振器25に供
給され、ここで中心搬送波F0に位相同期した10.7
MHzの中間周波数を発生させる。中間周波数発振器2
5の出力中間周波数は第1の復調用搬送波として直交復
調器24に直接に供給される一方、90°シフタ26に
より位相が90°シフトされてから第2の復調用搬送波
としてキャリア抽出及び直交復調器24に供給される。
The center carrier F0 extracted by the carrier extraction and quadrature demodulator 24 is supplied to the intermediate frequency oscillator 25, where it is synchronized with the center carrier F0 by 10.7.
Generate an intermediate frequency of MHz. Intermediate frequency oscillator 2
5 is directly supplied to the quadrature demodulator 24 as the first demodulation carrier, while the phase is shifted by 90 ° by the 90 ° shifter 26, and then the carrier extraction and quadrature demodulation are performed as the second demodulation carrier. Is supplied to the vessel 24.

【0040】これにより、キャリア抽出及び直交復調器
24の直交復調器部からは送信装置の直交変調器9に入
力されたアナログ信号と同等のアナログ信号(周波数分
割多重信号)が復調されて取り出され、同期信号発生回
路27に供給される一方、低域フィルタ(LPF)28
によりOFDM信号情報として伝送された必要な周波数
帯域の信号が通過されてA/D変換器29に供給されて
ディジタル信号に変換される。
As a result, an analog signal (frequency division multiplexed signal) equivalent to the analog signal input to the quadrature modulator 9 of the transmitting apparatus is demodulated and extracted from the carrier extraction and quadrature demodulator section of the quadrature demodulator 24. , A low-pass filter (LPF) 28
, A signal of a required frequency band transmitted as OFDM signal information is passed, supplied to an A / D converter 29, and converted into a digital signal.

【0041】A/D変換器29の入力信号に対するサン
プリングのタイミングは同期信号発生回路27によりパ
イロット信号より生成された、ナイキスト周波数の2倍
の周波数のサンプル同期信号に基づいて発生される。す
なわち、パイロット信号はサンプルクロック周波数に対
して所定の整数比に設定されており、周波数比に応じた
周波数逓倍を行ってサンプルクロックのタイミングを得
る。
The sampling timing for the input signal of the A / D converter 29 is generated based on a sample synchronization signal having a frequency twice the Nyquist frequency, which is generated from the pilot signal by the synchronization signal generation circuit 27. That is, the pilot signal is set at a predetermined integer ratio with respect to the sample clock frequency, and the frequency of the pilot signal is multiplied according to the frequency ratio to obtain the timing of the sample clock.

【0042】同期信号発生回路27は、復調アナログ信
号が入力され、ガードインターバル期間を含む各シンボ
ル期間で連続信号として伝送されるパイロット信号に位
相同期するPLL回路によりサンプル同期信号を発生す
るサンプル同期信号発生回路部と、サンプル同期信号発
生回路部の一部より取り出した信号によりパイロット信
号の位相状態を調べ、シンボル期間を検出してシンボル
同期信号を発生するシンボル同期信号発生回路部と、こ
れらサンプル同期信号及びシンボル同期信号よりガード
インターバル期間除去のための区間信号などのシステム
クロックを発生するシステムクロック発生回路部とより
なる。
The synchronizing signal generation circuit 27 receives the demodulated analog signal and generates a sample synchronizing signal by a PLL circuit which performs phase synchronization with a pilot signal transmitted as a continuous signal in each symbol period including a guard interval period. A generating circuit section, a symbol synchronization signal generating circuit section for examining a phase state of a pilot signal based on a signal extracted from a part of the sample synchronization signal generation circuit section, detecting a symbol period, and generating a symbol synchronization signal; A system clock generating circuit for generating a system clock such as a section signal for removing a guard interval period from the signal and the symbol synchronization signal.

【0043】A/D変換器29より取り出されたディジ
タル信号は、ガードインターバル期間処理回路30に供
給され、ここで同期信号発生回路27よりのシステムク
ロックに基づいて、マルチパス歪の影響が少ない方のシ
ンボル期間信号を得てDFT,差動QPSK復号回路3
1に供給される。
The digital signal extracted from the A / D converter 29 is supplied to a guard interval period processing circuit 30, where the digital signal is less affected by multipath distortion based on the system clock from the synchronization signal generation circuit 27. DFT, differential QPSK decoding circuit 3
1 is supplied.

【0044】DFT,差動QPSK復号回路31は、図
1に示したブロック図と同じ構成であり、前述した方法
でDFT演算及び差動復号されて元のディジタル情報が
復号される。この復号ディジタル情報信号は、図5の出
力回路32により並直列変換などの出力処理が行われて
出力端子33へ出力される。
The DFT / differential QPSK decoding circuit 31 has the same configuration as the block diagram shown in FIG. 1, and the original digital information is decoded by the DFT operation and the differential decoding by the method described above. The decoded digital information signal is subjected to output processing such as parallel-serial conversion by the output circuit 32 of FIG.

【0045】かかる直交周波数分割多重信号の受信装置
において、DFT,差動QPSK復号回路31における
検出回路313の動作は、前記した各実施の形態のいず
れをも適用可能である。これにより、特に高速で移動す
る受信装置に適用した場合にも、従来に比べてより正確
な復号ができる。
In such an orthogonal frequency division multiplexed signal receiving apparatus, the operation of the detection circuit 313 in the DFT / differential QPSK decoding circuit 31 can be applied to any of the above embodiments. As a result, even when the present invention is applied to a receiving device that moves at a high speed, more accurate decoding can be performed as compared with the related art.

【0046】なお、本発明は上記の実施の形態の差動4
値PSK変調に限定されるものではなく、差動多値PS
K変調には、差動8値PSK変調やその他π/4シフト
QPSK変調などを含むものであり、更には多値QAM
変調においても適用可能である。
The present invention relates to the differential 4 of the above embodiment.
The present invention is not limited to the value PSK modulation.
The K modulation includes differential 8-level PSK modulation and other π / 4 shift QPSK modulation, and furthermore, multi-level QAM.
It is also applicable in modulation.

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば、
位相変動量の連続性に着目し、位相変動量の変化率を絶
対値積算して、より小さな絶対値積算値を示した復号値
をもって受信情報とすることで、より正確な復号ができ
るため、高速移動時においても誤りのない差動多値PS
K変調波の復号ができる。また、本発明によれば、各搬
送波が差動多値PSK変調されているOFDM信号の伝
送装置に適用した場合、上記の効果により受信装置の高
速移動時の復調性能の向上を図ることができる。
As described above, according to the present invention,
Focusing on the continuity of the amount of phase variation, the absolute value of the rate of change of the amount of phase variation is integrated into absolute values, and a decoded value indicating a smaller absolute value integrated value is used as reception information, so that more accurate decoding can be performed. Error-free differential multi-value PS even at high speeds
It is possible to decode K modulated waves. Further, according to the present invention, when applied to an OFDM signal transmission apparatus in which each carrier is subjected to differential multi-level PSK modulation, it is possible to improve the demodulation performance when the receiving apparatus moves at high speed due to the above effects. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の受信信号補正方式及び直交周波数分割
多重信号伝送装置の要部の復号回路の一実施の形態のブ
ロック図である。
FIG. 1 is a block diagram of an embodiment of a decoding circuit of a main part of a reception signal correction system and an orthogonal frequency division multiplex signal transmission apparatus of the present invention.

【図2】位相変動の例を説明する図である。FIG. 2 is a diagram illustrating an example of phase fluctuation.

【図3】図1の実施の形態における復号値修正動作を説
明する図である。
FIG. 3 is a diagram for explaining a decoded value correction operation in the embodiment of FIG. 1;

【図4】本発明になる直交周波数分割多重信号伝送装置
の送信側装置の一実施の形態のブロック図である。
FIG. 4 is a block diagram of an embodiment of a transmitting apparatus of the orthogonal frequency division multiplexing signal transmission apparatus according to the present invention.

【図5】本発明になる直交周波数分割多重信号伝送装置
の受信側装置の一実施の形態のブロック図である。
FIG. 5 is a block diagram of an embodiment of a receiving side device of the orthogonal frequency division multiplexing signal transmission device according to the present invention.

【図6】復号信号の信号点配置の一例を示す図である。FIG. 6 is a diagram illustrating an example of a signal point arrangement of a decoded signal.

【図7】4値PSK変調方式の信号点配置図である。FIG. 7 is a signal point arrangement diagram of a 4-level PSK modulation method.

【符号の説明】[Explanation of symbols]

1 ディジタルデータ入力端子 2 差動符号化回路を含む入力回路 3 クロック分周器 4 演算部 5 シンボル番号係数回路 6 参照信号挿入回路 7 出力バッファ 9 直交変調器 10、25 中間周波数発振器 13 送信部 21 受信部 24 キャリア抽出及び直交復調器 27 同期信号発生回路 30 ガードインターバル期間処理回路 31 DFT,差動QPSK復号回路 311 DFT演算部 312 差動復号回路 313 検出回路 314 復号値修正回路 REFERENCE SIGNS LIST 1 digital data input terminal 2 input circuit including differential encoding circuit 3 clock divider 4 arithmetic unit 5 symbol number coefficient circuit 6 reference signal insertion circuit 7 output buffer 9 quadrature modulator 10, 25 intermediate frequency oscillator 13 transmission unit 21 Receiving unit 24 Carrier extraction and quadrature demodulator 27 Synchronous signal generation circuit 30 Guard interval period processing circuit 31 DFT, differential QPSK decoding circuit 311 DFT calculation unit 312 Differential decoding circuit 313 Detection circuit 314 Decoding value correction circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 受信した差動多値PSK変調波に対して
離散的フーリエ変換して複素データを復調する演算部
と、 前記演算部の複素データを差動復号する差動復号回路
と、 前記差動復号回路で復号された復号値と信号点のどれか
一つの判定結果とを受け、それらから受信信号の位相変
動量を検出し、その位相変動量の複数シンボル間の変化
率を演算して求め、その変化率が所定値より小さいとき
はその復号値をそのまま用い、前記所定値以上のとき
は、前記判定結果に隣接するより変化率の少ない信号点
を判定結果として選んで復号値の修正指示信号を出力す
ると共に、前記検出位相変動量を前記隣接の信号点を選
んだときの位相変動量に修正して保持する検出回路と、 前記差動復号回路の出力復号値を受け、前記検出回路か
ら前記修正指示信号が入力されたときは復号値を修正し
て出力し、前記修正指示信号が入力されないときはその
まま入力復号値を出力する復号値修正回路とを有するこ
とを特徴とする受信信号補正方式。
An arithmetic unit for demodulating complex data by discrete Fourier transforming the received differential multilevel PSK modulated wave; a differential decoding circuit for differentially decoding the complex data of the arithmetic unit; Receives the decoded value decoded by the differential decoding circuit and the decision result of any one of the signal points, detects the phase variation of the received signal from them, and calculates the rate of change of the phase variation between a plurality of symbols. When the change rate is smaller than a predetermined value, the decoded value is used as it is. When the change rate is equal to or larger than the predetermined value, a signal point adjacent to the judgment result with a smaller change rate is selected as the judgment result and the decoded value is selected. A detection circuit that outputs a correction instruction signal, corrects and holds the detected phase fluctuation amount to a phase fluctuation amount when the adjacent signal point is selected, and receives an output decoded value of the differential decoding circuit, The correction instruction from the detection circuit A decoded value correction circuit for correcting a decoded value when a signal is input and outputting the decoded value, and outputting an input decoded value as it is when the correction instruction signal is not input.
【請求項2】 前記検出回路は、前記差動復号回路で復
号された復号値と信号点のどれか一つの第1の判定結果
とを受け、それらから第1の位相変動量を検出保持する
と共に、その位相変動量の絶対値が所定値以上のときは
更に前記第1の判定結果に隣接する信号点の第2の判定
結果と前記復号値を基に第2の位相変動量を演算して保
持することを、少なくとも3シンボル期間について行
い、その期間における前記第1の位相変動量の変化率と
前記第2の位相変動量の変化率とのそれぞれを絶対値積
算して、より小さな絶対値積算値を示した復号値をもっ
て受信情報とするように前記復号値修正回路に指示信号
を出力することを特徴とする請求項1記載の受信信号補
正方式。
2. The detection circuit receives a decoded value decoded by the differential decoding circuit and a first determination result of any one of signal points, and detects and holds a first phase fluctuation amount from them. At the same time, when the absolute value of the phase variation is equal to or greater than a predetermined value, a second phase variation is further calculated based on the second determination result of the signal point adjacent to the first determination result and the decoded value. Is performed for at least three symbol periods, and the rate of change of the first phase variation and the rate of change of the second phase variation during that period are integrated as absolute values to obtain a smaller absolute value. 2. The received signal correction method according to claim 1, wherein an instruction signal is output to the decoded value correction circuit so that the decoded value indicating the value integrated value is used as reception information.
【請求項3】 周波数分割される複数の搬送波のそれぞ
れが差動多値PSK変調されている直交周波数分割多重
信号を生成出力する送信装置と、 前記直交周波数分割多重信号を受信し、差動多値PSK
変調波を得る受信手段と、 前記受信手段からの前記差動多値PSK変調波に対して
離散的フーリエ変換して複素データを復調する演算部
と、 前記演算部の複素データを差動復号する差動復号回路
と、 前記差動復号回路で復号された復号値と信号点のどれか
一つの判定結果とを受け、それらを基に受信信号の位相
変動量を検出し、その位相変動の複数シンボル間の変化
率を演算して求め、その変化率が所定値より小さいとき
はその復号値をそのまま用い、前記所定値以上のとき
は、前記判定結果に隣接するより変化率の少ない信号点
を判定結果として選んで復号値の修正指示信号を出力す
ると共に、前記検出位相変動量を前記隣接の信号点を選
んだときの位相変動量に修正して保持する検出回路と、 前記差動復号回路の出力復号値を受け、前記検出回路か
ら前記修正指示信号が入力されたときは復号値を修正し
て出力し、前記修正指示信号が入力されないときはその
まま入力復号値を出力する復号値修正回路とを有するこ
とを特徴とする直交周波数分割多重信号伝送装置。
3. A transmitting apparatus for generating and outputting an orthogonal frequency division multiplex signal in which each of a plurality of frequency-divided carrier waves is subjected to differential multi-level PSK modulation; Value PSK
Receiving means for obtaining a modulated wave; an arithmetic unit for demodulating complex data by performing discrete Fourier transform on the differential multi-level PSK modulated wave from the receiving means; and differentially decoding the complex data of the arithmetic unit A differential decoding circuit, receives a decoded value decoded by the differential decoding circuit and one of the signal point determination results, detects a phase variation amount of the received signal based on the received value, and detects a plurality of the phase variations. When the change rate between symbols is calculated and calculated, the decoded value is used as it is when the change rate is smaller than a predetermined value, and when the change rate is equal to or larger than the predetermined value, a signal point having a smaller change rate than the signal point adjacent to the determination result is determined. A detection circuit that outputs a correction instruction signal of a decoded value selected as a determination result, and corrects and holds the detected phase fluctuation amount to a phase fluctuation amount when the adjacent signal point is selected; and the differential decoding circuit. Receiving the output decrypted value of And a decoded value correction circuit that corrects and outputs a decoded value when the correction instruction signal is input from the detection circuit, and outputs an input decoded value as it is when the correction instruction signal is not input. Orthogonal frequency division multiplexing signal transmission apparatus.
【請求項4】 前記検出回路は、前記差動復号回路で復
号された復号値と信号点のどれか一つの第1の判定結果
とを受け、それらから第1の位相変動量を検出保持する
と共に、その位相変動量の絶対値が所定値以上のときは
更に前記第1の判定結果に隣接する信号点である第2の
判定結果と前記復号値を基に第2の位相変動量を演算し
て保持することを、少なくとも3シンボル期間について
行い、その期間における前記第1の位相変動量の変化率
と前記第2の位相変動量の変化率とのそれぞれを絶対値
積算して、より小さな絶対値積算値を示した復号値をも
って受信情報とするように前記復号値修正回路に指示信
号を出力することを特徴とする請求項3記載の直交周波
数分割多重信号伝送装置。
4. The detection circuit receives a decoded value decoded by the differential decoding circuit and a first determination result of any one of signal points, and detects and holds a first phase fluctuation amount therefrom. When the absolute value of the phase variation is equal to or more than a predetermined value, a second phase variation is further calculated based on a second determination result, which is a signal point adjacent to the first determination result, and the decoded value. Is performed for at least three symbol periods, and the rate of change of the first phase variation and the rate of change of the second phase variation during that period are integrated in absolute values to obtain a smaller value. 4. The orthogonal frequency division multiplexed signal transmission apparatus according to claim 3, wherein an instruction signal is output to the decoded value correcting circuit so that the decoded value indicating the absolute value integrated value becomes reception information.
【請求項5】 前記検出回路は、前記受信した直交周波
数分割多重信号の隣接する複数の搬送波の復号値に基づ
き検出した位相変動量を平均化し、その平均値を前記複
数の搬送波の復号値に対応する位相変動量とする手段を
更に有することを特徴とする請求項3又は4記載の直交
周波数分割多重信号伝送装置。
5. The detection circuit according to claim 1, wherein the detection circuit averages a detected phase variation amount based on decoded values of a plurality of adjacent carriers of the received orthogonal frequency division multiplexed signal, and converts the average value into decoded values of the plurality of carriers. 5. The orthogonal frequency division multiplexed signal transmission device according to claim 3, further comprising means for setting a corresponding phase fluctuation amount.
JP29917397A 1997-10-30 1997-10-30 Received signal correction system and orthogonal frequency division multiplexed signal transmission device Expired - Lifetime JP3541653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29917397A JP3541653B2 (en) 1997-10-30 1997-10-30 Received signal correction system and orthogonal frequency division multiplexed signal transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29917397A JP3541653B2 (en) 1997-10-30 1997-10-30 Received signal correction system and orthogonal frequency division multiplexed signal transmission device

Publications (2)

Publication Number Publication Date
JPH11136207A true JPH11136207A (en) 1999-05-21
JP3541653B2 JP3541653B2 (en) 2004-07-14

Family

ID=17869088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29917397A Expired - Lifetime JP3541653B2 (en) 1997-10-30 1997-10-30 Received signal correction system and orthogonal frequency division multiplexed signal transmission device

Country Status (1)

Country Link
JP (1) JP3541653B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041049A (en) * 2009-08-12 2011-02-24 Fujitsu Ltd Radio device, and signal processing method
KR101284792B1 (en) * 2009-12-08 2013-07-10 한국전자통신연구원 Apparatus and method of demapping in modified dual carrier modulation system
KR101289889B1 (en) * 2009-11-23 2013-07-24 한국전자통신연구원 Transmiiting device, receiving device, transmitting method and receiving method for wireless communication system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041049A (en) * 2009-08-12 2011-02-24 Fujitsu Ltd Radio device, and signal processing method
KR101289889B1 (en) * 2009-11-23 2013-07-24 한국전자통신연구원 Transmiiting device, receiving device, transmitting method and receiving method for wireless communication system
US8514977B2 (en) 2009-11-23 2013-08-20 Electronics And Telecommunications Research Institute Transmission apparatus, reception apparatus, transmission method, and reception method of wireless communication system
KR101284792B1 (en) * 2009-12-08 2013-07-10 한국전자통신연구원 Apparatus and method of demapping in modified dual carrier modulation system
US8649448B2 (en) 2009-12-08 2014-02-11 Electronics And Telecommunications Research Institute Demapping device and method for modified dual carrier modulation system

Also Published As

Publication number Publication date
JP3541653B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
EP1617613B1 (en) OFDM communication devices using pseudo random modulated reference symbols
KR100221336B1 (en) Frame harmonic apparatus and method of multi-receiver system
KR100263372B1 (en) Coarse frequency acquistion method and thereof appratus for orthogonal frequency division multiplexing systems
JP4043335B2 (en) Receiver
EP0772330A2 (en) Receiver and method for receiving OFDM signals
JP2002511711A (en) Method and apparatus for fine frequency synchronization in a multi-carrier demodulation system
JP2001237798A (en) Receiver for ofdm
EP1072136B1 (en) Echo phase offset correction in a multicarrier demodulation system
KR100341200B1 (en) Quadrature frequency division multiplexing demodulator
JP3541653B2 (en) Received signal correction system and orthogonal frequency division multiplexed signal transmission device
JP3700290B2 (en) Orthogonal frequency division multiplexing signal transmission method and receiving apparatus used therefor
JPH11355240A (en) Ofdm receiver
JP3973332B2 (en) Digital modulation / demodulation synchronization system
US8300718B2 (en) Demodulating circuit, demodulating method, and receiving system
JP4362955B2 (en) Demodulator and demodulation method
JP3594585B2 (en) Synchronous demodulation circuit for digital broadcast receiver
JP3579982B2 (en) Frequency division multiplex signal transmission method, transmission apparatus and reception apparatus
JP3582307B2 (en) IDFT arithmetic unit
JP3865893B2 (en) Demodulator circuit
JP4108939B2 (en) Orthogonal frequency division multiplexed signal receiver
JP2004140739A (en) Ofdm receiver
KR100744490B1 (en) Apparatus for tracing synchronous of Orthogonal Frequency Division Multiplexing receiver
JP2000151545A (en) Demodulator, demodulation method and provision medium
JPH08274744A (en) System and method for modulation and demodulation by quadrature frequency division multiplexing system
JP2000324080A (en) Transmitter and receiver for radio communication system and method for correcting reception frequency shift

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

EXPY Cancellation because of completion of term