JPH11135741A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH11135741A
JPH11135741A JP9294120A JP29412097A JPH11135741A JP H11135741 A JPH11135741 A JP H11135741A JP 9294120 A JP9294120 A JP 9294120A JP 29412097 A JP29412097 A JP 29412097A JP H11135741 A JPH11135741 A JP H11135741A
Authority
JP
Japan
Prior art keywords
memory cell
film
peripheral circuit
semiconductor device
cell portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9294120A
Other languages
Japanese (ja)
Inventor
Yutaka Yamada
裕 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9294120A priority Critical patent/JPH11135741A/en
Publication of JPH11135741A publication Critical patent/JPH11135741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformize the thickness of LOCOS films which are respectively formed at a memory cell part and a peripheral circuit part. SOLUTION: At a semiconductor device provided with a region, where the intervals between LOCOS films 6 adjacent to each other are small such as a memory cell part A and a region where the intervals between the films 6 adjacent to each other are large such as a peripheral circuit part B, the thickness of the LOCOS films respectively formed at a memory cell part A' and the part B re nearly equal through thermal oxidation by a LOCOS method in the state of implanting N-type impurity ions, such as arsenic ions or phosphorous ions, into only the LOCOS film forming region of the part A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置とその製
造方法に関し、さらに詳しくいえば、メモリセル部と周
辺回路部に形成される素子分離膜の膜厚の均一化を図る
ことで、段差の低減を図る技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same. More specifically, the present invention relates to a semiconductor device and a method of manufacturing the same. The present invention relates to a technology for reducing power consumption.

【0002】[0002]

【従来の技術】従来の半導体装置の製造方法について図
面を参照しながら説明する。先ず、図8に示すように一
導電型、例えばP型の半導体基板51上におよそ500
Åの膜厚のパッド酸化膜52及びおよそ700Åの膜厚
のポリシリコン膜53を形成した後、該ポリシリコン膜
53上に後述する素子分離膜形成領域上に開口部を有す
るおよそ1500Åの膜厚のシリコン窒化膜54を形成
する。
2. Description of the Related Art A conventional method for manufacturing a semiconductor device will be described with reference to the drawings. First, as shown in FIG. 8, about 500
After a pad oxide film 52 having a thickness of Å and a polysilicon film 53 having a thickness of about 700 形成 are formed, a film thickness of about 1500 有 す る having an opening on an element isolation film formation region described later on the polysilicon film 53 is formed. Is formed.

【0003】続いて、図9に示すように前記シリコン窒
化膜54をマスクにしてLOCOS(local oxidation
of silicon)法により素子分離膜としてのLOCOS酸
化膜55を形成する。このときのLOCOS酸化の条件
は、900℃で、400分、パイロ酸化することでLO
COS酸化膜55を形成している。次に、図10に示す
ように前記シリコン窒化膜54、ポリシリコン膜53及
びパッド酸化膜52を除去した後、図11に示すように
前記基板上を熱酸化してLOCOS酸化膜55以外のチ
ャネル領域上にゲート酸化膜56を形成した後、LOC
OS酸化膜55を貫通する注入条件で一導電型、P型不
純物として、例えばボロンイオン(11B+ )を注入し
て、LOCOS酸化膜55下及びチャネル領域の下方深
くに注入する。これにより、LOCOS酸化膜55下に
注入されたイオンは、反転防止用のチャネルストッパ層
57を形成する。
Subsequently, as shown in FIG. 9, LOCOS (local oxidation) is performed using the silicon nitride film 54 as a mask.
An LOCOS oxide film 55 as an element isolation film is formed by the (silicon) method. The condition of LOCOS oxidation at this time is as follows.
A COS oxide film 55 is formed. Next, as shown in FIG. 10, after removing the silicon nitride film 54, the polysilicon film 53, and the pad oxide film 52, the substrate is thermally oxidized as shown in FIG. After forming the gate oxide film 56 on the region, the LOC
For example, boron ions (11B +) are implanted as one conductivity type and P-type impurities under the implantation conditions penetrating the OS oxide film 55, and are implanted below the LOCOS oxide film 55 and deep below the channel region. Thus, the ions implanted below the LOCOS oxide film 55 form a channel stopper layer 57 for preventing inversion.

【0004】続いて、図12に示すようにメモリセル部
及び周辺回路部の各チャネル領域上にMOSトランジス
タを形成するため、ポリシリコン膜を形成した後、該ポ
リシリコン膜をパターニングしてゲート電極59を形成
した後、該ゲート電極59の端部に隣接するように逆導
電型、例えば、N型不純物としてリンイオン(31P+)
あるいはヒ素イオン(73As+ )を基板表層に注入し
て、ソース・ドレイン拡散層60,61を形成する。
Subsequently, as shown in FIG. 12, a polysilicon film is formed in order to form a MOS transistor on each channel region of the memory cell portion and the peripheral circuit portion, and then the polysilicon film is patterned to form a gate electrode. After the formation of the gate electrode 59, an opposite conductivity type, for example, phosphorus ion (31P +) as an N-type impurity is provided adjacent to the end of the gate electrode 59.
Alternatively, arsenic ions (73 As @ +) are implanted into the surface of the substrate to form source / drain diffusion layers 60 and 61.

【0005】その後、不純物イオンを活性化するための
アニール処理を行い、更に、実際のLSI製造において
は、この後の絶縁膜の形成、コンタクトホールの形成、
電極配線の形成等の工程が継続する。尚、特に説明は省
略したが、各Nチャネル型MOSトランジスタの各しき
い値電圧を調整するため、各チャネル領域下にボロンイ
オン(11B+ )等を注入して、各トランジスタのしきい
値電圧を調整することは、周知の通りである。
After that, an annealing process for activating the impurity ions is performed. Further, in actual LSI manufacturing, an insulating film, a contact hole,
Steps such as formation of the electrode wiring are continued. Although not particularly described, in order to adjust each threshold voltage of each N-channel MOS transistor, boron ions (11B +) or the like are implanted under each channel region to adjust the threshold voltage of each transistor. Is well known.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
たようなメモリセル部と周辺回路部とを有する半導体装
置においては、回路パターン設計上の制約等から図8に
示すようにLOCOS酸化膜55形成用のスペースFが
異なり、メモリセル部AのスペースF1の方が周辺回路
部BのスペースF2より狭くなっている。これは、メモ
リセル部Aでは同じ構造(例えば、N型トランジスタ構
造)のものをできるだけ多数配置することで集積度をあ
げるという要望があり、また周辺回路部BではP領域、
N領域を分離するための分離領域を広く取る必要がある
という制約があるためである。
However, in a semiconductor device having a memory cell section and a peripheral circuit section as described above, the LOCOS oxide film 55 is formed as shown in FIG. Are different from each other, and the space F1 of the memory cell portion A is smaller than the space F2 of the peripheral circuit portion B. This is because there is a demand to increase the degree of integration by arranging as many as possible of the same structure (for example, an N-type transistor structure) in the memory cell portion A,
This is because there is a restriction that it is necessary to widen the separation region for separating the N region.

【0007】このようにメモリセル部Aのような隣り合
う素子分離膜の間が密な領域と周辺回路部Bのような隣
り合う素子分離膜の間が粗な領域を有する半導体装置に
おいて、スペースFが異なる場合には、LOCOS酸化
膜55の成長具合も異なり、狭い側のメモリセル部Aに
形成されるLOCOS酸化膜55の膜厚(図10に示す
T1(例えば、3200Å))が周辺回路部Bに形成さ
れるLOCOS酸化膜55の膜厚(図10に示すT2
(例えば、3400Å))より薄くなってしまう。この
LOCOS酸化膜55の膜厚が薄いと、LOCOS酸化
膜55下でのリークが発生し易くなるという問題があ
る。
In a semiconductor device having a dense region between adjacent element isolation films such as the memory cell portion A and a rough region between adjacent element isolation films such as the peripheral circuit portion B as described above, When F is different, the degree of growth of the LOCOS oxide film 55 is also different, and the thickness of the LOCOS oxide film 55 formed in the memory cell portion A on the narrow side (T1 (for example, 3200 °) shown in FIG. 10) is equal to that of the peripheral circuit. The thickness of the LOCOS oxide film 55 formed in the portion B (T2 shown in FIG. 10)
(For example, 3400 °)). If the thickness of the LOCOS oxide film 55 is small, there is a problem that a leak under the LOCOS oxide film 55 is likely to occur.

【0008】そこで、従来では、メモリセル部Aに形成
するLOCOS酸化膜55の膜厚T1を基準に酸化時
間、酸化温度を設定していた。このため、周辺回路部B
に形成するLOCOS酸化膜55の膜厚T2は、必要以
上に厚くなってしまい、平坦化の妨げとなっていた。従
って、本発明はLOCOS酸化膜の膜厚の均一化を図る
ことで、平坦化を可能とすることを目的とする。
Therefore, conventionally, the oxidation time and the oxidation temperature are set based on the thickness T1 of the LOCOS oxide film 55 formed in the memory cell portion A. Therefore, the peripheral circuit section B
The thickness T2 of the LOCOS oxide film 55 to be formed becomes too thick, which hinders flattening. Therefore, an object of the present invention is to make the thickness of the LOCOS oxide film uniform, thereby enabling flattening.

【0009】[0009]

【課題を解決するための手段】本発明は上記従来の欠点
に鑑み成されたもので、メモリセル部のような隣り合う
素子分離膜の間が密な領域と周辺回路部のような隣り合
う素子分離膜の間が粗な領域を有する半導体装置におい
て、前記メモリセル部の素子分離膜形成領域にのみヒ素
イオンあるいはリンイオン等のN型不純物イオンを注入
した状態で、LOCOS法により熱酸化することで、メ
モリセル部及び周辺回路部にそれぞれ形成する素子分離
膜の膜厚がほぼ同等となるように形成されたことを特徴
とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and has a structure in which a region between adjacent element isolation films such as a memory cell portion is dense and an adjacent region such as a peripheral circuit portion is adjacent. In a semiconductor device having a rough region between element isolation films, thermal oxidation is performed by a LOCOS method in a state where N-type impurity ions such as arsenic ions or phosphorus ions are implanted only into an element isolation film formation region of the memory cell portion. In this case, the element isolation films formed in the memory cell portion and the peripheral circuit portion are formed to have substantially the same thickness.

【0010】また、本発明はメモリセル部のような隣り
合う素子分離膜の間が密な領域と周辺回路部のような隣
り合う素子分離膜の間が粗な領域を有する半導体装置の
製造方法において、半導体基板上のパッド酸化膜上に素
子分離膜形成領域上が開口されたシリコン窒化膜を形成
した後、前記周辺回路部を被覆するようにホトレジスト
膜を形成した状態で、前記メモリセル部に前記シリコン
窒化膜をマスクにして基板表層とパッド酸化膜との界面
にヒ素イオンあるいはリンイオン等のN型不純物イオン
を注入する。次に、前記ホトレジスト膜を除去した後、
全面をLOCOS法により熱酸化して素子分離膜を形成
することで、メモリセル部に形成する素子分離膜を増速
酸化させて前記メモリセル部及び周辺回路部にそれぞれ
形成する素子分離膜の膜厚がほぼ同等となるように形成
したことを特徴とするものである。
The present invention also relates to a method of manufacturing a semiconductor device having a dense region between adjacent device isolation films such as a memory cell portion and a rough region between adjacent device isolation films such as a peripheral circuit portion. Forming a silicon nitride film having an opening on a device isolation film forming region on a pad oxide film on a semiconductor substrate, and forming a photoresist film so as to cover the peripheral circuit portion; Then, N-type impurity ions such as arsenic ions or phosphorus ions are implanted into the interface between the substrate surface layer and the pad oxide film using the silicon nitride film as a mask. Next, after removing the photoresist film,
The entire surface is thermally oxidized by the LOCOS method to form an element isolation film, whereby the element isolation film formed in the memory cell portion is accelerated and oxidized to form an element isolation film formed in the memory cell portion and the peripheral circuit portion, respectively. It is characterized in that it is formed so as to have substantially the same thickness.

【0011】[0011]

【発明の実施の形態】以下で、本発明の一実施形態に係
る半導体装置とその製造方法について図面を参照しなが
ら説明する。先ず、図1に示すように一導電型、例えば
P型の半導体基板1上におよそ500Åの膜厚のパッド
酸化膜2及びおよそ700Åの膜厚のポリシリコン膜3
を形成した後、該ポリシリコン膜3上に後述する素子分
離膜形成領域上に開口部を有するおよそ1500Åの膜
厚のシリコン窒化膜4を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a semiconductor device according to an embodiment of the present invention and a method for manufacturing the same will be described with reference to the drawings. First, as shown in FIG. 1, a pad oxide film 2 having a thickness of about 500.degree. And a polysilicon film 3 having a thickness of about 700.degree.
Is formed on the polysilicon film 3, a silicon nitride film 4 having an opening of about 1500.degree.

【0012】続いて、図2に示すように周辺回路部B上
に被覆するようにホトレジスト膜5を形成した後、前記
シリコン窒化膜4をマスクにしてメモリセル部Aに逆導
電型、例えばN型不純物としてヒ素イオン(73As+ )
を例えば、加速電圧110KeV、注入量5×1015/
cm2 の条件で注入することで、メモリセル部のパッド
酸化膜2と基板1との界面に注入する。即ち、基板表面
の不純物濃度が一番高くなるように注入する。尚、ヒ素
イオン(73As+ )の代わりにリンイオン(31P+ )を
注入しても良い。
Subsequently, as shown in FIG. 2, after a photoresist film 5 is formed so as to cover the peripheral circuit portion B, a reverse conductivity type, for example, N Arsenic ion (73As +) as a type impurity
For example, at an acceleration voltage of 110 KeV and an injection amount of 5 × 10 15 /
By implanting under the condition of cm 2, it is implanted into the interface between the pad oxide film 2 and the substrate 1 in the memory cell portion. That is, the implantation is performed so that the impurity concentration on the substrate surface becomes highest. Incidentally, phosphorus ions (31P +) may be implanted instead of arsenic ions (73As +).

【0013】次に、LOCOS(local oxidation of s
ilicon)法により素子分離膜としてのLOCOS酸化膜
6を形成する。このときのLOCOS酸化の条件は、9
00℃で、380分、パイロ酸化することで、LOCO
S酸化膜6を形成している。そして、前述したメモリセ
ル部Aのパッド酸化膜2と基板1との界面に注入させた
ヒ素イオン(73As+ )によりメモリセル部Aに形成す
るLOCOS酸化膜6の成長が増速される。尚、図7は
ヒ素イオン(73As+ )を注入した際のLOCOS酸化
膜の増速度と温度の関係を示す図で、図示するようにヒ
素イオン(73As+ )を注入量5×1015/cm2 の条
件で注入した場合に、900℃でパイロ酸化すること
で、6%の増速酸化が行われる。従って、メモリセル部
AのLOCOS酸化膜6を3200Å必要とする場合
に、同様に周辺回路部BのLOCOS酸化膜6を320
0Åとした場合、従来では3000Åであるが、本実施
の形態では3000Åの6%増速が図れ、結果として3
180Åが得られ、メモリセル部AのLOCOS酸化膜
6の膜厚と周辺回路部BのLOCOS酸化膜6の膜厚と
をほぼ同等の膜厚に形成できる。
Next, LOCOS (local oxidation of s)
An LOCOS oxide film 6 as an element isolation film is formed by the silicon (ilicon) method. The condition of LOCOS oxidation at this time is 9
Pyro-oxidation at 00 ° C for 380 minutes gives LOCO
An S oxide film 6 is formed. The growth of the LOCOS oxide film 6 formed in the memory cell portion A is accelerated by the arsenic ions (73 As +) implanted at the interface between the pad oxide film 2 and the substrate 1 in the memory cell portion A. FIG. 7 is a graph showing the relationship between the acceleration rate of the LOCOS oxide film and the temperature when arsenic ions (73 As +) are implanted. As shown in FIG. When the injection is performed under the conditions, the pyro-oxidation is performed at 900 ° C., thereby performing the 6% accelerated oxidation. Therefore, when the LOCOS oxide film 6 of the memory cell portion A needs 3200 Å, the LOCOS oxide film 6 of the
When the angle is set to 0 °, the angle is conventionally 3000 °, but in the present embodiment, the speed can be increased by 6% of 3000 °, and as a result, 3 °
180 ° is obtained, and the film thickness of the LOCOS oxide film 6 in the memory cell portion A and the film thickness of the LOCOS oxide film 6 in the peripheral circuit portion B can be made substantially equal.

【0014】このようにメモリセル部Aに形成するLO
COS酸化膜6を増速酸化することで、図4に示すよう
にメモリセル部Aに形成するLOCOS酸化膜6の膜厚
と周辺回路部Bに形成するLOCOS酸化膜6の膜厚を
ほぼ同等(T1(例えば、3200Å))に揃えること
ができ、従来では周辺回路部に形成するLOCOS酸化
膜の膜厚とメモリセル部に形成するLOCOS酸化膜の
膜厚とが異なることで発生していた段差の低減を図るこ
とができる。尚、ボロンイオン(11B+ )、二フッ化ボ
ロンイオン(47BF+ )等のP型不純物イオンを注入し
ても良いが、N型不純物イオンの方がより増速効果が得
られる。これは、ヒ素イオン(73As+)やリンイオン
(31P+ )等のN型不純物イオンは、基板(Si)とパ
ッド酸化膜(SiO2 )との界面に注入されて、後の熱
酸化時にSi表面に多くの不純物が集まり、酸化される
Si表面は常に不純物リッチな状態となって増速が起こ
り易いためである。そして、ボロンイオン(11B+ )や
二フッ化ボロンイオン(47BF+ )等のP型不純物イオ
ンは、SiO2 膜中に拡散し易く、Si表面が不純物が
足らない状態となるためである。
The LO formed in the memory cell portion A as described above
By increasing the speed of oxidation of the COS oxide film 6, the thickness of the LOCOS oxide film 6 formed in the memory cell portion A and the thickness of the LOCOS oxide film 6 formed in the peripheral circuit portion B are substantially equal as shown in FIG. (T1 (for example, 3200 °)), which has conventionally been caused by the difference between the thickness of the LOCOS oxide film formed in the peripheral circuit portion and the thickness of the LOCOS oxide film formed in the memory cell portion. Steps can be reduced. Incidentally, P-type impurity ions such as boron ion (11B +) and boron difluoride ion (47BF +) may be implanted, but N-type impurity ions can obtain a higher speed-up effect. This is because N-type impurity ions such as arsenic ions (73As +) and phosphorus ions (31P +) are implanted into the interface between the substrate (Si) and the pad oxide film (SiO2), and are deposited on the Si surface during the subsequent thermal oxidation. This is because a large amount of impurities gather and the Si surface to be oxidized is always in an impurity-rich state, and the speed is likely to increase. This is because P-type impurity ions such as boron ions (11B +) and boron difluoride ions (47BF +) are easily diffused into the SiO2 film, and the Si surface is in a state where impurities are insufficient.

【0015】続いて、図5に示すように前記シリコン窒
化膜4、ポリシリコン膜3及びパッド酸化膜2を除去し
た後、前記基板上を熱酸化してLOCOS酸化膜6以外
のチャネル領域上にゲート酸化膜7を形成した後、LO
COS酸化膜6を貫通する注入条件で一導電型、P型不
純物として、例えばボロンイオン(11B+ )を注入し
て、LOCOS酸化膜6下及びチャネル領域の下方深く
に注入する。これにより、LOCOS酸化膜6下に注入
されたイオンは、反転防止用のチャネルストッパ層8を
形成する。
Subsequently, as shown in FIG. 5, after removing the silicon nitride film 4, the polysilicon film 3, and the pad oxide film 2, the substrate is thermally oxidized to cover the channel region other than the LOCOS oxide film 6. After forming the gate oxide film 7, the LO
For example, boron ions (11B +) are implanted as one conductivity type and P-type impurities under the implantation conditions penetrating the COS oxide film 6, and are implanted below the LOCOS oxide film 6 and below the channel region. Thus, the ions implanted below the LOCOS oxide film 6 form a channel stopper layer 8 for preventing inversion.

【0016】続いて、図6に示すようにメモリセル部A
及び周辺回路部Bの各チャネル領域上にMOSトランジ
スタを形成するため、基板上にポリシリコン膜を形成し
た後、該ポリシリコン膜をパターニングしてゲート電極
10を形成し、該ゲート電極10の端部に隣接するよう
に基板表層にN型不純物(例えば、リンイオン(11P+
)、ヒ素イオン(73As+ )等)を注入してソース・
ドレイン拡散層11,12を形成する。
Subsequently, as shown in FIG.
In order to form a MOS transistor on each channel region of the peripheral circuit section B, a polysilicon film is formed on a substrate, and then the polysilicon film is patterned to form a gate electrode 10, and an end of the gate electrode 10 is formed. N-type impurities (for example, phosphorus ions (11P +
), Arsenic ions (73As +), etc.)
The drain diffusion layers 11 and 12 are formed.

【0017】その後、不純物イオンを活性化するための
アニール処理を行い、更に、実際のLSI製造において
は、この後の絶縁膜の形成、コンタクトホールの形成、
電極配線の形成等の工程が継続する。尚、特に説明は省
略したが、各Nチャネル型MOSトランジスタの各しき
い値電圧を調整するため、各チャネル領域下にボロンイ
オン(11B+ )等を注入して、各トランジスタのしきい
値電圧を調整することは、周知の通りである。
After that, an annealing process for activating the impurity ions is performed. Further, in the actual LSI fabrication, an insulating film, a contact hole,
Steps such as formation of the electrode wiring are continued. Although not particularly described, in order to adjust each threshold voltage of each N-channel MOS transistor, boron ions (11B +) or the like are implanted under each channel region to adjust the threshold voltage of each transistor. Is well known.

【0018】以上、説明したように本発明では、メモリ
セル部Aに形成するLOCOS酸化膜6を増速酸化させ
ることで、メモリセル部Aと周辺回路部Bにそれぞれ形
成するLOCOS酸化膜6の膜厚をほぼ同等に形成する
ことができるようになり、平坦化が図れる。また、LO
COS酸化時間を従来より短縮することができ、作業時
間の短縮化が図れると共に、酸化時間が短くなること
で、バーズピーク量が少なくなり、微細化が図れる。
As described above, according to the present invention, the LOCOS oxide film 6 formed in the memory cell section A is accelerated and oxidized to increase the LOCOS oxide film 6 formed in the memory cell section A and the peripheral circuit section B. The film thickness can be made almost equal, and flattening can be achieved. Also, LO
The COS oxidation time can be shortened compared to the conventional art, so that the working time can be shortened and the oxidation time is shortened, so that the bird's peak amount is reduced and miniaturization can be achieved.

【0019】更に、本発明は、CMOS型トランジスタ
にも適用可能なものである。
Further, the present invention can be applied to a CMOS transistor.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
メモリセル部に形成するLOCOS酸化膜を増速酸化す
ることで、メモリセル部に形成するLOCOS酸化膜の
膜厚と周辺回路部に形成するLOCOS酸化膜の膜厚を
ほぼ同等に揃えることができ、従来では周辺回路部に形
成するLOCOS酸化膜の膜厚とメモリセル部に形成す
るLOCOS酸化膜の膜厚とが異なることで発生してい
た段差の低減を図ることができる。
As described above, according to the present invention,
By accelerating oxidation of the LOCOS oxide film formed in the memory cell portion, the thickness of the LOCOS oxide film formed in the memory cell portion and the thickness of the LOCOS oxide film formed in the peripheral circuit portion can be made substantially equal. In addition, it is possible to reduce the level difference which has conventionally occurred due to the difference between the thickness of the LOCOS oxide film formed in the peripheral circuit portion and the thickness of the LOCOS oxide film formed in the memory cell portion.

【0021】また、LOCOS酸化時間が従来より短縮
できるため、作業時間の短縮化が図れると共に、酸化時
間が短くなることで、バーズピーク量が少なくなり、微
細化が図れる。
Further, since the LOCOS oxidation time can be shortened as compared with the conventional case, the working time can be shortened, and by shortening the oxidation time, the amount of bird's peak can be reduced and miniaturization can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る半導体装置の製造方
法を示す第1の断面図である。
FIG. 1 is a first cross-sectional view illustrating a method for manufacturing a semiconductor device according to an embodiment of the present invention.

【図2】本発明の一実施形態に係る半導体装置の製造方
法を示す第2の断面図である。
FIG. 2 is a second cross-sectional view illustrating the method for manufacturing the semiconductor device according to one embodiment of the present invention;

【図3】本発明の一実施形態に係る半導体装置の製造方
法を示す第3の断面図である。
FIG. 3 is a third sectional view illustrating the method for manufacturing the semiconductor device according to one embodiment of the present invention;

【図4】本発明の一実施形態に係る半導体装置の製造方
法を示す第4の断面図である。
FIG. 4 is a fourth sectional view illustrating the method for manufacturing the semiconductor device according to one embodiment of the present invention;

【図5】本発明の一実施形態に係る半導体装置の製造方
法を示す第5の断面図である。
FIG. 5 is a fifth sectional view illustrating the method for manufacturing the semiconductor device according to one embodiment of the present invention;

【図6】本発明の一実施形態に係る半導体装置の製造方
法を示す第6の断面図である。
FIG. 6 is a sixth sectional view illustrating the method for manufacturing the semiconductor device according to one embodiment of the present invention;

【図7】ヒ素イオンを注入してLOCOS酸化する際の
増速度と温度との関係を示す図である。
FIG. 7 is a diagram showing the relationship between acceleration and temperature when LOCOS oxidation is performed by implanting arsenic ions.

【図8】従来の半導体装置の製造方法を示す第1の断面
図である。
FIG. 8 is a first sectional view illustrating a conventional method for manufacturing a semiconductor device.

【図9】従来の半導体装置の製造方法を示す第2の断面
図である。
FIG. 9 is a second cross-sectional view illustrating the conventional method for manufacturing a semiconductor device.

【図10】従来の半導体装置の製造方法を示す第3の断
面図である。
FIG. 10 is a third cross-sectional view showing a conventional method for manufacturing a semiconductor device.

【図11】従来の半導体装置の製造方法を示す第4の断
面図である。
FIG. 11 is a fourth sectional view showing the conventional method for manufacturing a semiconductor device.

【図12】従来の半導体装置の製造方法を示す第5の断
面図である。
FIG. 12 is a fifth sectional view illustrating the method for manufacturing the conventional semiconductor device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 メモリセル部のような隣り合う素子分離
膜の間が密な領域と周辺回路部のような隣り合う素子分
離膜の間が粗な領域を有する半導体装置において、 前記メモリセル部及び周辺回路部にそれぞれ形成する素
子分離膜の膜厚がほぼ同等であることを特徴とする半導
体装置。
1. A semiconductor device having a dense region between adjacent device isolation films such as a memory cell portion and a rough region between adjacent device isolation films such as a peripheral circuit portion, wherein: And a device isolation film formed in each of the peripheral circuit portions having substantially the same thickness.
【請求項2】 メモリセル部のような隣り合う素子分離
膜の間が密な領域と周辺回路部のような隣り合う素子分
離膜の間が粗な領域を有する半導体装置の製造方法にお
いて、 前記メモリセル部及び周辺回路部にLOCOS法により
それぞれ素子分離膜を形成する際に、メモリセル部の素
子分離膜形成領域にのみ不純物イオンを注入することで
メモリセル部に形成する素子分離膜を増速酸化させて前
記メモリセル部及び周辺回路部にそれぞれ形成する素子
分離膜の膜厚がほぼ同等となるように形成したことを特
徴とする半導体装置の製造方法。
2. A method of manufacturing a semiconductor device having a dense region between adjacent element isolation films such as a memory cell portion and a rough region between adjacent element isolation films such as a peripheral circuit portion, When element isolation films are formed in the memory cell portion and the peripheral circuit portion by the LOCOS method, impurity ions are implanted only into the element isolation film formation region of the memory cell portion to increase the number of element isolation films formed in the memory cell portion. A method for manufacturing a semiconductor device, comprising forming an element isolation film formed in each of a memory cell portion and a peripheral circuit portion by rapid oxidation so as to have substantially the same thickness.
【請求項3】 メモリセル部のような隣り合う素子分離
膜の間が密な領域と周辺回路部のような隣り合う素子分
離膜の間が粗な領域を有する半導体装置の製造方法にお
いて、 半導体基板上のパッド酸化膜上に素子分離膜形成領域上
が開口されたシリコン窒化膜を形成する工程と、 前記周辺回路部を被覆するようにホトレジスト膜を形成
した後に前記メモリセル部に前記シリコン窒化膜をマス
クにして基板表層とパッド酸化膜との界面に不純物イオ
ンを注入する工程と、 前記ホトレジスト膜を除去した後に全面をLOCOS法
により熱酸化して素子分離膜を形成することで、メモリ
セル部に形成する素子分離膜を増速酸化させて前記メモ
リセル部及び周辺回路部にそれぞれ形成する素子分離膜
の膜厚がほぼ同等となるように形成したことを特徴とす
る半導体装置の製造方法。
3. A method of manufacturing a semiconductor device having a region between adjacent element isolation films such as a memory cell portion and a rough region between adjacent element isolation films such as a peripheral circuit portion. Forming a silicon nitride film having an opening on a device isolation film formation region on a pad oxide film on a substrate; and forming the silicon nitride film on the memory cell portion after forming a photoresist film so as to cover the peripheral circuit portion. Implanting impurity ions into the interface between the substrate surface layer and the pad oxide film using the film as a mask, and forming a device isolation film by thermally oxidizing the entire surface by the LOCOS method after removing the photoresist film. A device isolation film formed in the memory cell portion and the peripheral circuit portion are formed so that the film thicknesses of the device isolation films formed in the memory cell portion and the peripheral circuit portion are substantially equal. Manufacturing method of a semiconductor device.
【請求項4】 前記不純物イオンは、リンイオンあるい
はヒ素イオン等のN型不純物であることを特徴とする請
求項2あるいは請求項3に記載した半導体装置の製造方
法。
4. The method for manufacturing a semiconductor device according to claim 2, wherein said impurity ions are N-type impurities such as phosphorus ions or arsenic ions.
JP9294120A 1997-10-27 1997-10-27 Semiconductor device and its manufacture Pending JPH11135741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9294120A JPH11135741A (en) 1997-10-27 1997-10-27 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9294120A JPH11135741A (en) 1997-10-27 1997-10-27 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH11135741A true JPH11135741A (en) 1999-05-21

Family

ID=17803559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9294120A Pending JPH11135741A (en) 1997-10-27 1997-10-27 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH11135741A (en)

Similar Documents

Publication Publication Date Title
JP2730535B2 (en) Method for manufacturing semiconductor device
JPS6115595B2 (en)
JP2917918B2 (en) Method for manufacturing semiconductor device
JPH05110003A (en) Semiconductor integrated circuit device and manufacture thereof
US6479338B2 (en) CMOS device and method of manufacturing the same
JPH06268057A (en) Manufacture of semiconductor device
JPH11135741A (en) Semiconductor device and its manufacture
JP3521921B2 (en) Method for manufacturing semiconductor device
JP3186713B2 (en) Method for manufacturing semiconductor device
JPH0479336A (en) Production of semiconductor device
JPH11150247A (en) Manufacture of semiconductor device
KR100211947B1 (en) Poli-crystalline silicon source/drain mos transistors and manufacturing method thereof
JPS60244037A (en) Semiconductor device and manufacture thereof
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH1131814A (en) Manufacture of semiconductor device
JPS6281051A (en) Semiconductor device and manufacture thereof
JPH11274491A (en) Semiconductor device and its manufacturing method
JPH0766400A (en) Semiconductor and its manufacture
JPH0582784A (en) Manufacture of mis-type semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPH06224379A (en) Manufacture of semiconductor device
JPH0346979B2 (en)
JPH05243506A (en) Manufacture of cmosic
JPH01194456A (en) Manufacture of complementary mos transistor
JPS6255310B2 (en)